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Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy.

This led recently to the suggestion [M. Bañados, J. Silk, and S.M. West, Phys. Rev. Lett. 103, 111102

(2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is

larger than the total energy of the infalling particles, the energy excess must come from the rotational energy

of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy

diverges, the position of the collision makes it impossible for energetic particles to escape to infinity.

Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615

(1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping

particle is only a modest factor above the total initial energy of the colliding particles. This implies that one

should not expect collisions around a black hole to act as spectacular cosmic accelerators.

DOI: 10.1103/PhysRevLett.109.121101 PACS numbers: 04.70.Bw

In a seminal paper, Penrose [1] suggested the possibility
of extracting the rotational energy of a black hole (BH).
Penrose, and later Penrose and Floyd [2], considered an
infalling particle disintegration in the ergosphere of a Kerr
BH. One of the particles produced in this process might be
thrown into a negative energy (with respect to infinity) orbit,
while the other one will have an energy Eout larger than the
energy Ein of the infalling one. The energy excess arises
eventually from the rotational energy of the BH. However,
shortly afterwards it was shown [3,4] that in order to have
Eout >Ein, the disintegration process must convert most of
the rest-mass energy of the infalling particle to kinetic
energy. Such a disintegration mechanism does not exist in
nature for stable particles, rendering the original Penrose
process irrelevant for realistic astrophysical situations.

In a collision between two particles, the center-of-mass
(c.m.) frame the collisional energy can be mostly kinetic,
and outgoing particles from within the ergosphere might
easily have Eout > Ein, resulting in a collisional Penrose
process. In fact further studies [5], showed that when two
particles collide near the horizon, the c.m. energy Ec:m: can
be arbitrarily large (see Sec. IIG of Ref. [5]). This fact was
recently used by Bañados et al. [6] in the context of colli-
sional dark matter. It was shown that for the extremal (spin
parameter a ¼ J=M ¼ 1, where J and M are BH angular
momentum and mass, respectively) Kerr BH, and a colli-

sion at the outer horizon (r ! rh ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
),

there are cases (when one of the colliding particles has a
critical angular momentum) with Ec:m:ðr ! rhÞ ! 1.
Unbounded Ec:m: was subsequently proposed as an energy
source for a Planck-scale particle accelerator.

This idea attracted a lot of attention and resulted in numer-
ous papers repeating the statement that the c.m. energy of

colliding particles may grow limitlessly in circumstances
different than those considered by Bañados et al. [6]. These
variations include different colliding particles (e.g., charged,
massless, spinning), different spacetimes (e.g., naked singu-
larity, string, nonzero cosmological constant), gravity theo-
ries different from Einstein’s general relativity, and different
collision settings (e.g., plunging from innermost stable cir-
cular orbit, collisions at the inner Kerr horizon). There were
also several attempts to provide a ‘‘simple explanation’’ for
the infinite c.m. energy.
It seems that the main result of Ref. [6] was generally

accepted and, when it was criticized, the criticism related
to rather irrelevant issues, e.g., gravitational radiation, or
self-gravity. Instead, here we present a more substantial
criticism of the meaning and physical significance of the
result of Ref. [6] based on the statement that, while parti-
cles may locally reach huge energies, one has to consider
the question of whether they escape to infinity ([5]). This is
not trivial: to be energetic, the collision has to take place
extremely close to the BH which, however, impedes the
particle’s escape. In fact, given the geometry of a typical
collision, one might expect that the most energetic particles
will fall into the BH.
This questionwas touched on before in a fewpaperswhich

followed Ref. [6]. These papers attempted to examine the
likelihood of the collision products escaping to infinity
[7–11]. Here, we go further and examine themaximal energy
of particles which actually escape to infinity. These values,
rather than the maximal available energy in the c.m. frame,
should be the relevant ones for astrophysical considerations.
Specifically, we calculate the upper limit on the energy

of an escaping photon which results from a collision
between two infalling particles. The parameter phase space
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is very large: it involves the energy, angular momentum
and Carter’s constant of the two infalling particles, the
coordinates of the collision point, and the masses and
directions of the outgoing particles. Rather then exploring
the whole phase space, we examine the special case of two
particles falling from rest at infinity and colliding in the
ergosphere of a Kerr BH. The collisions take place in the
equatorial plane of the Kerr BH and result in two photons
which also move in the equatorial plane. Symmetry con-
siderations suggest that collisions which take place in the
equatorial plane would result in the most energetic parti-
cles and that photons will escape most easily from the
vicinity of the BH; hence, the upper limit that we find
here is the true upper limit for the energy of an escaping
particle from a near-BH collision.

Following Ref. [5] we consider the Kerr metric in the
standard Boyer-Lindquist coordinates. In these coordinates,
the Kerr metric tensor g�� depends neither on time t, nor on

azimuthal angle �. This implies two Killing symmetries,
L�g�� ¼ 0 ¼ L�g�� given in terms of the two Killing

vectors, which in the Boyer-Lindquist coordinates are
�� ¼ ��

t and �� ¼ ��
�. The equations of geodesic motion

admit two nontrivial constants of motion, which may be
expressed by the particle’s (or photon’s) four-momentum
p� and the two Killing vectors: energy at infinity
E ¼ �p��

�, and angular momentum parallel to the BH
axis L ¼ p��

�. The third constant of motion, the Carter
constant Q, vanishes for particles and photons moving in
the equatorial plane � ¼ �=2.

We will make use of two local frames of reference to
study the physical properties of the collision. The first one
is the locally nonrotating frame (LNRF, also called ZAMO,
[12]), and the second one is the c.m. frame (c.m.). Each of
these frames defines its own ‘‘comoving observer,’’ who is
at rest in his corresponding frame.

The family of LNRF observers has its trajectories
orthogonal to the spacelike hypersurfaces t ¼ const, and
their four-velocities given by

N� ¼ e��½�� þ!���; (1)

with � ¼ ln½�ð����Þ �!ð����Þ�1=2, ! ¼ �ð����Þ=
ð����Þ.

For twoparticleswith the fourmomentap�
ð1Þ ¼ mð1Þu�ð1Þ

and p�
ð2Þ ¼ mð2Þu�ð2Þ, the comoving observer in the c.m.

frame has his four-velocity U� given by the two conditions:
the first one is U�U� ¼ �1, and the second one is

U� ¼ 1

Ec:m:

½p�
ð1Þ þ p�

ð2Þ�; (2)

where the c.m. energy Ec:m: equals

Ec:m: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ð1Þ þm2
ð2Þ � 2mð1Þmð2Þg��u

�
ð1Þu

�
ð2Þ

q
: (3)

Here mðiÞ are the masses and u�ðiÞ are the four velocities of
the two (i ¼ 1, 2) particles.
The two photons resulting from a collision should have

their four momenta given in the c.m. frame (2) by

p�
ð3Þ ¼

Ec:m:

2
½U� þ 	��; (4)

p�
ð4Þ ¼

Ec:m:

2
½U� � 	��; (5)

where 	� is an (arbitrary) direction in the instantaneous
3-space of the c.m. observer (assumed here to be in
the equatorial plane, � ¼ �=2). The conserved energies
‘‘at infinity’’ of these photons are,

Eð3Þ ¼ ���p
�
ð3Þ; Eð4Þ ¼ ���p

�
ð4Þ; (6)

and the respective angular momenta are

Lð3Þ ¼ ��p
�
ð3Þ; Lð4Þ ¼ ��p

�
ð4Þ: (7)

The subsequent fate of the photon is decided by the point of
collision with respect to the location of the turning points
provided by the effective radial potential. In the Boyer-
Lindquist coordinates, it reads

Vr ¼ E2r4 þ ðEraÞ2 � rðr� 2MÞL2 � 4MrELa

þ 2MrðEaÞ2: (8)

For Vr ¼ 0 one obtains a relation for the photon impact
parameter b ¼ L=E,

b� ¼ 2Ma� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 � 2Mr3 þ ðarÞ2p

2M� r
: (9)

In the case of a ¼ 1 and for initially infalling photons, the
escape conditions are such that b > 2. For initially out-
going photons, b must be greater than the maximum of
bþ ¼ �7, located at r ¼ 4M (see Fig. 1).
We examine here a collision in the ergosphere between

two massive (mð1Þ ¼ mð2Þ ¼ 1) test particles infalling from

rest at infinity with Eð1Þ ¼ Eð2Þ ¼ 1. We first consider an

extremal Kerr BH (spin parameter a ¼ 1) and we set the
angular momentum of one of the particles to Lð1Þ ¼ 2, the
critical L for this value of a. We then vary the point of
collision (distances are measured in units of M, the BH’s
mass), as well as the initial angular momentum of the second
particle, Lð2Þ.
We find that photons which actually escape the ergosphere

with an energy gain,Eout > Ein, i.e.,Eð3Þ>Eð1ÞþEð2Þ, are all
initially infalling, and are deflected just before plunging into
the BH. Figure 2 depicts the maximal energy as a function
of the point of collision for various values of Lð2Þ. When the

collision approaches the horizon, Emax
ð3Þ =ðEð1Þ þ Eð2ÞÞ peaks

at 1.295 at a slight distance from the horizon (which ap-
proaches the horizon as Lð2Þ ! 2) and then declines asymp-

totically to 1.093 on the horizon. We stress that in all these
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cases Ec:m: diverges as the collision approaches the horizon.
The situation is different at the limit Lð2Þ ¼ 2. Now, the ratio

Emax
ð3Þ =ðEð1Þ þ Eð2ÞÞ ! ð1þ ffiffiffi

2
p Þ=2 on the horizon. Since

both particles fall on the same orbit (there is no real collision
here) the situation corresponds to the case of particle decay
[4,5]. The maximal energy of initially outgoing photons that
escape the ergosphere is presented in Fig. 3. These are not
Penrose particles, since Emax

ð3Þ =ðEð1Þ þ Eð2ÞÞ< 1 (close to the

horizon, the value approaches 1=ð2þ ffiffiffi
2

p Þ).
Figure 4 depicts the dependence of Emax

ð3Þ on the spin

parametera.We keepLð1Þ ¼ 2 and varyLð2Þ and the position
of the collision; other parameters are the same as for a ¼ 1.
As expected, the maximal energies are smaller than in the
case of a ¼ 1. The self-similar behavior shown in Fig. 2 is
recovered for Lð2Þ ! Lð1Þ ¼ 2 for a ! 1. Similarly, lower-

ing the value ofLð1Þ to values smaller than the critical angular

momentum results in lowering the Emax
ð3Þ (Fig. 5).

We find that, for the specific case considered, a collision
between twomassive particles falling fromrest at infinity and
colliding in the equatorial plane, the maximal energy of an
escaping photon is � 1:3 times the total initial energy at
infinity of the infalling particles. While there is an energy
gain and energy is extracted from the BH, the energy gain is
very modest, in stark contrast to the diverging c.m. energy.
Symmetry arguments suggest that for a configuration of two
particles infalling from infinity, this is the maximal possible
energy gain even if the collision is not restricted to the
equatorial plane. Similarly one expects that the maximal
energy gain will be lower if the escaping particle is massive.
We don’t expect the results to be qualitatively different if we
consider different initial conditions for the infalling particles.

In retrospect, it is easy to understand this result-large
energy in the c.m. is not sufficient; the energetic particles

have to escape from the vicinity of the BH to infinity. This is
demanding since the overall c.m. system has a diverging
(comparable to the large c.m. energy) negative radial
momentum. For an outgoing photon to escape, it has to have
an outwards-pointing radial momentum (and such an angu-
lar momentum that it won’t be deflected back into the BH),
or a sufficient angular momentum such that it will be

FIG. 2 (color online). Upper panel: The maximal energy of
an escaping, initially ingoing photon, resulting from a collision
of two massive (mð1Þ ¼ mð2Þ ¼ 1) particles with Lð1Þ ¼ 2 and

Lð2Þ 2 ð�1; 1:9Þ as a function of the distance, measured in units

of the BH’s mass, M, from the BH center (a ¼ 1). Lower panel:
Zoom for r ! rh and Lð2Þ ! 2.

FIG. 1 (color online). Conditions of the photon impact
parameter b ¼ L=E in case of a ¼ 1, plotted as bþ (solid curve)
and b� (dashed curve) functions (Eq. (9)). In order to escape the
ergosphere, infalling photons must have b > 2; for initially-
outgoing photons b >�7. Gray region denotes the ergosphere.

FIG. 3 (color online). Maximal energy of an initially outgoing
photon as a function of the distance from the BH center, for
Lð1Þ ¼ 2, Lð2Þ 2 ð�1; 1:9999Þ (a ¼ 1).
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deflected before falling into the BH. Given the huge c.m.
negative radial momentum, most of the resulting particles
will move radially inwards and will be quickly swallowed
by the BH. They won’t have the angular momentum needed
to turn around before reaching the horizon. Only in a very
small regime of the parameter phase space do the conditions
allow the resulting photons to escape, but in this regime the
energy of the escaping photon is not large. Thus, the highly
energetic particles simply fall into the BH without any
observable effects at infinity.

Are there any caveats that may enable us to avoid this
conclusion and to have particles with diverging energies
escaping to infinity? As pointed out earlier, the main reason

that most resulting particles fall into the BH is the huge
negative radial momentum of the c.m.. In the optimal case,
largest c.m. energies are attained when one of the particles
is just turning around near the horizon and the other one
falls and collides with it. Practically, the only way to avoid
the negative radial momentum is when one of the two
colliding particles has a positive radial momentum. This
is almost impossible as it would have to come out of the
BH. The orbit of an infalling particle that has just turned
around would be rather similar to the orbit of the turning
particle and the overall c.m. energy won’t be large. One
can speculate further and consider multiple collisions: the
first collision sends a particle outwards and in the second
one it will collide with an infalling particle. Alas, the phase
space for such a situation is extremely small and the
process is simply unlikely.
It seems that from the point of view of a distant observer,

the c.m. energy is just an ‘illusory’ energy. One can imag-
ine extremely energetic collisions very close to a BH, but
the results of such collisions plunge quickly below the
horizon, prohibiting a distant observer from knowing about
them, let alone detecting energetic outgoing particles.
Our results confirm the earlier work of Piran and

Shaham [5] that, while collisions in the ergosphere can in
principle enable us to extract energy from a rotating BH,
it is unlikely that the conditions for a significant energy
extraction via a collisional Penrose process would appear
in nature. Similar considerations suggest that hydrodynam-
ical flows will not be efficient either. This leaves magnetic
processes, such as the Blandford-Znajek mechanism, as the
only viable way to extract rotational energy from a rotating
BH. Indeed, there are now convincing arguments [13,14]
indicating that the power needed to accelerate matter in
the relativistic jets (with Lorentz factors up to 
 � 50)
observed in quasars and microquasars may be powered by
the Blandford-Znajek mechanism, an electromagnetic
version of the Penrose process.
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