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 
Abstract— The paper presents a new type of narrow band 

filter with good electrical performance and manufacturing 
flexibility based on the newly introduced groove gap waveguide 
technology. The designed  3rd order and 5th order filter work at 
Ku band with  1% fractional bandwidth. These filter structures 
are manufactured with an allowable gap between two metal 
blocks, in such a way that there is neither requirement to 
electrical contact nor alignment between the blocks. This is a 
major manufacturing advantage compared to normal 
rectangular waveguide filters. The measured results of the 
manufactured filters show reasonably good agreement with the 
full-wave simulated results, without any tuning or adjustments. 
 

Index Terms—Band-pass filters, Chebyshev response, 
Coupling Coefficient, External Q factor, Rectangular Waveguide 
filters, Gap Waveguide Technology. 
 

I. INTRODUCTION 

ICROWAVE filters are integral parts of any 
communication system. For full duplex systems, these 

filters are normally realized in rectangular waveguide 
technology due to large power handling capacity and low 
losses. Narrow band-pass filters with low insertion loss and 
steep roll-off requires cascading of loosely coupled high Q 
waveguide cavity resonators [1-3]. Ideally, the Q factor for 
conventional waveguide cavity is very high, but when realized 
as filters and manufactured in two blocks, it is difficult to 
achieve the theoretical high Q value at high frequencies, and 
spurious resonances may appear near the pass-band. The 
reasons are usually due to finite conductivity and field leakage 
through imperfections and minor gaps between the two metal 
blocks (originating due to manufacturing flaws or metal 
deformation due to thermal expansion). Also, poor electrical 
contact between the conductors is one of the most common  
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sources of passive intermodulation (PIM) [4], which is 
considered as a hidden threat in many microwave applications. 
To remove the tiny gaps between the two split-blocks, very 
good electrical contact must be achieved as well as good 
alignment of the two blocks. Also high quality surface 
finishing over the whole metal contact area is required for 
good mechanical assembly. Contacting surfaces must be 
protected from corrosion and oxidation over the entire 
lifecycle of the product. These strict mechanical requirements 
lead to very high precision metal machining technique  which 
increases the cost of manufacturing and cause much delay in 
production chain, thus neither very suitable for  high volume 
nor batch production. 

     To address the above-mentioned issue, a high Q resonator 
and band-pass filter with chebyshev response are presented in 
this work. The filter is designed for Ku band. Both the 
resonator and the filter are based on the newly proposed low 
loss gap waveguide technology presented in [5] and later 
experimentally demonstrated in [6-7]. The basic principle of 
operation is studied and explained in terms of a plane wave 
spectrum in [8] and in terms of classical modal field 
expansions in [9]. The articles [5]-[9] treat the ridge gap 
waveguide but the gap waveguide technology can also be used 
to realize groove gap waveguides and microstrip gap 
waveguides [10]. This technology can also be used for 
packaging of conventional microstrip circuits [11]. All the 
three types of gap waveguide transmission lines can be 
realized in two separate metal plates with a small gap between 
them, thus without any requirement for conductive contact 
between the two plates [12]. The present filters are realized 
using groove gap waveguides. The groove gap waveguides are 
in parallel work shown to have a Q-factor that is about 80% of 
that of the Q of a rectangular waveguide of the same cavity 
size [18], and, it has significant higher Q than the ridge gap 
waveguide. 

 
The intended propagation mode of a groove gap waveguide 

is very similar to that of TE10 mode of rectangular waveguide 
[13]. The bottom metal plate consists of a groove with a 
texture of pins on both sides and the upper metal plate is a 
smooth plate, as shown in figure 1. Unlike other metal 
waveguides, there is not at all need for electrical contact 
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Thus, the required coupling coefficients among three 
resonators are 12 23 0.0092   . The external quality 

factors at the input and output of the resonators are also 
calculated from a formula from [15]: 

)4(1

bandwidthfractional

gg
Q nn

nex
  

The required external quality factor for the input and output 
resonator is found to be 103. After calculating the required 
coupling coefficients and Qex for the input and output sections, 
the physical filter dimensions are obtained using the curves in 
Fig.5 and Fig.7. The height of the pins and the distance 
between the pins surface and the upper metal plate are kept 
unchanged. Also, it is to be noted that the width of the grooves 
formed by the row of metal pins is always kept at 15.8 mm. 
After that, full wave simulator Ansoft HFSS is used to 
simulate the whole structure. The filter with all critical 
dimensions is shown in Fig.8. 

B. 5th  order filter design: 

Low-pass prototype element values for the 5th order 
chebyshev filter are: 

.9750.1;3712.1;1468.1;1 3425160  ggggggg
 

Based on these values, the required coupling coefficients for 
the resonators and the external quality factor for the I/O 
resonators are calculated using equation 3 and 4, respectively. 
The required coupling coefficients are: 

 .00607.0;0079.0 34234512    

Also, the external Q for the I/O resonator is 114.68. In next 
step, the physical dimensions of the filter are obtained by 
using Fig.5 and Fig.7.  The filter dimensions are shown in Fig. 
9. 

V. MANUFACTURED PROTOTYPE AND MEASURED RESULTS  

    Both the 3rd order and the 5th order filters are manufactured 
with open end walls. The metal used for manufacturing the 
filters is aluminum as shown in Fig.10.  For both the filter 
prototypes, two end walls are kept open in order to 
demonstrate the manufacturing flexibility of the above 
mentioned groove gap waveguide resonator and to show that 
the Q-factor will be still high even with open end walls. At 
first both filters are manufactured in two parts: one bottom 
metal plate with the textured pin surface and the smooth top 
metal plate. Later on, the two parts are screwed together.  

As, mentioned in previous section, only two rows of pins 
are used to create the groove gap cavity resonators of the 
proposed filters. The leaked energy becomes almost negligible 
after just two rows of pins, so the presence of the sidewalls 
and electrical connections between the two metal blocks 
become insignificant. Initially, in the prototype filters only the 
two end walls of the structures are kept open. However, the 
two sidewalls can also be taken away without any effect on 
performance. The top metal plate can be placed at the required 
position only with the help of the spacers. To prove this 
concept, the 5th order filter prototype was modified later and 
the remaining two sidewalls were also removed leaving the 
top metal lid to be placed on four spacers.  The pictures of the 
manufactured parts of both filters are shown in Fig.10, 
including one without sidewalls that was verified to have the 
about the same performance as the one with two walls. 
 

At this point, the filters are measured with a vector network 
analyzer calibrated up to the SMA ports. No further 
calibration has been done to calibrate out the losses in SMA 
connectors. Also, no surface treatment or no fine tuning has 
been done on the manufactured prototype to improve the filter 
response. The simulated and measured filter responses for the 
3rd order and 5th order filters are shown in Fig.11. On the other 
hand, Fig.12 shows the frequency responses for both the filters 
over a wider frequency range of 10-21GHz.   

 

 

Fig.8. Top view of the 3rd order filter (top metal plate not shown). L1= L3 = 15.3 mm; L2 = 15.8 mm; x = 3.8 mm, a = 1mm and p = 3 mm 
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of the conductivity of aluminum due to surface roughness. 
SMA connectors from Rosenberger were used in the filters. 
The insertion loss data available in the connector data sheet 
shows a possible loss of 0.149 dB per SMA at 14GHz. We 
have two SMA in our prototype, so the losses due to SMA in 
our prototype filter can be up to 0.3 dB more already. For 
the5th order filter, the measured mid band insertion loss is 0.42 
dB more than the simulated values. 

 
Fig.11 (c).  Simulated and measured S21 response for 5rd order filter with two 

sides open and all side open. 

The main reasons of increased insertion loss are the same as 
stated for the 3rd order filter. But the effect of degrading 
conductivity of Aluminum due to surface roughness also 
contributes towards increasing the insertion loss in 5th order 
filter. The measured insertion loss  at  band edges is 0.84dB 
and 1.76 dB for the 3rd and 5th order filter respectively which 
is expected due to the rounding of the passband edges [20]-
[21] . 

 Fig.12. Spurious parallel plate modes around 10 GHz and 20 GHz 

In cases of both  3rd and 5th order filters, there are small shift 
of the frequency band of about 0.08% and 0.16 %, the larger 

shift  for the 5th order filter. Measured center frequency for 
this filter is 13.947 GHz in comparison of simulated 13.97 
GHz value. This frequency shift is attributed mainly to the 
mechanical tolerance issue which is in the order of 15-20 
micrometer in this case. This tolerance is 0.1% of the 
resonator width, which is of the same relative order as the  
frequency shift. The out of band rejection of both filters is also 
found to be as predicted. The parallel plate cut off bandwidth 
for this pin surface (AMC surface) is 11-20 GHz. So, these 
structures are expected to allow parallel-plate mode 
propagation before and after this stop-band, and Fig.12 shows 
that filter rejection vanishes outside this band. 

VI. CONCLUSION 

Newly introduced groove gap waveguide technology is 
used to design 3rd order and 5th order bandpass filters with a 
fractional bandwidth of 1%. Good electrical performance is 
achieved for the manufactured filter structures even without 
using any side walls. These filters utilize high Q groove gap 
waveguide resonators which eases the tight mechanical 
requirements applicable to standard waveguide cavity filters. 
Therefore, these proposed structures are more suitable for 
mass production.  The filter design was based on using a full 
wave frequency domain field solver to generate design curves 
for the coupling coefficients κ’s and the external Q-factors 
Qex. The measured shape of the filter skirts, s-parameters 
values and out of band rejection of both the 3rd and 5th order 
filters show quite good agreement with those of the simulated 
values, except for a small relative frequency shift that is in the 
same order of magnitude as relative tolerances of each 
resonator. The Q value of the resonators and the insertion loss 
of the filters can be improved even more by doing surface 
treatment and silver-plating of the prototypes which usually is 
the case for most commercial filters. 
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