-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Chalmers Publication Library

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Symbolic Supervisory Control of
Timed Discrete Event Systems

SAJED MIREMADI

Department of Signals and Systems
Automation Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2012

https://core.ac.uk/display/70596597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Symbolic Supervisory Control of Timed Discrete Event Sgste
SAJED MIREMADI
ISBN 978-91-7385-765-9

© SAJED MIREMADI, 2012.

Doktorsavhandlingar vid Chalmers tekniska hégskola
Ny serie nr 3446
ISSN 0346-718X

Department of Signals and Systems
Automation Research Group
Chalmers University of Technology
SE-412 96 Gothenburg

Sweden

Telephone + 46 (0)31 - 772 1000

Typeset by the author usingx.

Chalmers Reproservice
Gothenburg, Sweden 2012

To my family

Abstract

With the increasing complexity of computer systems, it iscal to have effi-
cient design of correct and well-functioning hardware aoithgre systems. To
this end, it is often desired toontrol the behavior of systems to possess some
desired properties. A specific class of systems is calledrete event systems
(DES) DES deal with ‘discrete’ quantities, e.g., “number of rtdhn a man-
ufacturing cell”, and their processes are driven by insta@bus ‘events’, e.g.,
“start of a machine”. In this thesis, the focus is on DES anéxansion of such
systems, which also considers the time points at which tleatsvmay occur,
calledtimed DES (TDES)Real-time applications such as communication net-
works, manufacturing facilities, or the execution of a cart@p program, can be
considered into TDES.

Having a DES or TDES, with some givepecificationsby utilizing a well-
known mathematical framework, calledipervisory control theory (SCTi} is
possible to automatically generatesapervisorthat restricts the system’s be-
havior towards the specifications, only when it is necessapplying the SCT
to large and complex systems, typically follows with sonmsues, concerning
computational complexity and modeling aspects, whichdkle in this thesis.

We model DES byextended finite automata (EFAS}ate transition models
that contain discrete-valued variables. TDES are modstethlaugmentation of
EFAs, calledimed EFAs (TEFAs)vhich contain a set of discrete-valued clocks.
Based on EFAs or TEFASs, the supervisor cansigmbolicallycomputed, us-
ing binary decision diagrams (BDDsjlata structures that could, in many cases,
lead to smaller representation of the state space. For exspstems, the com-
puted supervisor may consist of many states, causing esuedson and imple-
mentation difficulties. To tackle this, based on the stafeb® supervisor, we
symbolically compute logical constraints that will be attad to the original
models to restrict the system’s behavior. Consequentlyresent a framework,
where given a set of EFAs or TEFAS, the supervisor is compuséty BDDs,
and represented in a modular manner based on the computeal lognstraints.
The framework has been developed, implemented, and agpliadustrial case
studies.

Keywords: Timed Discrete Event Systems, Supervisory Control Thery,
tended Finite Automata, Binary Decision Diagrams.

Acknowledgments

You start your PhD studies with the dream of making a majorachn the
science! But soon you realize the reality is something tbffie More than
contributing to the science, doing a PhD is about to learn twmvthink’ in a
structural and analytical manner. It is about to understaing you got correct
results before getting happy, and why you got wrong resttkés becoming sad.
Finally, it is about to write and formulate your results ina@nvincible’ way,
while meeting the ‘deadlines’. And during this journey, yiadeed realize the
power of procrastination! As a result, in five years, you ded#h more or less
happy moments, which can be summarized as below:

HAPPINESS Ew IOE

PUBLISH THE NEW IDEA+ EVERYTHING

FIRST PAPERS CORRECT WOKRS
IMPLEMENTATION LY

CONFUSION & v ‘(

IN RESEARCH=+ IMPLEMENTATION

COURSES+

TEACHING
PUBLISH

FURTHER &
PAPERS

(

EUPHORIA!

THESIS
WRITING

SOMETHING

1\4/01433 IS WRONG! 1-/'
1 1 g NEXT? 1 1
| | | | | | | | | |
1st 2nd 3rd 4+h Bth YEAR

| would therefore like to thank the people that let me sharépagk’ moments
with them, and cheered me up during the ‘troughs’. Initiallyant to thank
my never-tiring supervisor Prof. Bengt Lennartson for saipg me in differ-
ent aspects; and as the head of our research group, fongetés his second
family. And my co-supervisor Dr. Knut Akesson for all thedly and fruitful
discussions, which positively changed my way of thinkinglso would like to
thank Prof. Martin “The Man in Black” Fabian for always beiagailable for
all kind of questions. All of my colleagues at the divisionAdtomatic Control,
Automation and Mechatronics really deserve a word of apatien. Thank you
guys, you are wonderful. A special appreciation goes to AarriThe Dude”
Fel, for all the enjoyable discussions we had together amditiiorgettable time

ACKNOWLEDGMENTS v

we had in USA. Talking about USA, | would like to thank Prof. y&ps Reve-
liotis for giving us the opportunity to visit Georgia Techndaexperiencing the
research environment at such a good university. Also, aidpibank goes the
administrative and technical staff at the department faags being so helpful
and making everything work smoothly.

Finally, I would like to thank the family of Prof. Dadfar fanéir never-ending
support, from the beginning of my studies in Sweden. My dsegetitude goes
to my family and friends, whom have always encouraged me aheMed in me,
especially, my parents and my brothers.

Sajed Miremadi
Gothenburg, November 2012

This work was carried out within the Wingquist LaboratoryNN Excellence
Centre at Chalmers University of Technology and was alsp@ued by Swedish
Foundation for Strategic Research through the ProVikiog@am.

Publications

This thesis is based on the following papers, included inruPartll:

[Paper 1] S. Miremadi, K. Akesson and B. Lennartson. Symbolic computa
tion of reduced guards in supervisory conti®EE Transactions on
Automation Science and Engineerjingl. 8, no. 4, pp. 754-765,
October 2011.

[Paper 2] S. Miremadi, B. Lennartson and K. Akesson. A BDD-based aggito
for modeling plant and supervisor by extended finite autamBEE
Transactions on Control Systems Technologyl. 20, no. 6, pp.
1421-1435, November 2012.

[Paper 3] S. Miremadi, Z. Fei, K. Akesson and B. Lennartson. Symba@lfre-
sentation and computation of timed discrete event syst&ubmit-
ted tolEEE Transactions on Automation Science and Engineering
2012.

[Paper 4] S. Miremadi, Z. Fei, K. Akesson and B. Lennartson. Symbadlic s
pervisory control of timed discrete event systems. Suleaiib|EEE
Transactions on Control Systems Techno)&pA2.

The following papers are relevant to this work but not inelddh the thesis:

[1] S. Miremadi, Z. Fei, K. Akesson and B. Lennartson. Synidobmputa-
tion of nonblocking control function for timed discrete evasystems. To
be published irProceedings of thé'" IEEE International Conference on
Automation Science and Engineerji@gecember 2012.

[2] S. Miremadi and A. Voronov. Symbolic reduction of gualdssupervi-
sory control using genetic algorithms. Chalmers UnivgigitTechnology,
Gothenburg, Swedeiechnical ReportAugust 2012, p. 7.

[3] S. Miremadi, B. Lennartson and K. Akesson. BDD-basedsvigory con-
trol on extended finite automata. Rroceedings of th&'® IEEE Interna-
tional Conference on Automation Science and EngineeAngust 2011,
pp. 25-31.

. PUBLICATIONS \

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

S. Miremadi, K. Akesson and B. Lennartson. Extractiod agpresenta-
tion of a supervisor Using guards in extended finite autonlatBroceed-
ings of the9*" International Workshop on Discrete Event SysteMay

2008, pp. 193-199.

S. Miremadi, K. Akesson, M. Fabian, A. Vahidi and B. Lentsan. Solv-
ing two supervisory control benchmark problems using Supra. In
Proceedings of the'" International Workshop on Discrete Event Systems
May 2008, pp. 131-136.

Z. Fei, S. Miremadi, K. Akesson and B. Lennartson. Efiiti8upervisory
Synthesis for Extended Finite Automata. SubmittetEl6E Transactions
on Control Systems Technolo@p12.

Z. Fei, S. Miremadi, K. Akesson and B. Lennartson. Efiitisupervisory
synthesis to large-scale discrete event systems modeldesded finite
automata. InProceedings of th&'" IEEE International Conference on
Automation Science and Engineerj#gigust 2012.

Z. Fei, S. Miremadi, K. Akesson and B. Lennartson. Modglsequential
resource allocation systems using extended finite autontatBroceed-
ings of the7" IEEE International Conference on Automation Science and
Engineering August 2011, pp. 444-449.

Z. Fei, S. Miremadi, K. Akesson and B. Lennartson. Efiitisymbolic
supervisory synthesis and guard generation: Evaluatingipaing tech-
niques for the state-space exploration.Pimceedings of tha™ Interna-
tional Conference on Agents and Artificial Intelligendanuary 2011, pp.
106-115.

B. Lennartson, S. Miremadi, Z. Fei, M. Noori, M. FabiamisK. Akesson.
State-Vector Transition Model Applied to Supervisory Goht In Pro-
ceedings of tha 7" IEEE International Conference on Emerging Tech-
nologies and Factory AutomatipBeptember 2012.

M. Fabian, S. Miremadi, Z. Fei and K. Akesson. Supemysmontrol of
manufacturing systems using extended finite automata. pabkshed in
Formal Methods in Manufacturing@Series on Industrial Information Tech-
nology), J. Campos, C. Seatzu and X. Xie, CRC Press/TaytbFamncis,
2013, ch. 10.

M. R. Shoaei, S. Miremadi, K. Bengtsson and B. Lennarts@educed-
order synthesis of operation sequencesPioceedings of thé6'" IEEE

International Conference on Emerging Technologies anddtgdAutoma-
tion, September 2011, pp. 1-8.

VI

[13] M. R. Shoaei, B. Lennartson and S. Miremadi. Automagogyation of
controllers for collision-free flexible manufacturing sgi1s. InProceed-
ings of the6'" IEEE Conference on Automation Science and Enginegring
August 2010, pp. 368-373.

[14] K. Bengtsson, P. Bergagéard, C. Thorstensson, B. LésoarK. Akesson,
C. Yuan, S. Miremadi and P. Falkman. Sequence planning usirtiple
and coordinated sequences of operatidB&E Transactions on Automa-
tion Science and Engineeringol. 9, no. 2, pp. 308-319, April 2012.

[15] K. Bengtsson, C. Thorstensson, B. Lennartson, K. Akes€. Yuan, S.
Miremadi and P. Falkman. Relations identification and igation for
sequence planning and automation desigrProrceedings of the'" IEEE
Conference on Automation Science and Engineerfuggust 2010, pp.
841-848.

viii

Contents

Abstract
Acknowledgments
Publications
Contents

List of Acronyms

| Introductory Chapters

1 Introduction

1.1 Discrete EventSystems.

1.2 \Verification

1.3 Supervisory Control Theory.

1.4 Challenges.
1.4.1 Supervisor Representatian.
1.4.2 Qualitative and Quantitative Analysis.
1.4.3 Computational Complexity.

1.5 Contributions.

1.6 Outline

2 Modeling Formalisms
2.1 FiniteAutomata
2.2 Timed Extended Finite Automata.
2.3 RelatedWork.

3 Supervisory Control Theory
3.1 SCTofUntimedDES
3.1.1 DESModeledbyEFAs.
3.2 SCTofTimedDES.
3.2.1 Transformation of TEFAStoEFAs.

CONTENTS X
3.2.2 Controllabilityof TDES 30
3.3 Synthesis. 33
3.3.1 UntimedDES 33
3.32 TimedDES. 36
3.4 Supervisor Representation. 40
3.4.1 Representing the Supervisoras Guards 41
3.5 RelatedWork. 48
Symbolic Representation and Computation 49
4.1 BasSIiCS. e e e 50
4.1.1 Characteristic Function. 51
4.2 RepresentationofModels. 52
4.2.1 Representationof DFAs 52
4.2.2 Representationof TEFAs. 53
4.3 SymbolicSynthesis 57
4.3.1 Size of Intermediate BDDs. 60
4.4 Symbolic Guard Generation 61
4.4.1 Symbolic Computation of the Basic State Sets . . . 61
442 IDDGeneration 62
443 GuardGeneration. 63
4.4.4 Guard Reduction by Genetic Algorithms 63
45 RelatedWork. 65
Case Studies 67
5.1 lllustrative Example 67
5.2 IndustrialCaseStudy 72
5.3 ImplementationRemarks. 79
6 Summary of Appended Papers 81
7 Conclusions and Future Research 83
Bibliography 87
Appended Papers 95
Paper 1 Symbolic Computation of Reduced Guards in Supervisy
Control 100
1 Introduction. 100
2 Preliminaries 102
2.1 Deterministic Finite Automata 102
2.2 Supervisory Control Theory 103
3 SupervisorasGuards 104

Xl CONTENTS
3.1 BasicState Sets. 105
3.2 Guards. e e e 107
4 BDD Representation., 109
5 FromBDDstoGuards. 111
5.1 BDD Computation. 112
5.2 IDDGeneration 113
5.3 Heuristic Minimization Techniques 116
5.4 Guard Generation. o 117
6 From GuardstoEFA., 118
7 Case Study - Car ManufacturingCell 120
8 Conclusionsand FutureWorks. 124
References e 125

Paper 2 A BDD-based Approach for Modeling Plant and Supervier

by Extended Finite Automata 132
1 Introduction. L 132
2 Preliminaries 135
2.1 Extended Finite Automata 135
2.2 Binary DecisionDiagrams 139
3 Supervisory Control Theory. 140
4 Symbolic Computationafy 141
4.1 BDD representationofanEFA. 142
4.2 BDD representation of EFSConEFAs 145
5 Representation of the SupervisorasEFAs 153
5.1 Guard Generation. 154
5.2 Guard Attachment. 155
6 CaseStudies. e 156
6.1 Model classification. 156
6.2 Benchmarkexamples. 158
6.3 Results. 160
7 Conclusions. 161
References e 162

Paper 3 Symbolic Representation and Computation of Timed Ricrete

Event Systems 170

1 Introduction. 170

2 Timed Extended Finite Automata. 172
2.1 Syntaxand Semantics 172
2.2 Extended Full Synchronous Composition. 176

3 Supervisory Control Theory. 178

4 EFAsemanticsof TEFA. 179

5 Symbolic Representations and Computations 181

51 Abstractionof Tick-EFAs 182

. CONTENTS XI|

5.2 BDD Representationefg, 184
6 Case Study: A ProductionCell 192
7 Conclusionsand FutureWorks. 195
References 196

Paper 4 Symbolic Supervisory Control of Timed Discrete EvehSys-

tems

1
2

w

5
6

204
Introduction. 204
Preliminaries 205
2.1 Timed Extended Finite Automata 206
2.2 Supervisory Control Theory 210
Supervisory Synthesisof TDES 212
Symbolic Representation and Computatian. 220
4.1 Basics. 220
4.2 BDD representation. 221
4.3 Synthesis. 222
Industrial Case Study 223
Conclusions and FutureWork. 230

References 231

List of Acronyms

BDD - Binary Decision Diagrams

CF — Characteristic Function

CS — Complement State

DES - Discrete Event System

DFA - Deterministic Finite Automaton
EFA - Extended Finite Automaton
EFSC - Extended Full Synchronous Composition
FA — Finite Automaton

FSC - Full Synchronous Composition
GA — Genetic Algorithms

IS — Independent State

PCG - Process Communication Graph
SCT - Supervisory Control Theory
STS - State Transition System

TA — Timed Automaton

TDES - Timed Discrete Event Systems
TEFA — Timed Extended Finite Automaton
TGA — Timed Game Automaton

Xiii

Xiv

Part |

Introductory Chapters

Chapter 1

Introduction

As we progress in time, the dependence and inseparabilbyiofaily lives to
hardware and software systems grow rapidly. For instanoglenm cars, mo-
bile phones, medical devices, communication systemsopaurdi video systems,
control systems, etc. contain various types of software.

1.1 Discrete Event Systems

Historically, the systems that have been studied over tlagsy®volve quanti-
ties such as pressure, temperature, speed, and accelevaich are continu-
ous variables, evolving over time. Such systems have aomiis states and are
time-driven, i.e., a state changes as time changes. Sinaaweaturally de-
fine derivatives for continuous variables, modeling andyamaof such systems
heavily rely on the theory and techniques related to diffea¢ and difference
equations.

Nevertheless, not all system behaviors can be meaningkgisesented by
continuous variables and mathematical expressions. Mdeeacomputer sys-
tems that we deal with includi#iscreteproperties. They are discrete in the sense
that they are typically related to counting integer numiseich as the number of
vehicles in a transportation system, number of faults instesy, or number of
robots in a manufacturing cell. An interesting point abautrssystems is that
most of them are driven by instantaneewentsuch as “start of a machine’ or “a
traffic light turning green”. When an event occurs, the systensits from one
stateto another state, e.g., “the traffic light turns from ambegteen”. A sys-
tem which its state evolution depends entirely on the oetue of asynchronous
events over time is calleddiscrete event system (DESWhich is the scope of
this thesis. Many systems are profitably modeled by DES ssicheaufacturing
systems, operative systems, communication protocolsedeptony systems.

lIn the thesis, for ease of reading, “DES” is also used in plimam, i.e., “discrete event
systems”.

CHAPTER 1. INTRODUCTION 4

In DES, merely the sequence of the visited states, i.e.,dgeence that the
events occur, is used to analyze different systems. In etbais, the logical or
the qualitativebehavior of a system is in focus. For instance, in a manufactu
ing system a qualitative property could be “robot 1 shouldagls complete its
task before robot 2” or in a communication system “two usémuid not use a
channel simultaneously”. Nevertheless, the correct heha¥ many real-time
systems such as air traffic control systems and networketimadia systems
depends on thdelaysbetween events. In addition, in many cases, we also want
to analyze thguantitativeproperties of the systems. For instance, in a manufac-
turing system we can check a property “if robot 1 does notHiiitis task in 20
seconds, let robot 2 finish its task” or in a communicatiorteys'if a channel
is booked by a user for more than 1 minute, prohibit the uses&the channel
and let another one use it”. A DES that also considers the pioras the events
occur, is referred to asmed DES (TDES)n this thesis, we analyze both DES
and TDES.

With the increasing complexity of computer systems, it isc@l to have ef-
ficient design of correct and well-functioning hardware aoftware systems.
Systems that do not work as expected can both lead to costtpkess and disas-
trous consequences. In the early nineties, a bug was detectetel’'s Pentium
I floating division unit, which caused the company a losslodat $475 million
to replace faulty processor$][In 1997, the Mars Pathfinder landed on Mars,
however, the spacecraft contained a design flaw that oncevimila resulted in
system resets and loss of important daffa Between 1985 and 1987, an error
in the control part of the radiation therapy machine Th&%aded to an over-
dose of radiation, which caused the death of six cancerrdatj@. All of these
programs includedesignerrors that were not captured during the design or im-
plementation phases. Hence, somehow we need to ensurbal@bgrams are
correct or error-free, before putting them into practice.

1.2 \Verification

As different systems are continuously used in larger caatard in interaction
with other components, they become more vulnerable to rréiris known
that the number of errors grows exponentially with the nunddanteracting
system components. Thus, checking the correctness of eamnsgstems with
standard and conventional techniques such as random siomuba directed test
are not always possible; especially, with the high demandse system devel-
opment time. Todayformal verificationis mostly used for this purpose, that is
mathematically-based techniques for proving or disprg¥ire correctness of a
property in a systemy 5]. Investigations show that the design errors which were
exposed in the aforementioned applications had been exyéalormal verifi-
cation had been utilized. In formal verification, initiglthe desired property

5 1.3. SYUPERVISORY CONTROL THEORY

to be verified is identified. Then, an abstract model of théesgsncluding the
surrounding environment is built. Finally, the parts of #ystem that are inter-
esting w.r.t the property are identified, and it is matheoadity shown whether
the property holds in the region of interest. Hence, the fiesult after verifying

a system could be eithges i.e., the system satisfies the given propertynar
I.e., the system does not satisfy the given property. Caresgty, the goal is to
design acontrol functionthat that restricts the system’s behavior towards all the
given desired properties.

1.3 Supervisory Control Theory

Basically, there are two conceivable ways of designing drobfunction: man-
ually based orverification or automaticallybased orsynthesis In the verifi-
cation method a control function candidate is designed mlnin a fashion
that supposedly controls the system in an appropriate maifihes is then ver-
ified towards some desired properties and if the result isfaatory the control
function design is finished. Preferably, the verificationdd give a hint about
problems with the current control function so that the desigvill have a better
understanding of what needs to be changed. The verificatethod could be
useful for applications, wherehangesare not applied frequently, e.g., micro-
controllers. However, for applications, where the conturiction needs to be
modified frequently due to changes to the system, the verditanethod could
be quite time consuming. For instance, in a car manufagsystem, each time
a new model is going to be produced, since much of the workng @m-line on
the shop-floor, the production is down during the controktion implementa-
tion. There are different tools such as UPPAAI find KRONOS 7] that are
based on the described verification procedure.

In the synthesis method, the above process is automatedd Bashe spec-
ifications of the desired system behavior, synthesis geegeacontrol function
that makes sure the system does not violate the specifisatiaturally, synthe-
sis can be carried out in different ways. For instance, ibssgble to synthesize a
control function that restricts the system more than necgswhich is typically
not desired. In 1987, Ramadge and Wonham proposed a coat&pimework
calledsupervisory control theory (SCT9r DES [8]. They showed that given a
system, referred to as thmant and some desired properties, referred to as the
specificationsthere exists a control function, referred to asgsbpervisoywhich
is minimally restrictive The supervisor is minimally restrictive in the sense that
it restricts the plant only when it is necessary withoutaiwlg the specifications.
They also proposed a method to automatically synthesizeassapervisor. SCT
has been applied to different domains such as manufactsystgms$9, 10], ve-
hicular traffic [L1], logistics [L2], and communication network4$, 14]. There
are different tools such as Supremid&][and TCT [L6] that are based on the

CHAPTER 1. INTRODUCTION 6

SCT for generating control functions. In this thesis, we #&ntompute con-
trol functions for DES and TDES, based on the SCT. Despiteyrbanefits that
can be gained by utilizing SCT, still, the control functicare mostly designed
manually in the industry.

1.4 Challenges

In the following, we discuss some of the existing challerigebe SCT.

1.4.1 Supervisor Representation

The SCT is based on state-transition models; but indugigaple are used to
other representations such as sequential function cl&#y), ladder diagrams,
Gantt charts, and PERT charts, that are exploited to repiréise control func-
tions. Specifically, the interpretation of a control functirepresented by a large
and cluttered state-transition model requires the maamtes personnel to have
other skills than are common today.

1.4.2 Qualitative and Quantitative Analysis

Conventional SCT is not defined for TDES. To this end, reseascproposed
different approaches to, based on the SCT, perfpualitativeanalysis on TDES
[17-20]. Most of these approaches are based on discrete time. alsreex-
ists many models and implementations that are suitablgufantitativeanalysis,
most of them based on continuous tinkéf25]; yet there are few works consid-
ering both the qualitative and quantitative aspects of TDES

1.4.3 Computational Complexity

The complexity of a system represented by a state-transitmdel is often mea-
sured by its number of states, referred tetge spaceThe state space of a sys-
tem grows exponentially by the addition of new componentsésystem. Since
most of the industrial systems consist of many componemy,include a huge
state space, sometimgg!?’ states or even more. Obviously, representing and
enumerating such state spaegplicitlyis more or less impossible both in terms
of time and memory. To tackle this problem, the state spandeaepresented
symbolically (implicitly) which in many cases results in a smaller representation
of the state space. Symbolic representation implies tleasthte space is de-
scribed by means of logic constraints and special datatates; which makes

it possible to simultaneously perform operations on a setaiks, rather than a
single state. One such powerful data structure is cdliedry decision diagram
(BDD) that is used to symbolically represent Boolean functi@é [It has been

7 1.5. CONTRIBUTIONS

shown that BDD-based algorithms can improve the efficieficpmputing con-

trol functions dramatically. For instance, a7 the supervisor of a system with
more thanl (0> states was computed in a few minutes. However, in many cases
it is quite complicated to represent models by BDDs and perfall the com-
putationspurely on these data structures, especially, with the introdoabio
time.

1.5 Contributions

The aforementioned challenges have been tackled in thsssthehich has lead
to the following contributions:

C1:. Symbolic representation @xtended finite automata (EFAd)nite au-
tomata extended with discrete variables, and their fulchyonous com-
position operator, based on BDDs.

C2:. Symbolic representation bined extended finite automata (TEFASKFAS
extended with discrete-values clocks, and their full syaobus compo-
sition operator, based on BDDs. This contribution mainipsiders the
symbolic representation of time without includingk events.

C3: Symbolic computation of the supervisor of TDES, moddigdTEFAS,
based on BDDs.

C4: ldentification of a subset of the states belonging to tipesvisor as the
basic state set8Based on the basic state sets, some logical conditions, re-
ferred to agyuards are automatically generated. The guards express under
which conditions an event is allowed to occur to fulfill theesfications.

C5: Symbolic computation of the basic state sets, using B2dd simplifi-
cation of the guards, by utilizing the structure of the maatadl applying
different heuristic techniques.

C6: Representation of modular supervisor for a system that is modeled by
TEFAs. The supervisor is modular in the sense that it is sepreed by the
original TEFASs restricted by the computed guards.

C7: Allalgorithms are developed, implemented, and verifigsupremical5,
28-30], a software tool for automatic verification, synthesis amdulation
of DES.

In Table 1.1, the relationship between the main contributions and e&dheo
mentioned challenges, i.e., supervisor representati@, (falitative and quan-
titative analysis (QQA), and computational complexity (CiS illustrated. Fur-
ther, the table shows in which appended papers the chalergeaddressed and
the contributions are presented.

CHAPTER 1. INTRODUCTION 8

Table 1.1: lllustration of the relationships: challenges — main citmitions — appended
papers.

Challenge
SR QQA CC

Cil Paper2

C2 Paper3 Paper3
.§ C3 Paperd Paperd
é C4 Paperl
§ C5 Paperl Paperl

C6 Paper2

C7 Paperl-4

1.6 Outline

The thesis is divided in two parts. Pdrprovides introductory chapters that
present background and context of the appended paperstih .Pére papers in
Partll constitute the base of this thesis. A list of references ¢tuoted at the
end of Part and at the end of each paper presented in IPatll the proofs of
the propositions, lemmas, and theorems in Pare included in the appended
papers in Pari .

Chapter2 describes the modeling formalisms, deterministic finiteomata
and timed extended finite automata, which we used to modetybEms. In
Chapter3, the supervisory control theory of both untimed discreenggystems
and their timed extension are explained. Chagtgjives an overview of the
symbolic data structures, i.e., binary decision diagrahe,are used to perform
the analysis. Chaptérincludes an illustrative and an industrial case study. A
summary of the scientific papers, appended in Pars provided in Chaptes.
Finally, Partl is concluded in Chaptéet.

Chapter 2

Modeling Formalisms

When it comes to analysis and control of discrete event BYSHDES), us-
ing appropriate modeling formalisms for representing We&tesm’s behavior is
a dilemma. The appropriate choice highly depends on thectizgs of the anal-
ysis. There are various modeling formalisms used to modé& BEch as finite
automata3l, 32], Petri nets B3], process algebrafi, 35 and logic-based mod-
els [36].

Since automata are intuitive, easy to use, suitable foyarssdnd applicable
to composition operations, they are used quite often foretieg, compared to
other formalisms. In this work, automata are used to moded Dthe main rea-
son for this choice, is that automata conform well with susary control theory
(discussed in Chapt@), as they were used originally i&][In addition, to im-
prove the expressiveness and compactness of the modelssenenuextended
variant of ordinary automata, where discrete-value végmbnd clocks are in-
troduced to the model. In this work, we are interested inrdatgstic systems,
and thus all models that are used in this work are considerbd deterministic.

Remark (SOS-notation) A notation that will be used frequently is tH8OS-
notation(Structured Operational Semantic8y]. The notation.Z=r== should

be read as follows: if the proposition above the “solid lig@'emise) holds, then
the proposition under the fraction bar (conclusion) hoklsvall.

2.1 Finite Automata

A finite automaton (FA) is a state transition system or a stedehine, formally
defined as below.

Definition 2.1 Finite Automaton
A finite automaton (FA) is a 4-tupl&), >, —, Q°) where

- @ is afinite set of states;

CHAPTER 2. MODELING FORMALISMS 10

- Y is a nonempty finite set of events;
- —»C: Q x X x (@ is atransition relation; and

- Q° C Qis a set of initial states.

The set of eventX is sometimes referred to as thfphabetof the automaton.
The notation@| denotes the number of states of the automaton. For an eyent
a source-statey and atarget-statej, a transition(q, o, §) € is writteng +% 4,
which means that by the occurrencesgthe system evolves fromto ¢. A state

q is said to beeachablef the automaton can evolve intoby a number of event
executions, starting with an initial state.

Definition 2.2 Deterministic Finite Automaton (DFA)

AnFA(Q, X, —, Q") is deterministic if there only exists a single initial state.,
Q" ={¢"}; and
a4 ANgq

i=a

Vq € Q :

Informally, by executing an event at any state of a DFA, thet séate can be
determined. Hence, in a DFA, the transition relation wildfanction In the se-
guel, where ever we mention “automaton”, we refer to deteistic automaton.

For an automatom, we usel'4(¢) to denote all the events iA that are
enabledfrom stateg. Formally,['4(q) = {oc € ¥ | 3§ € Q4 : (q,0,q) E—4}.
We also use the notatioR? to represent all the states #y where event is
enabled, i.e.Q% = {qg € Qalo € Ta(q)}.

It is often easier to model complex systemsdularly, in a structured way,
by a number of automata. The global behavior of a modular ihzzaebe repre-
sented by composing the automata. The composition of twanzath is defined
by thefull synchronous composition (FS©Gperator|| [38]. In FSC, the shared
events must be executed by all automata synchronouslyewthler events are
executed independently.

Definition 2.3 Full Synchronous Composition (FSC)

For k = 1,2, consider two DFAs4;, = (Qi, Xk, —#, {¢4}). Thefull syn-
chronous composition (FS@f A; and A,, denoted by, || A5, is an automaton
A=(Q.S,,{¢"}), where

- Q= Q1 X @y,
-2 =2 UX,,

- the transition relation—C @ x ¥ x @ is defined based on the following
rules:

11 2.1. ANITE AUTOMATA

(a) S EIQEQ:

(91707 41) e A (q2,a, q’2) Ero
((q17q2)707 ((jla(jQ)) c—

)

(b) o c 21\22:

(Q1707 le) €1 AN @@ € QQ
((q17q2)707 (41792)) c—

I

(©) o € T\

(¢2,0,2) €2 A @1 € Q
((Q17q2)7 (Q17(j2)) c—

Y

- ¢° = (qf,49).

In the above definitiony;\>, denotes the set operatioelative complement
indicating all the events that are includedin but are not included ik,. FSC
can indeed be extended to multiple automa&d.[After the composition, the
size of A, || A, in the worst case, is the product of the sizesipfand A,. For
the most, not all of these states are reachable—the sizg|pf, can even be
smallerthan bothA; and A,—but thegrowth of the state-space can be consider-
able. This effect is particularly prominent when many audtarare composed,
in which the size of the state-space easily becomes unmablgge problem
commonly referred to as thetate space explosion probleihis is the problem
that is tackled by representing the automata symbolicaliggibinary decision
diagrams, discussed in Chapter

To show how a system can be modeled by FAs, let us take a look at a
example, which is an extended version of the railroad exanmdB9)].

EXAMPLE 2.1 Railroad Crossing

Consider a one-way railroad that crosses a one-way roadjnsimoFigure2.1

It is desired to develop a control system that closes thewhen it receives a
signal indicating that a train is approaching, and openg#te when it receives
a signal indicating that it has crossed the road and no othierhas approached
the crossing again. Furthermore, there exists a warnirg bg the road that
has a reasonable distance to the crossing, indicating ttnainais crossing the
road to warn the drivers to slow down. The control system khounly switch

the light when the gate is closed and switch it off when the gabpened. This

CHAPTER 2. MODELING FORMALISMS 12

road

/11111171117

signal “approach” signal “exit”
Owarning light

Figure 2.1: Railroad crossing example.

system can be modeled by four DFAs

TRAIN = ({far, near, in}, {approachenter, exit}, —1, { far}),
GATE = ({up, down}, {lower, raise}, —s, {up}),
WARNINGLIGHT ({off, on}, {switch_offswitch_on}, —3, {off }),
CONTROLLER = ({lo, ..., !5}, {approachlower, switch_off
switch_onexit raise}, —4, {0}),

where their corresponding transition relations are degiat Figure2.2.

The states of the DFA representing the train (Figu&g have the following
intuitive meaning: in stat¢ur the train is not close to the crossing, in statar
it is approaching the crossing and has just sent a signal tify ribis, and in
statein it is at the crossing. The states@GATE andWARNINGLIGHT have
the obvious interpretation. The DFBONTROLLER (Figure2.2d will evolve
from statel, to [; when the evenapproachoccurs. At statd;, the controller
closes the gate by sending the sigloaler to the gate, ending up in statg and
turns the warning light on by sending the sigealitch_onto the warning light,
ending up in staté. When the evengxit occurs, the train has left the crossing,
ending up in staté,. If at this moment, another train approaches the crossing,
the controller will not open the gate and will evolve to stgtetherwise it opens
the gate by sending the signalise and turns off the warning light by sending
the signakwitch_off

The global behavior of the system can be observed by synidimgnthe
automataTRAIN ||GATE || WARNINGLIGHT ||[CONTROLLER . By consid-
ering the following two transitions in the synchronized QHAcan be revealed

13 2.1. ANITE AUTOMATA

(a) TRAIN.

ower‘ raise swtcho‘ switch_off

(b) GATE. (c) WARNINGLIGHT .

l
switch_off _0/ approach

raise lower

approach
exit

(d) CONTROLLER .

swtich_on

Figure 2.2: DFAs modeling the railroad crossing example.

CHAPTER 2. MODELING FORMALISMS 14

that the system suffers from a design flaw:

((far, up, off ,ly), approach (near, up, off , 1)) and
((near, up, Oﬁa ll)v ente'; (Zna up, Oﬁa ll))

“At state(in, up, off , l;) the gate is about to close (by executing the el@mér),
while the train is (already) at the crossing, which can caadlesion. In fact, the
basic concept of the design is correct if and only if closihg gate does not
take more time than the train needs to get to the crossingibserds the signal
approachi [39]. Such real-time constraints cannot be formulated by DFAG a
will be the main motivation of introducing timed extendedtgrautomata. [

2.2 Timed Extended Finite Automata

In some cases, modeling complex systems with DFAs can leadampact and
intractable models for the users. One way to obtain more eatnmpodels is by
introducing variables to the model. Naturally, physicghsils that are stored in
memories or sent between controllers can be modeled asl| glatiables. For
instance, a convenient way to model sensors and actuatoysusing variables.
Also, systems that have a buffer-resembling behavior cazalbgy modeled by
variables. To this end, a new modeling formalism cakedended Finite Au-
tomaton (EFA)was presented irl[)]. An EFA is an augmentation of an FA with
a finite set of discrete-valued variables. The variableeapm the transitions
of the automata as either logical conditions, catiedrds or updating function,
calledactions A transition in an EFA is enabled if and only if its correspory
guard formula is satisfied; and when a transition is takenay tve followed by
updates of variables defined by the associated actions. WelB&S by using
EFAs.

However, in order to model TDES, EFAs are not complete motbetspre-
sent timing properties. To this end, we introdticeed extended finite automaton
(TEFA), which is an EFA, augmented with a finite set of discrete-@dlalocks.
Intuitively, a clockin a TEFA is a discrete variable in the sense of EFAs, re-
stricted by some rules, mentioned later. The time impli@thpses only at loca-
tions, whereas the transitions occur instantaneously xétb delay. It is worth
to mention that by disregarding the clocks from TEFAs, theaming formal
discussions on TEFAs are equivalent to EFAs, and thus, irfal@wving, we
only discuss TEFAs.

Definition 2.4 Timed Extended Finite Automaton
A timed extended finite automaton is a 10-tuple

TE = (L,DY,C,%,—, Inv, L°, DY, L™, D™),

15 2.2. TIMED EXTENDED FINITE AUTOMATA

where

L is afinite set of locations,

- DY = DY x ... x DY is the domain of: variablesV = {vy,...,v,},
where D) is a finite set of integers,

- Cis afinite set op discrete valued clock&ey, . . ., ¢, },

- Y is a nonempty finite set of events,

- 5C L xG°x Y x@Gx.Ax Listhe transition relation,

- Inv : L — ¢, is an invariant-assignment function,

- L° C Lis a set of initial locations,

- DY = D}° x ... x DY is a set of initial values of the variables,

- L™ C Lis a set of marked locations that are desired to be reached, an

- D™ = DY x D is a set of pairs of marked valuations of the variables
and clocks.

In addition toDY, we also defineD® representing the domain of theclocks.
Later we will explain how the domain of a clock is defined andwlthat it is
finite. Theglobal variable domairdenoted byD)] is the set that contains the
values of all variables, defined formally as:

DY =|JD;.
=1

Theglobal clock domaimienoted byD¢ is defined similarly. The largest value in
DY and D¢ is denoted by:max’ andumaxX, respectively. If a variable exceeds
its domain, the result is not defined, and from an implemenrtgioint of view,

it is upon the developer to decide how to implement such caSesinstance,
the program can give the user a warning. In our implementatialues outside
the domain will be ignored and will not be included in our cartgiions. In
contrast to variables, it is assumed that if a clockeaches its maximum value,
it will keep its value until it is reset. For a clock, this behavior is modeled by
a saturation functiop; : N — D¢:

0 if x <0
oi(z) =1 =z if 0 <2< pmax |
pmax if z > umax

CHAPTER 2. MODELING FORMALISMS 16

whereN is the set of natural numbers. The function N» — DC is used to
saturate the current value of all clocks.

The elementg; and.A are the sets of guards (conditional expressions) and
action functions, respectively. In the TEFA framework, aithanetic expression
v is formed according to the grammar

p=v|vicl(p)leteole—ploxo|p/o]phe,

wherev € V, ¢ € C, v € DY U DS, and% is the modulo operator. We ugg’
to denote an expression that does not contain any clockshaisd te D). A
variable evaluatiorfor a variablev; € V is a functionu! : v; — DY, assigning
a value to the variable. #lock evaluation.$: ¢; — D¢ is defined similarly.
A set of evaluations for all variables and clocks is repréesgoy ;' and €,
respectively.

A guardg € G is a propositional expression formed according to the gram-
mar

g :=(9)9"ng 9"V,

whereg” € GY andg® € G° are guards that are based on regular variables and
clocks, respectively,

9" = 0V <" @V <0V 9" >V [0¥ 29 | Y ==V |
@) 1g" Ng"1g" Vg I TIL,
¢ =c<wl|lcSuwle>wle>wle==w]| ()| Ag°| T|L,

where T and L represent Boolean logierue and false, respectively, and
w € DE. This implies that clocks can only be compared to constarts.
nonzero values are considered &s The semantics of a guargis specified
by asatisfaction relatiori=, indicating the pair of variable and clock evaluations
(u¥, u©) for which guardg is T. Itis written (1, u€) = g.

An actiona € A is a tuple of functions:

a= (av, ac) = ((a}), - a}i), (a(f, o ,ag)).
A variable actior:! : DY x D¢ — DY is a function that updates a variable; and
a reset action¢ : D¢ — 0 is a function that only resets a clock. Hence, for a
variable, the action is formed as = ¢ and for a clock it is formed ag = 0.
An action functiona; that does not update a variable or clock is denoted,by
which is later used in the synchronization process to deterthe updated value
of v;. Function/nv assigns to each locationl@cation invariantthat constrains
the amount of time that may be spent in the location. Spetificdae location
should be left before the invariant becomes invalid. Seroalhy, this situation
causes time evolution to halt. Intuitively, if a locatiowamiant consists of &ess
thanrelation, the invariant can be considered as a deadline.

17 2.2. TIMED EXTENDED FINITE AUTOMATA

The clocks can be seen as regular variables that are synoddowith a
global digital clock The clocks will evolve implicitly at the locations, eachmi
the global clock “ticks”. In other words, all clocks evolvgrehronically at rate
one. The value of a clock denotes the amount of time that hexs &lapsed since
its last reset. Potentially, the clocks dhcan have an infinite domain because
the time will elapse forever. Nevertheless, based on tHeviolg argument a
finite domain can be considered for each clock. Among theiplesgalues of
a clock, only a subset is relevant: those that can impactuledg’ evaluations.
For instance, for a guakg < 4, the values above 4 will all have the same impact
on the guard; thus the relevant values:ofs {0, ..., 5}. Consideringulargest
to be the largest constant in the model (including all guanstkich the clocke;
is compared to, the domain of the clockis D¢ = {0, 1, ..., ulargesf + 1}.
Thus,umax = ulargesf + 1. Consequently, the domain of the clock§ =
Df x ... x DS will be finite.

For a variabley;, DZVO consists of the initial values af. Since TEFAs are
specifically designed to conform to the supervisory corttrebry (described in
Chapter3), it becomes natural to include a set of marked location ahdes in
the tuple of definition of a TEFA. If the set of marked locaspevaluations of a
variable or a clock is empty, then the entire domain is carsid as marked.The
statesof a TEFA is defined a§) C L x DY x DC. The state for a locatiof
variable evaluationg”, and clock evaluationg® is represented ad, 11", 1i€).
Based on the states of a TEFA, a state transition system cdefined.

Definition 2.5 State Transition System of a TEFA

Let TE = (L,DY,C, %, —, Inv, L°, DY L™ D™) be a TEFA. Its correspond-
ing state transition system (ST,3)enoted bySTS(TE) = (Q, %, —, Q% Q™),
is a 5-tuple where

- Q = L x DY x D¢ is afinite set of states,
- Y is a set of events,

- »C @ x X x @Q is anexplicit state transition relatiodefined by the fol-
lowing rule:

(bogal)e= A" p) g A ¥ p) = Inv(d) 2.1)
(L ¥, €y, 0, (L, @Y (Y, uf), ac(uc))) € 7

- Q% = LY x D0 x 07 is a set of initial statesOP is ap-tuple of zeros),

- Q™= L™ x D™ is a set of marked states, i.e., the states that are desired
toend upin.

Indeed an STS is a FA with marked states. We deliberatelyhisenéw termi-
nology to avoid confusions.

CHAPTER 2. MODELING FORMALISMS 18

As mentioned earlier, we are only interested in determmssitstems.

Definition 2.6 Deterministic TEFA
A TEFA is deterministic if its corresponding STS is deterstin (based on Def-

inition 2.2).

In the sequel, where ever we mention “TEFA", we refer to daterstic TEFA.

Remark (Nonzenoness)We have omitted requirements on the definition nec-
essary for executability. From every reachable state, EeATshould admit the
possibility of time to diverge. For example, the automatbawdd not enforce
infinitely many events in a finite interval of time. A TEFA ssfifing this opera-
tional requirement is calledon-zend39).

Similar to DFAs, FSC can be defined for TEFAs, referred t@dsnded FSC
(EFSC) For a model with a number of TEFAs, we assume that the vasabl
and clockg are allglobal, i.e., they are shared between the TEFASs, and that the
clocks evolve synchronously with the same rate.

Definition 2.7 Extended Full Synchronous Composition
Consider the following two TEFAs
TEk - (Lka DV? Ca Zkh —ks I’I’LUk, Lga DVO? L;;:na Dm)7

for £ = 1,2. The Extended Full Synchronous Composition (EFSC)of and
TE,, denoted byl'E || TE,, is defined as

TE,|TE, = (L,DY,C,%, —, Inv, L°, DY, L™ D™),

where
- L:L1 XLQ,
- X=X U

- the transition relation—C L x G¢ x ¥ x G x A x L is defined as follows,

/. /.

—={(,0,9,a,1) |¥(l,0,9,a,]) €—:

Vie{l,...,|V|}:
(di = g N a; = Ui)\/
(a; # ENa; = a;)}, (2.2)

where

19 2.2. TTIMED EXTENDED FINITE AUTOMATA

(a) S EIQEQ:

(l170-7 gl7a17l/1) €_>1 A (l27g7 92,32,[2) €_>2
((l17l2)7aagaaa (l17l2)) e—

such that,
* 9= N g,
*Fori=1,...,|V|,
% H y _ .V
ai; ifay, = a3,
% H _
P ay, if as; =
) &Y if a¥. = ’
2.4 1,2
£ otherwise

Wherea};i is the action function belonging te>;, updating the
i-th variable, anda® is defined exactly a&” but on clocks,

(b) o € 21\22:

(llagaglaalyl/l) eE—1 A l2 € LQ
((l17l2>707 gi,a, (l/17l2)) e—

Y

(C) o € 22\21:

(l27g7 92,32,[2) €9 A ll € L1
((I1,15), 0, g2, A, (I, 15)) e—

Y

- V(I o) € L Inv(ly, ly) = Inv(ly) A Inv(ly),
- L0 = L0 x LY, and

S LM = LM x L

Intuitively, in (2), an action function of forné; = ¢ indicates that variable;
keeps its current value. Similar to the proof €], it can be proved that the
EFSC operator is both commutative and associative and carteeded to mul-
tiple TEFAs. Note that, in the case of multiple TEFAS, thensition relation—

in (2) refers to all TEFAs. In other words;> should first be computed for all
TEFAs and then replacg with the current value. In the above definition, also
observe that when the action functions@¥; and TE, explicitly try to update

a shared variable to different values, we assume that th&blais not updated.

It can indeed be discussed whether such a transition sheudatdcuted, never-
theless, such a situation is usually a consequence of badlmgd

CHAPTER 2. MODELING FORMALISMS 20

EXAMPLE 2.2 Timed Railroad Crossing

Recall Example2.1, and the issue of not being able to specify real-time con-
straints. Let us assume that a train does not exceed a ceréaimum speed.
For each component, the following timing properties aresabgred:

TRAIN The train needs more than 2 minutes to reach the crossingsafiding
theapproachsignal; and it leaves the crossing 5 minutes after appragchi
it, at the latest.

GATE Lowering the gate takes at most 1 minute, and raising it takésast 1
and at most 2 minutes.

CONTROLLER When the controller receives the sigregdproach after ex-
actly 1 minute it will close the gate by sending the sigloater. After
receiving theexit signal, the controller raises the gate only if another train
does not approach the crossing within 1 minute.

This timed system can be modeled by the following TEFAs

Train = ({far, near,in}, 0, {c, }, {approachenter, exit}, —1, Invy,

{far},0,{far},0),
Gate= ({up, comingdown, down, goingup}, D, {ca},

{lower, closedraise opened, —o, Invy, {up}, D, {up},),
Controller= ({l,...,3},{0, 1}, {cs}, {approachlower, exit raise}, —3,

[nviiu {0}7 {0}7 {0}7 {O})’

where their corresponding transition relations and irargs are depicted in Fig-
ure 2.3, The invariants are illustrated by putting guards in theatmns and a
marked location is illustrated by a double line around theatmn. Compared
to the DFA in Figure2.2 it can be observed that the evemstsitch_off and
switch_onhave been modeled by a variable:tch with domain {0,1}, where
values 0 and 1 correspond to eveswgtch_offandswitch_onrespectively.

In the TEFAGATE, clockc; is set to zero on the occurrence of evienter
and thus measures the elapse of time since that occurreeceeHhe invariant
c1 < 1 at locationcomingdown models the fact that the time delay between the
occurrence of everibwer and the change to locatiatvwn is at most 1 minute.
Note that this would not have been established by puttingaadyy < 1 on
the transition(comingdown, closed, down), as the value o€; would not refer
to the time of occurrencéower. Similarly, the invariant;; < 2 at location
goingup indicates that raising the gate takes at most 2 minutes. Nst@nts
are imposed on the residence time for locatiopsand down, i.e., Inv;(up) =
Invi(down) = T.

21 2.3. RELATED WORK

In the TEFATRAIN , on approaching the gate, cloekis reset, and only if
co > 2 is the train allowed to enter the crossing.

The TEFA of the controller is depicted in FiguPe3cand is forced to send
the signalower to the gate exactly after 1 minute after the train has sighiade
approaching. In locatiofy, the invariantc; < 1 indicates that if no other train
comes within 1 minute, the signadiseshould be sent to the gate.

The synchronized TEFASATE || TRAIN ||[CONTROLLER represents the
global behavior of the system. From the definition of S2F) the reachable
states of the synchronized model is a subset of

{far,near,in} x {up, comingdown, down, goingup} X {lo,...,l3}X
{0,...,6} x{0,...,3} x{0,...,2} x {0,1},

where{0,...,6}, {0,...,3},{0,...,2}, and{0, 1} correspond to the domains
of ¢, ¢, c3, andswitch, respectively. Note that in the synchronized TEFA, the
location(in, up,) is not reachable. In this location, the train is at the crugsi
while the gate is open. The location can only be reached when2, but asc;
andc; are reset at the same time (on entrance of the precedingdogat > 2
impliescs > 2, which is impossible due tg’s invariantes < 1. O

2.3 Related Work

In model checking, a well-known modeling formalism thatsed to model real-
time applications, isimed automata (TA9R1]. A timed automaton is a finite
automaton extended with a finite set of real-valued clockstofated analysis
of timed automata relies on the construction of a finite qeratof the infinite
space of clock valuations. In an extended version, TAs camiaklude integer
variables, denoted as ETA41]. Syntactically, TEFAs and ETAs are quite sim-
ilar, however, from a semantical point of view, TEFAs arecsfieally designed
to conform with the supervisory control theory. The mairfetiénce is how the
composition operator is defined for TEFAs and TAs. In TEFAH,dynchronous
composition is considered, where the synchronizationnfop®ed on all shared
events and variables. In particular, two transitions caly be synchronized
if both are labeled with the same shared event and if the guanel satisfied,
while in TAs they also introduce a new type of events callegent channelthat
can be taken as soon as they are enabled. Furthermore, thielearpdates are
treated differently. For a more elaborate and verbose éxposf TAs and their
composition operator, refer ta]].

CHAPTER 2. MODELING FORMALISMS 22

approach

far =0 near
C1 S 5

enter

exit c1 > 2

m

C1 S 5
(a) TRAIN.
l lower
up W ¢ =0 (comingdown
J s
opened
o> 1 closed
goingup W (}
down
{ C2 <2 J raise L
Cy = 0
(b) GATE.
l approach
l W C3 — 0 (ll
] L ez
. lower
raise J—
switch =0 swjit;h_ =1
m

et), L]

(c) CONTROLLER .

Figure 2.3: TEFAs modeling the timed railroad crossing example.

Chapter 3

Supervisory Control Theory

In 1987, Ramadge and Wonham showed that, for a DES, givemaoskls rep-
resenting the behavior of the systeptant, and some desired propertiepec-
ification, there exists a unique control function, referred tsapervisor that
restricts the plant towards the specification, only whers inécessary They
called such a supervisamninimally restrictive The main feature of a minimally
restrictive supervisor is that it contains all the possan&utions a plant can be
safely restricted towards the given specifications. Thilstsm can later be used
for quantitative analysis as well, such as time optimizaticater, they proposed
a framework calledgupervisory control theory (SCT$], which is a mathemat-
ical framework for formal reasoning about supervision agteyns modeled as
DES. Traditionally, in SCT, a DES is based on formal langgageodeled by
DFAs, and thus all the theory is defined on such models. Indh&pter, in
order to obtain compact models, we discuss how DES can alseobeled by
EFAs. The supervisor will then be computed by transformimgEFASs to their
corresponding FAs and applying conventional SCT.

However, the correct behavior of many real-time systems sigcair traf-
fic control systems and networked multimedia systems dependhedelays
between events. Consequently, the researchers startedpose different ap-
proaches to apply SCT to TDES. There have been many atteonpisdel TDES
and generalize SCT considering the real-time aspéé&ls These works can be
divided into two categories; they are either baseda@mtinuougime ordiscrete
time. In continuous time, the time is represented as realkegalvhile in discrete
time, itis represented as integers. The question of whightorchoose to model
the systems is highly dependent on the structure of thefspapplications and
the properties that we want to check. For instance, in a naatwriing cell, where
the components are synchronized by a PLC, discrete timeeiguade to model
the system and express most of its timing properties. A coisga between
continuous and discrete time, according to their compfextiid expressiveness,
can be found in43, 44]. In this thesis, we merely focus on discrete time.

The most settled framework, where SCT has been applied t&STiBDE work

23

CHAPTER 3. SUPERVISORY CONTROL THEORY 24

carried out by Brandin and Wonham in 1994/7], where a TDES is modeled

by timed transition models (TTM$35]. In this framework, it is assumed that
there exists a global digital clock. Furthermore, lower apger time bounds

are associated to the events to restrict their occurreneeppints. To be able to
apply the theory to TTMs, they transform such models to FAfslpducing a
special event calledick, which represents the passage of time, and is generated
by the global clock.

Similarly, in our framework, we model TDES by TEFAs; and irder to
apply SCT, we transform the TEFAs to their corresponding £BAintroducing
a tick event to the model. Note that in this manner, we do not needreatty
define SCT for TEFAs and thus refer all the formal discussetmsut SCT on
TEFAs to [L7].

Finally, in this chapter, we discuss how the computed superean be rep-
resented modularly by generating guards based on the stitbe computed
supervisor and attach them to the original models, in ordeestrict their be-
haviors towards the specifications. Representing the gigoermodularly can
be beneficial in cases where the supervisor consists of @ fangber od states.

3.1 SCT of Untimed DES

In this section, we describe the main concepts of SCT, deforagchtimed DES.
Figure3.1 shows thdeedback loopn the SCT. The plant spontaneously gener-
ates events il that the supervisor can enable or disable as a fungijorof the
earlier behavior of the plant (the observed sequence oftgveks assumed ear-
lier, the plant is modeled by DFAs. Id{], it was shown that the FSC operator
can be used to model the supervision. That is, the superw@sobe considered
as an automaton too. For example, when a supenfissupervises a plan®,

the behavior that' tries to enforce igP||S. Notably, if S is not designed prop-
erly, some parts of the plant may not be susceptible to the@amposed by

S, so the actual behavior may be another. This is the reasonSighould be
synthesized using formal methods that guaranteeStdes not try to control
parts of the plant that can not be controlled or, in other wptbat theclosed
loop behaviomeally is P||S. In this work, we assume that the supervisor always
refinesthe plant, that isS = P||.S. We refer to the states of the supervisor as
safe stateand denote it by)*¥*.

The supervisor decides to enable or disable events basedjiveraspeci-
fication in terms of an automaton. It is also possible to exbi specify some
states in the plant or the specificatioreaplicitly forbidderstates, that are states
where the system should not end up in. As pointed out eaftiereal systems,
modeling the plant or the specification as a single automaiay become very
large and complex. Therefore, the plant and specificatiertyguically modeled
as a set of sub-plan3 , P,, . .. and sub-specificationsp,, Sp,, . . ., and thus the

25 3.1. SCTor UNTIMED DES

Supervisor

b f0)

Plant

Figure 3.1: The feedback loop in the SCT.

plant and the specification will be represented by the coitipof their sub-
components, i.e.P = Pi||P|... andSp = Sp,||Sps] -... For a composed
automaton, a state is explicitly forbidden if at least ongso$ub-states is explic-
itly forbidden in its corresponding automaton.

Controllability

In general, it is reasonable to assume that some events plahtare not sus-
ceptible to disablement by a supervisor. For example, thetphay sometimes
act randomly or have internal doings that the supervisorhee no influence
on. To incorporate this, the SCT introduces the notionsaritrollableandun-
controllableevents. Controllable events can be disabled by the supemwisile
uncontrollable can not.

It is important that the supervisor ontrollable meaning that while it re-
stricts the plant towards the specification, it never triedisable uncontrollable
events. To this end, the alphabeof the plant is divided into two disjoint sets of
controllable event&c and uncontrollable evenis'. Controllability, is assumed
to be universally defined, that is, if an evenis controllable in one automa-
ton it is controllable in all other automata that consideattévent. In figures,
uncontrollable events are prefixed by an exclamation mdrk “!

The formal definition of controllability is defined as follew

Definition 3.1 Controllability
LetG and K be two DFAs. A statép, q) € Q¢ x Qk is controllableif,

VoeX":0€Tlg(p) =0 elgx(lpq)

K is controllable with respect t6- if, for every statep, ¢) that is reachable in
G| K it holds that(p, ¢) is controllable.

CHAPTER 3. SUPERVISORY CONTROL THEORY 26

Intuitively, K is controllable with respect t& if, in any reachable state in the
composition, the enabled uncontrollable event&:iare also enabled itv|| K.
For the event to be enabledd#| K, it must not be disabled in the corresponding
state of K. That is, the event must either be enabled in the currerg efat” or
not even present in the alphabet/6f in which case that event can be thought of
as enabled in all states &f.

Nonblocking

Even though a supervisor is controllable, it is not necélgsaery useful. The
supervisor guarantees that the plant does not violate #afg@ation, however,
the case may be that the supervisor restricts the plant frmimgdvhat it was
supposed to do. For instance, the supervisor may allow #et pd get stuck
somewhere, referred to a@eadlock or end up in a loop from which it can not
get out, referred to dsvelock To care of this, states of particular interest in the
plant and in the specification can bearked denoted by)™. The idea, then, is
to design the supervisor so that it always allows the plare&ch at least one of
the states that both plant and the specification have ma8wzh a supervisor is
callednonblockingwhich in SCT is a property that a supervisor should have.
In the following, the definition of the nonblocking propersygiven.

Definition 3.2 Nonblocking

Let G be a DFA. A state € ()¢ is said to benonblockingif, starting fromgq at
least a marked state belongingd@™ could be reached(is nonblocking if, for
every state that is reachable, it holds thatis nonblocking.

That is, an automaton is nonblocking when “all” reachabétest can continue

to reach some marked state. In a composed automaton, asstateked if all

its sub-states are marked in their corresponding autonkasentially, the non-
blocking states can be computed by taking the intersectbmden the reachable
states andoreachable statesvhich are the states from which a marked state can
be reached by a number of event executions.

Minimally Restrictiveness

A careful reader may have realized that there does not enistae controllable
and nonblocking supervisor. It is possible to superviseantkthe same system
in many different ways. More specifically, it is possible &stgn a controllable
and nonblocking supervisor that restricts the plant mase thecessary. It is nat-
ural to regard a supervisor that restricts the plant a¢léfl possible, referred to as
aminimally restrictivé supervisor. Designing a minimally restrictive supervisor

1In some literature, it is also called maximally permissiggremal, or optimal.

27 3.1. SCTor UNTIMED DES

has several advantages. It gives the designers all thebpmasys they can con-
trol a system, which could be beneficial from different pertjwes. Especially,
in this work, since we deal with timed systems, the superwsibinclude some
timing information, which can later be used for timing arsdy For instance,
we may want to minimize the total time it takes to reach a néudtate from
any state in the supervisor. One way to this, is to have aBiptessolutions and
select the proper ones.

In this thesis, we are interested in computing timeque controllable, non-
blocking, and minimally restrictive supervisor, from now,shortly “supervi-
sor”.

3.1.1 DES Modeled by EFAs

So far, we have assumed that DES are modeled by FAs. It is alssilje to
model DES by EFAs that also include discrete-valued vaembTlhe main ben-
efit of using EFASs, as a modeling tool, is that the values ofvdméables in state
transitions can be hidden, yielding compact models.

In the previous section, we explained the conventional SC€DBS modeled
by FAs, where their transition relations are representg@ii@ity by their states
and events. Hence, the theoretical framework of the cormealt SCT cannot
be directly applied to EFAs, where the states are implicéyresented in the
models. The SCT can be applied to EFAs in two ways: 1) defingvdimeoretical
framework for EFAs that conforms with the conventional SGT2) transform
the EFAs to their corresponding STS, i.e., FAs, and thenyaihel conventional
SCT.

In [47], a theoretical framework is proposed, where SCT can beeggi-
rectly on EFAs. They symbolically compute the supervisoectly based on the
EFAs by performing algebraic operations.

In this work, we follow the second approach, by transforntimg EFAs to
FAs having the same properties. In this way, by showing theectmess of
the correlation between EFAs and FAs, the conventional S&The directly
applied. Furthermore, FAs can easily be transformed to BOid@scribed in
Section4.2.1, which are the symbolic representation used in this worlRdper
2, it is shown how EFAs can be directly converted to BDDs, repnéing the
corresponding FAs of the EFAs.

Transformation of EFAs to FAs

A single EFA can be directly transformed to FA by computirsgabrresponding
STS, based on Definitiah 5. Given N EFASE., .. ., Ey, the global behavior of
the system can be obtained by computing the correspondiS®&A, || . . . || Ey .

One could say why not transform each EFA to its correspon8ing and apply

CHAPTER 3. SUPERVISORY CONTROL THEORY 28

the FSC defined for FAs. However, in this way, the global beirawill not be
the same:

STS(E\||...||Ex) # STS(EY)|| ... [|STS(Ex). (3.1)

This is because of the special treatment of the update adlvas defined in the
EFSC operator on EFAs (Definitich 7). For instance, if a variable is not up-
dated on a transition or if its action conflicts with an actoonanother transition,
it is considered that the variable will keep its current eallntuitively, the shared
variables interact via the EFSC and can via their actiontfans exchange in-
formation during the synchronization process. To obtagnabrresponding FAs,
access to all guards and updating actions is needed. If wsftrian interacting
EFAs separately to FAs, information is losthe transformation must consider
all components simultaneously.

In [40Q)], it was shown howVN EFAs withn variables can be transformed Ao
locationFAs andn variable FAs, where:

STS(Ey|... | Ex) = Al ... | Axsn.

However, it has been observed that this transformationgoha@ can be very
time consuming, especially, for models with many guards atobns f18]. In
Paper2, it is explained how EFAs are transformed to FAs, based oméasi
approach to40], but on the symbolic level using BDDs. The symbolic tramsfo
mation will in most of the cases resolve the transformatssae in £18].

Basically, the transformation algorithm collects the imf@tion stored in the
guards and actions, and builds two kinds of autormataable automatand|o-
cation automata The variable automata model the updating of the varialles i
all EFAs, and the location automata have the same structure agithnal ex-
tended automata without considering the action functidhe. composed model
of all variable automata, denoted 4%, will model the updating of all variables
simultaneously. We denote the location automaton of an BFAy.

HavingN = N;+ N, EFAs, withV; sub-plantdZp,, . . ., Ele and a/V, sub-
specificationg’, , ..., Eg,, , the corresponding plant FAp and specification
FA Ag, can be computed as follows:

Ap = Al|.. | Al || A7,
Asy = Agy |l 1 Ag;, 1AV,

Consequently, basedr and Ag,, the conventional SCT can be applied to the
model. Recall that this procedure is performed symbolazding BDDs.

3.2 SCT of Timed DES

As stated earlier, we model TDES by TEFAs. In Sectioh.1, we showed how
SCT can be applied to EFAs by transforming them to their spoading FAs.

29 3.2. SCTor TIMED DES

In order to apply SCT to TEFAs, we transform TEFAs to EFAs hydducing
an eventick that will be be treated in a special manner.

3.2.1 Transformation of TEFASs to EFAs

As mentioned earlier, the evolvement of the clocks occuticitly by the global
digital clock. However, to addapt TEFAs to the conventio®@IT, we need to
have an explicit representation of the clocks. In particwiee need to somehow
consider the global clock in the models. The global clock lsarmmagined as a
functiontickcount : RT — N,

tickcount(t) =mn, n<t<n+1,

whereR* = {t € R|¢t > 0} is the set of positive real values. Consequently,
the temporal resolution available for modeling purposdlus just one unit of
clock time. For a TEFA, this behavior, can be representechidyA (consisting

of only regular variables) by introducing an additionalev&ck as in 45]. The
eventtick occurs exactly at the real time moments, which can be imdgmbe
generated by the global clock. In Pageit is shown how a TEFA can be trans-
formed to its corresponding EFA, referred to as th&-EFA. In the following,
we briefly describe the transformation procedure.

Initially, the eventtick is added to the alphabet of the TEFA. For each clock
¢ in the model with maximum valugmax, the clock is considered as a regular
variable with domain{0, ..., umax}. For each invariant-free locatidnin the
TEFA, the following transitions are added:

[, tick,c < pmax c:=c+1,l) and
1
(I, tick,c > pmax c := ¢,).

This transition extension is performed for all clocks in TeFA.

In the existence of an invariant forit should not be possible to execute the
tick event if the invariant is not satisfied. For instance, if thealtion/ has an
invariantc < 3, only a transition(, tick,c < 3,c¢ := ¢+ 1,1) should be added.
Note that in the newick transition,c < 3 has been changed to< 3; because
based on the invariant semantiesshould not evolve when value 3 is reached.
In general, a location with invariant/nv(l) can be described by the following
tick transition,

(1, tick, Inv(1), ¢ == ¢ + 1,1),

wherel/n\v(l) Is obtained by replacing all terms in form of< w, ¢ < w, and
¢ == w appearing infnv(l) with c < w — 1, ¢ < w—1andc == w — 1,
respectively.

In the next section, we describe how thiek event is treated from an SCT
point of view.

CHAPTER 3. SUPERVISORY CONTROL THEORY 30

3.2.2 Controllability of TDES

We base the theory of controllability for thi&:k-based models on the framework
in [49], where the eventick is treated in a special manner.

A new category of events that arises naturally in the presefdiming is
the forcible eventsy/ C Y\ {tick}. A forcible event is one that can preempt
a tick of the global clock. If at a given state of the plant{zé and one or
more forcible events are enabled, then the SCT permits thetiwk erasure of
tick from the current list of enabled events. Notice that a fdecdvent may
be controllable or uncontrollable; a forcible event thatimeontrollable cannot
be directly prevented from occurring by disablement. Bydhen description
of forcible events, the status ofck lies intuitively between 'controllable’ and
'uncontrollable’: no technology could 'prohibit’ tick irhe sense of 'stopping
the clock’, although a forcible event, if it is enabled, maggmpt it. However,
to simplify terminology, in §9], tick is considered to be controllable.

To define controllability for theéick models, the definition of controllability
of untimed DES (DefinitiorB.1) is extended. Lez and K be two DFAs. A state
(p,q) € Q¢ x Qk is controllable if,

- (T ((p.q)) NSF) # 0, then

Voec X' :0eTlq(p) =0 elgx(p q),

- (Taux((p,) NEF) = 0, then
Vo € (S" U {tick}) : o € Ta(p) = o € Tayx((p, 0))-

Thus, K controllable means that an event(in the full alphabet including
tick) may occur inG|| K if o is currently enabled i and either (i) is uncon-
trollable, or (ii))o = tick and no forcible event is currently enableddfj K. The
effect of the definition is to allow the occurrencedék (when it is enabled in
() to be ruled out of7|| K only when a forcible event is enabled ¢4| K and
could thus (perhaps among other eventsir tick }) be relied on to preempt it.
Notice, however, that a forcible event need not preempt ticeiroence of com-
peting non-tick events that are enabled simultaneouslyeifreral the model will
leave the choice of tick-preemptive transition nondetarstic. In the sequel,
we refer to the states that become uncontrollable due tolithenation of tick,
astimed uncontrollable states

Notice that the introduction of the evetitk will not impact the 'nonblock-
ing’ definition for untimed DES (Definitio3.2).

In the following, we show an example taken fron$].

31 3.2. SCTor TIMED DES

EXAMPLE 3.1 Endangered Pedestrian

Consider two TEFAs, shown in Figufe2aand 3.2k representing a bus and a
pedestrian. The TEFBUS has a clock:; with domain{0, 1,2, 3} andPED has

a clockc, with domain{0, 1, 2}. The bus can make a single transitiarss be-
tween the activities 'approaching’ and 'gone by’, and thdgstrian may make
a single transitionump from ‘road’ to 'curb’. We assume that the everitgnp
and pass are controllable and uncontrollable, respectively. Iniaoid, we as-
sume thatumyp is a forcible event. Suppose it is required that the pedesbe
saved, such that she jumps before the bus passes. The gtegifautomaton of
this requirement is shown in Figug2c

To apply the SCT of timed DES to this example, we first transftire TEFAS
to their correspondingick-EFAs, shown in Figur&.3. Next, we transform the
EFAs to DFAs.

pass

a C1::2
01S2

(a) The TEFABUS.

-]

Jumyp
Co Z 1

—{)

(b) The TEFAPED.

§

jump pass
2

'
[e=)
'
—_
H

(c) The specificatioSPEC.

Figure 3.2: The TEFASs representing the plant and specification of Exa®yil

Figure3.4shows the corresponding DFA BUS||PED||SPEC. In the DFA,
a state is represented @&us, lrep), (15, 15)). For brevity, we have notincluded
the location names of the specification in the figure. It canliserved that state
((a,7),(2,2)) is uncontrollable because at this state the uncontrollaebént
pass is enabled in the plant (the transitionB{)S) but not inBUS||PED||SPEC.
By removing this state, the supervisor is obtained. Noti@ temoving this
state will disable theick event at{(a,), (1, 1)), however, since the eveptmp
is forcible it can preempt th&ck. O

CHAPTER 3. SUPERVISORY CONTROL THEORY

tick tick tick
c <2 c >3 c <3
cp=c +1 L =0 cp=c +1
pass
C1 == 2

: 7]

(a) Thetick-EFA of BUS.

tick tick tick tick
Ccy > 2 Cy < 2 co > 2 Cy < 2
Ca = Co cp=cp+1 Co = C cp=cp+1

Jumyp
Co Z 1
r ¢ |

(b) Thetick-EFA of PED.

tick tick tick

Jump pass

(c) The tick-EFA of SPEC.

Figure 3.3: The correspondingick-EFAs of the TEFAs in Figur8.2.

tick tick

((a,7),(0,0)) ((a,7),(1,1)) ((a,7),(2,2))
Jump Jump
tick pass

0
[((9.0). (3.2) }———{ (9.). 2.2))

Figure 3.4: The corresponding DFA d@US||PED||SPEC

33 3.3. SYNTHESIS

3.3 Synthesis

As stated earlier, the process of automatically computiegstipervisor is called
synthesis Generally, the synthesis can be performed in two wamenolithic
or structural In monolithic synthesis, a first candidate of the supemisb-
tained by computing the composed automakbfi Sp, which we refer to as,
in the sequel. After the synthesis procedure, the forbicktates are removed
from Sy, yielding the safe state§,[50]. Having the safe states, the automaton
representing the supervisor can be constructed. It is a@ssilple to exploit the
structure of the sub-plants and sub-specifications by denisig the modularity
properties of the system or using abstraction technigbi&ssp]. This can im-
prove the synthesis task considerably, because suchthigsrusually cope with
a smaller number of states. In this work, we compute the sigmrbased on
the monolithic approach. However, we will later show how \&e cepresent the
supervisor modularly by employing the monolithic supeovis

Typically, the synthesis procedure is performedikgd pointcomputations,
that is, starting from a set of states, extend the set itelgtwith new states until
a fixed point is reached, where no new states can be founde liollowing, we
first describe the conventional fixed point computationgquared on untimed
models. In the next part, we show how the fixed point companigtican be
modified to conform to the SCT for TDES.

Algorithm 1: SAFESTATESYNTHESIS
Input: A set of forbidden state9”
Output: The safe states

1< 0;

W < Q%

repeat
141+ 1,
() < RESTRICTEDBACKWARD (Q™, Q7 _,);
Q" < UNCONTROLLABLEBACKWARD (Q\Q');
Qf < Q7 ,UQ";

until QF = Q7_;

8 return RESTRICTEDFORWARD(Q7);

~N o o A~ WN P

3.3.1 Untimed DES

Given an STS, modeled by FAs or EFAs, Algoritinshows a simple algorithm

for computing the safe state&q for an untimed DES. The algorithm starts with
a set of forbidden stat&g”, which is the union of the explicitly forbidden states
and theinitially uncontrollable states that can be computed based on Definiti

CHAPTER 3. SUPERVISORY CONTROL THEORY 34

3.1 Then, Q" is iteratively extended by adding all states that can reaeh t
forbidden states or the non-coreachable states in an untlabte manner until

a fixed point is reached. To obtain a supervisor that only isbi$ reachable
states, based on the extended set of forbidden states,lab#ietg computation

is performed (Algorithmd), finding all reachable states that do not contain any
forbidden state. Note that based on SCT, a supervisor timddios unreachable
states can also be considered as a correct supervisor, Gowey remove the
unreachable states for the purpose of this work, descrédded [The sef) is the
universal set, that is, the cross product of all automata.

Algorithm 2 computes the set of coreachable states by avoiding anylfdebi
states given as input.

Algorithm 3 computes the set of states that can reach a set of forbicate:s st
given as input, by only executing uncontrollable eventslding the uncontrol-
lable states. In particular, if a state is forbidderbin then all ingoing transitions
to this state should be removed. Hence, if one of the ingoangsttions includes
an uncontrollable event, it will be removed while the plaan @xecute it, which
is the definition of an uncontrollable state.

Given a set of statdd” C (), the set-based operathtage (W, —) computes
the set of states that can be reached by executing one toansirmally defined
as:

Image(W,—) 2 {¢ € Q|3¢ € W : (q,0,q) €—}. (3.2)

The operatoPreImage (W, —) computes the set of states that, by one transition,
can reach a state i, formally defined as below:

PreImage(W,—) £ {g € Q|3 € W : (¢,0,q) €—}. (3.3)

The transition relatior— g, represents the entire transition relationSgf while
+s, includes only those transitions that consider the unctiabie events.

Algorithm 2: RESTRICTEDBACKWARD
Input: A set of marked stateQ™, and a set of forbidden stat€s
Output: The coreachable states

1+ 0;
Qo + Q™M\Q",;
repeat
141+ 1;
Qi < (Qi—1U Prel mage(Qi—1,+s,))\Q";
until Q; = Qi—1;

return Q;;

a A W N P

(2]

35 3.3. SYNTHESIS

Algorithm 3: UNCONTROLLABLEBACKWARD
Input: A set of forbidden stateQ”
Output: The uncontrollable states

14 0;
Qo+ Q%
repeat
141+ 1;
Q7 < Q7 ,UPrel mage(Q7 ,,—~g,);
until QF = Q7 4;
6 return Q7;

a A W N PP

Algorithm 4: RESTRICTEDFORWARD

Input: A set of initial state)®, and a set of forbidden stat€s
Output: The reachable states

1+ 0;
Qo + Q°;
repeat
141+ 1;
Qi +— (Qimul mage(Qi—1,—s,))\Q;
until Q; = Q;_1;

return Q;;

a A W N P

(2]

EXAMPLE 3.2

Consider a plant and a specification, shown in Figu for which we will
synthesize a supervisor. The alphabet of each automatds e®rresponding
events shown in the figure. The only marked state in the systeg which is
illustrated by a double-line around the state. By conventidi states in the plant
are supposed to be implicitly marked.

We apply Algorithm1l to this example. As stated earlier, a fist candidate of
the supervisor is the composed automatgn= P || SP, shown in Figure3.5c
Initially, the system has one uncontrollable state s,), which will be the input
to the algorithm, i.e.® = QfF = {(ps, s2)}. In this state the uncontrollable
eventu, is blocked by the supervisor, while it is enabled by the planthe first
iteration, the set§)’, ", andQ7 are,

Q = RESTRICTEDBACKWARD ({(p4, 53) }, {(1s, 52)}) =

{(p47 53)7 (ph 51)7 (p07 50)7 (p27 52)}7
Q" = UNCONTROLLABLEBACKWARD ({(ps, 52), (ps, S2), (p3,51)}) =

{(p1751)7 (p6752)7 (p5,32), (p3751)},
Q7 =QyU Q" = {(p1,51), (ps, 52), (P35, 52), (P3,51) }

CHAPTER 3. SUPERVISORY CONTROL THEORY 36

SinceQ} # 7, afixed point has not been reached, and thus another iteratio
of SAFESTATESYNTHESIS will be carried out:

Q' = RESTRICTEDBACKWARD ({(p4, s3) }, Q7) =

{(p4, 83), (po, 50), (p2, 82)},
Q" = UNCONTROLLABLEBACKWARD ({(p1, 51), (ps, $2), (p5, 52), (p3,51)}) =

{(p1, 51), (pss 52), (P55 $2), (P3, 1) },
Qi = Q;: U Q” = {(ph 51)7 (pﬁa 52)7 (p57 52)7 (p?n 51)}'

At this step, a fixed point is reached becagge= Q3.
By performing RESTRICTEDFORWARD((%) and removing); from the reach-
able states ip,, the safe states are computed, yielding:

Qsafe = {(p4, 53), (Po, 50), (P2, 52) }-
The supervisor is shown in FiguBesd 0

For a more formal and detailed explanation of the conveatisapervisory syn-
thesis, refer to40, 56, 57].

3.3.2 Timed DES

As pointed out in Sectio.2.2 the nonblocking analysis of TDES is exactly
the same as for the untimed DES, described in the previou®sedVe will
thus explain how the fixed point computationTONTROLLABLEBACKWARD
(Algorithm 3) can be modified to conform with the definition of controlléiyi
of TDES. In particular, in addition to the uncontrollablatss caused by uncon-
trollable events, we also need to find the timed uncontrtdlatates.

Algorithm 5 shows how the uncontrollable states computed in Algorighm

are extended with the timed uncontrollable states. Thesitian functions™< s,

and »i>50, represent the transitions), which only includetick and forcible
events, respectively. Given a set of stdtésC (); Disabled(W, —) computes
the states that are not among the source-states, dbrmally defined as below:

Disabled(W,) £ {qg € W| A(q,0,q) €}. (3.4)
In line 5, PreImage(Q? ,, ¥s,) computes the set of states that can reach a
state inQ)?_, by executing aick event. Among these states, those that do not
have an outgoing forcible event are the timed uncontradlathtes)t medtne,
Notice that the initially uncontrollable states that wik passed to & ES-
TATESYNTHESIS (Algorithm 1) should also include the initially timed uncon-
trollable states.

37 3.3. SYNTHESIS

(a) PlantP.

(b) SpecificatiorsSP.

(p4a 83)
(c) So = P||SP.

(p4, 83)

(Pt), 50) (pz, 82)

€3 €4

(d) The supervisor.

Figure 3.5: The plant, the specification, the composed model, and thergspr for
Example3.2

CHAPTER 3. SUPERVISORY CONTROL THEORY 38

Algorithm 5: TICKUNCONTROLLABLEBACKWARD
Input: A set of forbidden stateQ”
Output: The uncontrollable states

1+ 0;

Qg+ Q7

repeat
141+ 1;
QtimedUﬂC + Di sabl ed(Pr el mage(Q?fl? %i—cfgo) 7'450) ;
Q¥ — Q* UPrel mage(Qr ,,+5g,) U QUmedUne,

until Q¥ = Q% ;

return Q7;

A W N P

o o

~

Tick Elimination

The tick models suffer from a major problem. The state size is vergitiea
to the clock frequency: &ck event must be associated with the passage of each
unit of time. As the clock frequency increases, so must tmeber oftick events.
As a consequence, performing reachability analysis baseéd/omodels usually
needs many iterations in the fixed point computations. Inteag as we will see
in Chapterd, in a BDD-based approach, the intermediate BDDs repraggtiie
reachable states can be very big, causing state spaceiexplsthe following,
we explain how the iterations caused by the event can be eliminated to tackle
the aforementioned issues.

Consider a TDES modeled by TEFAs. The idea lies in the fadt tihree
cannot be stopped. In tick-EFAs, this indicates that allithe transitions will
eventually occur, unless there exists a location invarigot instance, consider
two clocks with domaing0,...,3} and{0,...,5} and assume/, 1, 2) is the
current state of the system. The sequence of the statesatihbeaeached by the
tick eventis:

tick tick tick

(0,1,2) 5 (0,2, 3) B 10,3,4) 5 (0,3, 5).

Since alltick transitions will eventually occur, it can be directly conga that
when the staté/, 1, 2) is reached, the stat€s/, 2, 3), (¢, 3,4), (¢,3,5)} are also
reachable. Given a set of statds C (), we define the set-based operator
TimedImage (W) as below:

TimedImage (W) £ {(, ¥, i) | V(l, ¥, u€) € W :
vd e DS : €= o +d)}, (35)

whereu® +d = (4§ +d,...,uS + d). Essentially, theTimedImage opera-
tor represents theéme evolution Similarly, we defineTimedPreImage(WV) as

39 3.3. SYNTHESIS

below:

TimedPreImage (W) = {(I, ¥, i) | V(I ¥, u€) € W :
Vd € DS : i€ = o(uf —d)}. (3.6)

For brevity and simplicity, we writdq, o, Q) to denote a number of explicit
transitions{(q, 0, ¢1),...,(q,0,4m)}, Where@ = {d,...,{,}. Based on the
TimedImage operator, we propose the following definition.

Definition 3.3 Reachability Transition Relation

For a TEFA with transition relation—, its correspondingeachability transition
relation denoted by—, is defined as below,

(l,o,g.a,0) €= A (0, 1€) g A p€ = Inu(l) (3.7)
({1, n¥, 1), 0,Q) €— ’ '

where

Q = {¢| V4 € TimedImage({(l,a” (¥, u°),a°(1)}) : ¢ = Inw(])}.

Consequently, by using- in a fixed point computation, (as the transition rela-
tion passed to theémage andPreImage operators), rather than transitions based
on tick-EFAs:

1. a number of states can be reached with a single iteratiwnpared to the
tick transitions, where multiple iterations are required (plét calls of
Image andPrelImage operators);

2. usually the corresponding BDD of a set of states becoma#esrthan the
intermediate BDDs resulted after executing& transition.

The elimination of theick event will not impact the correctness of the fixed point
computations related to the nonblocking property. Howefegrcontrollability,
since TCKUNCONTROLLABLEBACKWARD is based on théck event, we need
a new way to compute the timed uncontrollable states.

By looking at Figure3.6, we explain how the timed uncontrollable states can
be computed, based on the reachability transition relatidre figure shows a
sample path of,, starting from state 0, executing some evengd reaching
state 1, and by the occurrence of some&: events, it will end up in state 7,
which is assumed to be forbidden due to some reason, e.gontraltability.
Let us assume that the event is the only forcible event going out among the
states 2-7. Based onldKkUNCONTROLLABLEBACKWARD, it can be deduced
that the timed uncontrollable states for this example aatest5 and 6. Since

CHAPTER 3. SUPERVISORY CONTROL THEORY 40

7 is forbidden, it should be removed, causing state 6 to bentnallable and
removing state 6 will cause state 5 to be uncontrollable.idg¢dhat removing
state 5 will not make state 4 uncontrollable because it hasu&going forcible
event. Also observe that the outgoing transitions fromest& and 3 will not
impact the timed uncontrollability. The general procedofréinding the timed
uncontrollable states can be described as follows. Forladden state, say”,
find the closest state, sgy, that can reach the forbidden state by executing a
number oftick events (in the figure, this state is 4). The timed uncontotdia
states are the(‘ﬂ”imedPreImage ({qx})\TimedPreImage({qf})) \{¢"}. For this
example, we havél,..., 7}\{1,...,4}\{7} = {5,6}. Observe that since the
timed uncontrollable states should eventually be removea 5,, we can in-
clude the forbidden statg” in the set of timed uncontrollable states, yielding
TimedPreImage({¢®})\TimedPreImage({q’}.

Based on the aforementioned reasoning, in Pégeis shown how the timed
uncontrollable states can be computed according to a ned et algorithm.

. S . tick %2 tick (3) tick

Figure 3.6: A sample path ofj.

3.4 Supervisor Representation

So far, we have discussed how the supervisor is “computed’ @®nolithic
automaton. The next concern is how to “represent” the sugmtvThis issue
can be treated from two different perspectivemdelingandimplementation

Modeling

A typical issue that arises, when modeling a system modubated on conven-
tional SCT, is that for large and complex systems, reprasgithe supervisor
monolithically, may become untractable for the designktste specifically, the
designers retrieve the final supervisor as a black box, witblearly understand-
ing why some events become disabled after the synthesighdfmore, after the
synthesis, the designers will end up in a different scogetisg by a modular
representation and ending in a monolithic one. This couldumbersome if the
designers later on desire to make some certain modificatidhs specification.

41 3.4. SUPERVISORREPRESENTATION

Implementation

From another point of view, implementing a huge monolithipexvisor in a
hardware may require more memory than available. Typicalipodular super-
visor consumes less memory in a controller. The reason igttaaynchroniza-
tion will be performed online in the controller, seé&7/F59], which will alleviate
the problem of exponential growth of the number of statekarstynchronization.
In addition, in industry, the controller is typically impteented based on other
representations such as sequential final charts (SFCsleratiagrams, Gantt
charts, and PERT charts, where the controller is mainlyesgnted as logical
constraints. Hence, to implement a monolithic supervisaa icontroller, one
should transform some parts of the automaton to logicaltcainss, which may
not be straightforward.

To tackle the aforementioned issues, in this section, weuds how the
monolithic supervisor can be represented modularly byaektrg guards from
the safe states and restricting the plant by adding the guarthe original mod-
els. In this way,

1. the designers will remain in the modular scope, which rmakpossible
to easily perform modifications on the resulting supervieds., changing
the specification,

2. it becomes possible to implement the supervisor in a nawdulanner,
which could especially be beneficial for hierarchial appreess,

3. the final representation will be closer to the one typycaied in the in-
dustry for implementing a controller.

The guards are generated based on the computed supervisussid in the
following.

3.4.1 Representing the Supervisor as Guards

Recall that the supervisor influences the plant by prevgntito execute some
events in its current state, in order to avoid violationslengiven specification.
Accordingly, at any state i, an event is eitheallowedor forbiddento occur,
in order to end up in a state of the supervisor. Itis also jpbsghat the execution
of an event at a state does not affect the synthesis reqult,fethe state is not
reachable. For each eventwe can thus generate a guard based on the states
of the DFA representing the supervisor, indicating whes allowed to be exe-
cuted. Our goal is to make the generated guards as compacbamehensible
as possible for the designers.

Concerning the states that are retained or removed aftesythibesis pro-
cedure, for each event, threebasic state setsan be considered that form the
basis for generating the guard:

CHAPTER 3. SUPERVISORY CONTROL THEORY 42

1. the states, wheremust be enabled in order to end up in states that belong
to the supervisor,

2. the states, where must be disabled in order to avoid ending up in states
that were removed after the synthesis procedure,

3. the states, where enabling or disablingoes not make any changes in the
final supervisor.

In the sequel, each state set will be described formally amaddre detail. In the
following definitions, we usé& to denote the DFA representing the supervisor.

Definition 3.4 Forbidden state set()f

Forbidden state sgf)?, is the set of states in the supervisor where the execution
of o is defined forS,, but not for the supervisor:

Q7 ={qe Q% |0 eTs(q) N o&Ts(q)}.

Definition 3.5 Allowed state set{)J

Allowed state setQ), is the set of states in the supervisor where the execution
of o is defined for the supervisor:

Qa={1€ Q|0 eTs(g)}.

Notice that, ifQg is restricted to a smaller set, the guard generated fronsthis
set will disables on transitions where the target-state has been retainectiaét
synthesis procedure; characterizing a supervisor whiabtigninimally restric-
tive. On the other side, f)] is extended to a larger set, the generated guard will
let o to be executed on transitions, where the target-state leasrbenoved after
the synthesis procedure; characterizing a supervisochwhight be blocking or
uncontrollable. In other words, for each event %, Q)7 represents the set of
states where eventmustbe allowedto be executed in order to end up in states
belonging to the supervisor (an analogous argument canvea §or 7). A
similar explanation can be given fQ)f .

In order to obtain compact and simplified guards, inspirechfthe Boolean
minimization techniques, we determine a set of states wdereutings will not
impact the result of the synthesis and utilize these statesriimize the guards,
referred to as thelon't care states. The formal definition of don’t care states
is given below. In the following, for a state s@f,, the complement of),, is

denoted a¥'(Q,) = Q\Qa-

Definition 3.6 Don’t-care state set()3.

Don't-care state se€)d., is the set of states where everdould either be enabled
or disabled, without having any impact on the supervisois formally defined

aSQgc = C(Qg U Q?)

43 3.4. SUPERVISORREPRESENTATION

From Definition1.2and Definitionl.1it can be concluded that for a given event
o, the states that can impact the supervisor are only thesstdterec mustbe
allowed,Q7, or forbidden ¢, to occur and the remaining states can be consid-
ered as don't-care. It can also be shown thgt= C(Q°) U C(Q*¥*); the proof

is included in BQ].

Guard generation

Recall that a system can be modularly modeled as a humbebgslaats and

sub-specifications, which together forshautomatad,, ..., Ay. Hence, a state
ds, € Qs,, IS anN-tuple(qa,,-..,qa,). FOr an event, the guardz? : Q 4, x
Qa, X ... X Qa, — Bisdesired:
T (qars---,qay) € QF
GG(QA17"'7QAN): L <QA17"'7QAN)€Q?

don’t care otherwise

whereB is the set of Boolean values. In particularis allowed to be executed
from the statdq,,, ..., qa,) if the guard is evaluated to.

Before showing how the guard is generated, we first show hovwopogi-
tional formula representing a set of states can be computdis assume that
a sub-state 4, belonging to a specific automateh can be extracted fronps,

by the function® : (Qa, X Qa, X ... X Qay) X Ai = Qa,. LetQ, C Qg,-
The following procedure shows how a propositional formuégresenting?)..,
can be computed:

1. IntroduceN new variableqqa,, q4,, - - -, qay } WhereDY = Q..

2. The corresponding propositional formula@f, PKQ.,), will be:

PRQa): \/ (/N\(% —— @(q,Ao)) (3.8)

q€Qa \i=1

where== is the equality operator.

For the sake of brevity, having; as a state belonging t4;, we denote-(q,, =
Definition 3.7 Size of a propositional formula

The number of equality terms, which has either the faym = ¢) or (¢4, #
q’jli), in the propositional formula is referred to as tkeze of the formula. We
denote the size of a propositional formuldy |p|.

The guards can now be generated either bas€gfatenoted as/J, or based on
()7 denoted as&:7, by computing the corresponding propositional formula, i

Gz = PRQZ) andGy = -PHQY).

CHAPTER 3. SUPERVISORY CONTROL THEORY 44

Guard Simplification

From a modeling perspective smallerformula would typically be more read-
able and comprehensible. Furthermore, in many cases, tieajed guards can
be very big and memory-intensive, which could make it difica implement
them in a hardware with limited amount of memory, such as oc@ntrollers.
Our goal is to find the smallest guard. Inspired by minim@atmethods of
Boolean functions, simplified guards can be obtained byzurtg the don’t-care
states and applying some heuristic techniques. This mazaition is performed
on the symbolic level, explained in ChapterSince the minimization and specif-
ically the guard generation, are carried out on a symbolielJssome information
related to the structure of the automata may be lost. Sorestiby utilizing the
structure of the system, the guards can be simplified. Hezehrvefly describe
two heuristics that can be applied in an attempt to obtaidlenguards:

1. Complement states (C®)onsider an automaton consisting of stapesnd
let ., C Q. By considering the fact that the corresponding propasitio
formula ofQ,, can be represented in two ways; either directly base@pn
or based on its complemefi{ @,) = Q\Q., we can make the conclusion
that

|C(Qa)l < |Qa| = ["PHC(Qa))| < [PHEa)-

Informally, if the complement of),, has less states tha&p, itself, then the
propositional formula computed based 6@,) is smaller than the one
based orQ),,.

2. Independent states (ISTonsider an example, where there exist 4 au-
tomata, and let assume that for everthe following holds

Qg = {(q11417q11427q11437q1144)7 (qilaq,iquzquzzl)}a
Q7 = {(q4,. 44, q4,- 94,)}, and
G? =qa, # qa, V qa, # @i, V Qay 7 Qa, V Gas # G,

An interesting feature about this example is that the satest,, is not
included inQg. Thus, it suffices to merely includg, # ¢3, in the guard
without concerning about the other terms. In other wordg,jf= ¢7,, no
matter what the current states of the other automata aret @whould be
disabled. In such a case, statfg is called anindependent statét can be
concluded that if a state € Q7 U Q7 includes an independent st@@i,
it suffices to merely include the term basedqig in the corresponding
propositional formula.

For a more detailed information about the simplificationga@ure and the sym-
bolic computations, refer to Papér

45 3.4. SUPERVISORREPRESENTATION

Simplifying G by utilizing the don't-care states and the heuristic teghas,
yields a new guard, which we refer to taowed guardand denote it byyJ.
Similarly, theforbidden guardiy can be defined.

Depending on the internal structure of a model, either thmvald or the
forbidden guard can be smaller. In the implementation batrds are computed
and the smallest one, referred to as #uaptive guardand denoted by?, is
given to the designer.

Guard Attachment

To obtain a modular representation of the supervisor, tinemgged guards can
be attached to the original models. Since the supervisoeljnean restrict
the plant’s controllable events, the guards are generatecbhtrollable events.
Based on the following procedure, the supervisor can besepted as a number
of EFAs or TEFASs:

1. for each event € 3¢ in the model, computg?,

2. for each automatod;, add variabley4,, holding the current state of the
automaton, to the model,

3. for each transition in automatof;,, add an action function that updates
qa, to its new value, and

4. for each everi € X, attachG? to all transitions that include.

Note that if a transition in the original model contains amgiidhen in the last
step the computed gua@ will be logically conjuncted with the existing guard.

We summarize this section by applying the above proceduwas titustrative
example.

EXAMPLE 3.3

Consider a resource booking problem where two “dumb” robetsd to book

two resources in opposite order in order to carry out thekgashown in Figure
3.7. The resources can be considered as spatial zones thatagegbe entered
by the robots. To avoid collisions, the robots should noupgdhe zones simul-
taneously. Hence, each robot can enter a zone if it is notpedu These zones
are shown by two shaded areas in the figure. The tasks of Raad Robot 2

are to reach Zone 2 and Zone 1, respectively. By assuminghéabbots work

independently, the system will obviously stuck in a deakllafter that robot 1

and robot 2 have occupied zones 1 and 2, respectively. Instuation, robot 1

cannot enter Zone 2 because it is occupied by robot 2 and eisavWe model

this example and compute the guards based on the monolihé\gsor.

CHAPTER 3. SUPERVISORY CONTROL THEORY 46

Robot A Robot B

Zone 1 Zone 2

Figure 3.7: A robot cell consisting of two robots that book two resourtespposite
order.

[\ O
T T T
@ R1bookZl -/ R1bookZ2 @

(a) Sub-plantR1.

(o O
T T T
@ R2bookz2 ">~ R2bookZ1 @

(b) Sub-planiR2.

R1bookz2 R2bookZ1
(c) Sub-specificatioz 1. (d) Sub-specificatioZ 2.

Figure 3.8: The automata modeling Exam3e3.

47 3.4. SUPERVISORREPRESENTATION

We model the robots’ tasks as two sub-plants and the reqaiewf not
colliding as two sub-specifications, shown in Figar8. All the events are con-
trollable. The reachable states of the composed autonsgtisrshown in Figure
3.9, We can observe that the stdig;, 121, 11, $21) iS blocking. By removing
the blocking state fron%,, the supervisor is obtained.

l

[(7‘10, 720, S10, 320)}

RZbW R1bookZ1

[(7‘10,7"21,310,321)} [(7”11,7"20,811,820)}
R1bookz1 R2bookz?2
R2bookZ [(7’11, r21, S11, 521)} R1bookzZ?2

{(7"10,7“22,310,320)j [(7"12,7”20,510,520)}

[[(7“22, 22, 510, 320)]

R1bookz R2bookz?2

R1bookz2 R2bookz1

[(7“11,7’22,311,320)} [(T12,7’21,310,321)}

Figure 3.9: The composed automatdéfy for Example3.3.

Let us compute:?1%e+21 For the evenfR1book Z1, the forbidden state set
is QlebwkZl = {(710, 721, 510, 521) }. Hence,

GOl = o1 # 10 V qra # T21 V qz1 # 10 V qz2 # Sa1,

where the size is 4. Sin@@f'%o*2l = {(r1g, 790, $10, $20), (10, T22, S10, 520) }»

we can conclude thab, is an independent state. Thus, by applying the heuristic
rule, we obtainG/1tok%l = q,, # s21. This shows that even®lbookZ1 is

not allowed to occur when the current state of automadrns s,;, i.e., when
Robot 2 has booked Zone 1. Note that an alternative guardl d@ir, # 2.
Similarly, the guards for the other events can be computed. O

CHAPTER 3. SUPERVISORY CONTROL THEORY 48

3.5 Related Work

Beside SCT, there exist other methods and theories for gengrcontrol func-
tions for TDES. Among them, the one that is closely relatetheo SCT, is a
game-theoretic approach basedtoned game automata (TGAF1]. In UP-
PAAL [6, 62], the most well-known model checking tool, TGAs are used to
model the systems. In this approach, the problem is modeled/d players,
where player 1 (considered as the controller) executesataiile events, and
player 2 (considered as the environment) executes undiaie events. The
goal is to find astrategy(can considered as the supervisor in the SCT context),
where player 1 should be guaranteed to reach a marked stateatter what
player 2 does. There are three main differences betweerathe-gheoretic ap-
proach and the SCT. First, the synthesis theory for TGAsgsthan states, while

in SCT it is based on events. Second, in the SCT, it is guagdrtteat a mini-
mally restrictive supervisor is computed, while in the T®Ased approach the
goal is find any strategy that ensures that a marked statached. Finally, in
the SCT, the plant and specification are modeled by diffdygres of automata,
which will be the basis of the controllability definition, v the TGA-based
approach define the controllability merely on the eventdependent of what
automata the uncontrollable events belong to. Hence, fraonérol point of
view, the SCT defines controllability in a more natural manne

Chapter 4

Symbolic Representation and
Computation

As mentioned earlier, a system is typically modeled modiulay a number of
sub-plants and sub-specifications. The global model isab&ined by compos-
ing the models. Havingy automatad,, ..., Ay, an upper bound for the number
of states in the composed model[ig’, |Q4i], i.e., | QA I-I4v| < TV |Q4].
By assuming that each automaton consists sfates, the upper bound will be
EN. This clearly indicates that the number of states of the eczsag model grows
exponentiallyas the number of components increases. Therefore, the caahpo
model for industrial applications with many componentsijldend up in a huge
number of states, e.glp?* states. As a consequence, computing a supervisor
for such systems could be a very time consuming and memoensive pro-
cess. In many cases, the number of states can exceed the tavhauailable
hardware memory, which is known as thtate space explosion probleand is
the main complication when state-exploration methods aeel dior analysis of
systems. This problem becomes more acute when the statepeageented and
enumerate@xplicitly, state by state.

Theoretically, the time complexity of synthesizing a nadiing supervisor
for a system isNP-completd63, 64]. Hence, an approach that can compute a
nonblocking supervisor in polynomial time is unlikely to fsind. Neverthe-
less, various researchers have attacked this obstaclediftarent perspectives
[52, 53, 6567]. These approaches can be divided into two main categories.
One way is to exploit the internal structure of the modelshsag modular and
compositional synthesi$[, 54, 55]. However, most of them work under some
preassumptions, which makes them unsuitable for our pagyssch as guard
generation and timing analysis. Another approach is tceisnt the statesym-
bolically (or implicitly) by describing the state space and transitions by means
of logical constraints. The main difference between expdicd symbolic repre-
sentation is that in the former one the states are manigliatévidually, while
in the latter onesets of stateare manipulated simultaneously. In addition, sym-

49

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 50

bolic computations are typically carried out more efficigrdompared to the
explicit-state operations. It has been shown that symledkniques can allow
significant gains in the size of systems that can be han@lgdg].

In this thesis, all computations are “purely” carried outndplically using
binary decision diagrams (BDDgp6], useful data structures for representing
Boolean functions. It has been shown that BDD-based algustcan improve
the efficiency of synthesis dramaticall§7, 30, 69). For instance, in%7], the
supervisor of a transfer line example with more tha#" states was synthesized
in few minutes.

4.1 Basics

Given a set ofc Boolean variable#, a Boolean functiory: B* — B (B is the
set of Boolean values, i.e., 0 and 1) can be expressed usagn8h’'s decom-
position [70]. This decomposition can be expressed by a directed aayajgh,
called binary decision diagram (BDD)which consists of two types of nodes:
decision nodeandterminal nodesA terminal node can either lieterminalor
1-terminal which corresponds to the resultant value of the functian, D or
1. Each decision node is labeled by a Boolean variable andwwagdges to
its low-child andhigh-child corresponding to assigning 0 and 1 to the variable,
respectively. Thaizeof a BDD, denoted aB|, refers to the number of decision
nodes.

Using Shannon’s decompositiond], a BDD f can be recursively expressed
as below

J=(bAJIO/E) v (BAFILE) for be B,

where f[0/b] and f[1/b] refer to assigning 0 and 1 to all occurrences of the
Boolean variablé, respectively. Furthermore, the notatigft’ /b] is used to
describe the result of substituting all free occurrencdsinff by v'.

A variableb; has a lower (higherdrder than variableh, if b, is closer (or
further) to the root and is denoted by < b, (or by < b;). If the variables in the
BDD follow a total order, i.e. all variables occur in the saarder on all paths,
the BDD is calledOrdered BDD (OBDD) The variable ordering will impact the
size of the BDD, however, finding an optimal variable ordgrari a BDD is an
NP-complete problem7[l]. To find the optimal variable ordering is out of the
scope of this thesis. In this work, all BDDs follow a fixed \abie ordering,
described later.

A BDD that fulfills the following conditions is referred to asduced BDD
(RBDDY}

1. no two distinct decision nodes have the same variable maadéow- and
high-children,

51 4.1. BASICS

2. no decision node has identical low- and high-children.

The BDDs in this work are assumed to be both ordered and rddoakedROB-
DDs. ROBDDs provide compact and canonical (unique) repretientéor a
particular function and variable ordefd]. Before reduction, the size of a BDD,
is always exponential in the number of Boolean variabless @ibes not apply
to ROBDDs, as they are sometimes reduced to “extremely cothgeaphs.

Binary operations can be carried out efficiently on Booleancfions by
applying tree operations on their corresponding ROBDDs. ifally operator
< op > between two BDDg andg can be computed as

f<op>g=(-bA(f[0/b] < op>g[0/b)) v (bA (F]1/b] < op > g[1/2])).

If the operator is implemented based on dynamic programnthegtime com-
plexity of the algorithm will beO(|f| - |g|). Beside the compactness and effi-
ciency of representing sets as BDDs, the set operationsisarba simply im-
plemented by BDDs. For instance, let BDP&indg represent two state sety
and(@)., respectively. Ther); U @Q; and@;\(@> can be computed by v ¢ and
f N —g, respectively. Note that the negation of a BDD is simply thlessitution
of O-terminal and 1-terminal.

An operation that is used extensively in reachability asialis theexistential
quantificationoperator over a Boolean varialile

S f = fl0/8]V FIL/8.

The existential quantification can indeed be applied to af¥bolean variables.
Intuitively, the effect is that the variabtewill be eliminated from the graph.
For a more elaborate and verbose exposition of BDDs and theementa-
tion of different operators, refer tg'§, 74].
To summarize, the power of BDDs lies in their simplicity arfficeency to
perform binary operations, especially, when the BDDs havallssizes.

4.1.1 Characteristic Function

As stated earlier, in a symbolic representation, the coatjmuts are performed
on sets of states. To this erdharacteristic functionare used to to represent the
corresponding BDDs of finite sets.

Definition 4.1 Characteristic function (CF)

Let Y be a finite set so thaY’ C U, whereU is the finite universal set. A
characteristic function (CR)y : U — B is defined by:

(a) = 1 ffaeY
YW= 0 otherwise -

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 52

Since the selU is finite, in practice its elements are represented with rerin
Zyy or their corresponding binanytuples belonging t@* (z = Hog'f‘}). For
a binary CF, an injective functiof: U — B” is used to map the elementsin
to elements iB”. In general,xy (a) is constructed as

xy(a) = \/ a < O(w), (4.1)

weyY

where<« on two binaryz-tuplesb, andb, is defined as

by <> by £ /\ (b1; <> byi), (4.2)
0<i<x
whereb;; denotes theé-th element ob,. In this way, different set-operations can
be carried out ory using basic Boolean operators.
In the sequel, all formal discussions will be based on theesponding CFs
of the BDDs. In the text, we will freely use “BDD” interchangay with “char-
acteristic function”.

4.2 Representation of Models

In the following, we describe how DFAs and TEFAs can be syichdy repre-
sented by BDDs, i.e., how their corresponding CFs are coatput

4.2.1 Representation of DFAs

Reachability analysis on a DFA can be carried out based aniiial state and
transition function. We define three tuples of Boolean \@esab®, b?, and
b*, used to represent the source-states, target-statesyants ef a transition,
respectively. Note that, for the states, two Boolean tupligis different sets of
Boolean variables are needed to distinguish between ssteaites and target-
states. Henceb®| = [b?| = [logl?'] and|b%| = [logh”]. The automaton can
then be represented as two BDDs for the initial state and-émsition function

X0y (b%) = b & 6(¢°)
XH(va va bE) = \/ X(qaﬁaé)’ (43)

(g,0,4)€~>

where
Xgop) (b2, B9 b) =b? 5 8(q) A b? & 0(4) A b & 0(0). (4.4)

In particular, first the BDD of each transition is createdj &men all the BDDs
are disjuncted to represent the total transition function.

53 4.2. REPRESENTATION OFMODELS

Having N DFAs A4, ..., Ay, the BDD representing the transition relation of
A = A{||...||[Ax can be computed in two steps. Sirlse is common in the
CFs of all automata, first, we need to make all DFAs to have dhgesalphabet.
To this end, for each DFAY; and eaclv € ¥,4\X,,, a self-loop transition is
added to all states of;. The BDD of the synchronized model is then computed
by conjuncting all BDDs representing the automata’s titamsirelations, i.e.,
X—a = /\zj\il Xa,;

For a DFA, we use a fixed variable ordering for its correspogddDD that
is based on the method presentedif]] In this method, the variable ordering
is influenced by the ordering of interacting automata, basedeighted search
in their correspondingrocess communication graph (PC@ PCG for a set
of automata is a weighted undirected graph, where the weéigfiwieen two au-
tomatad; and A, is defined agx4' N £42|. In some cases, the ordering can be
improved R7].

4.2.2 Representation of TEFAs

Having a number TEFAs, in Sectidh3.2 we showed how the supervisor can
be computed based on the corresponding reachability tamselation of the
composed model, i.e5,. In the following, the main idea for computing the
corresponding BDD of—g, is given. For a detailed description of this proce-
dure, refer to Papes.

Initially, the clocks of the TEFAs are treated as regulatalaes, yielding
pure EFAs. Next, the BDD representing the composed moddieEfAs is
computed. To consider the time semantics into the compofHd, Bhe target
statesi¥’ of all transitions are replaced by the state§ﬁed1mage(W) rep-
resenting the time evolution. We denote the resulting Bj@gw The BDD
representing the reachability transition relation is otsd by conjuctlnng

with a BDD representlng the invariants. The invariant BDpresents a set of
pairs{(l, u°) | u° = Inv(1)}.

In the following, we first describe how EFAs and their EFSCrapa can be
represented by BDDs; and second, we give the main idea ho®Dierepre-
senting the time evolution can be computed. For a detailedrgeion of this
procedure, refer to Papér

Representation of EFAs

The CF of the transition function of an EFA is representecetiam its corre-
sponding STS (Definitio.5). Similar to the computation of DFAs, the CF is
computed based on a set of Boolean variablesb?, b~, bY, andb*, used

to represent the source-locations, current values of maria, target-locations,
updated values of variablg, and the events, respectively. The CF of a single

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 54

/.

transition(l, o, g, a,) €— will thus be,

X(l,a,g,a,l’) (bll;, ey bx, b}}, ey bx, bL, bL’ bz) =

VAR e 00) A B 0 (m) A

pVisgi=1

b" & 0(1) A BE < 0(1) A B” - 0(0). (4.5)

In our framework, we assume that overflows on variables ateitmved and
thus we omit the cases where an overflow occurs. This is peediby remov-
ing all the variable assignments that result in values datthe domain of the
variables. Consequently, the characteristic functiornefexplicit transition re-
lation of an EFAFE will be

Xep = \/ X(o.g.ai) /\ XDy(by) N /\ XD;/(@))- (4.6)
i=1

(l,o,g,a,l’)e—> i=1
The following example shows how the transition function of BFA can be
represented by a BDD.

EXAMPLE 4.1

Consider a nim game with 5 sticks on a table, and two playextstéke turn by
removing one or two sticks. The winner is the player that sake last stick(s).
Fig. 4.1depicts the EFA model for this game.

player2removel
sticks > 0
sticks = sticks — 1

player2remove?
sticks > 1
sticks = sticks — 2

playeriremovel
sticks > 0
sticks = sticks — 1

playeriremove?
sticks > 1
sticks = sticks — 2

Figure 4.1: The EFA model for Exampl@.1

Fig. 4.2 shows the corresponding transition function for the EFAnaho Fig.
4.1 Note that the BDD does not contain the cases whkgrés < 0 andsticks >

55 4.2. REPRESENTATION OFMODELS

5. The BDD variables in the figure are labeled with numbers Bevis
(blvbz) = (‘1,7‘0’)7
= (by) = ('2"),
= (b5) = ('3),
bstzcks _ (bstzcks bstzcks bstzcks bstlcks) _ (‘7:’ ‘6’, ‘5,’ ‘4,)’
bstwks (bstzcks bstzcks bstzcks bstlcks) _ (‘ 111’ ‘ 10,’ :91’ ‘g)’

whereb, is the least significant bit. Note that since the integersepeesented in
two’s complement, four Boolean variables are used to reptesicks because
of the sign-bit. The location and event encoding is showrald1l.

Table 4.1: Event and location encoding for the EFA in FLR).

Event (b7, b5) || Location | bk

playeriremovel (0,0) || playert | O
playeriremove? (0,1) || player2 | 1
player2removel (1,0)
player2remove? (1,2)

For instance, let us track the transition
(player2, player2remove2, sticks > 1, sticks = sticks — 2, playerl)

on the BDD in Fig.3. Eventplayer2remove? is identified by starting from node
‘0’, following the high-child to node "1’ and following theigh-child to node ‘2’,
i.e. b A b3. The locationplayer? is identified by following the high-child from
node ‘2, i.e. b}, and locationplayer1 is identified by following the low-child
from node ‘1’, i.e.ﬁl%. The guard and action are identified by all the paths from
node ‘3’ to node ‘11,

As it can be observed, the BDD in this example is larger theoatrespond-
ing EFA, however, for larger models the BDDs typically be@omuch more
compact.]

We denote the CF, where the Boolean variai8shave been removed by

/ .
X(l,o,g,al/)'
bY,...,bY. b bl b¥) =3 :

/
X(l,o,g,al’)(X(l,o,g,a,l/) :

Having N > 2 EFAs Ey, ..., Ey, similar to the transformation of EFAs
to FAs, described in Sectiagh 1.1, the CF of the explicit transition function of
E =FEi|...||En, X—5, Can be computed in three steps:

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 56

Figure 4.2: The corresponding BDD for the transition function of the BRAIg. 2.

1. Compute a CF, representingy without including the actionsy/, . This
CF can be compared to the variable automaté, pointed out in Section
3.1.1

2. Compute a CF, representing the update of the EFA vari,aj@I@Es. This
CF can be compared to the variable automatdnpointed out in Section
3.1.1

3. Based ony/, andy,v, computey.,, = Xisp A Xisy -

As discussed earlier ir8(1), note that the result will be incorrect if steps 1 and 2
are carried out in a single step:

N
X gyl By 7 /\ X, -
k=1

The procedure of computing the aforementioned CFs is predém Pape®.

Time Consideration

A stated earlier, having the BDD representing the composedetrof the iso-
morphic EFAs, denoted ag.,, , the time evolution is computed by replacing

57 4.3. SYMBOLIC SYNTHESIS

each target state by a set of states, representing the ttatesn be reached by
the passage of time. We define tiraed transition relation--+, where a tuple of
clock evaluationg‘ is expanded to the clock evaluatiofisthat can be reached
by the passage of time:

= {(Mcaﬂc) |V,uc e D¢ Vde DS : ﬂc — Q(MC +d)}.

Introducing a set of temporary Boolean variableghe corresponding BDD of
the timed transition relation can be computed :

“C ‘C C iC
X“‘)(b17’ . 7bn7b17 . .,bn) —
IDS| p

V(NS o006 A\ A S e 0000 +)

uCeDe Ni=1 d=0 j=1

Based ony__,, X, CaN be computed:
0

Xt = (35 (xog, A x)) [66/B°).

Essentially, in Pape3, we show how the saturation functigrand the synchro-
nization between the clocks, i.e + d, are implemented symbolically using
BDDs.

4.3 Symbolic Synthesis

In the following, we describe how the conventional synthésised on untimed
DES (explained in Sectiod.3.1) can be performed symbolically by BDDs. For
symbolic synthesis of timed DES, refer to Paper

In Section3.3, we showed how the synthesis can be carried out based on fixed
point computations. Basically, each algorithm starts byratral state set and
iteratively extends the set by theage or PreImage operator until a fixed point
is reached. Earlier, we showed how a transition functionasdt of states can
be represented by BDDs based on their corresponding CFan@heissue that
remains is the BDD implementation of the operatbfiage (2) andPreImage
(3). Algorithm 6 shows the BDD-based implementation of thege operator.
The BDDsBy, andB,., ; represent a set of statéls and the transition function
of Sy, respectively. The BD[IBHSO A By) represents all transitions, where
their source-states are includediin. Consequently3b®, b> : (B, A By)
will represent all target-states that can be reached fratesinii’. Finally, in
BicatStates|D® /BQ], the Boolean variables representing the target-statéwvil
substituted by their corresponding source-state vasable

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 58

Figure 4.3: A sample automaton.

Algorithm 6: SYMBOLICIMAGE

Input: By, BHS0

Output: The corresponding BDD fatmage (W, g,)
1 BneztStates — Elea bz : (Br—>50 A Bw),
2 return BnextStates[bQ/BQ];

For thePreImage operator, we first define theackward transition relatiorior
— as<«= {(q4,0,q) | (q,0,¢) €—~}. The corresponding BDD af+, denoted by
B.., can be computed by substituting the source and targetokesianB, , with
three BDD operations

B, = B, [b?, b¥],
B, = B,[b?, b7,
B. = B,[b?,b?,

whereb® is a new set of Boolean variables that is temporally usechduhe
substitutions. ThéreImage operator can then simply be implemented using
Algorithm 6 by passind3., to the routine rather tha,, , .

EXAMPLE 4.2

Let synthesize the automaton shown in Figdir& representing, for a sample
system, by using BDD operations. It is assumed that all tle&tsvare control-
lable. Based on the state encoding in Tah2 we have:

X0y (b?) = =7 A =b¢,
Xom (b?) = =b? A BE,

59 4.3. SYMBOLIC SYNTHESIS

X (09, 69) = (=P A =bF A= ABF) V(=0 ABE A DT A D)
V(62 ABE A =DE ADD) V(=2 A DT A DY A BT,
X (D9, 69) = (=P A =bF A= ABF) V(=67 A B A BT A D)
V(0L ADE A =bE AB) V(=D A DT A DY ABT).

Table 4.2: State encoding table for the automaton in Figlu@

State | (b2, %)
do (0,0)
0 (0,1)
a2 (1,0)
a3 (1,1)

Table 4.3: Fixed point computation carried out bYABESTATESYNTHESIS.

i Q’ X (b?) | QF | xq:(b?)
0 { i {} L

1| {go g a5} | b2 VG | {go} |0 A
2 | {qo. 1.5} | 02 VG | {g} | 07 A DG

Table 4.4: Fixed point computation carried out byeERTRICTEDBACKWARD.

i Qi X, (b%)
0| A{a} |-0FA0F
1| {qo, @1, a5} | —b% Vb
2 || {ao a1, a5} | ~bF VBT

We now perform SFESTATESYNTHESIS(Q”) (Algorithm 1), whereQ)” is empty
as there does not exists any explicitly forbidden state.ceitne automaton
does not contain uncontrollable eventsy¢ODNTROLLABLEBACKWARD can be
skipped from the algorithm and thdg” = Q\Q’ in all iterations. Table4.3
shows the elements and the characteristic functio®’odnd Q¥ for different
iterations in the fixed point computations.

Table 4.4 shows the fixed point computation inERTRICTECBACKWARD,
shown in Algorithm2, that is carried out in the first and second iteration of
SAFESTATESYNTHESIS.

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 60

Table 4.5: Fixed point computation carried out byeRTRICTEDFORWARD.

{ Qz XQ; (bQ>
0 {0} —b? A b
1 {6107 91} _‘b?
2 {6107 91} _‘b?
g [|
‘B
a)
@)
m | i
iterations

Figure 4.4: The typical pattern of the size of intermediate BDDs during fixed point
computations of reachability analysis.

Finally, by having@Q3 = {4}, the safe states can be computed by calling
RESTRICTEDFORWARD({¢-}), shown in Algorithm4. The fixed point compu-
tation is shown in Tablel.5. Consequently, the reachable safe states will be

{QO7q1}' l:‘

4.3.1 Size of Intermediate BDDs

Typically, the size of the intermediate BDDs computed inhageration of a fixed
point computation for reachability analysis, follows a acoon pattern, shown in
Figure4.4. The important point that can be concluded from this figurethe
size of the BDD representing the fixed point is typically sieralhan the maxi-
mum size that the intermediate BDDs can reach. Hence, eeeiglththere may
exist enough memory to represent the final BDD, it is not shia¢ the interme-
diate BDDs can be computed. This is the main reason why editimg thetick
event in the fixed point computations of TDES can be bettepadricular, by
reaching a number of states in one iteration (byTteedImage operator, de-
fined in ()), the computation of the intermediate BDDs in ttie:-based fixed
point computations (obtained by executing tix& event in each iteration) can
be avoided.

61 4.4, SymBOLIC GUARD GENERATION

4.4 Symbolic Guard Generation

In Section3.4, we described how the guards, representing the supereaohe
generated based on the basic state sets. The process ofi&ygeneration of a
guard for an event can be divided into three consequent:steps

1. compute the corresponding BDDs for the basic state sets,
2. convert the BDDs to integer decision diagrams (IDDs),
3. generate the guard based on the IDDs.

We describe each step separately.

4.4.1 Symbolic Computation of the Basic State Sets

The first step of generating the guard is to compute the quoreing BDDs
for the basic state sets, as described in Se@&idnThe corresponding BDD of
Sp’s transition function is used as the basis for generatiegdhstate sets. For
an eventr, we first compute the BDD representing the states from which
enabled, denoted by°:

XQe = Eﬂ)Q,b2 D Xess, A X{o}-

In the above computation, first, the BDD representation bfrahsitions that
include event is extracted. Next, the BDD-variables used for represgrttie
target-states and events are excluded, yielding the statesfrom whicho is
enabled. Based oq, , xsw, @andxq- (all computed earlier), the correspond-
ing BDDs for the basic state sets are computed as below,

X Qforbidden = IH°, b> : (X5 AN X Qo)
XQosafe = XQo N\ XQsafe
XQy = XQosafe N\ X Qforvidden.,
XQg = XQosale N\ TXQ7
XqQz, = ~(xqz V Xqr)-

The BDD forxgrniauen represents all states that, by one transition, lead to @ stat
not belonging to the supervisor. The BDD fog..... represents the safe states
that enable the event By conjuncting the aforementioned BDDs, all safe states,
whereo must be forbidden to occur are obtaingd,. Similarly, the other two
state sets can be computed.

As stated earlier, the don't-care states will be utilizegimplifying the guard
expressions. This operation is carried out directly on tb®Bepresentation of
the state set, based on the$rRICT function by Coudert and Madre, described

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 62

in [7€]. Given two BDDsB; andB,, B; = RESTRICT(B;, By) simplifiesBy,

i.e., reduces the size ®,, under a constraiiB,, so thatB; A B = B3 A Ba.
Hence,B; is logically equal toB,, on the domain defined b, and isoften
smaller tharB;. In this manner, we can simplify the BDD representation$ef t
state sets by constraining them undey; . Consequently, the guard generated
from the simplified BDDusuallybecomes smaller. For an elaborate and verbose
exposition of the symbolic computation of the basic stats, sefer to Papet.

4.4.2 |DD Generation

To generate the guards based on the BDDs, we need to map tleaBeariables
to their corresponding states. To this end, we convert a BDIB torresponding
integer decision diagrariDD) [77]. IDD is an extension to a BDD where the
number of terminals is arbitrary and the domain of the véeisin the graph is
an arbitrary set of integers. For our purpose, we use an |0D twio terminals,
O-terminal and 1-terminal.

Using IDDs to generate guards has some advantages in canp&riBDDs:
1) they make it easier to handle and manipulate propositionaulae; 2) they
exploit some of the common subexpressions in a guard ygladimore factor-
ized and smaller formula; 3) they depict a more understdadalodel of the
state set, since the nodes and edges represent names ofaimat@uand states,
respectively.

Each IDD-variable is associated to an automatgrand each outgoing edge
from nodeA, represents a state iy, giving a maximum number of edgg3 4, |.

A BDD is converted to an IDD by traversing it in a top-down defiitst
manner and performing the following main steps:

1. For each new BDD-nodé”‘S that is reached, create an IDD rootedby
denoted asdd.

2. Continue traversing until avariatﬂ%‘f is reached wherd; # A,.
3. Create an IDD rooted hyt,, denoted aghild.

4. Extract the sub-BDD betweéﬁ As andb?“f that represents some states of
automatorA;.

5. Add child to idd’s children and label the edge wi(@nzdfe.
6. Repeat the procedure from step 1.

The result is correct under the assumption that the BDD hased frariable
ordering. A pseudo algorithm of this procedure is preseimdéthperl.

63 4.4, SymBOLIC GUARD GENERATION

4.4.3 Guard Generation

The last step of obtaining the guard is to convert the IDDsrapgsitional for-
mulae. For a given IDD, a top-down depth first search is usddat@rse the
graph and generate its corresponding propositional famul Paperl, an al-
gorithm is presented that generates a guard based on an IRbnisydering the
heuristic techniques, described in Secti4.], to simplify the guard. The algo-
rithm starts from the root and visits the nodes, while getiregahe expression
and ends at the 1-terminal. For each node in the IDD, the sporeding expres-
sions of the edges belonging to the same level (the childfehab node) are
logically disjuncted and if the edges belong to differentls they are logically
conjuncted. Hence, the propositional formula for the IDFigure4 is

A ((p1 A S1) V (p2 A S2)),

wherep; is the corresponding expression of the edge that lead to bnEso
children ands; is the corresponding expression from the node to the 1-teximni
that is recursively computed.

.

Figure 4.5: Recursive representation of an IDD.

4.4.4 Guard Reduction by Genetic Algorithms

Since a guard is generated indirectly from a BDD, the guaids becomes very
sensitive to the size of the BDD. Hence, the variable orgeointhe BDD, can

impact the size of the guard. Note that the smallest BDD doésiecessarily
yield the smallest guard. 117 §], we usedgenetic algorithm¢GA) to reduce the
size of the generated guard by changing the variable oglefithe underlying

BDD.

A GA is a search heuristic that mimics the process of natwallgéion. Ge-
netic algorithms belong to the larger class of evolutionaligorithms, which
generate solutions to optimization problems using teaesdnspired by natural
evolution, such as inheritance, mutation, selection, aossover. In a genetic al-
gorithm, a population of strings (callethromosome@swhich encode candidate

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 64

solutions(calledindividualg to an optimization problem, evolves toward better
solutions. The evolution usually starts from a populatiomamdomly gener-
ated individuals and iteratively continues by creating rg@merations. In each
generation, théitnessof every individual in the population is evaluated, multi-
ple individuals are stochastically selected from the aurppulation (based on
their fitness), and modified (recombined and possibly rarigamtated) to form
a new population. The new population is then used in the riesdtion of the
algorithm.

In the following, we briefly describe each of the operatioed@rmed during
the GA.

Representation

Traditionally, GA works on binary strings of O's and 1's. Hewer, such en-
coding require a special repair operation to avoid creatioimvalid solutions.
Another encoding was introduced for solving Traveling Salen Problem79]
and later used for minimization of BDD8()], which represents a variable or-
dering as an integer string of length wheren is the number of variables in a
BDD, and each integer appears in the string once.78), [we used the latter
representation and thus each individual consists of agstifrvariables in the
BDD.

Initialization

The population is initialized by generating random indoads. Starting from a
randomly generated individual, the other individuals aeregated by randomly
permutating the chromosomes in the initial individual. Ihew individual al-
ready exists in the population, it is discarded. Individuaie added until popu-
lation size reaches a predefined size.

Selection

The selection of the individuals for mating pool is perfodri® roulette wheel
selection, where each individual is chosen with a prob@tpiroportional to its
fitness. As a fithess measure of an individual, the size of tlaecygenerated us-
ing the variable ordering encoded by the individual is uskdditionally, some
of the best individuals of the old generation are also inetlish the new genera-
tion, to ensure that the best element is never lost.

Crossover

For each new solution to be produced, a pair of “parent” smhstis selected for
breeding from the mating pool selected previously. Two p&rare combined

65 4.5. RELATED WORK

with each other usingrossovermperation to produce a “child”. New parents are
selected for each new child, and the process continuesaunélv population of
solutions of appropriate size is generated. In a traditionplementation of the
crossover operation, a random cut point is selected, anchittenosome of the
first parent is taken up to the cut point, and chromosome o$¢lsend parent is
taken from cut point to the end. This, however, would produgalid variable
orderings. Instead, a crossover illustrated in Figugis used 80, 81], where
genes of the chromosome of the first parent are taken up taitiEomt, while
from the second parent all other missing genes are takee ortter they appear.
This preserves relative order of some of the variables df patents, and always
generates valid solutions.

|]

-
i
—

(a) Conventional crossover

~N 7
3[24[s]1]

(b) Order crossover

Figure 4.6: Crossover operation.

Mutation

Mutation helps diversifying solutions and escaping localima. The mutation
operation is carried out by swapping two genes in an indafidu

Termination

The algorithm is terminated after a predefined number oiiens, or when no
better individuals were produced after several consegltgvations.

Worth to emphasise that in the GA-based approach, the gtsiirsl the optimal
variable ordering yielding the smallest guard, rather tiensmallest BDD.

4.5 Related Work

Another symbolic approach that has been applied to SCT isdbasBoolean
satisfiability (SAT) solversSAT solvers are programs that solve the problem

CHAPTER 4. SyMBOLIC REPRESENTATION ANDCOMPUTATION 66

of determining if the variables in a Boolean formula can b&igased in a way
so that the formula is satisfied, i.e. evaluatestae. SAT-based techniques
have been utilized in various domains, especially verificeabf models, and
promising results have been obtain€@{35]. However, SAT-based techniques
are not always efficient for synthesi&. In general, depending on the problem
to be solved, either SAT- or BDD-based methods could be lsleitaand can
therefore be seen as complementary techniques.

Chapter 5

Case Studies

In this chapter, we apply the presented framework to antititise and an indus-
trial example. We show how the examples can be modeled by $ERA how
their supervisor can be computed and represented. We adsly loliscuss about
the BDD implementation. For more case studies and expetahessults, refer
to Paperl-4.

5.1 lllustrative Example
Consider a manufacturing cell, shown in Figré, taken from £9].

MACH1 MACH2

CONV1 CONV2

Figure 5.1: The manufacturing cell. The solid and dottel lines correspto partsp;
andp,, respectively.

The manufacturing cell consists of machifé8CH1 andMACH2 , with an

input conveyoiICONV1 as an infinite source of workpieces and output conveyor

CONV2 as an infinite sink. Each machine may process two types of,part
and p,; and each machine is liable to break down, but then may bereepa
For simplicity, the transfer of parts between machines bglbbsorbed as a step
in machine operation. The machine TEFAs are displayed iaorEig.2, includ-
ing some given timed restrictions. FMACH1 and MACH2 we define two

67

CHAPTER 5. CASE STUDIES 68

clocks¢; and ¢y, respectively, with domaing0, ...,4} and{0,...,5} . The
evento;; occurs wherMACH : starts working on a;-part, whileg;; represents
whenMACH ¢ finishes working on a;-part; \; and-; represent respectively the
breakdown and repair ®IACH i.

The events are categorized as follows:

2 =% U {n, %}

We shall impose (i) logic-based specifications, (ii) a temapspecification, and
(iif) a quantitative optimality specification as follows:

0] a given part can be processed by just one machine ate tim
. ap;-part must be processed first MACH1 and then byMACH2 ,
. apo-part must be processed first MACH2 and then byMACH1,

. onep;-part and onep,-part must be processed in each production
cycle,

N w NP

5. if both machines are dowNACH2 is always repaired before
MACH1;

o1

(ii)

in the absence of breakdown/repair events a prodoatycle must
be completed in at most 10 time units;

(i) 6. subject to (ii), production cycle time is to be minized.

We introduce two assisting variablegb and p2b that are set to 1 when parts
p1 andp, are being processed, respectively and set to O when theyoapror
cessed. Thug1b will be set to 1 on transitions including eventg and set to
zero on outgoing transitions from locatién and similarly for variable2b. The
specification 1 can then be directly modeled on the machen@gl by restricting
the transitions including;; with the guardp1b == 0; and similarly for transi-
tions includinga;,. Notice that since the guards are added to transitions with
controllable events, it will not cause any controllabilisgue. Specifications 2-
6 are modeled by automaBPEC2SPECE respectively, shown in Figure.3.
The alphabet of each automaton is the events illustratedah eorresponding
figure. It can be verified that, in fact, specification 1 is audtically enforced
by specifications 2 and 3 together. We therefore only congidecomposition
of SPEC2SPEC5as the specification of the cell. And the cell's open-loop be-
havior, i.e., the plant, will be the composition ACH1 andMACH?2.

The system consists of 2656 reachable states, whereas &8 Belong
to the minimally restrictive supervisor. Notice that theaembers differ from

69 5.1. ILLUSTRATIVE EXAMPLE

a1 Q12
¢ >1 cp > 1

(3) MACH1.

Qa1 Qg2
cp > 1 o> 1

(b) MACH2 .

Figure 5.2: The TEFAs ofMACH1 andMACH?2.

CHAPTER 5. CASE STUDIES 70

!511 !622
11, ! Ba1 .o g2, ! B2 .0
g1 19
(a) SPEC2 (b) SPEC3

(c) SPEC4 (d) SPEC5

Figure 5.3: The specifications of the timed manufacturing cell.

the numbers in49]. The reason is that in our approach we implicitly let the:
event occur until all clocks reach their maximum valuesldyrey different states.
On the other side, i), there does not exist any clocks and thus self-laop
transitions will be added to states, wheiek does not change the behavior of
the model. However, the control function behavior, in thesseof Figure.1, of
both approaches is the same.

Based on the supervisor, guards were generated for evgnésdas,, with
sizes 12 and 2, respectively. The remaining events do noireegny restrictions,
i.e., they are always allowed to occur without causing ampl@m. From an im-
plementation point of view, an event that is always allowedoobidden, can
be directly 'hard-coded’ in the plant. Hence, the plant doeesneed to ask the
supervisor whether it is allowed to execute such an eves)tiag in less com-
munication between the plant and the supervisor. It is almvhito mention that,
from a modeling perspective, knowing that some events avayal allowed or
forbidden to occur could be helpful, e.g., to realize whairgs cause problems.

As an example, the sufficient restriction @ is:

G.* tlspeca== 0 V lspeca== 1,

wherelspecs IS @ new variable introduced to the model with domain 0,.,.ref-
resenting the current location SPEC4 This indicates that event, is allowed
to be executed only if the system is in location 0 or B®EC4 Consequently, a
supervisor with 1073 states has been represented by twivedtasmall guards.
In this controlled behavior, forcing plays no role.

71 5.1. ILLUSTRATIVE EXAMPLE

Figure 5.4 shows the size of intermediate BDDs in each iteration, @urin
the reachability analysis (theERTRICTEDFORWARD algorithm, described in
3.3.]), for both thetick-based approach usinfyk-EFAs and theick-eliminated
approach (in the sequel referred to as the TEFA-based agprosing TEFAs. It
is observed that the fixed point computation based on TEFAdsless iterations
to reach a fixed point due to the fact that, in contrast totttlebased approach,
it does not perform iterations for théck event. Furthermore, the maximum size
of the intermediate BDD in the TEFA-based approach is smtikn thetick-
based approach. For larger examples, this could avoid spatee explosion.
Notice that since the TEFA-based approach starts with afsates, the initial
BDD is larger than theick-based approach, which starts with a single state.

400 | .
300 | ' .
Q) \\
N AN
7] ~
o 200 >
o
m
100 | .
, - - - tick-EFA
O L \, | | — \TEFA \7
0 10 20 30 40

iterations

Figure 5.4: The size of intermediate BDDs in each iteration, during thachability
analysis for the timed manufacturing cell.

To address the temporal specification (ii), we first modify thodels, under the
stated assumption that breakdowns are absent, by rem8ABRg5and all tran-
sitions including)\; or ~; events inMACH i. Next, we introduce a cloctg with
domain{0,...,10}. We can now model the temporal specification by a TEFA
with a single location with invariant; < 10. Sincecs evolves synchronously
with ¢; andc,, only those marked states that include; aalue less than 10, i.e.,
pS < 10, will be extracted. The supervisor is computed in less thae@nd
and consists of 933 states. A9, this specification has been modeled by an
automaton with 1Xick sequence all of whose states are marked. We conclude
that, in the absence of breakdowns, a production cycle adeenh be forced to
complete in at most 10 time units. Here, of course, the useroflfle events is
essential.

Finally, to address specification (iii), based on the theka@rstates of the
previously computed supervisor for specification (ii), thenimal value ofcs

CHAPTER 5. CASE STUDIES 72

can be extracted. Considering the state with the minimalevak the marked,
we perform a new synthesis to ensure that the marked statbecagached in
a controllable manner. If the synthesis does not return arsigor, the same
procedure is performed on the next minimal valuesofin this case, there exists
a supervisor for the minimal value of, having the value 7. 1r4[9], this speci-
fication is implemented as in (ii) with successive timer sawes oftick-length
9,8, ... until the synthesis algorithm returns an empty result.

5.2 Industrial Case Study

Consider a real industrial case study, taken fr@v.[The goal is to design
a robust and optimal controller for a plastic injection motdmachine. The

system to be controlled is depicted in Fig@rdt is composed of: “(1) a machine
which consumes oil, (2) a reservoir containing oil, (3) acuswulator containing

oil and a fixed amount of gas in order to put the oil under pressand (4) a

pump” [87]. When the system starts, the machine consumes oil undssyme

made by the accumulator. The pump can control the the levdleodil and the

pressure within the accumulator to introduce additionlahto it.

+2.2 litres/second

== \/max

Accumulator

Reservoir

4 v

Machine/Consumer

Figure 5.5: Overview of the oil pump system.

= \/min

The controller must turn the pumgn andoff to ensure the following two
main requirements3[/]:

Ry: “thelevel of oilv(t) attimet (measured in litres) into the accumulator must
always stay within two safety bound®,,;,; V,,...], in the sequel/,,;, =
4.9l andV,,,, = 25.117;

Ry: “a large amount of oil in the accumulator implies a high grtes of gas
in the accumulator. This requires more energy from the pumiltin

73 5.2. INDUSTRIAL CASE STUDY

the accumulator and also speeds up the wear of the machine thias
desired to keep the level of oil minimal during operationtha sense that
ﬁ:oT v(t) is minimal for a given operation peridd’ .

RequiremenR,; can be seen as a qualitative specification, representinfgty sa
property, while requiremeri, is a quantitative specification, representing an
optimality property.

The machine consumes the oil in a cyclic manner. In each geti@ ma-
chine consumes the oil by a specific rate, expressed as nuwhlitees per sec-
ond. “At time 2, the rate of the machine goes tol1s2for two seconds. From
8to 10 itis 1.2 again and from 10 to 12 it goes up to 2.5 (whicingge than
the maximal output of the pump). From 14 to 16 it is 1.7 and frbénto 18
it is 0.5” [87]. However, there exists moiseof 0.1//s. Hence, for a specific
period, if the mean consumptiondd/ s, in reality the rate will lie in the interval
[c —0.1,¢+ 0.1]. This property is note#.

The initial volume of the oil within the accumulator is assdhrto be 10Q.
The pump is initiallyoff and when it isonthe output rate i.2(/s. It is desired
that after any change of state of the purop ¢r off), at least two seconds must
last before the next change can happen. Furthermore, thberuhtimes the
pump can be turned on and off is restricted to two times.

Consequently, a controller is desired that, with respetihéomentioned re-
strictions on the pump and the measurement noise of the mgchirns the
pump on and off at appropriate time points to satisfy regueetk, and try to
minimize the accumulated oil during each cycle (requiretigh The controller
should work for an arbitrary long period of time.

In [87], this system has been modeled by timed game autori&tagnd the
controller is synthesized using Uppaal-Tig&]

We transform the timed game automata &Y][to TEFAs, such that they
adapt to the SCT. In contrast to the approaclk8ifj,[where around 10,000 short
executions were needed to compute the optimal controkee We compute the
controller in two steps: (1) compute the minimally resivietsupervisor satis-
fying requiremen®,, (2) based on this supervisor, compute a new supervisor
satisfying requiremertt,. The TEFAs of the machine, pump, and scheduler are
shown in Figure3, 4, and5, respectively. We briefly describe the TEFAs and
explain how they have been modeled in the context of SCTeSime TEFAS are
quite similar to the models irg[/], for a detailed description of the TEFAS, the
reader is referred ta@[/].

The machine and the pump TEFAs are considered as plant. Eo#isation
is modeled by the scheduler and the explicitly forbiddematmn bad. The events

CHAPTER 5. CASE STUDIES 74

lre lre lre lre

Cy == Cy == 4 Cy == Cy == 10
Viatet = - = Viate— = 13

cy == 20 cy ==18 cy == 16 cy == 14
Vdone+ =1 Vrate+ =5 V’rate+ =12 Vrate_ =17

Figure 5.6: The TEFA of the cyclic consumption of the machine.

turnOn
c, >2&1<2
Vrate+ = 227 c, =0

lupdate Pump lupdate Pump

turnOff
cy > 2
Viate— = 22,¢, = 0,1+ +

Figure 5.7: The TEFA of the pump.

75 5.2. INDUSTRIAL CASE STUDY

lupdateCy
¢ ==1& done ==
time+ = 1,V+ = Viate, Vacet = (2% V + Vigee)

lendScheduler
¢t == 0& done ==1

IstartScheduler
Ct == 0

ce ==0
! lupdate Pump, turnOn, turnOff
Ct == 1
Ct = 0

Figure 5.8: The TEFA of the scheduler.

are categorized as follows:

> = {turnOn, turnOff , startScheduler, endScheduler},
¥ = {turnOn, turnOff },
S = $\3,

The alphabet of each TEFA is the set of events depicted in eathsponding
figure. The model consists of the following variables clocks

V. a variable with domair0, ..., 255}, representing the current volume of
oil,
Viate: @variable with domaif—25, ..., 25}, representing the rate thitevolves,
Vaee: @ variable with domaid0, . .., 2047}, representing the accumulated vol-
ume of oil,
time: a variable with domaig0, ..., 31}, representing the global time since the

beginning of the cycle,

i: a variable with domair0, ..., 2}, representing the number of timed the
pump has been turned on and off,

done: a variable with domaiqo, ..., 1}, representing when a cycle is finished,
¢, aclock with domair{0, . . ., 21},
c.. aclock with domain0, ..., 21},

¢ aclock with domain0, ..., 2}.

CHAPTER 5. CASE STUDIES 76

We have considered a precision(of/ and thus, to use integers, the value of the
volume is multiplied by 10.

The transitions of the TEFA, except the ingoing transitimiscationbad, of
the machine follow easily from the given cyclic definitiontbé consumption of
the machine. The guardloise(s) will be satisfied if the current volume exceeds
the boundary ofV,,;, andV,,.., i.e., 4.9 and 25.1, due to fluctuations of the
consumption:

Noise(s) = (V —s < 50) | (V +s) > 250.

The guardFinalNoise checks the same but for the volume obtained at the end
of cycle and against the interval representedlbyF’ and V2F that are two
variables with equal domain9, . .., 255}:

FinalNoise = (V — 10 < V1F) | (V 4+ 10) > V2F.

Notice thatNoise and FinalNoise are modeling the proper#y.

The scheduler is used to get the correct behavior of the mtuelariables
time, V, andV,.. should be updated after each rate change, i.e., after eaech tr
sition, wherel/,,;. gets updated.

The compositional model will correspond to a single cycleowdver, as
stated earlier, the goal is to have a controller that workperly for any number
of cycles. To extend the approach to a number of cycles, wewahe same
technique asd7]: “find some intervall; = [V;, V5] C [4.9;25.1] such that:

(i) I, is stable: from all initial volumé/j € I, there exists a strategy for
the controller to ensure that whatever the fluctuations ercdmsumption,
the value of the volume is always betweeh&nd 25/ and the volume at
the end of the cycle is within intervdl, = [V1F, V2F], whereV1F =
Vi+04andV2F =V, — 0.4, and 0.4 is a margin parameter considered
to ensure robustness,

(i) I is optimal among stable intervals: the worst accumulatédme of the
solutions of/; is minimal”.

We perform each step separately.

We start by satisfying property (i). As it can be observed,dhjective of this
problem is to find some proper values for variables, whicHighgy different
from the objectives usually defined in the SCT context. Todhathis, we use
a trick: let the initial values of the variablds, V1F, andV2F be the entire
corresponding domains. Fortunately, this can be handisityday BDDs. In
particular, by starting with all possible valuesiéfwe compute several supervi-
sors in parallel (this is the main advantage of symbolic catafions). However,

77 5.2. INDUSTRIAL CASE STUDY

104
-~ tick-EFA
— TEFA ;
4l |
()] 1
N ,’
N ,
(@] ,'I
8 2 ,' 1
O [|
| | | | |

|
0 20 40 60 80 100
iterations

Figure 5.9: The size of intermediate BDDs in each iteration, during tachability
analysis for the oil pump systems.

to keep track of the corresponding initial valuesiofor the marked states, we
construct the following BDD that will represent the init&thtes:

255
\V/ by < 0(i) A by, = 0(i),

i=1

whereV 0 is a new variable with domaif0, ..., 255}. The value of variable
V0 can be considered as the identity of the states that will bewed during
the fixed point computations. Consequently, the synthdsapervisor will only
contain those initial values where a marked state can béedaevhich repre-
sents the interval;. The minimally restrictive supervisor was computed in 2
minutes and 13 seconds and consists of 7,846,603 statese Bighows the size
of intermediate BDDs in each iteration, during the readhtgtanalysis, for the
tick-based approach and the TEFA-based approach. It can berebighat, in
both cases, due to the special treatment of the variablessizle of the BDDs
grows exponentially. Furthermore, we can see that the TE&%ed approach
has reached a fixed point much earlier thanig-based approach. However,
from a BDD size point of view, eliminating théck event did not gain so much.
Based on the computed supervisor, we perform the optiroizatie., prop-
erty (ii). The main idea is to select a subset of the reachedkedastates and
perform a further backward reachability. Note that eachkedstate of the su-
pervisor, now includes the values of the variablésandV,... Hence, among
the marked states, fixing0 to a specific value, we obtain all values oV,
which can be reached safely by starting with volumeBy a simple BDD op-
eration, we can extract the minimal valuelqf. among all marked states with

CHAPTER 5. CASE STUDIES 78

V0 = v. By performing this on all values af € V;, we get a BDD, repre-
senting the states that inclufle min{V"..)}. Among these states, we extract an
interval I; = [vy, v2], where the maximum value afin{V%,.)} among all values
in I; is minimal compared to other possible intervals. We consilde states
that contain the interval; as the new marked states. Based on the computed
marked states, by performing a backward reachability oretivéer computed
supervisor, we get a new supervisor with 2,431,982 statsitths computed in
58 seconds. The corresponding interyabf this supervisor ig51, 100]. The
time points for turning the pump on and off can be obtained Hycking the
time variable in the corresponding guards of evemts:On and turnOff. Due

to many different configurations the system can be in, thedgubecome very
large, and not tractable for the designers. They can thoagmplemented in a
controller directly. Basically, the guards have the foliogvformat:

(VO==v A time==t A ...) V

Hence, for each everturnOn or turnOff, it can be deduced at what time the
pump should be turned on or off, respectively. However, esithe guards are
large, to identify the above statement among hundreds afsteés not easy.
Nonetheless, we can still use the BDD representing the aliostate set (de-
scribed in Sectior8.4.7), to achieve this information. Table shows the time
points at which the pump should be turned on and off for difennitial vol-
umes in the interval;. In the tablefime®" andtime™, represents the time point
the pump should be turned on and off, respectively; fer1, 2.

Table 5.1: The time points at which the pump should be turned on and offlifterent
initial volumes in the interval; = [5.1,10.0].

Vo timed™ / timed™ | timeS" / timeS"
[5.1,5.3] 2 /4 9/15
[5.3,6.4] 2 /4 9 /14
6.4, 6.7] 3/5 9 /14
6.7,7.5] 3/5 10/ 15
7.5,7.7] 3/5 10/ 14
[7.7,8.5] 8 /12 14/ 16
8.5, 8.8] 8 /12 15/ 17
8.8,9.0] 8 /11 14 /17
9.0,9.7] 9 /12 14 /17
[9.7,10.0] 9/12 14/ 16

79 5.3. IMPLEMENTATION REMARKS

These results conform with results obtaineddi][

5.3 Implementation Remarks

The entire framework, discussed in the thesis, has beeremmsited and inte-
grated in SupremicaP] which useslavaBDDI[88] as the BDD package. The
experiments were carried out on a standard PC (Intel Coresd@i QPU @ 2.4

GHz and 3 GB RAM) running Windows 7.

80

Chapter 6

Summary of Appended Papers

Partll of the thesis consists of four papers. In this chapter thensagre sum-
marized and important contributions are pointed out. I13s &riefly discussed
how the papers relate to each other.

Paper1

S. Miremadi, K. Akesson and B. Lennartson. Symbolic comjiortaof reduced
guards in supervisory controlEEE Transactions on Automation Science and
Engineering October 2011.

The main focus in this paper is to, based on DFAs, show hownergeée guards
representing the supervisor. Based on the supervisorafir eontrollable event
o, the states where can be enabled in the composed model is divided into two
basic sets: the states from whiehmust be enabled to end up in the supervisor,
and the states from whickh must be forbidden to be executed to not end up in
an undesired state. The basic state sets are symbolicatiguted using BDDs.
The remaining states are identified as don’t-care stateésathaused in a BDD
operator to reduce the size of the BDDs representing the statie sets, which
could lead to smaller guards. To obtain tractable guardesgions, by exploiting
the structure of the given models, some heuristic techsigue applied to the
guards.

Paper 2

S. Miremadi, B. Lennartson and K. Akesson. A BDD-based aggindor mod-
eling plant and supervisor by extended finite autom#EEE Transactions on
Control Systems Technolggyovember 2012.

This paper extends the approach in Papday performing the guard generation
on EFAs, FAs augmented by discrete variables. Modelingesystusing EFAs
will typically yield more compact models by hiding some otthktates of the

81

CHAPTER 6. SUMMARY OF APPENDEDPAPERS 82

system in variables. The main contribution of this paper twashow how EFAs
and their full synchronous composition can be symbolicadisnputed by BDDs
representing the corresponding DFAs of the EFAs. Based @symbolic rep-
resentations, the guards can be generated according to Papbke generated
guards can then be attached to the original models, yielimgpdular supervi-
sor.

Paper3

S. Miremadi, Z. Fei, K. Akesson and B. Lennartson. Symbadaresentation
and computation of timed discrete event systems. SubntitdeEE Transac-
tions on Automation Science and Engineeyid@12.

This paper considers time in EFAs, by presenting timed ERAs. shown how
TEFAs can be transformed to EFAs by treating the clocks aslaegariables
and introducing theick event to the model, representing the time evolution.
However, tick models suffer from a major problem: the state size is very sen
sitive to the clock frequency. To tackle this problem, wegmeed a method to
eliminate thetick events while still obtain the same behavior. The main centri
bution was to show howick-eliminated models can be symbolically represented
by BDDs. It was shown that, in this way, smaller intermedBBERDs and less
iterations in the fixed point computations can be obtained sWowed how SCT
can be applied to the symbolic representations by consigi¢hietick event as

an uncontrollable event.

Paper4

S. Miremadi, Z. Fei, K. Akesson and B. Lennartson. Symbaljgesvisory con-
trol of timed discrete event systems. SubmittetBBE Transactions on Control
Systems Technolog®012.

In Paper3, we assumed that théck event is uncontrollable. In Papérin the
context of SCT for TDES49], we treat thetick event in a special manner. As
in [49], the concept of forcible events are introduced that caerpp thetick
event. The main contribution of this paper is to show how thlsesis, espe-
cially controllability, can be symbolically performed drettick-eliminated mod-
els, presented in Pap8r Papersl-4 can be considered as a framework, where
one is able to model a DES or TDES as EFAs or TEFAs, and synadlglicom-
pute its supervisor based on the SCT, and finally generatelguapresenting
the supervisor and attach them to the original models.

Chapter 7

Conclusions and Future Research

As discussed in the thesis, supervisory control theory iodehbased theoret-
ical framework for computing a control function, i.e., smpsor, that restricts a
given plant towards a given specification only when it is 3geey. In Chapter
1, we pointed out three challenges that exist when SCT is used:

(i) Most of the existing work on SCT, has been carried out otinued DES
for analyzing the qualitative properties of the systemswelger, in most
of the real-time applications, the correct behavior caty bel obtained by
taking time into consideration. Also, including time in thdels, opens
the possibility of performing quantitative analysis sushtiane optimiza-
tion.

(i) As discussed, the number of states of a system congisfia number of
components grows exponentially as the number of compon®resases.
For many of the industrial applications that consist of géanumber of
components, this leads to state space explosion, thatmuthber of states
cannot be represented in the hardware.

(i) For industrial applications, typically the syntheed supervisor consists
of a large number of states. Representing the supervisdd ¢ben be
challengeable, both from a modeling and implementatiosgestive.

In this thesis, we tackled the above issues. To meet Chaléhgve modeled
the systems by TEFAs that include a set of discrete-valustksl The SCT for
TEFAs was defined based on their correspondinag-EFAs as in {19, where
the clocks were considered as regular variables and thesgmantics was im-
plemented by theick event, treated in a special manner. We showed that the
tick models suffer from a major problem: the state size is vergisiea to the
clock frequency. To tackle this problem, we proposed a ntetbeliminate the
tick events while still obtain the same behavior.

To tackle Challenge (i), all computations were performgasolically using
BDDs. Essentially, based on a given set of TEFAS, the superwas computed

83

CHAPTER 7. CONCLUSIONS ANDFUTURE RESEARCH 84

symbolically using BDDs. We showed that the symbolic impdeation of the
tick-eliminated models result in smaller intermediate BDDs ks iterations
in the fixed point computations. For some applications, tlosld resolve the
state space explosion, caused by time.

Finally, to tackle Challenge (iii), the supervisor was e@nted in a modu-
lar fashion by extracting constraining guards and attagtiem to the original
models. In this way,

1. the designers will remain in the modular scope, which rmakpossible
to easily perform modifications on the resulting superyieay., changing
the specification,

2. it becomes possible implement the supervisor in a modudamer, which
could especially be beneficial for hierarchical approaches

3. the final representation will be closer to the ones typiaaed in the in-
dustry for implementing a controller.

The guards were generated based on some categorized $tdtesopervisor,
referred to as the basic state sets. It was shown how the biagec sets can
be symbolically computed using BDDs. Furthermore, diffiiétechniques were
proposed to simplify the guards. Notice that the entire pdoce can also be
applied to untimed DES modeled by EFAs. A process overviethefentire
framework is illustrated in Figuré. L

The framework has been implemented and verified in the sigmewtool
Supremica, and has been applied to different examples aodtimal case stud-
ies, some discussed in Chapfer

There are some possible directions for future research.hignwork, the
main emphasis has been on representing the systems syailypliather than
developing efficient synthesis algorithms. It is indeedsgas to improve the
efficiency of the supervisory synthesis, e.g., by utilizpagtitioning techniques
in the BDD computations such a89, 90]. Furthermore, even though some
technigues have been proposed to simplify the guardsistgbme applications,
the guards may become complicated. Essentially, it is ptessd simplify the
guards more by utilizing the behavioral structure of the eied

Analyzing timed systems, a missing piece in this thesisnigproach to
automatically perform time optimization on the TEFAs. Théeresting point
about time optimization on TEFAs is the existence of unadtable events that
may lead to several optimal solutions. In particular, djiarding the uncontrol-
lable events, there may exist a path from the initial state toarked state that
takes minimal time to reach. However, if there exists an oinigy uncontrol-
lable event from a state in the optimal path, which could motdstricted by the
supervisor, the system can end up in a state not belongirtietoptimal path
anymore. In such a case, we may desire a new minimal path fremew state

85

1 5
Transform Attach the
the TEFAs to Guards to the
BDDs Initial Models

2 4
Compute the T Tl— - o Simplify the
Supervisor) e Guards

3

Generate
Guards

Figure 7.1: Process overview of the approach.

CHAPTER 7. CONCLUSIONS ANDFUTURE RESEARCH 86

to a marked state. A possible way for solving this problemabe to, first, com-

pute the minimal time from each state to a marked state. Tdnshe achieved
by performing a backward reachability computation fromtlaf marked states
including all possible values of the global clock. Secorakdnl on the minimal
times, a one-step lookahead strategy could be computeddbrstate, indicating
the event(s) that will finally yield the minimal time.

Bibliography

[1] A. Wolfe, “For Intel, it's a case of FPU all over agairEE Times1997.

[2] A. Mishkin, J. Morrison, T. Nguyen, H. Stone, B. CoopengdaB. Wilcox,
“Experiences with operations and autonomy of the Mars Rathfi Mi-
crorover,” inlIEEE Aerospace Conferencel. 2, 1998, pp. 337-351.

[3] J.Rawlinson, “Report on the Therac-25,"@CTRF/OCI Physicists Meet-
ing, Kingston, Ontario, 1987.

[4] V. D’Silva, D. Kroening, and G. Weissenbacher, “A sunayautomated
techniques for formal software verification[EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systesols 27, no.
7, pp. 1165-1178, Jul. 2008.

[5] C.Kernand M. R. Greenstreet, “Formal verification indhaare design: a
survey,”ACM Transactions on Design Automation of Electronic System
vol. 4, no. 2, pp. 123-193, Apr. 1999.

[6] J.Bengtsson, K. Larsen, F. Larsson, P. Pettersson, an, YWPPAAL —
a tool suite for automatic verification of real-time systénhecture Notes
in Computer Sciengerol. 1066, no. 1996, pp. 232—-243, 1996.

[7] S. Yovine, “KRONOS: a verification tool for real-time ggms,”Interna-
tional Journal on Software Tools for Technology Transtel. 1, no. 1-2,
pp. 123-133, 1997.

[8] P. Ramadge and W. M. Wonham, “Supervisory control of aglef dis-
crete event processesSIAM Journal of Control and Optimizatiowol.
25, no. 1, pp. 635-650, 1987.

[9] B. A. Brandin and F. E. Charbonnier, “The supervisory ttohof the au-
tomated manufacturing system of the AIP,"Rnoceedings of the 4th In-
ternational Conference on Computer Integrated Manufaotuand Au-
tomation TechnologyOct. 1994, pp. 319-324.

[10] V. Chandra, Z. Huang, and R. Kumar, “Automated contsgaiteesis for
an assembly line using discrete event system control tiiel&@iE Trans.
on Systems, Man and Cybernetiesl. 33, no. 2, pp. 284-289, 2003.

87

BIBLIOGRAPHY 88

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Giua and C. Seatzu, “Supervisory control of railwagtworks with
Petri nets,” inProceedings of the 40th IEEE Conference on Decision and
Control, vol. 5, 2001, 5004-5009 vol.5.

M. A. Jafari, H. Darabi, T. O. Boucher, and A. Amini, “A stributed
discrete event dynamic model for supply chain of businetsrpnses,” in
Proceedings of the 6th International Workshop on Discretertt Systems,
WODES’02 2002, pp. 279-285.

L. Feng, W. M. Wonham, and P. S. Thiagarajan, “Desigrmogmunicat-
ing transaction processes by supervisory control the&orin. Methods
Syst. Des.vol. 30, no. 2, pp. 117-141, 2007.

M. Seidl, “Systematic controller design to drive higgad call centers,”
IEEE Transactions on Control Systems Technolegl 14, no. 2, pp. 216—
223, Mar. 2006.

K. Akesson, M. Fabian, H. Flordal, and A. Vahidi, “Supriea—A tool
for verification and synthesis of discrete event supergisor 11th Medite-
rranean Conference on Control and Automati®ihodos, Greece, 2003.

L. Feng and W. M. Wonham, “TCT: A computation tool for supisory
control synthesis,” irProceedings of the 8th international Workshop on
Discrete Event Systems, WODES'R606, pp. 388-389.

B. A. Brandin and W. M. Wonham, “Supervisory control mhed discrete-
event systemsJEEE Transactions on Automatic Contyefol. 39, no. 2,
pp. 329-342, 1994.

H. Chen and H. Li, “Maximally permissive state feedbdagic for con-
trolled time Petri nets,” ifProceedings of the 1997 American Control Con-
ference vol. 4, American Autom. Control Council, 1997, pp. 2359623

A. Saadatpoor, “Timed state tree structures: supeywiontrol and fault
diagnosis,” Ph.D. dissertation, University of Torontop20

H. Wong-Toi and G. Hoffmann, “The control of dense ré&ate discrete
event systems,” iProceedings of the 30th IEEE Conference on Decision
and Contro| IEEE, 1991, pp. 1527-1528.

R. Alur and D. L. Dill, “A theory of timed automata,Theoretical Com-
puter Sciencevol. 126, no. 2, pp. 183-235, Apr. 1994.

E. Asarin, O. Maler, and A. Pnueli, “Symbolic contralkynthesis for dis-
crete and timed systemdjlybrid Systems Il - Lecture Notes in Computer
Sciencevol. 999, pp. 1-20, 1995.

P. Niebert, S. Tripakis, and S. Yovine, “Minimum-timeachability for
timed automata,” irBth IEEE Mediterranean Conf. on Control and Au-
tomation 2000.

89

BIBLIOGRAPHY

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

T. Brihaye, T. A. Henzinger, V. S. Prabhu, and J.-F. RaskMinimum-
time reachability in timed games,” iB4th International Colloquium
Springer Berlin Heidelberg, 2007, pp. 825-837.

F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lifigficient on-
the-fly algorithms for the analysis of timed games,Proceedings of the
16th International Conference on Concurrency The@§05, pp. 66—80.

S. B. Akers, “Binary Decision DiagramdEEE Transactions on Comput-
ers vol. 27, pp. 509-516, Jun. 1978.

A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supisory synthesis
of large systemsControl Engineering Practicevol. 14, no. 10, pp. 1157—
1167, Oct. 2006.

Supremica WWV SUPREM CA. ORG. THE OFFICIAL WEBSITE FOR
THE SUPREMICA PROJECP004.

K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supriem- An inte-
grated environment for verification, synthesis and simaoiaof discrete
event systems,” irR006 8th International Workshop on Discrete Event
SystemsAnn Arbor, MI, USA, 2006, pp. 384-385.

S. Miremadi, K. Akesson, M. Fabian, A. Vahidi, and B. loemtson, “Solv-
ing two supervisory control benchmark problems using Sujra,” in 9th

International Workshop on Discrete Event Systems, 2008DR&08,

May 2008, pp. 131-136.

A. Arnold and J. Plaicekinite transition systems: semantics of communi-
cating systemdHertfordshire, UK, UK: Prentice Hall International (UK)
Ltd., 1994.

R. P. KurshanComputer-aided verification of coordinating processes: th
automata-theoretic approactPrinceton, NJ, USA: Princeton University
Press, 1994.

A. Giua, “Petri Nets as discrete event models for suisery control,”
PhD thesis, Rensselaer Polytechnic Institute, Troy, Nevk YASA, Jul.
1992.

J. Bergstra and J. Klop, “Process algebra for synchuermmmunica-
tion,” Information and contrglvol. 60, no. 1-3, pp. 109-137, 1984.

K. M. Inan and P. P. Varaiya, “Algebras of discrete evemadels,”Pro-
ceedings of the IEEEv0l. 77, no. 1, pp. 24-38, Jan. 1989.

Z. Manna and A. PnueliThe temporal logic of reactive and concurrent
systemsNew York, NY, USA: Springer-Verlag New York, Inc., 1992.

G. D. Plotkin, “A structural approach to operationahsmtics,” Arhus
University, Tech. Rep., Sep. 1981.

BIBLIOGRAPHY 90

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

C. A. R. Hoare, “Communicating sequential processésfhmunications
of the ACM vol. 21, no. 8, pp. 666—667, 1978.

C. Baier and J.-P. KatoeRyrinciples of Model Checkingrhe MIT Press,
2008, p. 975.

M. Skéldstam, K. Akesson, and M. Fabian, “Modeling o$cfiete event
systems using finite automata with variablé3gcision and Control, 2007
46th IEEE Conference ompp. 3387-3392, 2007.

J. Bengtsson and W. Yi, “Timed automata: Semanticspratlgns and
tools,” Lectures on Concurrency and Petri Net®Il. 3098/2004, pp. 87—
124, 2004.

A. Dubey, “A discussion on supervisory control theonyreal-time dis-
crete event systems,” Institute for Software Integratest&ys, Tech. Rep.,
2009, p. 9.

R. Alur and T. Henzinger, “Real-time logics: complgxénd expressive-
ness,” inProceedings of 5th Annual IEEE Symposium on Logic in Com-
puter Sciencel EEE Comput. Soc. Press, 1990, pp. 390-401.

T. A. Henzinger, Z. Manna, and A. Pnueli, “What good aigatdl clocks?,”
in 19th International Colloquium on Automata, Languages arajPam-
ming, 1992, pp. 545-558.

J. S. Ostroff and W. M. Wonham, “A framework for real-endliscrete
event control,”IEEE Transactions on Automatic Contrafol. 35, no. 4,
pp. 386—397, Apr. 1990.

R. Kumar, V. K. Garg, and S. I. Marcus, “On Controllabjland Normal-
ity of DEDS,” Systems and Control Lettersol. 17, pp. 157-168, 1991.

L. Ouedraogo, R. Kumar, R. Malik, and K. Akesson, “Nomtking and
safe control of discrete-event systems modeled as extdimitechutomata,
IEEE Transactions on Automation Science and Enginegeviolg 8, no. 3,
pp. 560-569, Jul. 2011.

G. Cengic, “A control software development method gsiBC 61499
function blocks , simulation and formal verificatio&velopmentpp. 22—
27, 2008.

B. A. Brandin and W. M. Wonham, “The supervisory contaofltimed
DES,” IEEE Transactions on Automatic Contraebl. 39, no. 2, pp. 329-
342,1994.

P. Ramadge and W. M. Wonham, “The control of discretenesgstems,”
Proceedings of the IEERvol. 77, no. 1, pp. 81-98, 19809.

W. M. Wonham and P. Ramadge, “Modular supervisory admifdiscrete-
event systems Mathematics of Control Signals and Systend. 1, no.
1, pp. 13-30, 1988.

91

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

M. H. de Queiroz and J. E. R. Cury, “Modular supervisopntrol of
large scale discrete event systems,Discrete Event Systems, Analysis
and Contro] R. Boel and G. Stremersch, Eds., Kluwer, 2000, pp. 103—
110.

K. Akesson, H. Flordal, and M. Fabian, “Exploiting mdarity for syn-
thesis and verification of supervisors,” ikbth IFAC World Congress
Barcelona, Spain, 2002.

H. Flordal, R. Malik, M. Fabian, and K. Akesson, “Comjftamnal synthe-
sis of maximally permissive supervisors using supervigiqaivalence,”
Discrete Event Dynamic Systerasl. 17, no. 4, pp. 475-504, Aug. 2007.

S. Mohajerani, R. Malik, S. Ware, and M. Fabian, “Comigiosal syn-
thesis of discrete event systems using synthesis absindam Chinese
Control and Decision Conference CCD@EEE, May 2011, pp. 1549—-
1554.

C. G. Cassandras and S. Lafortuh@roduction to Discrete Event Sys-
tems 2nd. Springer, 2008.

K. Akesson, “Methods and tools in supervisory conttadry: operator
aspects, computation efficiency and applications,” PhBith&ignals and
Systems, Chalmers University of Technology, Géteborg,d&ne2002.

A. Hellgren, M. Fabian, and B. Lennartson, “Synchraudzxecution of
discrete event models using sequential function chart®toceedings of
the 38th IEEE Conference on Decision and ContRitloenix AZ, USA,
1999, pp. 2237-2242.

A. Hellgren, B. Lennartson, and M. Fabian, “ModellingdaPLC-based
implementation of modular supervisory control,” iscrete Event Sys-
tems, 2002. Proceedings. Sixth International Workshq2082, pp. 371—
376.

S. Miremadi, K. Akesson, and B. Lennartson, “Symbobenputation of
reduced guards in supervisory contréEEE Transactions on Automation
Science and Engineeringol. 8, no. 4, pp. 754-765, 2011.

E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Conteslsymthesis for
timed automata,” inn Proceedings of IFAC Symposium on System Struc-
ture and Control 1998, pp. 469-474.

G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. larsand D.
Lime, “Uppaal-tiga: Time for playing games!,” ifroceedings of the 19th
international Conference on Computer Aided Verificati®d07,

BIBLIOGRAPHY 92

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

P. Gohari and W. M. Wonham, “On the complexity of supsovy control
design in the RW framework.JEEE transactions on systems, man, and
cybernetics. Part B, Cybernetics : a publication of the IEREStems, Man,
and Cybernetics Societyol. 30, no. 5, pp. 643-52, Jan. 2000.

K. Rohloff and S. Lafortune, “On the computational cdexity of the
verification of modular discrete-event systems Prioceedings of the 41st
IEEE Conference on Decision and Contrgbl. 1, IEEE, 2002, 16-21
vol.1.

G. Hoffmann and H. Wong-Toi, “Symbolic synthesis of swysory con-
trollers,” in 1992 American Control Conferengghicago, IL, USA, 1992,
pp. 2789-2793.

C. Ma and W. M. Wonham, “Nonblocking supervisory comtob state
tree structures |EEE Transactions on Automatic Contrabl. 51, no. 5,
pp. 782—793, May 2006.

K. Schmidt, H. Marchand, and B. Gaudin, “Modular and elgcalized
supervisory control of concurrent discrete event systesnsgureduced
system models,” ifProceedings of the 8th International Workshop on Dis-
crete Event Systems, WODES'06I. 2006, pp. 149-154.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang,
“Symbolic model checking10? states and beyond,” iRroceedings of
the Fifth Annual IEEE Symposium on e Logic in Computer Seietf290,

Jun. 1990, pp. 428-439.

C. Ma and W. M. Wonham, “STSLib and its application to tlwench-
marks,” in9th International Workshop on Discrete Event Systems, 2008
WODES'08. May 2008, pp. 119-124.

C. E. Shannon, “A mathematical theory of communicatidine Bell Sys-
tem Technical Journalol. 27, pp. 379-423, 625656—, 1948.

B. Bollig and I. Wegener, “Improving the variable ordey of OBDDs is
NP-complete, 1IEEE Trans. Computvol. 45, no. 9, pp. 993-1002, 1996.

R. Bryant, “Graph-based algorithms for boolean fumetmanipulation,”
IEEE Transactions on Computessol. 35, no. 8, pp. 677-691, 1986.

R. E. Bryant, “Symbolic Boolean manipulation with ordd binary-decis-
ion diagrams,’ACM Comput. Suryvol. 24, no. 3, pp. 293-318, 1992.

H. Andersen, “An introduction to binary decision diagrs,” Department
of Information Technology, Technical University of Denrkafech. Rep.,
1999.

93

BIBLIOGRAPHY

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

A. Aziz, S. Tasiran, and R. K. Brayton, “BDD variable erthg for inter-
acting finite state machines,” iRroceedings of the 31st annual Design
Automation Conference, DAC '94ew York, NY, USA: ACM, 1994,
pp. 283—-288.

O. Coudert and J. C. Madre, “A unified framework for thenal ver-
ification of sequential circuits,1990 IEEE International Conference on
Computer-Aided Design, 1990. ICCAD-90. Digest of TecHritegers,
pp. 126-129, Nov. 1990.

J. Gunnarsson, “Symbolic methods and tools for digcesent dynamic
systems,” PhD thesis, Electrical Engineering, Linkdpingivérsity,
Linkdping, Sweden, 1997.

S. Miremadi and A. Voronov, “Symbolic reduction of gdarin supervi-
sory control using genetic algorithms,” Chalmers Univgrsif Technol-
ogy, Gothenburg, Sweden, Tech. Rep., 2012, p. 7.

L. D. Whitley, T. Starkweather, and D. Fuquay, “Schedglproblems
and traveling salesmen: The genetic edge recombinaticatmpg in Pro-
ceedings of the 3rd International Conference on Genetiotigms 1989,
pp. 133-140.

R. Drechsler, “Genetic algorithm for variable ordeyiof OBDDs,” inlEE
Proceedings of Computers and Digital TechniquE396, pp. 364-368.

D. Goldberg and R. Lingle, “Alleles, loci, and the tréing salesman prob-
lem,” in Proceedings of the First International Conference on Gienglt
gorithms and Their Applicationgittsburgh, PA, USA, 1985, pp. 156—
159.

N. Amla, R. Kurshan, K. L. McMillan, and R. Medel, “Experental
analysis of different techniques for bounded model chegkim Pro-
ceedings of the 9th international conference on Tools agdrahms for
the construction and analysis of systems, TACAS@3Ilin, Heidelberg:
Springer-Verlag, 2003, pp. 34-48.

A. Biere, E. Clarke, R. Raimi, and Y. Zhu, “Verifying s¥ properties of a
powerPC microprocessor using symbolic model checkingawitBDDs,”
in In Proc. 11 th Int. Conf. on Computer Aided Verificatid@pringer-
Verlag, 1999, pp. 60-71.

P. Bjesse, T. Leonard, and A. Mokkedem, “Finding buganmlpha mi-
croprocessor using satisfiability solvers, Hroceedings of the 13th Inter-
national Conference on Computer Aided Verification, CAy10dndon,
UK: Springer-Verlag, 2001, pp. 454-464.

BIBLIOGRAPHY 94

[85]

[86]

[87]

[88]
[89]

[90]

F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, Aadchella, and
M. Y. Vardi, “Benefits of bounded model checking at an indiassetting,”
in Proceedings of the 13th International Conference on Cosmmpéided
Verification, CAV’01 London, UK: Springer-Verlag, 2001, pp. 436—453.

A. Voronov and K. Akesson, “Supervisory control usirmgisfiability solv-
ers,” in 9th International Workshop on Discrete Event Systems, 2008
May 2008, pp. 81-86.

F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin,axadynier, “Au-
tomatic synthesis of robust and optimal controllers — arugtdal case
study,” in Proceedings of the 12th International Conference on Hybrid
Systems: Computation and Contra009, pp. 90-104.

JavaBDD [Online]. Available:j avabdd. sour cef or ge. net.

B. J.R., C. D, and D. E. Long, “Symbolic model chekinghvtartitioned
transition relations,” irA. Halaas and P.B. Denyer, editors, International
Conference on Very Large Scale Integratidmg. 1991, pp. 49-58.

Z. Fei, K. Akesson, and B. Lennartson, “Symbolic redulity compu-
tation using the disjunctive partitioning technique in sypsory control
theory,” in IEEE International Conference on Robotics and Automation
Shanghai, China, 2011, pp. 4364-4369.

javabdd.sourceforge.net

Part |l

Appended Papers

Paper 1

Symbolic Computation of Reduced Guards in
Supervisory Control

S. Miremadi, K. Akesson and B. Lennartson

IEEE Transactions on Automation Science and Engineering,
October 2011

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Paper 2

A BDD-based Approach for Modeling Plant and
Supervisor by Extended Finite Automata

S. Miremadi, B. Lennartson and K. Akesson
IEEE Transactions on Control Systems Technology, Noveg0iet

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Paper 3

Symbolic Representation and Computation of Timed
Discrete Event Systems

S. Miremadi, Z. Fei, K. Akesson and B. Lennartson

submitted to
IEEE Transactions on Automation Science and Engineerigj22

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Paper 4

Symbolic Supervisory Control of Timed Discrete
Event Systems

S. Miremadi, Z. Fei, K. Akesson and B. Lennartson

submitted to
IEEE Transactions on Control Systems Technology, 2012

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

	Abstract
	Acknowledgments
	Publications
	Contents
	List of Acronyms
	I Introductory Chapters
	Introduction
	Discrete Event Systems
	Verification
	Supervisory Control Theory
	Challenges
	Supervisor Representation
	Qualitative and Quantitative Analysis
	Computational Complexity

	Contributions
	Outline

	Modeling Formalisms
	Finite Automata
	Timed Extended Finite Automata
	Related Work

	Supervisory Control Theory
	SCT of Untimed DES
	DES Modeled by EFAs

	SCT of Timed DES
	Transformation of TEFAs to EFAs
	Controllability of TDES

	Synthesis
	Untimed DES
	Timed DES

	Supervisor Representation
	Representing the Supervisor as Guards

	Related Work

	Symbolic Representation and Computation
	Basics
	Characteristic Function

	Representation of Models
	Representation of DFAs
	Representation of TEFAs

	Symbolic Synthesis
	Size of Intermediate BDDs

	Symbolic Guard Generation
	Symbolic Computation of the Basic State Sets
	IDD Generation
	Guard Generation
	Guard Reduction by Genetic Algorithms

	Related Work

	Case Studies
	Illustrative Example
	Industrial Case Study
	Implementation Remarks

	Summary of Appended Papers
	Conclusions and Future Research
	Bibliography

	II Appended Papers
	Paper 1 Symbolic Computation of Reduced Guards in Supervisory Control
	Introduction
	Preliminaries
	Deterministic Finite Automata
	Supervisory Control Theory

	Supervisor as Guards
	Basic State Sets
	Guards

	BDD Representation
	From BDDs to Guards
	BDD Computation
	IDD Generation
	Heuristic Minimization Techniques
	Guard Generation

	From Guards to EFA
	Case Study - Car Manufacturing Cell
	Conclusions and Future Works
	References

	Paper 2 A BDD-based Approach for Modeling Plant and Supervisor by Extended Finite Automata
	Introduction
	Preliminaries
	Extended Finite Automata
	Binary Decision Diagrams

	Supervisory Control Theory
	Symbolic Computation of S0
	BDD representation of an EFA
	BDD representation of EFSC on EFAs

	Representation of the Supervisor as EFAs
	Guard Generation
	Guard Attachment

	Case Studies
	Model classification
	Benchmark examples
	Results

	Conclusions
	References

	Paper 3 Symbolic Representation and Computation of Timed Discrete Event Systems
	Introduction
	Timed Extended Finite Automata
	Syntax and Semantics
	Extended Full Synchronous Composition

	Supervisory Control Theory
	EFA semantics of TEFA
	Symbolic Representations and Computations
	Abstraction of Tick-EFAs
	BDD Representation of S0

	Case Study: A Production Cell
	Conclusions and Future Works
	References

	Paper 4 Symbolic Supervisory Control of Timed Discrete Event Systems
	Introduction
	Preliminaries
	Timed Extended Finite Automata
	Supervisory Control Theory

	Supervisory Synthesis of TDES
	Symbolic Representation and Computation
	Basics
	BDD representation
	Synthesis

	Industrial Case Study
	Conclusions and Future Work
	References

