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Proton acceleration by circularly polarized traveling electromagnetic wave
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The acceleration of charged particles, producing collimated monoenergetic beams, over short distances
holds the promise to offer new tools in medicine and diagnostics. Here, we consider a possible mechanism
for accelerating protons to high energies by using a phase modulated circularly polarized electromagnetic
wave propagating along a constant magnetic field. It is observed that a plane wave with dimensionless
amplitude of 0.1 is capable to accelerate a 1 keV proton to 386 MeV under optimum conditions. Finally,

we discuss possible limitations of the acceleration scheme.
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I. INTRODUCTION

Laser induced particle acceleration has drawn consider-
able interest among researchers all over the world since the
pioneering work by Tajima and Dawson [1]. The accelera-
tion gradient of conventional linear accelerators is of the
order of 10° V/cm; however, today’s state of the art lasers
are capable to produce the acceleration gradient many
orders of what can be achieved using conventional linacs.
In general, laser based accelerators can be divided based on
the medium in which the acceleration takes place, which
can be either vacuum or a plasma. The vacuum as a
medium for particle acceleration has some inherent advan-
tages over plasma medium. The problems like instabilities
are absent in vacuum, it is easier to inject the preacceler-
ated particle beam in vacuum as compared to the plasma,
collisions of particles with media causing energy loss and
beam spreading is ruled out, etc. Thus, we will focus on
particle acceleration in vacuum in this paper.

The relativistic motion of the charge particle in large
amplitude electromagnetic (EM) fields is studied in detail
by many authors. The motion of the charged particle in
transverse EM wave and the constant magnetic field along
wave propagation is studied by Roberts and Buchsbaum
[2], which was further extended analytically and experi-
mentally by Jory and Trivelpiece [3]. More recently the in-
depth Hamiltonian analysis of the dynamics of a charge
particle in a circularly polarized traveling EM wave is been
studied by Bourdier and Gond [4]. Recently, Kong et al. [5]
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has presented analytical treatment of the interaction of the
charged particle with circularly polarized electromagnetic
waves. Various different schemes have been proposed for
the acceleration of charge particle in traveling EM wave
[6-9]; some include the homogeneous magnetic field,
however some include the two counterpropagating EM
waves.

In this paper we will consider an alternative method to
accelerate protons in vacuum by circularly polarized elec-
tromagnetic waves, where the main new ingredient is a
phase modulation of the EM wave. Emphasis of the paper
would be on understanding the dynamics of proton motion
under the proposed scheme. The next section will briefly
describe the proposed scheme followed by the numerical
analysis, discussion, and final remarks.

II. MODEL DESCRIPTION

A circularly polarized traveling wave propagating along
the z direction is considered. The electric and magnetic
fields of the wave are given by

E, = Eysinfo(t — z/c) + ¢(z,1)] ()

E, = —Eycoslw(t — z/c) + ¢(z, 1)] 2)
and the magnetic fields are expressed as

B, = (Eo/c)coslw(t — z/c) + ¢(z, 1)] 3)

B, = (Ey/c)sinfw(t — z/c) + ¢(z, 1)], (G))

where ¢(z, 1) is the phase modulation function which is
given by

¢(z, 1) = wsinfaw(r — z/c)], (5)

where « is the so-called phase modulation factor which
controls the extent of the modulation. A constant magnetic
field is also applied along the direction of wave propa-
gation given by B, = b,,.

The electric fields denoted by Eqgs. (1) and (2) can be
generated by introducing an electro-optic phase modulator.
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This is an optical device in which an element displaying
the electro-optic effect is used to modulate the beam of
light. The modulation can be done in phase, frequency,
polarization, and amplitude. The simplest kind of modula-
tor consists of a crystal, such as lithium niobate whose
refractive index is a function of the applied electric field
[10]. An appropriate electric field along a crystal can be
applied in such a way that its refractive index modulates,
which eventually will introduce the phase lag in the EM
wave. The phase modulation will also depend on the length
of the crystal and other parameters. Designing an accurate
phase modulator for a specific problem may be an engi-
neering concern, but for the purpose of this article we will
assume that such a problem can be solved satisfactorily.

The schematic diagram for the proposed scheme is
shown in Fig. 1. The EM wave is initially passed through
the phase modulator so that the spatial and temporal de-
pendence of the electric and magnetic fields are modified
according to Egs. (1)—(4). This modified pulse is then
injected into the accelerating cavity, protons under the
influence of this modified EM wave undergo the accelera-
tion along the transverse direction.

An exact analytical treatment of the problem seems to be
too involved because of the nature of electric and magnetic
field profiles. It would be a nontrivial task to solve the
momentum equations corresponding to the field equations
(1)-(4). In view of this we have numerically analyzed the
dynamics of the particle under the influence of the given
field profiles.

As is well known, the motion of the relativistic particle
is described by the following equations,

W _ Ik +vxB] ©)
dt
v = p/my %)
v1+ pl?/(myc)?
dr
i v, (8)

where, p, v, r, and m are relativistic momentum, velocity,
coordinate, and mass of the particle. The above equations
are solved numerically by a standard Boris leapfrog
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FIG. 1. Schematic diagram of the proposed scheme.

scheme where particle motion is decomposed into motion
in the electric field and the motion in the magnetic
field [11]. The particle orbits are calculated by substituting
Egs. (1)—(4) into the equation of motion, and specifying the
initial condition for the injection energy, letting the initial
velocity be directed along z. In the rest of the paper we
have used the dimensionless units for all physical
quantities.

For all the results presented here, the amplitude of the
circularly polarized wave is considered to be ay = 0.1
(unless otherwise stated), where ay = eE/m,wc [12].
Similarly magnetic field is denoted by by = eB/m, w.
Here, ¢ and m, are the charge and mass of electron, E
and B are the amplitude of electric and magnetic field in
SI units with w being the EM wave frequency. The dimen-
sionless space and time are taken in units of the wave
number k and the angular frequency w, respectively.

III. PHASE MODULATION RESONANCE

Before a general numerical study is performed, we will
first present the basic properties introduced by the phase
modulation. For this purpose we will in this section limit
ourselves to modest accelerations with nonrelativistic par-
ticle velocities |v| << c¢. Thus, the magnetic field as well as
relativistic effects play only a minor role, and we apply the
following equation of motion,

dv
dt
where m; and g are the mass and charge of the particle.
Furthermore, only the temporal dependence in Eq. (9) is
considered for the purpose of analysis, which is a valid
assumption since the dynamics is mostly independent of
the spatial coordinates (as have been confirmed numeri-
cally). Now using the field profile given by Eq. (1) and
phase modulation function given by Eq. (5), this simple
equation of motion [Eq. (9)] can be integrated to give

= g,E, 9

m;

E

v (1) = 9i%0 fT sin[7/ + 7sin(ar)]d7 + C

m; 0
E

vy(r) = — 120 j “cos[7 + msin(ar)]dr' + C, (10)
m; Jo

where 7 is time in dimensionless units and C is a constant

of integration. For simplification we have chosen

g;Ey/m; = 1 and C = 0. The kinetic energy can be calcu-

lated by the knowledge of the v, and v, as

E(r) = %‘/v}% + vl (11)

The integrals for v, and v, are calculated numerically and
corresponding energy [Eq. (11)] is presented in Fig. 2.
The properties of the integrand in Eq. (11) are quite
sensitive to the value of «. It is quite clear that if & = 1/n,
with n being an integer, the integrand is a periodic func-
tion. The choice a = 1/n then results in a periodic
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FIG. 2. Temporal evolution of the kinetic energy with different
values of a: (a) 0.25, (b) 0.29, (c) 0.33, and (d) 0.42 is presented.

outcome for v, (7), but the corresponding integral for v(7)
has a nonzero average over a period, and as a result the
solution is a linear growth in energy superimposed on
periodic oscillations [Figs. 2(a) and 2(c)]. However, for
values of a not close to a resonance, the integrand in
Eq. (10) is nonperiodic. As a result the solution of the
integral is irregular, and on average no energy is gained
[Figs. 2(b) and 2(d)]. The observation is that the success
and failure of the proposed acceleration scheme firstly
depend on the property of the integral given by Eq. (10).
Furthermore, long-time acceleration can only be main-
tained when the frequency of the electromagnetic wave
is some harmonics of the phase modulation frequency,
i.e. @ = 1/n with n being an integer. These properties
survive also when the relativistic effects and the mag-
netic field is added. However, from a practical point of
view the above simplified scheme suffers from a poor
confinement of the orbits, i.e. for an EM wave with a
finite focal spot the particle quickly leaves the region of
acceleration. The confinement is helped by a static mag-
netic field, but this also introduces the need for a small
detuning from exact resonance, as will be investigated in
the next section.

IV. NUMERICAL ANALYSIS

In this paper, our main focus is to understand the dynam-
ics of a single proton with energy 1 keV (unless otherwise
stated), injected along the propagation direction (z) of a
phase modulated circularly polarized wave with amplitude
ag = 0.1 and a constant magnetic field with magnitude of
by = 1.0 (Fig. 1) along wave propagation. Although it will
be clear later in the paper that this scheme is equally valid
for the proton beam having some energy spread. The central
theme of the proposed scheme is the introduction of the so-
called phase modulation factor (a) which can be expressed
as the ratio of the phase modulation frequency (w,,) to wave

5.0 | (@)

"0=050 ——

€Trans (MeV)

E7rans (100 &V)

FIG. 3. Temporal evolution of transverse kinetic energy of
proton for (a) three different phase modulation factor & = 1/n
with n = 2, 3, and 4 being an integer; similarly the case when n
is not an integer is also presented (b). The amplitude of the EM
wave ay = 0.1 and constant magnetic field along wave propa-
gation by = 1.0 is considered.

frequency w; i.e., @ = w,,/w. Next we will see how the
value of «a affects the resulting dynamics of the particle.

The time evolution of the transverse kinetic energy of
the particle for the phase modulation factor @ = 1/n
with n =2, 3, and 4 are presented in Fig. 3(a). It is
observed that the proposed scheme of acceleration works
well only when the wave frequency is some harmonics
of the modulation frequency. A large deviation from this
condition destroys the acceleration mechanism com-
pletely, Fig. 3(b). Furthermore, as can be seen from
Fig. 3(a), the efficiency of the scheme deteriorates gradu-
ally with higher harmonics of the phase modulation
frequency.

Let us focus on the trajectories of the particle under the
influence of the phase modulated EM wave [Egs. (1)—(4)]
and external magnetic field (B, = b,). The time evolution
of the particle trajectory along 3 space dimensions is
presented in Fig. 4(a). Here we have considered the value
of @ = 0.5 (the same results holds qualitatively for other
valid values of «, i.e. @ = 0.20, 0.25, and 0.33).

The longitudinal displacement along z is mainly gov-
erned by the energy at which the particle is being injected
in the cavity, however oscillatory motion along y direction
is because of the presence of the external magnetic field
along z direction.

As can be inferred from the Figs. 4(b) and 4(d), the
biggest problem with the acceleration scheme is the excur-
sion along the x direction which is much larger than the
displacement along the z direction of propagation. In this
scenario, the proposed scheme would be impossible to
implement in practice because the excursion along the
transverse direction is too large. In order to deal with this
problem a small detuning parameter 6 can be added to
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FIG. 4. Temporal evolution of the particle trajectory along
three space dimensions (a) is plotted along with the trajectory
in the x-z plane (b), y-z plane (c), and x-y plane (d). Here, we
have considered the phase modulation factor a = 0.5.

phase modulation factor «, which would be helpful to
confine the particle orbits in the x-y plane.

Let us examine the trajectory of the particle after the
addition of a small detuning parameter § = 10~* which
modifies the phase modulation factor & from 0.5000 to
0.5001. It can be observed from Fig. 5(a) that the kinetic
energy of particle increased by a factor of about 2 as
compared to the case when no detuning parameter is
present (Fig. 3). Furthermore, the trajectory of the particle
is modified significantly after the introduction of the detun-
ing parameter. As can be seen, the particle trajectory in the
x-y plane [Fig. 5(d)] is closed which makes it possible for
the acceleration scheme to work in practice.

It should be noted that the selection of the detuning
parameter 6 is very crucial for the success or failure of
the acceleration mechanism. The value of 6 must be small
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FIG. 5. Temporal evolution of the transverse kinetic energy (a)
is plotted along with the trajectory in the x-z plane (b), y-z plane
(c), and x-y plane (d) with the detuned phase modulation factor
a = 0.5001.
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FIG. 6. Temporal evolution of the transverse kinetic energy for
various values of detuning parameter §. The resulting phase
modulation factor would be a + & with & = 0.50.

enough to make the scheme work in favor of acceleration,
i.e., we must still have the wave frequency to approxi-
mately be a harmonic of the phase modulation frequency,
such that the foundation of the scheme is not destroyed,
see Fig. 3(b). Moreover, § cannot be too small, as it must
be large enough to prevent the large excursions [Figs. 4(b)
and 4(d)].

The effect of the detuning parameter on the energetics of
the particle is presented in Fig. 6. As can be seen from this
figure, reducing the detuning parameter from 6 = 0.0008
to 6 = 0.0001 increases the efficiency of the acceleration
significantly. On the other hand, the transverse kinetic
energy of the particle is directly related to the transverse
excursion of the particle. For lower values of the & the
particle orbits are larger such that the electric field of the
wave tends to do more work for each orbital motion of
the particle. As the detuning increases the particle orbit
becomes shorter and shorter, resulting in lower gain in
energy from the wave. Apparently there is an optimum
detuning at which one is able to gain maximum energy per
orbital cycle of the particle.

So far we have presented all the results with constant
magnetic field of amplitude b, = 1. It can be understood
that the magnetic field is also responsible along with the
detuning parameter to restrict the excursion of the particle
in transverse direction. In view of this, it would be inter-
esting to see how the acceleration efficiency varies with the
applied constant magnetic field.

The temporal evolution of the energy varying the con-
stant magnetic field is presented in Fig. 7. The detuned
phase modulation parameter in this case is chosen to be
0.5001. It is observed that the proton can now be accel-
erated to energies of about 386 MeV when the applied
magnetic field strength is 0.30. Furthermore, there seems to
be an optimum magnetic field for the maximum accelera-
tion of the particle. This behavior can be explained on the
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FIG. 7. Temporal evolution of the transverse kinetic energy for
various values of applied magnetic fields with detuned phase
modulation factor of 0.5001.

basis of the Larmor radius of the particle which varies with
the applied magnetic field. The magnetic field should be
strong enough to bend the particle to avoid large excursion
and should not be so large that the particle orbit is very
small and the resulting energy gain in one orbital motion is
small.

So far we have now established the working principle of
the proposed scheme which can accelerate the particles to
about 386 MeV of energies. However, it would be also
interesting to see the dependence of the maximum energy
achievable using the proposed scheme under the given
physical parameters. In order to shed some light on the
limitations of the proposed acceleration scheme, we have
presented the maximum energy as a function of the detun-
ing parameter 6 and applied magnetic field b, in Fig. 8,
with phase modulation factor & = 0.5. It can be observed
that the maximum energy is independent on the variation
of the 6 and b,. The optimum magnetic field for maximum

258 .
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FIG. 8. Maximum energy as a function of magnetic field (b))
and detuning parameter () for the phase modulation parameter
a =0.5.
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FIG. 9. Maximum energy (a) and radius of the particle orbit in
dimensionless units (b) as a function of magnetic field for
different values of detuning parameter & with phase modulation
parameter o = 0.5.
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FIG. 10. Particle trajectory under the influence of applied
magnetic field of magnitude 0.3. The particle is propagating
along the z direction.

energy increases linearly with the detuning parameter,
giving the same maximum energy of the particle. As the
optimum magnetic field increases with the increase in the
detuning, one can expect that as a consequence particle
orbit will reduce with increasing detuning parameter or the
magnetic field as can be seen in Fig. 9(b).

The particle orbit for the magnetic field by = 0.3 is
shown in Fig. 10. As can be seen from Fig. 10 the excursion
in the transverse direction is controlled. Thus in this case,
particle acceleration using a phase modulated electromag-
netic wave propagating along a constant magnetic field
seems to be possible in a real scenario.

V. SPECTRAL PROPERTIES

Here we have focused on the understanding of the under-
lying dynamics of the acceleration. We have established
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that the phase modulated circularly polarized wave can
accelerate particles in the presence of a constant magnetic
field. There are optimum conditions on the detuning pa-
rameter and the magnitude of the magnetic field, in order to
gain maximum energies. However, for the purpose of
applications, the spectral properties play a crucial role, in
addition to the maximum energy. In view of this it would be
important to understand how this scheme works for a
particle beam with an energy spread, instead of just a single
particle. In order to shed some light on the acceleration
dynamics of the particle beam, we have separately simu-
lated the single particle motion when injected with differ-
ent energies, which can be perceived as the energy spectral
spread of the beam.

The time evolution of the transverse kinetic energy of
single particle is presented in Fig. 11(a) for different
injection energies. The phase modulation factor is consid-
ered to be & = 0.5001 and the magnitude 0.5 is considered
for the constant magnetic field. It can be observed that,
even if the injection energies are varied an order of magni-
tude, the output energy of the beam is not very much
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FIG. 11. Temporal evolution of the kinetic energy for different

values of injection energies (a). An energy spectrum of the
output beam is calculated by injecting a beam with Gaussian
energy spectrum (b). The inset in (b) represents the output beam
energy as a function of injection energy, circles denote the
numerically measured values; however, the solid line is 10th
order polynomial fit which is used in calculating the energy
distribution function of output beam.

affected, keeping the scheme functional. The most impor-
tant property of the particle beam is its energy distribution
function. The energy distribution function of the output
beam is calculated in Fig. 11(b) by considering the input
beam having a Gaussian energy spectrum with peak energy
of 600 keV and FWHM of 166 keV, the energy spread
(AE/Epeak) of the input beam is about 28%. The peak
energy of the output beam is observed to be 167 MeV
with FWHM of 5 MeV, with the energy spread about 3%.

The inset in Fig. 11(b) shows the variation of output
energy with the injected particle energy. Circles denotes
the actual numerical value which is fitted with a 10th order
polynomial (solid line) in order to find the energy spec-
trum. The decline in the output particle energy with input
energy can be explained on the basis of the interaction time
of the particle with the EM wave. The faster the particle,
the lesser is the interaction time with the EM wave, and
hence the energy transfer to the particle.

As we have observed in Fig. 11(b), the output particle
energy is more or less independent of the injected particle
energy, which is apparently visible in the almost monoen-
ergetic energy distribution of the output beam.

VI. FINAL REMARKS

The dimensionless analysis of the discussed problem
seems to fetch prominent results as per as working princi-
ple of the acceleration is concerned. It is observed that the
maximum proton energy of about 400 MeV can be
achieved when driver field (ag) is 0.1, magnetic field (b))
is 0.3, and phase modulation factor (a + &) is 0.5001,
radius of the particle trajectory (ry) in this case found to
be 8000 in dimensionless units. The connection between
dimensionless units to real world units is as follows:
(1) electric field, E = agm,wc/e V/m; (ii) magnetic field,
B = bym,w/e Tesla; (iii) radius, r = roc/w meters,
along with @ = 27¢/A. The comparison with different
values of the A is presented in Table I. As can be seen,
the requirements of the magnetic field (321 Tesla) are not
feasible if we go with the infrared regime. However, in the
microwave regime the idea of proton acceleration can be
perceived.

A further evaluation of the feasibility of the proposed
acceleration scheme needs to go beyond the 1D variations
of the electromagnetic fields. In particular, it is clear that
picking parameter values corresponding to intense lasers

TABLE I. Parameters comparison for maximum proton
energies.

A(m) o) E (V/m) B (Tesla) r(m)
1072 1.88 x 10! 3.211 X 107 0.321 12.73
1073 1.88 X 102 3.211 x 108 3.210 1.273
107%  1.88x 1013 3.211 X 10° 32.10 0.1273
1075 1.88x 10 3.211 X 1010 321.0 0.01273
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gives successful results for the maximum particle energies.
However, a potential limitation is that large transverse
particle excursions exclude the use of very focused
pulses, in which case the available laser intensity drops
accordingly. To some extent this may be remedied with a
strong value of the static magnetic field, which limits the
transverse excursion. In practice, magnetic field strengths
well beyond 100 T is needed if the system works in the
optical laser regime, which makes this regime less attrac-
tive. Decreasing the wave frequency in the scheme reduces
the need for extreme magnetic field strengths, since we
may allow for somewhat larger particle excursions. The
optimal frequency regime may lie in the infrared regime or
lower, but a full 3D analysis is needed to optimize the
parameters in a realistic scenario. This remains a project
for further research.
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