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Abstract
This thesis focus on various statistical methods for analyzing Genome Wide Association data. The
thesis include four papers, three of them considers the analysis of complex traits, and the last one a
method for analyzing mendelian traits.

Although GWAS have identified many associated regions in the genome for many complex
diseases, there is still much of the genetic heritability that remains unexplained. The power of
detecting new genetic risk variants can be improved by considering several genes in the same model.

A genetic variant in the HLA region on chromosome 6 is necessary but not sufficient to develop
Celiac Disease. In the first two papers we utilize this information to discover additional genetic
variants. In Paper I this is done by a method which use the ’Cochran Armitage trend test’, to find
a trend in allele frequencies. Simulations are used to evaluate the power of this test compared with
the commonly used Pearson 1 df chisquare test and the test is then applied to a previously published
Celiac Disease case-control material.

In paper II the HLA information is utilized by a stratified TDT, conditioning on the HLA
variants. In addition, an imputation-based version of the TDT is presented, as well as a likelihood
ratio test searching for two-locus interactions by comparing the heterogeneity and epistasis models.
Here the candidates for interaction analysis are chosen by a two-step approach, combining the
results from the TDT and prior information from previous studies.

In contrast to the approach used in paper II for identifying interactions between genes, in paper
3 we instead consider the method of performing a full Genome Wide Interaction Analysis. By
examining how commonly we will find interactions without marginal effects in a GWIA we discuss
what conclusions can be drawn from such findings.

In the final paper we develop a program locating a region containing a causal gene for rare
monogenic traits. This program can be used in large pedigrees with multiple affected cases, and
discerns the causal region by coloring them according to how common they are in the population.

Keywords: Genome Wide Association Studies, gene-gene interactions, Genotype imputation, al-

lele sharing, haplotype sharing, Single Nucleotide Polymorphism, Celiac Disease
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iv LIST OF PAPERS

”Att livet överhuvudtaget uppstod på den här planeten
är statistiskt sett så orimligt att vi sannolikt inte finns.”

ur ’Vips så blev det liv’, Bob Hansson
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Chapter 1

Introduction

Genetic association studies aim to identify genetic variants that vary between
individuals with different disease status (affected/unaffected). In this chapter
the genetic background to the subject is presented, explaining concepts and
properties which are important for making inference from such studies.

1.1 Background

The DNA is built up by different arrangements of the four nucleotides ade-
nine (A), cytosine (C), guanine (G) and thymine (T). The DNA molecule has
the shape of a double helix where each nucleotide pairs up with its comple-
mentary nucleotide - A binds to T and C binds to G, and the DNA is tightly
packed into chromosomes. The human genome consist of 23 pairs of chromo-
somes, 22 pairs of autosomes - chromosomes which are present in two copies
in both males and females - and one pair of sex chromosomes. Females have
two X chromosomes and males have one X and one Y chromosome. In each
pair of chromosomes, one of the chromosomes is inherited from the mother and
the other from the father. A gene is a segment of DNA that provides coded
instructions for synthesis of RNA, which when it is transcribed into protein
contributes to the expression of a hereditary character. Diploid organisms (like

1
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humans) have two copies of each gene - one on each of the two homologous
chromosomes (of the same type) - which they inherit from their parents. Each
gene occupy a certain position (locus plur. loci) on the chromosome, and the
parent randomly pass on one of the two alleles (defined below) of each gene to
its offspring with probability 1/2. The distance between two loci can be mea-
sured in base pairs (bp, also kb=1000 bp and Mb=106 bp), which corresponds
to the number of nucleotides there are between these loci, this distance measure
is referred to as physical distance.

The allele is the unit containing genetic information at a certain locus on the
parental chromosome. Mutation of an allele will change its form and create a
new mutated variant of the gene, causing genetic variation between individuals
at that locus. Allele frequencies pA and pa are used to denote the relative popu-
lation frequency of the alleles A and a at the locus. At those loci in the genome
which include population variation, there are several possible genotypes - com-
binations of alleles on the same locus of two homologous chromosomes. A
genotype is heterozygous if the two alleles are different, and homozygous if they
are equal. Under the assumption of random mating, absence of disturbances
like migration, selection and mutation at the gene in question, the population is
said to be in Hardy Weinberg Equilibrium (HWE) meaning that the genotype
frequencies only depend of the allele frequencies. This implies that the fre-
quency of a homozygous genotype AA is p2A, and for the heterozygous Aa the
frequency is 2pApa. A phenotype is the physical expression of a genotype, e.g.
an individual’s eye colour.

1.1.1 Genetic models

Genetic models describe the relation between an individual’s genotype(s) and
some specific trait. A parameter which is often used to describe genetic models
for (binary) traits is penetrance, the probability of a particular phenotype F for
a given genotype Gi,

fi = P (F |Gi).

2
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There are several genetic models. A mendelian trait is determined by one gene,
where a mutation in the gene cause the trait. There are two types of purely
mendelian traits; for a dominant trait it is enough for one of the two alleles at
the loci to be of the susceptible type for the trait to be expressed in the organism,
and for a recessive trait both of the alleles need to be of this type. For completely
dominant and recessive traits penetrances are either 0 or 1. There are many traits
which follows incomplete penetrance models, where some of the penetrance
parameters are below 1, hence the trait is expressed in some, but not all, of
the individuals with that genotype. Other models include phenocopies where
some individuals have a trait induced by environmental factors, resembling the
phenotype which is usually caused by a specific genotype.

There are also many non-mendelian traits such as polygenic or complex
traits and sex-linked traits. Complex traits which are the subject of some of the
papers in this thesis, are traits that do not follow a classic mendelian inheritance
pattern, where typically several genes and environmental factors are involved.
Here a positive penetrance (f > 0) for subjects who do not carry the risk al-
lele at one risk locus can be explained by environmental factors, risk variants
at other loci, possibly heterogeneity (different genotypes cause the same pheno-
type) and/or interactions between genes. Complex disorders are often common
in the population, but it is hard to identify the risk variants. This is partially
because the disease has various expressions among the cases, but also because
each involved gene has a subtle marginal effect on disease risk.

One example of a common complex disorder is Celiac Disease, this disease
show a strong association to the Human Leutocyte Antigen (HLA) class II region
on chromosome 6. In addition to this necessary genetic risk factor there are also
more genetic variants and the environmental factor of gluten which contributes
to the development of the disease.

1.1.2 Inheritance

Many of our traits are inherited from our parents. By studying and compar-
ing our genotypes and traits with the genotypes and traits of other related and

3
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unrelated indiviuals we can identify which genotypes give rise to different phe-
notypes.

In 1865 Gregor Mendel discovered what is today known as Mendels laws
[1], which was later rediscovered and reformulated in the early 20th century as
the Chromosomal theory of inheritance.

The section below contains descriptions of how genetic variation is created
during reproduction and how dependence between loci can be measured.

Cell Division, linked genes and genetic maps

During reproduction, the cell divides in new cells through meiosis in two dif-
ferent stages. During meiosis I the homologous chromosomes are separated in
two new haploid cells, each cell contains one of each chromosome. In meiosis
II the two chromatides of each chromosome are separated in two new haploid
cells.

Before the formation of haploid cells during meiosis I homologous chro-
matides will cross over each other, both chromatides will break at the same po-
sitions and the broken piece will join the other chromatide. This event, which is
illustrated in Figure 1.1, occurs randomly and sometimes at multiple positions
on each chromosome. The result of this will be an alternating sequence with
pieces from both of these chromatides, which creates genetic variation. The
probability of a cross-over will increase with increased distance between the
loci. In some regions of the genome the intensity for crossovers are higher than
in other regions. The frequency of crossovers is measured with recombination
rate ✓, the probability of observing a single crossover between the two loci dur-
ing meiosis. In many regions of the genome the recombination rate is very low,
and in such regions there will be association between pairs of loci.

Consider two loci situated at the same chromosome, with alleles A, a and
B, b respectively. If two loci are situated close to each other then it is less likely
for cross-overs to occur between these loci, and the alleles tend to be inherited
together during meiosis. Two loci are said to be linked if ✓ is less than 0.5,
i.e. it is rare with crossovers between these loci. If the two loci are linked the
possible alleles will be correlated, e.g. it holds that P (AB) 6= P (A)P (B),

4
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Figure 1.1: Crossovers during Meiosis I

and the loci are then said to be in Linkage Disequilibrium (LD). LD is created
by evolutionary forces like mutation, drift and selection, and is diminished by
recombinations [2, 3].

The combination of one allele from each of these two loci which an individ-
ual receives from one parent is called a haplotype. The concept of haplotypes
can also be generalized to involving more than two loci.

If an individual has genotypes Aa and Bb, then there are two possibilities
for how the alleles at these two loci were inherited from the parents, either
as AB and ab or as Ab and aB. These are called the phases of the genotype
combination, and are illustrated in Figure 1.2. It is often possible to determine
the phase of the haplotype by studying the parents’ genotypes.

5
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Figure 1.2: The two possible phases for a doubly heterozygous individual.

A a 

B b

A a 

b B

For a doubly heterozygous parent Aa/Bb the child can receive any of the
four possible haplotypes AB, Ab, aB, ab. If the loci would be independent each
one is inherited with probability 1/4 each, but when there is LD between the
loci then

P (AB|parent is AB/ab) > 1/4.

That is, it is more likely that the child inherits one of the two haplotypes with
the same phase as the parent’s haplotypes. For two such loci it also holds that
the population frequency of some haplotype(s) AiBj is

P (AiBj) 6= pAipBj

A genetic map contains information about the frequency of cross-overs
across the entire genome. To measure the intensity of cross-overs between two
loci in the genome we use genetic distance Morgan (M), where 1 M corre-
sponds to an expected number of 1 cross-over between two loci. With a genetic
map we can translate the physical distance between two loci into genetic dis-
tance. With this distance measure the occurence of crossovers is uniform over
the chromosome.

6
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1.2 Mapping the Human Genome

”One can systematically discover the genes causing inherited diseases
without any prior biological clue as to how they function.”

Eric S. Lander and Nicholas J. Schork [4]

The genome contains approximately 3 billions of base pairs. Most of the
genome is identical for all humans, but about 0.1 % varies between different
individuals. It is these variations that influence many of our variable traits such
as height and eye colour. With this genetic knowledge comes also an urge to
explain the biological mechanisms behind diseases and other traits which seem
to be inherited from parent to offspring.

The task of making a thorough catalog of the human genome involves scien-
tists from fields like Molecular Biology, Computer Science and Mathematical
Statistics. One aim is to measure the genetic variations and identify their func-
tion in genetic diseases. By identifying the genetic variants which affect the risk
of a certain disease it might be possible to diagnose cases at an earlier stage of
the disease, and patients can start treatment before the disease is severe. Since
not all patients are helped by the same kind of treatment, it would be desirable
to choose treatment based on genetic tests. In this way patients could start the
appropriate treatment earlier, without having to try out treatments which are
inefficient for them.

1.2.1 From Linkage to Association

In this historical review several key concepts are introduced, more detailed de-
scriptions of these are given throughout this chapter.

Already in the early 20th century, mapping of genes to positions in genomes
was performed with experimental organisms using controlled crosses [4, 5]. But
for ethical reasons these kind of experiments was not possible with humans.
Therefore it was not until 1980 that it became possible to perform genetic map-
ping in humans. Following the discovery that highly polymorphic genetic mark-
ers could be used to trace inheritance in human pedigrees, researchers started

7
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constructing Linkage Maps of the human genome [6]. This enabled searching
any genomic region for genetic linkage, positions where chromosomal segments
are co-inherited with the trait in families. With hundreds of neutral genetic
markers distributed across (parts of) the genome, linkage analysis successfully
’mapped’ hundreds of, mostly mendelian, traits [4]. But Linkage analysis does
not perform as well in Complex diseases [7].

Recently there has been a shift of focus from family based linkage studies
towards population based case-control and cohort studies with thousands of
unrelated subjects. The first step towards association analysis was taken in the
later part of the 1980’s when the idea arouse that LD patterns across the genome
could be used for mapping disease genes [8]. Association analysis incorporates
the concept of indirect association between genetic markers and disease status
described in Section 1.2.3. Now it was possible to also use unrelated individuals
to locate disease genes. In complex diseases each genetic risk variant often
have a small effect on the disease risk. According to Risch and Merikangas [9]
association analysis has a greater power to detect these small effects compared
to linkage analysis, also when the markers are chosen without prior knowledge
of the genetics of the disease.

In 1996 Lander [10] proposed the hypothesis of Common Disease Common
Variant, which was adopted as a strategy for the GWAS. In order to capture the
risk loci for these diseases a sufficient number of genetic markers (SNPs) where
needed. To explore how dense set of markers where needed to capture most of
the common genetic variation, the HapMap project was initiated [11]. And to-
day biotechnology companies are developing high-throughput genotyping tech-
nologies based on that 500 000-1 000 000 SNPs can be used for ’tagging’ about
80 % of the common SNPs, if chosen suitably [12].

Both Linkage and Association analysis rely on the property of linkage dis-
equilibrium, linkage exploits the LD within a pedigree, and with assocition we
incorporate the LD on population level.

8
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1.2.2 Genetic Linkage

With Linkage Analysis disease genes can be mapped using neutral markers and
thereby identify spots where segregation pattern of disease and markers coin-
cide.

The basic idea of linkage analysis is that by studying the pedigree of a
family with some affected individuals, it is possible to picture where differ-
ent crossovers have occured during each meiosis, and thereby locate a narrow
interval which includes the disease locus.

Some properties of linkage analysis:

1. Can only be performed with data from related individuals with known
pedigree,

2. It is not always possible to determine the phase of a haplotype, and it can
therefore be difficult to distinguish where there have been cross-overs and
where there have not.

3. For many regions of the genome the recombination fraction varies de-
pending on the gender of the parent transmitting the haplotype.

Parametric Linkage Analysis assumes a mendelian trait (e.g. recessive)
model M1 including a position for the causal gene. The model M1 is much
more likely to have produced the observed data than the model M0 where there
is no linkage to the disease. These models are compared using a Likelihood
Ratio test, measured by the lod score,

Z = log10
P (data|M1)

P (data|M0)
.

The models M1 and M0 contains (apart from the loci of the disease gene) pa-
rameters for penetrance, recombination fraction and allele frequency of the dis-
ease and marker loci. For complex traits complete multipoint linkage analysis
becomes a large computational challenge for general pedigrees, even for a hand-
full of loci [13].

9
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Since parametric linkage is sensitive to misspecification of the linkage model
[14], Non-parametric Linkage has been useful for the more complicated mod-
els.

Many of the mendelian disorders, and also a few non-mendelian disorders
(with locus heterogeneity and/or interactions) have been successfully analyzed
using this method. The poor results from Linkage analysis in Complex diseases
can partially be explained by that the effect sizes usually are too small to be
detected by cosegregation within pedigrees [3].

1.2.3 Genetic Association

In contrast to linkage studies, where we examine which haplotypes are inherited
from parents to affected offspring, when performing association analysis we
instead search for loci where the allele or genotype frequencies vary between
healthy and affected individuals.

A genetic locus is associated with a trait if different genotypes at the locus
have different distributions for the trait. E.g. if individuals with one genotype
tend to be taller than other individuals, then this locus could be associated with
human height. If it is a binary trait (like many diseases) the proportion of cases
will differ between the genotypes. This is equivalent to that (some of) the geno-
type frequencies differ between cases and controls.

Assume that we have a disease locus D with alleles D1 and D2, where D1

is the allele that gives an increased risk for the studied disorder. Consider one
marker locus M with alleles M1 and M2. Let the studied locus M be close to
the locus D of the causal gene, and assume there is LD between these loci, such
that the alleles D1 and M1 are positively correlated. Then the haplotype D1M1

will be more common than expected under the assumption of independence.
Because of strong correlation between the alleles D1 and M1, M1 will often be
inherited together with the disease gene. This property can be used to search
for genes associated with some disease.

One of the main advantages of Association studies compared with Linkage
analysis is that they do not require family samples. Instead we can use samples

10
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consisting of ’unrelated’ cases and controls. When performed in case-control
studies associated regions are identified by comparing allele or genotype fre-
quencies among the cases and controls. Case-control studies has the advantage
that it is often easier to recruit cases and controls compared to entire families,
especially for diseases with late onset. Also, the control samples can often be
re-used in several studies. For this reason case-control studies are the most
common type of association studies performed.

But families are still useful in association studies. Using allele sharing
methods, risk genes are identified by searching for loci where heterozygous par-
ents overtransmit one of the two alleles. Family studies has the advantage that
they are more robust against population substructures than case-control stud-
ies [15, 16], both in the sense of population stratification (cases and controls
may have differing ancestral backgrounds) and cryptic relatedness (the affected
individuals tend to be more closely related than the controls).

11
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Chapter 2

Genome Wide Association
Studies

In the early 1990’s researchers started conducting candidate gene studies. Af-
ter more than 10 years of these studies, few of the associated disease genes
had been replicated [17]. This problem can partially be explained by several
different issues regarding the study design and the nature of the disorders.

Following this Genome Wide Association (GWA) studies have identified
more than 2000 common variants which influence the genetic susceptibility to
over 200 complex diseases [3, 11, 18, 19]. The main breakthrough of GWAS
was when the Wellcome Trust Case Control Consortium published their study in
Nature 5 years ago [19]. Many of the detected variants have been previously un-
suspected candidates, leading to a better understanding of the biological mech-
anisms of each trait as well as a general knowledge of the allelic architecture
of complex traits. In this section follows a description of the background and
different aspects of GWA analysis.

13
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2.1 Data Collection and Methods

The most common study design i GWAS is the case-control design, also known
as a retrospective study design, where ’unrelated’ affected and healthy individ-
uals are collected for genotyping. When using a family based study design,
the samples are collected from families where at least one of the members are
affected by the disease.

The case-control design is sensitive to population stratification between case
and control samples, which can cause false positives. It is therefore important
to consider the optimal selection of samples to minimize or correct for these ef-
fects. Family studies are less sensitive to these population substructures, but has
a reduced power compared to case-control studies. In case-control studies phe-
notypic and genetic heterogeneity will often occur in the samples, and family
designs are robust against this type of heterogeneity [20]. In addition, case-
control design has the advantage that it is easier to collect unrelated subjects,
compared to families where complete families are not always available [15].

Following the Wellcome Trust Case Control Consortium study [19], it has
also become possible to use common controls samples in several studies. One
potential problem with such common control samples is unidentified cases among
the controls, which might reduce the power if the trait is common. Another pos-
sible problem is that some studies use public control data from other countries,
not quite matching the case sample.

Starting the era of GWAS, ’Population Stratification’ was believed to be
a major threat to the success of the case-control approach, suggesting family-
based controls [4]. However, it has turned out not to be a large problem if
matching or adjusting for reported ethnicity is applied [21]. It also turns out
that the GWA data itself can be used to identify the substructures [22]. In order
to have enough power to detect effects with genome wide significance (p-value
< 5 · 10�8) it has been necessary to build consortia for large GWAS. With the
possibility of collecting such large samples, it is quite easy to detect and correct
for population substructures. However, in many studies it is still either hard to
find enough cases to collect, or for financial reasons not enough individuals can

14
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be genotyped.

Lately the case-control design has also been extended to population based
cohort studies, usually designed to investigate various traits from the same data
[22]. These studies are more useful for continuous traits, and still has quite
limited power for dichotomous phenotypes. Meta analysis is another approach
to overcome the sample size issue, but unfortunately there are difficulties of
standardizing studies performed with varying sampling strategies, genotyping
arrays etc.

Implementation

The markers which are used to find these associated genes are generally at posi-
tions which vary between individuals, but where the genetic variation is not as-
sociated with any traits. The markers used in Genome Wide Association Studies
(GWAS) are Single Nucleotide Polymorphisms (SNPs). SNPs are variations in
the genome where one single nucleotide has been substituted to another, with-
out affecting the neighbouring nucleotides. E.g. if a C nucleotide have been
substituted with a T in some individuals, then that locus is a SNP with alleles C
and T.

In order to make powerful GWA analyses the SNPs need to be chosen
wisely, distributed in a way that reflects the genetic variation. When GWAS
was introduced, there was a debate regarding the selection of markers [23, 24].
This resulted in a set of genome-wide chips to choose from. These chips are de-
signed such that they should be able to identify most of the genetic variations.
Progress in the technology of these chips have enabled an increased coverage
of markers, improving the precision in the association signals. But this does
not necessarily imply increased power of detecting associated loci, since it also
increases the challenge of adjusting for multiple testing.

This design is based on the assumption of Common Disease, Common Vari-
ant [9, 10, 25]. This hypothesis is commonly expressed as: ’for several common
diseases, most of the genetic risk can be explained by variants with allele fre-
quency about 1-5 % and with a (marginally) modest effect on the increased risk
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of the disease’. Reich and Lander [26] formulated the hypothesis as ’if the num-
ber of loci contributing to disease risk is moderate, then a few disease alleles
should account for a large proportion of the genetic risk’.

The raw experimental data obtained from a genome wide experiment does
not consist of discrete genotypes, but rather bivariate intensity signals for each
of the two alleles. For each marker locus these can be viewed in a two-dimensional
plot in order to define three clusters corresponding to each of the genotypes AA,
Aa and aa, examples of such plots are given in Figure 2.1. The left panel of the
figure illustrates the preferable situation, where we can separate the clusters and
assign genotypes to each signal. In comparison the right panel of Figure 2.1 il-
lustrates the case where some of the signals are in between two clusters. The
method of assigning discrete genotypes is being replaced by algorithms that
assign posterior probabilities to each genotype [16].

Figure 2.1: Illustration of Raw genotype signals
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In the left panel the clusters are well defined for all three genotypes, in the right
panel there is overlap between the clusters which will result in no call for some
of the genotypes.

2.2 Missing heritability

In many complex diseases there are numerous genetic variants which have been
identified. But for many of the recent studies these common variants only ex-
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plain a small fraction of the increased risk. Most of those that have been iden-
tified have no established biological relevance to the disease and often they are
not located inside ’active’ genes [3]. From the last years of GWAS it is clear
that the common variants fail to explain the majority of the genetic heritability
of most human diseases [27].

This suggests that the hypothesis of ’Common disease, common variant’
is not as valid as was previously believed. The problem is that the biological
reality does not correspond to the study design and assumption of GWAS, and
the solution is not to increase the sample size even further but to improve the
study design and statistical methods.

One possible explanation to the missing heritability could be some kind of
interaction between different genes(epistasis). These interactions could be hard
to detect when analyzing one SNP at the time, as the marginal effect of a single
SNP will be small. Another explanation is that part of the increased risk can
be explained by many rare variants, which are present among less than 1 % of
the population. This suggests that there could be heterogenetiy, where different
genetic profiles can cause diseases that are diagnostically the same.

Genetic Interactions

A general definition of genetic interaction (epistasis) is that the effect (pene-
trance) of one locus varies according to the genotype present at another locus.
To detect interactions we need to define how a ’natural’ combined effect of two
risk loci would be expressed in the organism. The concept of gene-gene inter-
actions is not new, but still it is confusing since the term is used in various ways.
Biological interaction or epistasis was defined first by Bateson in 1909 [1]. In
that example one of the alleles at one locus G is preventing the alleles at lo-
cus B from being expressed in the organism. This relation does not necessarily
have to be symmetric. This definition is similar to the definition biologists use
to examine a biological interaction between proteins, where proteins interact to
regulate several cellular processes.

In statistics the definition of interaction is usually a deviation from a linear
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model. In 1918 Fisher made a statistical definition of epistasis [28], as deviation
from additivity in effects of the alleles at different loci on a quantitative trait.
This definition is more similar to the classical statistical definition of interaction
and do not quite correspond to the biological definition of epistasis.

These definitions get troublesome when the trait is binary, in these cases the
mathematical modelling often focus on the penetrances. Hence the definitions
of epistasis need to be modified. For binary traits an example could be that both
allele A and allele B at two different loci are needed to develop the trait. In this
case A is epistatic to B, and B is epistatic to A, hence the epistasis is symmetric
- in contrast to the definition by Bateson.

A classic way to represent lack of epistasis has been the heterogeneity model
[29] - a person gets the trait by possessing (at least) one of the predisposing
genotypes. This definition actually falls under Bateson’s definition of epistasis,
for example if a person has both risk variants (situated at different loci) the
effect of allele A will be masked by allele B - another confusing issue about
these genetic interactions.

There are two types of genetic heterogeneity, allelic heterogeneity is when
several mutations on the same allele cause the same disease. Locus heterogene-
ity means that mutations in several unrelated loci can cause the same disorder.
The above example of locus heterogenetity could be generalized to a situation
without full penetrance, that is 0 < fi,j < 1 for some of the penetrances. Math-
ematically, locus heterogeneity can be expressed as

fij = ↵i + �j � ↵i�j , (2.1)

where ↵i and �j are the penetrance factors for the two genetic variants [30].
Locus heterogeneity is similar to a daisy chain, where it is enough for one of
the components to break (caused by having at least one of the risk variants) for
the entire system to malfunction, i.e. to obtain the disease.

There are two other common two-locus models for binary traits, the mul-
tiplicative model and the additive model. The multiplicative model can be ex-
pressed as

fij = ↵i�j , (2.2)
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this model is often considered as epistatic. Both the additive model

fij = ↵i + �j ,

and the heterogeneity model are thought of as non-epistatic by most authors.
However, some authors [14] considers epistasis as departure from the multi-
plicative model.

Further problems appear when considering that both the multiplicative and
the heterogeneity models become additive with suitable log transformations.

It will be difficult to really model the true epistatic interactions in complex
diseases, and discovered epistatic effects may have limited input to the under-
standing of the disease. Still, models that allow for interactions can improve the
statistical power of detecting the genetic risk variants [31].

The main issue in finding interactions, independent of how you define epis-
tasis, is how you should detect it in complex diseases when analyzing millions
of genetic markers. Assume that the disease is caused by different mutations on
different loci in various families, and these genes have a strong effect in each
of the subpopulations. Then the heterogenetic risk genes will probably show a
very weak marginal effect when the markers are analyzed one at the time.

For epistatic interactions it will be very computationally demanding to ex-
amine all possible gene-gene interactions, in additition to the issue of correct-
ing for testing multiple hypotheses. One way to handle this is to first test for
marginal main effects for each marker in the sample, and hope that the genes
involved in interactions will also show at least a modest marginal effect. Then
the results from this analysis is combined with biological knowledge to suggest
a number of candidates for interaction analysis.

Imputation of genotypes

The different genotyping platforms often differ in their marker sets, this can
cause problems when researchers want to combine several data sets, since some
markers will only be genotyped in parts of the study material. During the last
few years, collaborations like the International Hapmap Project [11] and the
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1,000 Genomes Project [32] have enabled a large catalog of the human genetic
variation, which is growing for each month still. These reference haplotypes,
which are assayed over a dense set of SNPs, are useful for predicting unob-
served genotypes through Genotype Imputation. The way SNP arrays are de-
signed make them well suited for imputation, since they efficiently capture most
common variations across the genome.

Using effective imputation algorithms, we can predict or impute genotypes
at (partially) unobserved markers and thereby increase the sample size at these
loci and thus improve the power and accuracy of the association analysis. The
algorithms are based on known genotypes at typed markers and information
about LD patterns in a reference sample [33], which is used to predict the geno-
types of markers which were not observed in (parts of) the study sample.

Most of the algorithms are based on Hidden Markov Models and Markov
Chain Monte Carlo [34] methods and they provide posterior probabilities for
each of the three possible genotypes at each locus. It is then possible to apply
cutoffs to these probabilities in order to impute the most confident genotypes, or
perform imputation-based association analysis [35]. Association tests for im-
puted markers should be similar to test signals for other markers on surrounding
loci. Therefore it is important to be cautious with checking if an imputed marker
has a very different association signal compared to the surrounding markers.

One important issue of genotype imputation is that the different providers
of SNP arrays present the alleles relative to either the ’+’ or the ’-’ strand of the
human genome reference. This implies that, when alleles A and C are observed
at a specific locus using one platform, the complementary alleles T and G could
be observed with some other platform. If annotation files are available it is sim-
ple to flip the alleles in the study material that are different from the expressed
alleles in the reference sample before the imputation is performed [36].

HapMap provides references datasets for several human populations, en-
abling to choose a reference with an ancestry matching the studied sample.
There are several softwares for imputation, which use varying algorithms, some
of the most common are Mach, Beagle, Impute and Plink [33, 34, 37–41]. The
increased availability of Next Generation Sequencing (NGS) data, such as the
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1000 Genomes Project, will influence how imputation is used. This data will
notably increase the available number of SNPs, haplotypes and populations,
compared to the HapMap 2 and 3. This might also enable identification of rarer
variants [36].

2.3 Statistical methods in GWAS

If a genetic marker is associated to a particular disease, then the genotype or
allele frequencies will be different among affected and healthy individuals. A
commonly used test for searching for associated SNPs in case-control studies is
a Pearson �2

1 test applied to a 2-by-2 table of allele counts in the two groups. For
complex traits it is commonly assumed that the contribution to the genetic effect
from each SNP is roughly additive [42], i.e. the penetrance for heterozygous
are somewhere in between the penetrance for the two homozygotes. This test
is powerful for additive models, whereof the popularity of this test in these
studies. Other common tests include a Pearson �2

2 test comparing the genotype
frequencies instead of allele frequencies, Cochran Armitage test for trend in
penetrances, and logistic regression.

The Transmission Disequilibrium Test (TDT) is an association test using
data from families with at least one affected child. This test was introduced by
Spielman et al. [43], and the test evaluates the transmission of an allele from a
heterozygous parent to the offspring.

The TDT is based on the assumption that each of the two alleles M1 and
M2 at a locus is transmitted with equal probability to the offspring, hence for a
sample of heterozygous parents we expect approximately half of them to trans-
mit the allele M1. If one of the alleles is transmitted more often among families
where the children have a genetic disease, we suspect that the allele is associ-
ated to the disease.

Let b denote the number of heterozygous parents who transmits allele M1 to
their offspring, and c the number of heterozygous parents who transmits allele
M2. Conditioned on b + c, b is is binomially distributed, but usually the test
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statistic has the following form

T =

(b� c)2

b+ c
, (2.3)

This test asymptotically follows a �2
1-distribution and is equivalent to a Pearson

�2-test.

Logistic Regression

Generalized Linear Models (GLMs) [44] extend the ordinary regression models
to other response variables than the Normal distributed. GLMs are applicable if
the response variable has a distribution which belongs to the natural exponential
family. One of those distributions is the Binomial distribution, and with Logistic
Regression we model the binomial probability p(x) = P (Y = 1|x) as

log

p(x)

1� p(x)
= ↵+

X

j

�jxj (2.4)

Here xj denotes the value of the jth element in the predictor x. In the simple
logistic regression with one binary predictor x, � is equal to the log odds ratio

� =

p(x = 1)/(1� p(x = 1))

p(x = 0)/(1� p(x = 0))

In retrospective (individuals are sampled based on their affection status) studies
the effect parameter � will be the same as in the prospective (sampling based on
the predictors) design, if we assume that the sampling probability is independent
of x. This is one of the main reasons for using this method in biomedical studies
[45]. Another advantage with the logistic regression is that it is easy to include
several predictor in the analysis and make inference for interactions between
genes and environment, as well as gene-gene interactions.

Schaid [46] described a univariate method for case-parent data, modelling
genotype relative risks with conditional logistic regression using three pseudo-
controls based on the parents’ untransmitted alleles. This method can be gen-
eralized to two loci. For case-control data logistic regression can be used to
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analyse interactions by comparing the saturated model to an additive model,
specified on the form of (2.4) [31].

The additive logistic model is roughly equivalent to the heterogeneity model
if the relative risk (RR) or odds ratio (OR) is of moderate size. However, North
et. al [47] show examples of heterogeneity models which are marginally reces-
sive (marginal RR⇡ 150), in this case the logistic regression yields non-zero
interaction estimates.

Hence, to really examine deviations from the heterogeneity model (and not
the multiplicative or logistic model) more advanced methods need to be applied.
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Chapter 3

Summary of Papers

There are four papers included in this thesis, the first two papers are two GWA
studies of Celiac Disease. The second and the third paper covers inference of
two-locus interactions in GWA studies. The final paper describes a method for
locating a causal variant for mendelian diseases by haplotype sharing.

Paper I:
Utilizing known risk genes within Celiac Disease

A common test in Genome Wide case-control associaton studies is the Pearson
�2
1-test comparing allele frequencies among the two groups.

In celiac disease (CD) a genetic variant in the HLA-region on chromosome 6
in the human genome is necessary but not sufficient, for developing the disease.
As this variant also is present in healthy individuals, other risk variants should
be less common among the controls who possess the necessary gene, compared
to the controls who lacks this variant. Similarly, these additional risk variants
should also be more common among the cases. Hence we have refined the
alternative hypothesis to

H1 : pctrl+A < pctrl�A < pcaseA ,

where p⇤A denotes the frequency of the risk increasing allele A in each of the
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three subpopulations. ctrl+ denotes the population of individuals who has the
necessary genetic component, denoted by H, but is not affected by the studied
disease. Similarly, ctrl� consist of all individuals who do not have the gene H,
and finally the cases. In the paper we derive a test that can examine this kind of
genetic model.

A test for trends in proportions is the Cochran-Armitage test [48]. This test
needs a parameter ⇢ describing the relative differences between the proportions,
that is

⇢ =

pctrl�A � pctrl+A

pcaseA � pctrl+A

. (3.1)

We show that ⇢ = P (aff|H), hence we estimate ⇢ by the disease prevalence
among the individuals who has the necessary gene H. This entity is thus inde-
pendent of the marginal model for any other gene that we are searching for.

We use simulations from various genetic models of this type to estimate the
power of this test compared with the Pearson 1 df chi-square test. We also apply
this method to a previously published [49] celiac disease case-control study and
compare the result on genes which were replicated in further studies.

Paper II:
Genome-wide linkage and association analysis in celiac disease
families identifies genetic variants within DUSP10 and impli-
cates genes involved in metabolism and energy homeostasis

The aim of this applied paper is to uncover additional genetic risk factors in
Celiac Disease. To accomplish this we perform a Genome Wide Linkage and
Association analysis on a scandinavian family material, where at least two
members of each family are affected by CD. In addition, we also perform path-
way analysis and two-locus interaction analysis of the 383 top-scoring regions,
as well as comparing gene expression levels between cases and controls. When
combining association analyses with pathway and expression analysis we ver-
ified several previous findings and identified new variants involved in growth
and energy homeostasis.
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Since the the material was genotyped using two different arrays we impute
unobserved genotypes using Impute2 with the HapMap 2 as a reference to in-
crease the sample size and improve accuracy for the association analysis.

Univariate Association analysis

In the first analysis we perform an imputation based Transmission Disequilib-
rium test (TDT). Out of the genotypes included in imputation, 88 % have a
posterior probability above 0.95. Therefore we present a test based on ’poste-
rior expected transmission counts’.

We compared this test with the standard TDT defined in (2.3), with a thresh-
old of 0.95 for the imputation probabilities. The expected counts TDT was able
to boost the association signals and incorporates a check for mendelian errors
which were created when imputation was performed without considering the
relationships.

In addition, based on the prior knowledge of the necessary HLA risk vari-
ants, we performed a stratified TDT analysis that identified a genome-wide sig-
nificant association to the DUSP10 gene for the low-risk group.

Two-locus Interaction analysis

Based on the top results from the TDT analysis we chose 383 genomic regions
for two-locus interaction analysis. For this analysis one affected child from each
family was chosen. For imputed SNPs, we imputed genotypes if the joint like-
lihood of the three subjects was above 0.95 for some of the possible genotype
vectors (according to mendelian inheritance).

A Likelihood ratio test was applied, comparing four models of no asso-
ciation, heterogeneity, multiplicative and epistasis. The maximum likelihood
estimates of the penetrances and allele frequencies for each of the models were
obtained numerically. We identified 15 pairs which deviated from the hetero-
geneity model, 5 of these were interactions with the HLA region. In addition
we identified 7 pairs of loci which had a joint heterogenic effect on disease risk.

27



i
i

“avhMEOcpl” — 2012/9/24 — 8:38 — page 28 — #38 i
i

i
i

i
i

Paper III:
Are two-locus interactions without marginal effects in Genome
Wide Association Studies really that interesting?

One suggested explanation to the missing heritability in complex genetic dis-
eases has been interactions between genes (epistasis). However it has previ-
ously not been very common to perform a complete genome wide interaction
analysis even for two-locus interactions. Instead the interaction analysis has
been done by a two-step approach.

In this paper we examine how common interactions without marginal ef-
fects will be in a GWIA, assuming the null hypothesis that none of the predic-
tors has any effects. With the use of small sample examples we illustrate the
phenomenon of significant interactions without marginal effects. We consider
two different study designs, the retrospective (case-control) and the prospective
study design.

We found that the possible outcomes with the most significant interactions
will not have any marginal effects at all. But for large samples these events will
hardly occur.

Paper IV:
The Color Method – a simplified tool for locating risk regions
with GWA data in mendelian disorders

With Homozygosity mapping, a recessive trait can be mapped using cases from
large inbred families. A region containing a risk variant is located by searching
for regions where affected individuals are homozygous for the same allele at
each of multiple consecutive markers.

In this paper we develop a Simplified Linkage Program called the Color
Method that constructs illustrations of candidate regions for the causal locus of
rare mendelian traits, i.e. also for dominant traits. The method assumes that the
obligate haplotype is the only one which is shared IBD by all cases. To discern
the obligate region from other candidates, the method estimates the frequencies

28



i
i

“avhMEOcpl” — 2012/9/24 — 8:38 — page 29 — #39 i
i

i
i

i
i

of the haplotypes using a public reference sample and assign a score for each
region based on these frequencies.

The assumption of only one shared haplotype is crucial. To validate this
assumption crossovers and IBD sharing was modelled in simple pedigrees. By
theory and simulations we model the crossovers using the Ehrenfest Urn Model
[50] for a random walk on the hypercube {0, 1}k.

To assertain that the strongest signal is from the causal variant we model and
simulate meiotic crossovers using HapMap reference haplotypes and measure
the distribution of both IBD and IBS sharing for a given pedigree. We find that
in order to discern the causal haplotype we need not only a sufficiently large
number of cases, but also they need to be rather distantly related.

The method is applied to three different datasets, one recessive and two
dominant traits. For all three datasets a unique region is successfully identified.
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