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Abstract

We compare four different model geometries for particles with small-scale
surface roughness. The geometries are based on regular and stochastic sur-
face perturbations, as well as on 2D- and 3D-roughness models. We further
compare T-matrix and discrete dipole computations. Particle size parame-
ters of 5 and 50 are considered, as well as refractive indices of 1.6+0.0005i
and 3+0.1i. The effect of small-scale surface roughness on the intensity and
polarisation of the scattered light strongly depends on the size parameter and
refractive index. In general, 2D surface roughness models predict stronger
effects than 3D models. Stochastic surface roughness models tend to predict
the strongest depolarising effects, while regular surface roughness models can
have a stronger effect on the angular distribution of the scattered intensity.
Computations with the discrete dipole approximation only cover a limited
range of size parameters. T-matrix computations allow us to significantly
extend that range, but at the price of restricting the model particles to sym-
metric surface perturbations with small amplitudes.
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1. Introduction

Small-scale surface roughness is a morphological feature that is found in
many different types of particles in nature, such as mineral aerosol particles
in planetary atmospheres, cosmic dust particles, regolith particles on the sur-
face of terrestrial planets and asteroids, and ice-cloud particles rimed with
supercooled water droplets. The impact of small-scale surface roughness on
the scattered intensity and polarisation can, in some cases, even dominate
over the effect of the particles’ overall non-spherical shape. This is particu-
larly the case for particles with high absorption cross sections [1, 2] and for
particles composed of optically hard material [2].

Computing the optical properties of such particles is among the most
challenging problems in electromagnetic scattering research. The roughness
features are often smaller than the wavelength of light, so that the light
scattering problem cannot be solved by use of the geometric optics approx-
imation. On the other hand, the size parameter x = 2πr/λ of the particles
is often large compared to unity. (Here, r denotes the volume-equivalent ra-
dius of the particle, and λ is the wavelength of light.) For particles with large
x, numerically exact solutions of Maxwell’s equations are often plagued by
ill-conditioning problems or high CPU-time requirements. Owing to these
numerical limitations, very little is known about the significance of small-
scale surface roughness for the optical properties of particles of different size
parameters, morphologies, and chemical compositions. Studies for particles
with large size parameters are particularly rare. A ray optics approximation
(ROA) modified with partial Lambertian reflection/refraction has been used
by [3] and [4], and another ROA model incorporated a radiative transfer
approach [5], to study the impact of small-scale surface roughness for dust
particles much larger than the wavelength. The former model was rather
phenomenological and the latter assumed roughness elements to be indepen-
dent scatterers, so neither model can be expected to provide fully accurate
and reliable predictions for the impact of roughness.

Most theoretical studies have been limited to high-order, spherical 2D-
Chebyshev particles [1, 6, 2]. More advanced model geometries involve
spheroidal 2D-Chebyshev particles [1], spherical 3D-Chebyshev particles [7],
Gaussian random particles [8, 9], and spheres covered by smaller spherical
particles [10]. Investigations of 2D-Chebyshev particles revealed that the
phase function initially changes and eventually converges as the order of the
perturbing Chebyshev polynomial is increased. This indicates that the op-
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tical properties of particles are sensitive to the presence and the amplitude
of a surface perturbation with a sub-wavelength scale, but they do not seem
to depend on the detailed structure of that perturbation. This raises the
question if it makes much of a difference how one chooses the representation
of small-scale surface roughness in a model. For instance, does it matter if
we employ particles with a 2D- or a 3D-surface roughness? Does it make
a difference if our model particles have a regular or a stochastic roughness
structure?

Due to numerical constraints, almost all studies of particles with small-
scale surface roughness have either been limited to size parameters of x ∼< 15
or have been based on non-physical parameterisations or independent multi-
ple scattering treatments that leave out part of the physics involved. Recent
work reported in [7] was based on numerically exact T-matrix calculations for
3D-Chebyshev particles with size parameters up to x = 70. This substantial
increase in the range of size parameters has been achieved by a numerical
approach that makes combined use of group theoretical methods [11, 12] and
a perturbation formulation [13] of the null-field method. The perturbation
approach reduces numerical ill-conditioning problems, but it is limited to sur-
face perturbations with small amplitudes. The group theoretical approach
reduces CPU-time by 4–6 orders of magnitude, depending on particle size
and on the order of the perturbing polynomial. However, it is limited to
particles with symmetric surface perturbations and base geometries. Despite
these limitations, the method offers the potential for investigating the effects
of small-scale surface roughness for a significantly extended range of size
parameters by use of numerical methods based on rigorous electromagnetic
scattering theory.

The studies in [1, 6, 2, 7, 10] were based on T-matrix computations with
the null-field method, while [8, 9] made use of the discrete dipole approxima-
tion (DDA). Exploiting geometric symmetries and formulating a perturbation
approach for small-scale surface roughness is relatively straightforward in the
null-field method and in other T-matrix methods. Also, optical properties
of randomly oriented particles can be computed analytically with higher ac-
curacy and efficiency [14, 15]. However, the null-field method is, in general,
limited to star-shaped particles that do not deviate too strongly from spher-
ical shape, and it is mostly applied to homogeneous particles. The DDA,
on the other hand, is a highly flexible method that has no such limitations.
However, the DDA is a computationally demanding method that does not
lend itself easily to exploiting geometric symmetries, and it requires time-
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consuming numerical orientation-averaging. Thus, either method offers spe-
cific advantages for computing light scattering by particles with small-scale
surface roughness.

This short review of recent work on particles with small-scale surface
roughness leaves several questions unanswered, of which we will address the
following ones in the present study.

• What are the differences and similarities of particles with a 2D- and 3D-
surface roughness, and of particles with regular and stochastic surface
perturbations? In which optical properties do the differences (if any)
manifest themselves, and how does the comparison of different surface-
roughness models depend on the size parameter and the refractive index
of the particles?

• What are the strengths and limitations of the null-field method and the
discrete dipole approximation in applications to particles with small-
scale surface roughness? What are the main sources of error in either
method, and what is the range of size parameters that can be covered
for particles with irregular, small-scale surface roughness?

To keep this work computationally manageable, we will limit our study
to mineral particles. The details on the selection of our case studies, model
geometries, and numerical methods are given in Sect. 2. Computational
results are presented in Sect. 3 and discussed in Sect. 4. Concluding remarks
are given in Sect. 5.

2. Methods

The aim of this study is two fold. First, we want to investigate the suit-
ability of both the T-matrix approach and the discrete dipole approximation
(DDA) for particles with small-scale surface roughness. Second, we want
to compare the optical properties computed with different model geometries
for small-scale surface roughness with varying degree of sophistication and
computational complexity.

2.1. Computational methods

We compute the T-matrix by the use of Waterman’s null-field method
[16], also known as the extended boundary condition method. The ad-
vantages of this method are that the computation of orientation-averaged
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optical properties can be performed analytically [14, 15], and that particle
symmetries can be systematically exploited [12, 17]. A disadvantage is that
the method can become numerically ill-conditioned for particles that deviate
strongly from spherical shape, for particles that have a large real or imagi-
nary part of the refractive index, and for nonspherical particles that are much
larger than the wavelength of light. Ill-conditioning problems are also quite
common for particles with small-scale surface roughness, which restricts ap-
plications of the null-field method to rough particles with size parameters up
to about 10–15 (e.g. [2, 7]), and to small roughness amplitudes. This range
can be considerably extended for particles with a symmetric small-scale sur-
face roughness by combining group theory with a perturbation approach [7].
For example, for 3D Chebyshev particles with a refractive index of m=3+0.1i,
conventional T-matrix computations give accurate results for size parameters
up to 14, while the perturbative approach is numerically stable for size pa-
rameters up to 70 [7], thus extending the range of size parameters by a factor
of 5. At the same time, exploiting symmetries by the use of group theory
reduces computation time for such particles by 4–6 orders of magnitude (de-
pending on particle size and on the order of the symmetry group), and it
reduces the scaling of CPU-time with size parameter from ∼ x5.5 (without
symmetries) to ∼ x3.5 (with symmetries) [7]. Thus, at least for particles
with symmetric small-scale roughness structures, the applicability range of
the T-matrix approach can be substantially extended.

The discrete dipole approximation is a volume-integral equation method.
The main advantage is that it is, in principle, applicable to any kind of
model geometry. There are no limitations to homogeneous or only slightly
nonspherical particles. However, its CPU-time requirements are high and
strongly increase with size parameter, which practically limits this method
to particles up to size parameters of about 10–15 with orientation averag-
ing. Capturing the effect of small-scale morphological features may require
a very fine grid in the discretisation of the volume-integral term, which can
increase the computation time even more. Also, averaging over orientational
angles needs to be performed numerically. This means that the scattering
problem needs to be solved repeatedly for a sufficiently large set of discrete
orientational angles.

For T-matrix computations we use the program Tsym [11, 12], which
has been specifically tailored to exploiting group theory in T-matrix compu-
tations. The perturbation T-matrix method has recently been implemented
and tested in the model [7]. For the DDA-computations, we use the programs
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Figure 1: Model particles considered in this study: 2D-Chebyshev (upper left), 3D-
Chebyshev (upper right), 2D-Gaussian random spheres (lower left),and 3D-Gaussian ran-
dom spheres (lower right).

DDSCAT (e.g. [18]) and ADDA (e.g. [19]). These two models have recently
been cross-validated in a model intercomparison study [20]. The accuracy of
the T-matrix results is cross-checked by use of the reciprocity condition (e.g.
[13, 7]). These tests involve the computation of the T-matrix for particles
in at least two different fixed orientations, and comparing the polarised dif-
ferential scattering cross sections. These computations are numerically very
demanding for irregular particles. The reciprocity tests were therefore not
performed for 3D Gaussian random spheres. We require that the reciprocity
condition is fulfilled with an error of less than 5%.
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2.2. Model particles

We investigate the differences in the optical properties of particles with 2D
and 3D surface roughness, and with regular and stochastic surface roughness.
To this end, we consider four different classes of model particles, which are
illustrated in Fig. 1.

1. 2D Chebyshev particles (Cheb-2D, upper left): This is the simplest of
all four classes of model particles. The surface parametrisation is given
by

r(θ) = r0[1 + ǫ cos(ℓθ)], (1)

where r0 denotes the radius of the unperturbed sphere, θ is the polar
angle, ℓ is the order of the Chebyshev polynomial, and ǫ represents the
deformation parameter. The surface of these particles is fully charac-
terized by the pair (θ, r(θ)). This is why we refer to particles with such
an axisymmetric surface perturbation as particles with a “2D surface
roughness”.

2. 3D Chebyshev particles (Cheb-3D, upper right): The surface parametri-
sation of these particles is given by

r(θ, φ) = r0[1 + ǫ cos(ℓθ) cos(ℓφ)], (2)

where φ is the azimuth angle. So, the surface is characterised by
(θ, φ, r(θ, φ)). We refer to any kind of non-axisymmetric surface per-
turbation as “3D surface roughness”.

3. 2D Gaussian random spheres (GRS-2D, lower left): Just like Cheb-2D,
GRS-2D geometries are only perturbed in the polar direction. Thus
they have a higher symmetry than the Cheb-3D particles. However,
in contrast to 2D- and 3D Chebyshev particles, the GRS-2D are not
perturbed by a polynomial with a regular oscillation period and con-
stant amplitude. Rather, the surface is stochastically perturbed with
a prescribed amplitude standard deviation σ and angular correlation
Γ [21]. Thus, the surface roughness of these particles is stochastic in
the polar direction, although the geometry is highly symmetric owing
to the axial symmetry.

4. 3D Gaussian random spheres (GRS-3D, lower right): This is the most
complex and computationally most demanding class of model particles.
It is perturbed by a stochastic 3D surface roughness with prescribed
amplitude standard deviation σ and angular correlation Γ [21].
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Cheb-2D and Cheb-3D are part of the standard implementation of Tsym.
GRS-2D and GRS-3D have been added to the program by adapting the
publicly available GRS code described in [21]. This code provides the sur-
face parametrisation r(θ, φ) for GRS-2D and GRS-3D. We made some minor
amendments to the code in order to obtain, additionally, the partial deriva-
tives ∂r/∂θ and ∂r/∂φ, which are needed in the null-field method.

We perform computations for two different size parameters, x = 5 and
x = 50. Computations for irregular GRS-3D particles are computationally
very demanding. For those particles, we have therefore only performed com-
putations for x = 5. All computations have been performed for two different
refractive indices, m =1.6+0.0005i and m =3+0.1i. The first refractive in-
dex is taken as a typical value at visible wavelengths for terrestrial silicate
particles with a low concentration of hematite. The second refractive index
is representative for pure hematite particles at visible wavelengths (neglect-
ing birefringence). Henceforth, we will label computational results obtained
for m =1.6+0.0005i by “silicate”, and those obtained for m =3+0.1i by
“hematite”.

3. Results

3.1. T-matrix – DDA comparison for GRS-3D

In the DDA, the geometry is represented by a discretised grid of dipoles.
The main challenge is therefore to choose sufficiently small dipole spacing
capable of resolving small-scale surface roughness features. This introduces
computational demands that are significantly higher than those in compu-
tations for particles with smooth boundary surfaces. Computations for the
size parameter 50 would have required huge amount of computing power,
especially with orientation averaging, and might have also had numerical
convergence problems, so DDA simulations were only carried out for the size
parameter of x = 5. To assure that the surface roughness is accounted for in
full detail in the simulations, the DDA target shapes included about 360000
dipoles.

Naively, one may expect that in the T-matrix approach there are no
problems related to the representation of the geometry. This is, indeed, the
case for Cheb-2D and Cheb-3D, but not necessarily for GRS-2D and GRS-
3D. For Chebyshev particles, we have closed-form expressions for both the
surface parametrisation r(θ, φ) and its partial derivatives. In contrast, for
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GRS the computation of r(θ, φ) and its partial derivatives involves numer-
ical recurrence relations for modified spherical Bessel functions, associated
Legendre functions Pm

l
(z), and derivatives of associated Legendre functions

dPm

l
(z)/dz. GRS particles of small-scale surface roughness have small angu-

lar correlations, which requires numerical computations of high orders and
degrees of Pm

l
(z) and dPm

l
(z)/dz. In numerical computations, we may en-

counter error accumulations at higher orders and degrees of these functions.
Further, the smaller the angular correlation, the larger the argument in the
spherical Bessel functions (see [21] for details). However, for large arguments
the recurrence relations for the spherical Bessel functions can become numer-
ically inaccurate. Small numerical inaccuracies in the computations of r(θ, φ)
may not be a problem in DDA computations. After all, the geometries are
stochastic, and minor imprecisions in the generation of the geometries are
not expected to be a major problem. In contrast, in the null field method we
need not only r(θ, φ), but also ∂r/∂θ and ∂r/∂φ. Numerical inaccuracies in
the computation of these quantities may result in inconsistencies between the
surface parametrisation and its partial derivatives, since these three quanti-
ties are computed independently from each other. This is a possible source
of error in T-matrix computations that does not affect DDA computations.

We found that the numerical routines for computing the modified spher-
ical Bessel functions fail to produce accurate results for angular correlations
Γ smaller than 4◦. All computations for GRS-2D and GRS-3D have there-
fore been performed for an angular correlation of Γ = 4◦. The accuracy of
the T-matrix results has been tested by use of the reciprocity condition, as
explained earlier.

Table 1: Comparison of optical properties of GRS-3D particles computed with Tsym,
DDSCAT, and ADDA

material program Qext ω g Qbak/sr−1 δL δC

Silicate Tsym 2.97(1) 0.995(0) 0.576(1) 0.393(6) 0.0004(1) 0.0008(2)
Silicate DDSCAT 3.06 0.996 0.587 0.317 0.0005 0.0009
Hematite Tsym 2.49(1) 0.560(2) 0.670(5) 0.074(5) 0.002(1) 0.004(2)
Hematite ADDA 2.59 0.577 0.673 0.075 0.003 0.005

Table 1 presents computational results for the extinction efficiency Qext,
the single-scattering albedo ω, the asymmetry parameter g, the backscat-
tering efficiency Qbak, the linear depolarisation ratio δL, and the circular
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depolarisation ratio δC . All computations were performed for GRS-3D par-
ticles with a size parameter of x = 5, an angular correlation of Γ = 4◦ and
a relative radial standard deviation of σ =0.03. The first two rows com-
pare results for silicate GRS-3D obtained with Tsym and DDSCAT. The last
two rows show a corresponding comparison for hematite GRS-3D obtained
with Tsym and ADDA. ADDA employs the filtered coupled dipoles (FCD)
scheme [22] for computing dipole polarizability; this scheme performs well for
high-refractive-index targets. Indeed, DDSCAT did not produce convergent
results for the hematite particles with any of its three optional polarizability
schemes.

The Tsym calculations were performed for ten stochastic realisations of
GRS-3D geometries. The data entries in the table show the average results
for the ten geometries and, in parenthesis, the maximum deviation of the last
significant figure from the average value. (For instance, an entry of 0.560(2)
means that the average value of 0.560 varies, in general, within a maximum
range of [0.560 − δ1, 0.560 + δ2], and max{δ1, δ2} = 0.002.) DDSCAT com-
putations were performed for three different geometries. Here we present
the results for that geometry that gave intermediate results for the exinction
efficiency.

We can make two interesting observations here. First, the relative dif-
ferences in optical properties among different stochastic realisations of the
GRS-3D geometries are very small, except for δL and δC . The same is true
for the three stochastic geometries for which DDA computations have been
performed (not shown). Second, the T-matrix and DDA results for Qext,
ω, g, and Qbak agree to within a few percent, while differences in δL and
δC between the two numerical methods are comparable to differences among
different stochastic realisations of the GRS geometry.

Figure 2 shows a comparison of the Mueller matrix elements F11 (first
row), F22/F11 (second row), and −F12/F11 (third row) as a function of the
scattering angle, obtained for silicate (left column) and hematite (right col-
umn) GRS-3D. The maximum range of values obtained for the ten GRS-3D
geometries for which T-matrix calculations were performed are presented
(grey shading), and the results obtained for the three GRS-3D geometries
for which the DDA computations were performed are represented by solid,
dashed, and dash-dotted lines.

For silicate particles, differences among the ten geometries used in T-
matrix computations, and among the three geometries used in DDA com-
puatations are relatively small; T-matrix and DDA results are close to each

10



0 50 100 150
10

−2

10
−1

10
0

10
1

10
2

Silicate, x=5, GRS 3D

 

 

F
11

T−matrix
DDSCAT, Geom−1
DDSCAT, Geom−2
DDSCAT, Geom−3

0 50 100 150
0.96

0.97

0.98

0.99

1

F
22

/F
11

0 50 100 150
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

−
F

12
/F

11

Scattering angle

0 50 100 150
10

−1

10
0

10
1

10
2

Hematite, x=5, GRS 3D

 

 
T−matrix
ADDA, Geom−1
ADDA, Geom−2
ADDA, Geom−3

0 50 100 150
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

0 50 100 150
−1

−0.5

0

0.5

1

Scattering angle

Figure 2: Mueller matrix elements F11 (first row), F22/F11 (second row), and −F12/F11

of silicate (left column) and hematite particles (right column). All computations were
performed for GRS-3D particles with x = 5. The Tsym results (grey shading) indicate the
maximum range covered by ten stochastic realisations of the GRS-3D geometry. DDSCAT

and ADDA computations each were performed for three stochastic realisations, represented
by solid, dashed, and dash-dotted lines.
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other. For hematite, somewhat larger deviations among different GRS-3D
geometries are observed, especially for F22/F11 and −F12/F11. Relative differ-
ences between Tsym and ADDA results for hematite are significantly larger
than those between Tsym and DDSCAT results for silicate. This is partic-
ularly apparent for F22/F11 at scattering angles of 20–120◦. However, note
that in either case, the deviations of F22/F11 from unity, and thus also the
absolute errors, are small.

3.2. Comparison of model particles

Table 2: Comparison of optical properties of silicate particles represented by different
model geometries. For x = 5, ǫ = 0.03 (for Chebyshev particles) and σ = 0.03 (for GRS
particles). For x = 50, ǫ = 0.01, σ = 0.01. GRS results were averaged over ten stochastic
geometries. All computations were performed with Tsym.

x model Qext ω g Qbak/sr−1 δL δC

5 GRS-2D 3.00(10) 0.995(0) 0.58(1) 0.36(5) 0.002(1) 0.005(3)
5 GRS-3D 2.97(1) 0.995(0) 0.576(1) 0.393(6) 0.0004(1) 0.0008(2)
5 Cheb-2D 2.96 0.995 0.575 0.407 0 0
5 Cheb-3D 2.96 0.995 0.574 0.406 0 0
5 Spheres 2.96 0.995 0.574 0.405 0 0

50 GRS-2D 2.16(6) 0.943(3) 0.79(1) 0.41(7) 0.16(6) 0.4(1)
50 Cheb-2D 2.15 0.955 0.82 0.58 0 0
50 Cheb-3D 2.15 0.957 0.81 0.59 0 0
50 Spheres 2.15 0.956 0.80 0.58 0 0

Table 2 presents a comparison of optical properties of silicate particles
computed for size parameters x = 5 and x = 50 for different model particles.
All computations were performed with the Tsym program. For GRS-2D
and GRS-3D, an average over ten stochastic realisations of the geometry
has been performed, where we assumed an angular correlation of Γ = 4◦

and a relative amplitude standard deviation of σ = 0.03 (for x = 5) and
σ = 0.01 (for x = 50). The data entries show the mean values and the
maximum ranges of the last significant figures. For Cheb-2D and Cheb-3D
particles, we show computational results for Chebyshev order of ℓ = 30 and
deformation parameter ǫ = 0.03 (for x = 5), and ℓ = 240 and ǫ = 0.01
(for x = 50). The Chebyshev orders are chosen such that the perturbation
wavelength Λ = 2πr/ℓ of the Chebyshev polynomial on the surface of a
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particle with radius r is Λ ∼< λ/4, where λ is the wavelength of light. This
means that x/ℓ ∼< 1/4.

We can see that ω, and g vary very little among different model particles
for both size parameters. In fact, the results obtained for GRS-2D, GRS-3D,
Cheb-2D, and Cheb-3D are very close to those obtained for smooth spherical
particles. Similarly, the values obtained for Qext are very similar for all
particles including spheres. However, note that the variability of Qext for
different stochastic realisations of GRS-2D geometries with x = 5 is fairly
high. Larger differences among various model particles are obtained for Qbak.
While Cheb-2D and Cheb-3D give backscattering efficiencies that are close
to those for spheres, GRS-3D and, even more so, GRS-2D particles yield
somewhat lower values of Qbak. For x = 50, Qbak computed with GRS-2D is
almost 30% lower than the corresponding results obtained for spheres, Cheb-
2D, and Cheb-3D. Interestingly enough, both GRS-2D, GRS-3D predict non-
zero linear and circular depolarizations, while Cheb-2D and Cheb-3D are
non-depolarising, just like spheres. GRS-2D yield δL and δC values that are
almost an order of magnitude larger than those computed with GRS-3D.
Both δL and δC computed with GRS-2D are small for x = 5, but rather
substantial for x = 50.

Figure 3 shows Mueller matrix elements computed with the different
model particles for silicate particles with x = 5 (left column) and x = 50
(right column). The grey shading indicates the maximum range obtained
for the ten GRS-2D model particles. The corresponding range for the ten
GRS-3D particles is significantly smaller (not shown).

For x = 5 the phase functions F11 (upper left) of all model particles are
almost identical. Also, there is very little variation among the ten GRS-
2D geometries. Significant differences are observed for F22/F11 (centre left),
which is responsible for linear depolarisation. While spheres, Cheb-2D, and
Cheb-3D all give F22/F11 = 1, thus zero depolarisation, for all scattering
angles, GRS-2D display values of F22/F11 as low as 92%. The ensemble-
averaged results for GRS-3D are closer to unity as compared to those ob-
tained for GRS-2D. The lowest values are observed around scattering angles
of 130◦. We also see that F22/F11 varies significantly among the ten GRS-2D
geometries, with the largest differences occuring around 130◦. The degree
of linear polarisation −F12/F11 is rather similar for all particles including
spheres, except in the angular range of 110–150◦.

For x = 50, the Mueller matrix elements computed for spheres (black line)
are almost identical with those computed for Cheb-2D and Cheb-3D with
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Figure 3: Mueller matrix elements F11 (first row), F22/F11 (second row), and −F12/F11

(third row) of silicate particles with x = 5 (left column) and x = 50 (right column). All
computations were performed with Tsym. The grey shading indicates the maximum range
of ten stochastic realisations of the GRS-2D geometries.
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ǫ = 0.01. The latter two are therefore not shown. Instead, we performed
computations for Cheb-2D with ǫ = 0.01, 0.02, . . . , 0.06 and computed an
equi-probable average over these six Cheb-2D geometries (blue line). Also,
we show GRS-2D results for σ = 0.01. Very little differences are observed for
the phase function (upper right). Even the extended range of deformation
parameters used for the Cheb-2D geometries only produces minor differences
in the angular range of 110–150◦. The phase function obtained by averaging
over ten GRS-2D geometries is smoother than that of spheres and displays
less pronounced oscillations. The most striking differences are observed for
F22/F11. For spheres, this quantity is always unity. For Cheb-2D the devi-
ations from unity are so small that they are barely visible in the figure. By
contrast, GRS-2D geometries deviate from unity by almost up to 50% and
show considerable variability among the ten different geometries. We observe
a broad local minimum aroung 150◦, and a narrow double-lobe feature near
the backscattering direction. The degree of linear polarisation −F12/F11 is
characterised by a large number of oscillations, where the oscillation ampli-
tude is largest for spheres and smallest for the ensemble-averaged GRS-2D
geometries. Interestingly enough, the variations of −F12/F11 among the ten
GRS-2D geometries are smaller than the oscillation amplitudes observed for
spheres. This can be understood from the more regular structure of the
internal electromagnetic field for spherical particles than for nonspherical
particles, such as particles with GRS geometries [23].

Table 3: As Table 2, but for hematite particles.

x model Qext ω g Qbak/sr−1 δL δC

5 GRS-2D 2.51(5) 0.562(5) 0.674(8) 0.06(2) 0.006(14) 0.01(3)
5 GRS-3D 2.49(1) 0.560(2) 0.675(3) 0.074(5) 0.002(1) 0.005(2)
5 Cheb-2D 2,57 0.567 0.669 0.077 0.001 0.002
5 Cheb-3D 2.43 0.567 0.661 0.092 0 0
5 Spheres 2.43 0.572 0.656 0.095 0 0

50 GRS-2D 2.14(2) 0.624(0) 0.803(1) 0.020(0) 0.0003(1) 0.0006(2)
50 Cheb-2D 2.14 0.527 0.954 0.002 0 0
50 Cheb-3D 2.14 0.572 0.883 0.009 0 0
50 Spheres 2.14 0.625 0.803 0.020 0 0

Table 3 shows results analogous to those in Table 2, but for hematite
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particles. The effect of surface roughness on the optical properties is generally
more pronounced for hematite than for silicate. For x = 5 we observe that
Qext computed for different model particles can differ by up to 6% from that
computed for spheres, while little variations are seen for ω and g. For x = 50
the situation is reversed. While all model particles essentially yield identical
results for Qext, significant differences are obtained for ω and g. Even more
remarkable, ω and g computed with either 2D or 3D Chebyshev particles
deviate more from spheres than corresponding results computed with GRS-
2D. Thus ω and g show a very different sensitivity to the choice of model
geometry than δL, δC , and F22/F11, for which the deviation from spheres is
most pronounced for GRS-2D.

In Fig. 4, the Mueller matrix elements F11, F22/F11, and −F12/F11 are
compared for hematite spheres, GRS-2D, GRS-3D, Cheb-2D, and Cheb-3D.
As for silicate, computations were performed for ten stochastic realisations
of the GRS-2D geometry. The maximum range of the GRS-2D results is
indicated by the grey shading, while the red line indicates the average over
the ten different geometries. For x = 5, the phase functions computed with
different model particles and with different GRS-2D geometries display little
variation, except in the backscattering region of 150–180◦. F22/F11 varies
significantly among GRS-2D geometries. The lowest values of about 0.92
are found at scattering angles around 130◦. GRS-3D and Cheb-2D show
qualitatively similar angular dependencies of F22/F11. But quantitatively
it seems that stochastic surface roughness yields more depolarisation than
regular roughness models, and 2D roughness models give stronger depolari-
sation than 3D roughness models. In fact, for Cheb-3D particles F22/F11 is
identically equal to unity. The smallest deviations among the different model
particles are seen in forward-scattering directions up to about 50◦. The de-
gree of linear polarisation −F12/F11 follows a similar pattern for all model
geometries including spheres, but some deviations in the position, heights,
and depths of the maxima and minima are evident.

The results obtained for x = 50 are among the most striking. Unlike
silicate, we observe substantial differences in the phase functions F11 com-
puted with different model particles. (Note that all phase functions are,
in fact, properly normalised, which can be difficult to see on a logarithmic
scale.) Spheres and GRS-2D yield almost identical results, while Cheb-3D
and, even more so, Cheb-2D show strong departures from spheres. Both
classes of Chebyshev particles scatter more anisotropically, i.e., they give
more forward and less backscattering than spheres. This explains the large
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Figure 4: As Fig. 3, but for hematite particles.
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asymmetry parameters we found for Chebyshev particles at x = 50 in Table
3. For F22/F11, the situation is reversed. While both Cheb-2D and Cheb-
3D give results identically equal to unity (thus identical with the results for
spheres), the GRS-2D geometries depart from unity. However, the depar-
ture from unity is smaller than for x = 5. The reason is that for x = 5
we considered relative standard deviations of σ = 0.03, while for x = 50
we were limited to σ = 0.01 due to computational instabilities for larger
surface-roughess amplitudes at large size parameters. Interestingly enough,
for x = 50 the lowest values of F22/F11 and the largest variations among the
ten different GRS-2D geometries are now observed in the forward-scattering
hemisphere, while for x = 5 this was the case in the backward-scattering
hemisphere. A similar observation can be made for −F12/F11. For x = 5,
the largest differences among different model particles are seen in the angu-
lar range 130–170◦. By contrast, for x = 50 both the largest oscillations and
the largest differences among different model particles are observed in the
forward-scattering hemisphere. Also, −F12/F11 is positive for all scattering
angles.

4. Discussion

4.1. Computational methods: T-matrix and DDA

For silicate particles, we found a very good agreement between T-matrix
and DDA computations. For hematite, relative differences between the two
methods were more pronounced, but absolute differences were small in all
cases. Figure 4 (centre left) shows that the T-matrix results obtained for
different model geometries are qualitatively very similar; they all show a
pronounced minimum around 130◦, and much weaker minima around 90◦

and 40◦. In Fig. 2, the broad and pronounced minima obtained with the
DDA deviate from this behaviour. For GRS-2D, Cheb-2D, and Cheb-3D,
the accuracy of the T-matrix results were tested by use of the reciprocity
condition (e.g. [13, 7]). We found that the maximum allowed error of 5%
was not exceeded in any of the cases studied. In the majority of the cases, the
error was even less than 3%. We therefore tend to believe that the T-matrix
results are rather reliable. On the other hand, with the serial DDSCAT

code it was not possible to obtain convergent results in the hematite case,
which is why we had to use the parallel ADDA code with FCD polarizability
scheme. This indicates that rough hematite particles with x = 5 present a
numerical challange for the DDA method. The main difficulty is to faithfully
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represent a surface roughness with an angular correlation of only 4◦ in a
discretised grid. It is also possible that even more dipoles would be needed to
accurately reproduce the profile of the electric fields near the particle surface
due to the high refractive index. Another possibility would be to change the
representation of the polarizability of dipoles that is more suitable for a large
refractive index.

These results suggest that the T-matrix approach lends itself more eas-
ily to applications of particles with small-scale surface roughness. However,
as mentioned earlier, there do exist certain limitations. In T-matrix com-
putations with the null-field method the main source of error is a numer-
ical matrix inversion, which can introduce ill-conditioning problems. Such
ill-conditioning problems can be reduced by use of a clever choice of the
numerical matrix inversion method [24], such as LU decomposition, or by
exploiting irreducible representations of finite groups [12]. The Tsym uses
LU decomposition, and it is, to the best of our knowledge, the only T-matrix
code that uses irreducible representations of finite groups for reducing the
ill-conditioning problems. By this the range of size parameters can be sig-
nificantly extended. But it is important to realise that the ill-conditioning
problems can never be completely eliminated by such methods. In the cur-
rent study, we avoid the matrix inversion problem by iteratively computing
the T-matrix via a Lippmann-Schwinger equation [7]. For spherical particles
with a small-scale surface perturbation, this approach entirely circumvents
the ill-conditioning problem. However, this method is limited to particles
with small perturbation amplitudes. In this study, we performed T-matrix
computations for x = 5 and x = 50, where the latter has been limited to a
deformation parameter ǫ = 0.01 (for Chebyshev particles) and an amplitude
standard deviation of σ = 0.01 (for Gaussian random spheres). Further, the
algorithm for generating GRS-2D and GRS-3D particles can become numer-
ically less accurate at small correlation angles. Numerical inaccuracies in
the generation of stochastic particles would not be a major concern in DDA
computations. However, in T-matrix computations both the surface param-
eterisation r(θ, φ) and its partial derivatives ∂r/∂θ and ∂r/∂φ need to be
computed. Numerical imprecisions can entail inconsistencies between these
quantities, which would introduce errors in the computation of the T-matrix.
Our reciprocity tests indicate that the algorithm for generating GRS-2D and
GRS-3D particles was numerically reliable down to angular correlations of
Γ = 4◦.

A major limitation in all electromagnetic scattering computations is the
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high CPU-time requirement, which rapidly increases with the particle’s size
parameter. Besides using non-exact methods, the only known approach for
alleviating this problem is to impose symmetry assumptions on the particle
geometry, and to systematically exploit these symmetries in the solution of
the electromagnetic scattering problem [12]. This excludes the use of irregu-
lar geometries with large size parameters. Thus, our T-matrix computations
for a size parameter x = 50 were limited to Cheb-3D, GRS-2D, and Cheb-
2D geometries, where Cheb-3D of even Chebyshev order ℓ belong to a finite
symmetry group of order Mo = 4ℓ, and where GRS-2D and Cheb-2D are
both axisymmetric, thus of infinite symmetry order. The use of finite sym-
metry groups reduces CPU-time by a factor of 1/M2

o
. For instance, for the

high numerical accuracy we required in this study, the computations for the
Cheb-3D particles with x = 50, ℓ = 240 took about 1.75 hours. For parti-
cles without symmetries, such as GRS-3D, the CPU-time would have been
increased by a factor M2

o
∼ 106 to about 184 years!

4.2. Model particles: 2D- vs 3D-, and regular vs stochastic roughness models

It has been reported earlier [1] that the phase function of Cheb-2D par-
ticles converges with increasing Chebyshev order. This observation has been
confirmed by [2]. Consequently, the optical properties of Cheb-2D particles
are, in general, sensitive to the presence of a surface roughness as well as to
the roughness amplitude, but they become independent of the perturbation
wavelength Λ if Λ is sufficiently small. One may be tempted to hypothe-
sise that model particles with different representations of surface roughness
should yield very similar optical properties, as long as the perturbation wave-
length is small. Remarkably enough, this is generally not the case, as the
results of this study demonstrate.

We used Chebyshev particles as a proxy for particles with a regular sur-
face roughness, and Gaussian random spheres as a proxy for particles with
a stochastic surface roughness. For each of these classes of geometries, we
considered 2D and 3D surface perturbations. In general, the optical proper-
ties computed with these four classes of geometries agree only in those cases
for which the optical properties of rough spheres closely agree with those of
smooth spheres, i.e. in those cases in which small-scale surface roughness has
a negligible effect on the optical properties. In most cases, the importance of
surface roughness increases for larger size parameters and larger perturbation
amplitudes.
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Apart from these observations, the results are rather complex, and it is
quite difficult to identify any general trends. F11, ω, and g computed for
hematite are more sensitve to surface roughness than corresponding results
obtained for silicate. This is especially apparent for x = 50. The opposite
is the case for F22/F11, δL, and δC . For silicate GRS-2D particles with a
size parameter of x = 50, F22/F11, δL, and δC are highly sensitive to sur-
face roughness effects, while the corrsponding results for hematite are only
weakly sensitive to stochastic surface perturbations. For either refractive in-
dex, only stochastic roughness models yield appreciable deviations of F22/F11

from unity (the only exception being large hematite Cheb-2D particles). 2D
roughness models give larger deviations of F22/F11 from unity than 3D rough-
ness models. But the differences between 2D and 3D roughness models are
less pronounced than the differences between stochastic and regular models.
The angular range of the differences among various roughness models varies
for different x and m.

For large hematite particles, regular surface roughness models (Cheb-
2D and Cheb-3D) predict large deviations of F11 from the phase function of
homogeneous spheres, while stochastic roughness models (GRS-2D and GRS-
3D) yield results for F11 that are rather similar to those obtained for spheres.
Note, however, that the computational constraints limited our investigation
of large hematite particles (x = 50) to very small perturbation amplitudes
(ǫ = 0.01 for Chebyshev particles, σ = 0.01 for Gaussian random spheres).
Larger perturbation amplitudes would almost certainly give larger deviations
of F11 computed with model geometries with stochastic surface perturbations.
Comparison of the two different classes of Chebyshev particles shows that 2D
surface roughness produces a stronger effect in F11 than 3D surface roughness.

The degree of linear polarisation −F12/F11 behaves qualitatively similar
for both homogeneous spheres and the four classes of rough model particles.
The results obtained for different model particles mainly differ in the posi-
tion and amplitude of the various peaks and troughs of this Mueller matrix
element.

The results obtained for GRS particles showed that the optical properties
can vary appreciably among different stochastic realisations of the same class
of geometry (i.e. among particles with the same angular correlation and
amplitude standard deviation). This is especially the case for GRS-2D. It is
therefore important to ensemble-average the optical properties when using
these model particles.
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5. Concluding remarks

Computations of light scattering by particles with small-scale surface
roughness proved to be challenging within the discrete dipole approxima-
tion. To reproduce the non-vanishing linear depolarisation produced by the
surface perturbation, we had to choose a very small dipole spacing in the
DDA computations. The T-matrix approach seems to be more versatile for
this kind of application. However, T-matrix computations for particles with
large size parameters are limited to surface roughness structures with small
amplitudes and with at least some finite order of symmetry.

The results presented here clearly show that the significance of small-scale
surface roughness strongly depends on the refractive index and the size pa-
rameter. The effects of small-scale surface roughness can manifest themselves
in different optical properties and, in the case of differential scattering prop-
erties, in varying angular ranges. In general, 2D roughness models seem to
predict a stronger effect than corresponding 3D roughness models. We found
examples in which stochastic models predict more pronounced effects than
regular roughness models and vice versa. Thus it is generally not possible to
identify any simple patterns for the manifestation of surface-roughness in the
scattered intensity and polarisation. These results alert us to interpret mod-
elling studies based on the choice of a specific roughness model with utmost
care.

Beyond taking notice of the differences among various roughness models,
we are presently not able to decide which model is likely to produce the most
accurate results in electromagnetic scattering computations. Constraining
models with measurements is likely to be a challenging task. This will re-
quire light scattering measurements of rough particles with sufficiently large
effective size parameters. Measurable effects on the scattered intensity will
be most pronounced for particles with high enough real and imaginary parts
of the refractive index. Currently available measurements of the Mueller ma-
trix elements of hematite [25] were performed on a sample with an effective
size parameter of x = 4. As noted in [2], small-scale surface roughness effects
for hematite become important at x ∼> 5. Comparisons of model simula-
tions with measurements may be complicated by the fact that the effects of
small-scale surface roughess in mineral particles will be superimposed with
the effects of large-scale irregularity and non-sphericity. One way to disen-
tangle these effects may be to consider particles with a very high imaginary
part of the refractive index (so that the impact of internal resonances on
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the scattered field is quenched), or to fabricate rough spheres for microwave
analog experiments.

Owing to the high computational requirements, our investigation was lim-
ited to two size parameters and to two values of the refractive index. There
are countless possible extentions of this study. For instance, mineral dust
particles in the terrestrial atmosphere typically contain a mass fraction of
hematite that varies between 1–4%. This seemingly small range is sufficient
to cause significant variations in the imaginary part of the refractive index
of mineral aerosols. It would be important to investigate in more detail the
extent to which small-scale surface roughness can modulate the optical prop-
erties of mineral dust aerosols depending on its hematite content. Another
extention of this study would be the evaluation of optical properties of ice
cloud particles with rough surfaces (due to riming). This is a very chal-
lenging task owing to the large size parameters that need to be considered,
especially at visible and near-infrared wavelengths. Finally, it would be in-
teresting to investigate the sensitivity of the optical properties to varying
roughness amplitudes.
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