
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Symbolic Supervisory Control of
Timed Discrete Event Systems

SAJED M IREMADI

Department of Signals and Systems
Automation Research Group

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70596597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Symbolic Supervisory Control of Timed Discrete Event Systems
SAJED M IREMADI

ISBN 978-91-7385-765-9

c© SAJED M IREMADI , 2012.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 3446
ISSN 0346-718X

Department of Signals and Systems
Automation Research Group
Chalmers University of Technology
SE–412 96 Gothenburg
Sweden
Telephone + 46 (0)31 – 772 1000

Typeset by the author using LATEX.

Chalmers Reproservice
Gothenburg, Sweden 2012

To my family

Abstract

With the increasing complexity of computer systems, it is crucial to have effi-
cient design of correct and well-functioning hardware and software systems. To
this end, it is often desired tocontrol the behavior of systems to possess some
desired properties. A specific class of systems is calleddiscrete event systems
(DES). DES deal with ‘discrete’ quantities, e.g., “number of robots in a man-
ufacturing cell”, and their processes are driven by instantaneous ‘events’, e.g.,
“start of a machine”. In this thesis, the focus is on DES and anextension of such
systems, which also considers the time points at which the events may occur,
called timed DES (TDES). Real-time applications such as communication net-
works, manufacturing facilities, or the execution of a computer program, can be
considered into TDES.

Having a DES or TDES, with some givenspecifications, by utilizing a well-
known mathematical framework, calledsupervisory control theory (SCT), it is
possible to automatically generate asupervisorthat restricts the system’s be-
havior towards the specifications, only when it is necessary. Applying the SCT
to large and complex systems, typically follows with some issues, concerning
computational complexity and modeling aspects, which is tackled in this thesis.

We model DES byextended finite automata (EFAs), state transition models
that contain discrete-valued variables. TDES are modeled by an augmentation of
EFAs, calledtimed EFAs (TEFAs), which contain a set of discrete-valued clocks.
Based on EFAs or TEFAs, the supervisor can besymbolicallycomputed, us-
ing binary decision diagrams (BDDs), data structures that could, in many cases,
lead to smaller representation of the state space. For complex systems, the com-
puted supervisor may consist of many states, causing representation and imple-
mentation difficulties. To tackle this, based on the states of the supervisor, we
symbolically compute logical constraints that will be attached to the original
models to restrict the system’s behavior. Consequently, wepresent a framework,
where given a set of EFAs or TEFAs, the supervisor is computedusing BDDs,
and represented in a modular manner based on the computed logical constraints.
The framework has been developed, implemented, and appliedto industrial case
studies.

Keywords: Timed Discrete Event Systems, Supervisory Control Theory,Ex-
tended Finite Automata, Binary Decision Diagrams.

i

ii

Acknowledgments

You start your PhD studies with the dream of making a major impact on the
science! But soon you realize the reality is something different. More than
contributing to the science, doing a PhD is about to learn howto ‘think’ in a
structural and analytical manner. It is about to understandwhy you got correct
results before getting happy, and why you got wrong results after becoming sad.
Finally, it is about to write and formulate your results in a ‘convincible’ way,
while meeting the ‘deadlines’. And during this journey, youindeed realize the
power of procrastination! As a result, in five years, you dealwith more or less
happy moments, which can be summarized as below:

HAPPINESS

YEAR1st 2nd 3rd 4th 5th

CONFUSION

IN RESEARCH+

COURSES+

TEACHING

PUBLISH THE

FIRST PAPERS

CONTINUE

IMPLEMENTATION

PUBLISH

FURTHER

PAPERS
WHAT

TO DO

NEXT?

NEW IDEA+

CORRECT

IMPLEMENTATION

SOMETHING

IS WRONG!

EVERYTHING

WOKRS

THESIS

WRITING

EUPHORIA!

I would therefore like to thank the people that let me share my‘peak’ moments
with them, and cheered me up during the ‘troughs’. Initially, I want to thank
my never-tiring supervisor Prof. Bengt Lennartson for supporting me in differ-
ent aspects; and as the head of our research group, for treating it as his second
family. And my co-supervisor Dr. Knut Åkesson for all the lively and fruitful
discussions, which positively changed my way of thinking. Ialso would like to
thank Prof. Martin “The Man in Black” Fabian for always beingavailable for
all kind of questions. All of my colleagues at the division ofAutomatic Control,
Automation and Mechatronics really deserve a word of appreciation. Thank you
guys, you are wonderful. A special appreciation goes to Zhennan “The Dude”
Fei, for all the enjoyable discussions we had together and the unforgettable time

iii

ACKNOWLEDGMENTS IV

we had in USA. Talking about USA, I would like to thank Prof. Spyros Reve-
liotis for giving us the opportunity to visit Georgia Tech. and experiencing the
research environment at such a good university. Also, a special thank goes the
administrative and technical staff at the department for always being so helpful
and making everything work smoothly.

Finally, I would like to thank the family of Prof. Dadfar for their never-ending
support, from the beginning of my studies in Sweden. My deepest gratitude goes
to my family and friends, whom have always encouraged me and believed in me,
especially, my parents and my brothers.

Sajed Miremadi
Gothenburg, November 2012

This work was carried out within the Wingquist Laboratory VINN Excellence
Centre at Chalmers University of Technology and was also supported by Swedish
Foundation for Strategic Research through the ProViking program.

Publications

This thesis is based on the following papers, included in full in PartII :

[Paper 1] S. Miremadi, K. Åkesson and B. Lennartson. Symbolic computa-
tion of reduced guards in supervisory control.IEEE Transactions on
Automation Science and Engineering, vol. 8, no. 4, pp. 754-765,
October 2011.

[Paper 2] S. Miremadi, B. Lennartson and K. Åkesson. A BDD-based approach
for modeling plant and supervisor by extended finite automata. IEEE
Transactions on Control Systems Technology, vol. 20, no. 6, pp.
1421-1435, November 2012.

[Paper 3] S. Miremadi, Z. Fei, K. Åkesson and B. Lennartson. Symbolic repre-
sentation and computation of timed discrete event systems.Submit-
ted to IEEE Transactions on Automation Science and Engineering,
2012.

[Paper 4] S. Miremadi, Z. Fei, K. Åkesson and B. Lennartson. Symbolic su-
pervisory control of timed discrete event systems. Submitted toIEEE
Transactions on Control Systems Technology, 2012.

The following papers are relevant to this work but not included in the thesis:

[1] S. Miremadi, Z. Fei, K. Åkesson and B. Lennartson. Symbolic computa-
tion of nonblocking control function for timed discrete event systems. To
be published inProceedings of the8th IEEE International Conference on
Automation Science and Engineering, December 2012.

[2] S. Miremadi and A. Voronov. Symbolic reduction of guardsin supervi-
sory control using genetic algorithms. Chalmers University of Technology,
Gothenburg, Sweden,Technical Report, August 2012, p. 7.

[3] S. Miremadi, B. Lennartson and K. Åkesson. BDD-based supervisory con-
trol on extended finite automata. InProceedings of the7th IEEE Interna-
tional Conference on Automation Science and Engineering, August 2011,
pp. 25-31.

v

PUBLICATIONS VI

[4] S. Miremadi, K. Åkesson and B. Lennartson. Extraction and representa-
tion of a supervisor Using guards in extended finite automata. In Proceed-
ings of the9th International Workshop on Discrete Event Systems, May
2008, pp. 193-199.

[5] S. Miremadi, K. Åkesson, M. Fabian, A. Vahidi and B. Lennartson. Solv-
ing two supervisory control benchmark problems using Supremica. In
Proceedings of the9th International Workshop on Discrete Event Systems,
May 2008, pp. 131-136.

[6] Z. Fei, S. Miremadi, K. Åkesson and B. Lennartson. Efficient Supervisory
Synthesis for Extended Finite Automata. Submitted toIEEE Transactions
on Control Systems Technology, 2012.

[7] Z. Fei, S. Miremadi, K. Åkesson and B. Lennartson. Efficient supervisory
synthesis to large-scale discrete event systems modeled asextended finite
automata. InProceedings of the8th IEEE International Conference on
Automation Science and Engineering, August 2012.

[8] Z. Fei, S. Miremadi, K. Åkesson and B. Lennartson. Modeling sequential
resource allocation systems using extended finite automata. In Proceed-
ings of the7th IEEE International Conference on Automation Science and
Engineering, August 2011, pp. 444-449.

[9] Z. Fei, S. Miremadi, K. Åkesson and B. Lennartson. Efficient symbolic
supervisory synthesis and guard generation: Evaluating partitioning tech-
niques for the state-space exploration. InProceedings of the3rd Interna-
tional Conference on Agents and Artificial Intelligence, January 2011, pp.
106-115.

[10] B. Lennartson, S. Miremadi, Z. Fei, M. Noori, M. Fabian and K. Åkesson.
State-Vector Transition Model Applied to Supervisory Control. In Pro-
ceedings of the17th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, September 2012.

[11] M. Fabian, S. Miremadi, Z. Fei and K. Åkesson. Supervisory control of
manufacturing systems using extended finite automata. To bepublished in
Formal Methods in Manufacturing(Series on Industrial Information Tech-
nology), J. Campos, C. Seatzu and X. Xie, CRC Press/Taylor and Francis,
2013, ch. 10.

[12] M. R. Shoaei, S. Miremadi, K. Bengtsson and B. Lennartson. Reduced-
order synthesis of operation sequences. InProceedings of the16th IEEE
International Conference on Emerging Technologies and Factory Automa-
tion, September 2011, pp. 1-8.

VII

[13] M. R. Shoaei, B. Lennartson and S. Miremadi. Automatic generation of
controllers for collision-free flexible manufacturing systems. InProceed-
ings of the6th IEEE Conference on Automation Science and Engineering,
August 2010, pp. 368-373.

[14] K. Bengtsson, P. Bergagård, C. Thorstensson, B. Lennartson, K. Åkesson,
C. Yuan, S. Miremadi and P. Falkman. Sequence planning usingmultiple
and coordinated sequences of operations.IEEE Transactions on Automa-
tion Science and Engineering, vol. 9, no. 2, pp. 308-319, April 2012.

[15] K. Bengtsson, C. Thorstensson, B. Lennartson, K. Åkesson, C. Yuan, S.
Miremadi and P. Falkman. Relations identification and visualization for
sequence planning and automation design. InProceedings of the6th IEEE
Conference on Automation Science and Engineering, August 2010, pp.
841-848.

viii

Contents

Abstract i

Acknowledgments iii

Publications v

Contents ix

List of Acronyms xiii

I Introductory Chapters 1

1 Introduction 3
1.1 Discrete Event Systems. 3
1.2 Verification . 4
1.3 Supervisory Control Theory. 5
1.4 Challenges. 6

1.4.1 Supervisor Representation. 6
1.4.2 Qualitative and Quantitative Analysis. 6
1.4.3 Computational Complexity. 6

1.5 Contributions . 7
1.6 Outline . 8

2 Modeling Formalisms 9
2.1 Finite Automata. 9
2.2 Timed Extended Finite Automata. 14
2.3 Related Work. 21

3 Supervisory Control Theory 23
3.1 SCT of Untimed DES. 24

3.1.1 DES Modeled by EFAs. 27
3.2 SCT of Timed DES. 28

3.2.1 Transformation of TEFAs to EFAs. 29

ix

CONTENTS X

3.2.2 Controllability of TDES 30
3.3 Synthesis . 33

3.3.1 Untimed DES. 33
3.3.2 Timed DES. 36

3.4 Supervisor Representation. 40
3.4.1 Representing the Supervisor as Guards. 41

3.5 Related Work . 48

4 Symbolic Representation and Computation 49
4.1 Basics . 50

4.1.1 Characteristic Function. 51
4.2 Representation of Models. 52

4.2.1 Representation of DFAs. 52
4.2.2 Representation of TEFAs. 53

4.3 Symbolic Synthesis. 57
4.3.1 Size of Intermediate BDDs. 60

4.4 Symbolic Guard Generation. 61
4.4.1 Symbolic Computation of the Basic State Sets. 61
4.4.2 IDD Generation. 62
4.4.3 Guard Generation. 63
4.4.4 Guard Reduction by Genetic Algorithms. 63

4.5 Related Work . 65

5 Case Studies 67
5.1 Illustrative Example. 67
5.2 Industrial Case Study. 72
5.3 Implementation Remarks. 79

6 Summary of Appended Papers 81

7 Conclusions and Future Research 83

Bibliography 87

II Appended Papers 95

Paper 1 Symbolic Computation of Reduced Guards in Supervisory
Control 100
1 Introduction . 100
2 Preliminaries . 102

2.1 Deterministic Finite Automata. 102
2.2 Supervisory Control Theory. 103

3 Supervisor as Guards. 104

XI CONTENTS

3.1 Basic State Sets. 105
3.2 Guards . 107

4 BDD Representation. 109
5 From BDDs to Guards. 111

5.1 BDD Computation. 112
5.2 IDD Generation. 113
5.3 Heuristic Minimization Techniques. 116
5.4 Guard Generation. 117

6 From Guards to EFA. 118
7 Case Study - Car Manufacturing Cell. 120
8 Conclusions and Future Works. 124
References. 125

Paper 2 A BDD-based Approach for Modeling Plant and Supervisor
by Extended Finite Automata 132
1 Introduction . 132
2 Preliminaries . 135

2.1 Extended Finite Automata. 135
2.2 Binary Decision Diagrams. 139

3 Supervisory Control Theory. 140
4 Symbolic Computation ofS0 141

4.1 BDD representation of an EFA. 142
4.2 BDD representation of EFSC on EFAs. 145

5 Representation of the Supervisor as EFAs. 153
5.1 Guard Generation. 154
5.2 Guard Attachment. 155

6 Case Studies. 156
6.1 Model classification 156
6.2 Benchmark examples. 158
6.3 Results . 160

7 Conclusions. 161
References. 162

Paper 3 Symbolic Representation and Computation of Timed Discrete
Event Systems 170
1 Introduction . 170
2 Timed Extended Finite Automata. 172

2.1 Syntax and Semantics. 172
2.2 Extended Full Synchronous Composition. 176

3 Supervisory Control Theory. 178
4 EFA semantics of TEFA . 179
5 Symbolic Representations and Computations. 181

5.1 Abstraction of Tick-EFAs 182

CONTENTS XII

5.2 BDD Representation ofS0
. 184

6 Case Study: A Production Cell. 192
7 Conclusions and Future Works. 195
References. 196

Paper 4 Symbolic Supervisory Control of Timed Discrete Event Sys-
tems 204
1 Introduction . 204
2 Preliminaries . 205

2.1 Timed Extended Finite Automata. 206
2.2 Supervisory Control Theory. 210

3 Supervisory Synthesis of TDES. 212
4 Symbolic Representation and Computation. 220

4.1 Basics. 220
4.2 BDD representation. 221
4.3 Synthesis. 222

5 Industrial Case Study. 223
6 Conclusions and Future Work. 230
References. 231

List of Acronyms

BDD – Binary Decision Diagrams
CF – Characteristic Function
CS – Complement State
DES – Discrete Event System
DFA – Deterministic Finite Automaton
EFA – Extended Finite Automaton
EFSC – Extended Full Synchronous Composition
FA – Finite Automaton
FSC – Full Synchronous Composition
GA – Genetic Algorithms
IS – Independent State
PCG – Process Communication Graph
SCT – Supervisory Control Theory
STS – State Transition System
TA – Timed Automaton
TDES – Timed Discrete Event Systems
TEFA – Timed Extended Finite Automaton
TGA – Timed Game Automaton

xiii

xiv

Part I

Introductory Chapters

Chapter 1

Introduction

As we progress in time, the dependence and inseparability ofour daily lives to
hardware and software systems grow rapidly. For instance, modern cars, mo-
bile phones, medical devices, communication systems, audio and video systems,
control systems, etc. contain various types of software.

1.1 Discrete Event Systems

Historically, the systems that have been studied over the years involve quanti-
ties such as pressure, temperature, speed, and acceleration, which are continu-
ous variables, evolving over time. Such systems have continuous states and are
time-driven, i.e., a state changes as time changes. Since wecan naturally de-
fine derivatives for continuous variables, modeling and analysis of such systems
heavily rely on the theory and techniques related to differential and difference
equations.

Nevertheless, not all system behaviors can be meaningfullyrepresented by
continuous variables and mathematical expressions. Most of the computer sys-
tems that we deal with includediscreteproperties. They are discrete in the sense
that they are typically related to counting integer numberssuch as the number of
vehicles in a transportation system, number of faults in a system, or number of
robots in a manufacturing cell. An interesting point about such systems is that
most of them are driven by instantaneouseventssuch as “start of a machine’ or “a
traffic light turning green”. When an event occurs, the system transits from one
stateto another state, e.g., “the traffic light turns from amber togreen”. A sys-
tem which its state evolution depends entirely on the occurrence of asynchronous
events over time is called adiscrete event system (DES)1, which is the scope of
this thesis. Many systems are profitably modeled by DES such as manufacturing
systems, operative systems, communication protocols and telephony systems.

1In the thesis, for ease of reading, “DES” is also used in plural form, i.e., “discrete event
systems”.

3

CHAPTER 1. INTRODUCTION 4

In DES, merely the sequence of the visited states, i.e., the sequence that the
events occur, is used to analyze different systems. In otherwords, the logical or
thequalitativebehavior of a system is in focus. For instance, in a manufactur-
ing system a qualitative property could be “robot 1 should always complete its
task before robot 2” or in a communication system “two users should not use a
channel simultaneously”. Nevertheless, the correct behavior of many real-time
systems such as air traffic control systems and networked multimedia systems
depends on thedelaysbetween events. In addition, in many cases, we also want
to analyze thequantitativeproperties of the systems. For instance, in a manufac-
turing system we can check a property “if robot 1 does not finish its task in 20
seconds, let robot 2 finish its task” or in a communication system “if a channel
is booked by a user for more than 1 minute, prohibit the user touse the channel
and let another one use it”. A DES that also considers the timepoints the events
occur, is referred to astimed DES (TDES). In this thesis, we analyze both DES
and TDES.

With the increasing complexity of computer systems, it is crucial to have ef-
ficient design of correct and well-functioning hardware andsoftware systems.
Systems that do not work as expected can both lead to costly mistakes and disas-
trous consequences. In the early nineties, a bug was detected in Intel’s Pentium
II floating division unit, which caused the company a loss of about $475 million
to replace faulty processors [1]. In 1997, the Mars Pathfinder landed on Mars,
however, the spacecraft contained a design flaw that once in awhile resulted in
system resets and loss of important data [2]. Between 1985 and 1987, an error
in the control part of the radiation therapy machine Therac-25 led to an over-
dose of radiation, which caused the death of six cancer patients [3]. All of these
programs includeddesignerrors that were not captured during the design or im-
plementation phases. Hence, somehow we need to ensure that the programs are
correct or error-free, before putting them into practice.

1.2 Verification

As different systems are continuously used in larger contexts and in interaction
with other components, they become more vulnerable to errors. It is known
that the number of errors grows exponentially with the number of interacting
system components. Thus, checking the correctness of complex systems with
standard and conventional techniques such as random simulation or directed test
are not always possible; especially, with the high demands on the system devel-
opment time. Today,formal verificationis mostly used for this purpose, that is
mathematically-based techniques for proving or disproving the correctness of a
property in a system [4, 5]. Investigations show that the design errors which were
exposed in the aforementioned applications had been revealed if formal verifi-
cation had been utilized. In formal verification, initially, the desired property

5 1.3. SUPERVISORYCONTROL THEORY

to be verified is identified. Then, an abstract model of the system including the
surrounding environment is built. Finally, the parts of thesystem that are inter-
esting w.r.t the property are identified, and it is mathematically shown whether
the property holds in the region of interest. Hence, the finalresult after verifying
a system could be eitheryes, i.e., the system satisfies the given property, orno,
i.e., the system does not satisfy the given property. Consequently, the goal is to
design acontrol functionthat that restricts the system’s behavior towards all the
given desired properties.

1.3 Supervisory Control Theory

Basically, there are two conceivable ways of designing a control function: man-
ually based onverificationor automaticallybased onsynthesis. In the verifi-
cation method a control function candidate is designed manually in a fashion
that supposedly controls the system in an appropriate manner. This is then ver-
ified towards some desired properties and if the result is satisfactory the control
function design is finished. Preferably, the verification should give a hint about
problems with the current control function so that the designer will have a better
understanding of what needs to be changed. The verification method could be
useful for applications, wherechangesare not applied frequently, e.g., micro-
controllers. However, for applications, where the controlfunction needs to be
modified frequently due to changes to the system, the verification method could
be quite time consuming. For instance, in a car manufacturing system, each time
a new model is going to be produced, since much of the work is done on-line on
the shop-floor, the production is down during the control function implementa-
tion. There are different tools such as UPPAAL [6] and KRONOS [7] that are
based on the described verification procedure.

In the synthesis method, the above process is automated. Based on the spec-
ifications of the desired system behavior, synthesis generates a control function
that makes sure the system does not violate the specifications. Naturally, synthe-
sis can be carried out in different ways. For instance, it is possible to synthesize a
control function that restricts the system more than necessary, which is typically
not desired. In 1987, Ramadge and Wonham proposed a conceptual framework
calledsupervisory control theory (SCT)for DES [8]. They showed that given a
system, referred to as theplant and some desired properties, referred to as the
specifications, there exists a control function, referred to as thesupervisor, which
is minimally restrictive. The supervisor is minimally restrictive in the sense that
it restricts the plant only when it is necessary without violating the specifications.
They also proposed a method to automatically synthesize such a supervisor. SCT
has been applied to different domains such as manufacturingsystems [9, 10], ve-
hicular traffic [11], logistics [12], and communication networks [13, 14]. There
are different tools such as Supremica [15] and TCT [16] that are based on the

CHAPTER 1. INTRODUCTION 6

SCT for generating control functions. In this thesis, we aimto compute con-
trol functions for DES and TDES, based on the SCT. Despite many benefits that
can be gained by utilizing SCT, still, the control functionsare mostly designed
manually in the industry.

1.4 Challenges

In the following, we discuss some of the existing challengesin the SCT.

1.4.1 Supervisor Representation

The SCT is based on state-transition models; but industrialpeople are used to
other representations such as sequential function charts (SFCs), ladder diagrams,
Gantt charts, and PERT charts, that are exploited to represent the control func-
tions. Specifically, the interpretation of a control function represented by a large
and cluttered state-transition model requires the maintenance personnel to have
other skills than are common today.

1.4.2 Qualitative and Quantitative Analysis

Conventional SCT is not defined for TDES. To this end, researchers proposed
different approaches to, based on the SCT, performqualitativeanalysis on TDES
[17–20]. Most of these approaches are based on discrete time. Therealso ex-
ists many models and implementations that are suitable forquantitativeanalysis,
most of them based on continuous time [21–25]; yet there are few works consid-
ering both the qualitative and quantitative aspects of TDES.

1.4.3 Computational Complexity

The complexity of a system represented by a state-transition model is often mea-
sured by its number of states, referred to asstate space. The state space of a sys-
tem grows exponentially by the addition of new components tothe system. Since
most of the industrial systems consist of many components, they include a huge
state space, sometimes10100 states or even more. Obviously, representing and
enumerating such state spacesexplicitly is more or less impossible both in terms
of time and memory. To tackle this problem, the state space can be represented
symbolically (implicitly), which in many cases results in a smaller representation
of the state space. Symbolic representation implies that the state space is de-
scribed by means of logic constraints and special data structures, which makes
it possible to simultaneously perform operations on a set ofstates, rather than a
single state. One such powerful data structure is calledbinary decision diagram
(BDD) that is used to symbolically represent Boolean functions [26]. It has been

7 1.5. CONTRIBUTIONS

shown that BDD-based algorithms can improve the efficiency of computing con-
trol functions dramatically. For instance, in [27] the supervisor of a system with
more than10200 states was computed in a few minutes. However, in many cases
it is quite complicated to represent models by BDDs and perform all the com-
putationspurely on these data structures, especially, with the introduction of
time.

1.5 Contributions

The aforementioned challenges have been tackled in this thesis, which has lead
to the following contributions:

C1: Symbolic representation ofextended finite automata (EFAs), finite au-
tomata extended with discrete variables, and their full synchronous com-
position operator, based on BDDs.

C2: Symbolic representation oftimed extended finite automata (TEFAs), EFAs
extended with discrete-values clocks, and their full synchronous compo-
sition operator, based on BDDs. This contribution mainly considers the
symbolic representation of time without includingtick events.

C3: Symbolic computation of the supervisor of TDES, modeledby TEFAs,
based on BDDs.

C4: Identification of a subset of the states belonging to the supervisor as the
basic state sets. Based on the basic state sets, some logical conditions, re-
ferred to asguards, are automatically generated. The guards express under
which conditions an event is allowed to occur to fulfill the specifications.

C5: Symbolic computation of the basic state sets, using BDDs; and simplifi-
cation of the guards, by utilizing the structure of the modeland applying
different heuristic techniques.

C6: Representation of amodularsupervisor for a system that is modeled by
TEFAs. The supervisor is modular in the sense that it is represented by the
original TEFAs restricted by the computed guards.

C7: All algorithms are developed, implemented, and verifiedin Supremica [15,
28–30], a software tool for automatic verification, synthesis andsimulation
of DES.

In Table1.1, the relationship between the main contributions and each of the
mentioned challenges, i.e., supervisor representation (SR), qualitative and quan-
titative analysis (QQA), and computational complexity (CC), is illustrated. Fur-
ther, the table shows in which appended papers the challenges are addressed and
the contributions are presented.

CHAPTER 1. INTRODUCTION 8

Table 1.1: Illustration of the relationships: challenges – main contributions – appended
papers.

Challenge

SR QQA CC

C
on

tr
ib

ut
io

n

C1 Paper2

C2 Paper3 Paper3

C3 Paper4 Paper4

C4 Paper1

C5 Paper1 Paper1

C6 Paper2

C7 Paper1-4

1.6 Outline

The thesis is divided in two parts. PartI provides introductory chapters that
present background and context of the appended papers in Part II . The papers in
Part II constitute the base of this thesis. A list of references is included at the
end of PartI and at the end of each paper presented in PartII . All the proofs of
the propositions, lemmas, and theorems in PartI are included in the appended
papers in PartII .

Chapter2 describes the modeling formalisms, deterministic finite automata
and timed extended finite automata, which we used to model thesystems. In
Chapter3, the supervisory control theory of both untimed discrete event systems
and their timed extension are explained. Chapter4 gives an overview of the
symbolic data structures, i.e., binary decision diagrams,that are used to perform
the analysis. Chapter5 includes an illustrative and an industrial case study. A
summary of the scientific papers, appended in PartII , is provided in Chapter6.
Finally, PartI is concluded in Chapter7.

Chapter 2

Modeling Formalisms

When it comes to analysis and control of discrete event systems (DES), us-
ing appropriate modeling formalisms for representing the system’s behavior is
a dilemma. The appropriate choice highly depends on the objectives of the anal-
ysis. There are various modeling formalisms used to model DES such as finite
automata [31, 32], Petri nets [33], process algebra [34, 35] and logic-based mod-
els [36].

Since automata are intuitive, easy to use, suitable for analysis and applicable
to composition operations, they are used quite often for modeling, compared to
other formalisms. In this work, automata are used to model DES. The main rea-
son for this choice, is that automata conform well with supervisory control theory
(discussed in Chapter3), as they were used originally in [8]. In addition, to im-
prove the expressiveness and compactness of the models, we use an extended
variant of ordinary automata, where discrete-value variables and clocks are in-
troduced to the model. In this work, we are interested in deterministic systems,
and thus all models that are used in this work are considered to be deterministic.

Remark (SOS-notation). A notation that will be used frequently is theSOS-
notation(Structured Operational Semantics) [37]. The notation premise

conclusion should
be read as follows: if the proposition above the “solid line”(premise) holds, then
the proposition under the fraction bar (conclusion) holds as well.

2.1 Finite Automata

A finite automaton (FA) is a state transition system or a statemachine, formally
defined as below.

Definition 2.1 Finite Automaton

A finite automaton (FA) is a 4-tuple(Q,Σ, 7→, Q0) where

- Q is a finite set of states;

9

CHAPTER 2. MODELING FORMALISMS 10

- Σ is a nonempty finite set of events;

- 7→⊆ : Q× Σ×Q is a transition relation; and

- Q0 ⊆ Q is a set of initial states.

The set of eventsΣ is sometimes referred to as thealphabetof the automaton.
The notation|Q| denotes the number of states of the automaton. For an eventσ,
a source-stateq and atarget-statéq, a transition(q, σ, q́) ∈7→ is writtenq σ

7→ q́,
which means that by the occurrence ofσ, the system evolves fromq to q́. A state
q is said to bereachableif the automaton can evolve intoq by a number of event
executions, starting with an initial state.

Definition 2.2 Deterministic Finite Automaton (DFA)

An FA(Q,Σ, 7→, Q0) is deterministic if there only exists a single initial state, i.e.,
Q0 = {q0}; and

∀q ∈ Q :
q

σ
7→ q́ ∧ q

σ
7→ q̀

q́ = q̀
.

Informally, by executing an event at any state of a DFA, the next state can be
determined. Hence, in a DFA, the transition relation will bea function. In the se-
quel, where ever we mention “automaton”, we refer to deterministic automaton.

For an automatonA, we useΓA(q) to denote all the events inA that are
enabledfrom stateq. Formally,ΓA(q) = {σ ∈ Σ | ∃q́ ∈ QA : (q, σ, q́) ∈7→A}.
We also use the notationQσ

A to represent all the states inA, where eventσ is
enabled, i.e.,Qσ

A = {q ∈ QA|σ ∈ ΓA(q)}.
It is often easier to model complex systemsmodularly, in a structured way,

by a number of automata. The global behavior of a modular model can be repre-
sented by composing the automata. The composition of two automata is defined
by thefull synchronous composition (FSC)operator‖ [38]. In FSC, the shared
events must be executed by all automata synchronously, while other events are
executed independently.

Definition 2.3 Full Synchronous Composition (FSC)

For k = 1, 2, consider two DFAsAk = (Qk,Σk, 7→k, {q
0
k}). The full syn-

chronous composition (FSC)ofA1 andA2, denoted byA1‖A2, is an automaton
A = (Q,Σ, 7→, {q0}), where

- Q = Q1 ×Q2,

- Σ = Σ1 ∪ Σ2,

- the transition relation7→⊆ Q × Σ × Q is defined based on the following
rules:

11 2.1. FINITE AUTOMATA

(a) σ ∈ Σ1 ∩ Σ2:

(q1, σ, q́1) ∈7→1 ∧ (q2, σ, q́2) ∈7→2

((q1, q2), σ, (q́1, q́2)) ∈7→
,

(b) σ ∈ Σ1\Σ2:

(q1, σ, q́1) ∈7→1 ∧ q2 ∈ Q2

((q1, q2), σ, (q́1, q2)) ∈7→
,

(c) σ ∈ Σ2\Σ1:

(q2, σ, q́2) ∈7→2 ∧ q1 ∈ Q1

((q1, q2), (q1, q́2)) ∈7→
,

- q0 = (q01, q
0
2).

In the above definition,Σ1\Σ2 denotes the set operationrelative complement,
indicating all the events that are included inΣ1 but are not included inΣ2. FSC
can indeed be extended to multiple automata [38]. After the composition, the
size ofA1‖A2, in the worst case, is the product of the sizes ofA1 andA2. For
the most, not all of these states are reachable–the size ofA1‖A2 can even be
smallerthan bothA1 andA2–but thegrowth of the state-space can be consider-
able. This effect is particularly prominent when many automata are composed,
in which the size of the state-space easily becomes unmanageable, a problem
commonly referred to as thestate space explosion problem. This is the problem
that is tackled by representing the automata symbolically using binary decision
diagrams, discussed in Chapter4.

To show how a system can be modeled by FAs, let us take a look at an
example, which is an extended version of the railroad example in [39].

EXAMPLE 2.1 Railroad Crossing

Consider a one-way railroad that crosses a one-way road, shown in Figure2.1.
It is desired to develop a control system that closes the gatewhen it receives a
signal indicating that a train is approaching, and opens thegate when it receives
a signal indicating that it has crossed the road and no other train has approached
the crossing again. Furthermore, there exists a warning light on the road that
has a reasonable distance to the crossing, indicating that atrain is crossing the
road to warn the drivers to slow down. The control system should only switch
the light when the gate is closed and switch it off when the gate is opened. This

CHAPTER 2. MODELING FORMALISMS 12

road

gate

train

signal “approach” signal “exit”

warning light

Figure 2.1: Railroad crossing example.

system can be modeled by four DFAs

TRAIN = ({far , near , in}, {approach, enter, exit}, 7→1, {far}),

GATE = ({up, down}, {lower, raise}, 7→2, {up}),

WARNINGLIGHT = ({off , on}, {switch_off, switch_on}, 7→3, {off }),

CONTROLLER = ({l0, . . . , l5}, {approach, lower, switch_off,

switch_on, exit, raise}, 7→4, {0}),

where their corresponding transition relations are depicted in Figure2.2.
The states of the DFA representing the train (Figure2.2a) have the following

intuitive meaning: in statefar the train is not close to the crossing, in statenear

it is approaching the crossing and has just sent a signal to notify this, and in
statein it is at the crossing. The states ofGATE andWARNINGLIGHT have
the obvious interpretation. The DFACONTROLLER (Figure2.2d) will evolve
from statel0 to l1 when the eventapproachoccurs. At statel1, the controller
closes the gate by sending the signallower to the gate, ending up in statel2, and
turns the warning light on by sending the signalswitch_onto the warning light,
ending up in statel3. When the eventexit occurs, the train has left the crossing,
ending up in statel4. If at this moment, another train approaches the crossing,
the controller will not open the gate and will evolve to statel3; otherwise it opens
the gate by sending the signalraiseand turns off the warning light by sending
the signalswitch_off.

The global behavior of the system can be observed by synchronizing the
automata:TRAIN ‖GATE‖WARNINGLIGHT ‖CONTROLLER . By consid-
ering the following two transitions in the synchronized DFA, it can be revealed

13 2.1. FINITE AUTOMATA

far near

in

approach

enterexit

(a) TRAIN .

up

down

lower raise

(b) GATE .

off

on

switch_on switch_off

(c) WARNINGLIGHT .

l0 l1

l2l3l4

l5
approach

lower

swtich_on

exit

approach

raise

switch_off

(d) CONTROLLER .

Figure 2.2: DFAs modeling the railroad crossing example.

CHAPTER 2. MODELING FORMALISMS 14

that the system suffers from a design flaw:

((far , up, off , l0), approach, (near , up, off , l1)) and

((near , up, off , l1), enter, (in, up, off , l1)).

“At state(in , up, off , l1) the gate is about to close (by executing the eventlower),
while the train is (already) at the crossing, which can causecollision. In fact, the
basic concept of the design is correct if and only if closing the gate does not
take more time than the train needs to get to the crossing onceit sends the signal
approach” [39]. Such real-time constraints cannot be formulated by DFAs and
will be the main motivation of introducing timed extended finite automata.

2.2 Timed Extended Finite Automata

In some cases, modeling complex systems with DFAs can lead toincompact and
intractable models for the users. One way to obtain more compact models is by
introducing variables to the model. Naturally, physical signals that are stored in
memories or sent between controllers can be modeled as global variables. For
instance, a convenient way to model sensors and actuators isby using variables.
Also, systems that have a buffer-resembling behavior can beeasily modeled by
variables. To this end, a new modeling formalism calledExtended Finite Au-
tomaton (EFA), was presented in [40]. An EFA is an augmentation of an FA with
a finite set of discrete-valued variables. The variables appear in the transitions
of the automata as either logical conditions, calledguards, or updating function,
calledactions. A transition in an EFA is enabled if and only if its corresponding
guard formula is satisfied; and when a transition is taken it may be followed by
updates of variables defined by the associated actions. We model DES by using
EFAs.

However, in order to model TDES, EFAs are not complete modelsto repre-
sent timing properties. To this end, we introducetimed extended finite automaton
(TEFA), which is an EFA, augmented with a finite set of discrete-valued clocks.
Intuitively, a clock in a TEFA is a discrete variable in the sense of EFAs, re-
stricted by some rules, mentioned later. The time implicitly elapses only at loca-
tions, whereas the transitions occur instantaneously withzero delay. It is worth
to mention that by disregarding the clocks from TEFAs, the remaining formal
discussions on TEFAs are equivalent to EFAs, and thus, in thefollowing, we
only discuss TEFAs.

Definition 2.4 Timed Extended Finite Automaton

A timed extended finite automaton is a 10-tuple

TE = (L,DV , C,Σ,→, Inv , L0, DV0, Lm, Dm),

15 2.2. TIMED EXTENDED FINITE AUTOMATA

where

- L is a finite set of locations,

- DV = DV1 × . . . × DVn is the domain ofn variablesV = {v1, . . . , vn},
whereDVi is a finite set of integers,

- C is a finite set ofp discrete valued clocks{c1, . . . , cp},

- Σ is a nonempty finite set of events,

- →⊆ L× GC × Σ× G ×A× L is the transition relation,

- Inv : L→ gC, is an invariant-assignment function,

- L0 ⊆ L is a set of initial locations,

- DV0 = DV01 × . . .×D
V0
n is a set of initial values of the variables,

- Lm ⊆ L is a set of marked locations that are desired to be reached, and

- Dm = DVm ×DCm is a set of pairs of marked valuations of the variables
and clocks.

In addition toDV , we also defineDC representing the domain of thep clocks.
Later we will explain how the domain of a clock is defined and show that it is
finite. Theglobal variable domaindenoted byDV∪ is the set that contains the
values of all variables, defined formally as:

DV∪ =
n⋃

i=1

DVi .

Theglobal clock domaindenoted byDC∪ is defined similarly. The largest value in
DV∪ andDC∪ is denoted byµmaxV andµmaxC, respectively. If a variable exceeds
its domain, the result is not defined, and from an implementation point of view,
it is upon the developer to decide how to implement such cases. For instance,
the program can give the user a warning. In our implementation, values outside
the domain will be ignored and will not be included in our computations. In
contrast to variables, it is assumed that if a clockci reaches its maximum value,
it will keep its value until it is reset. For a clockci, this behavior is modeled by
a saturation function̺i : N→ DCi :

̺i(x) =

0 if x < 0

x if 0 ≤ x < µmaxCi
µmaxCi if x ≥ µmaxCi

,

CHAPTER 2. MODELING FORMALISMS 16

whereN is the set of natural numbers. The function̺ : Np → DC is used to
saturate the current value of all clocks.

The elementsG andA are the sets of guards (conditional expressions) and
action functions, respectively. In the TEFA framework, an arithmetic expression
ϕ is formed according to the grammar

ϕ := ν | v | c | (ϕ) | ϕ+ ϕ | ϕ− ϕ | ϕ ∗ ϕ | ϕ/ϕ | ϕ%ϕ,

wherev ∈ V, c ∈ C, ν ∈ DV∪ ∪ D
C
∪, and% is the modulo operator. We useϕV

to denote an expression that does not contain any clocks and thusν ∈ DV∪ . A
variable evaluationfor a variablevi ∈ V is a functionµVi : vi → DVi , assigning
a value to the variable. Aclock evaluationµCi : ci → DCi is defined similarly.
A set of evaluations for all variables and clocks is represented byµV andµC,
respectively.

A guardg ∈ G is a propositional expression formed according to the gram-
mar

g := (g) | gV ∧ gC | gV ∨ gC,

wheregV ∈ GV andgC ∈ GC are guards that are based on regular variables and
clocks, respectively,

gV := ϕV < ϕV | ϕV ≤ ϕV | ϕV > ϕV | ϕV ≥ ϕV | ϕV == ϕV |

(gV) | gV ∧ gV | gV ∨ gV | ⊤ | ⊥,

gC := c < ω | c ≤ ω | c > ω | c ≥ ω | c == ω | (gC) | gC ∧ gC | ⊤ | ⊥,

where⊤ and⊥ represent Boolean logictrue and false, respectively, and
ω ∈ DC∪. This implies that clocks can only be compared to constants.All
nonzero values are considered as⊤. The semantics of a guardg is specified
by asatisfaction relation|=, indicating the pair of variable and clock evaluations
(µV , µC) for which guardg is⊤. It is written(µV , µC) |= g.

An actiona ∈ A is a tuple of functions:

a = (aV , aC) = ((aV1 , . . . , a
V
n), (a

C
1 , . . . , a

C
p)).

A variable actionaVi : DV ×DC → DVi is a function that updates a variable; and
a reset actionaCi : DC → 0 is a function that only resets a clock. Hence, for a
variable, the action is formed asvi = ϕ and for a clock it is formed asci = 0.
An action functionai that does not update a variable or clock is denoted byξ,
which is later used in the synchronization process to determine the updated value
of vi. FunctionInv assigns to each location alocation invariantthat constrains
the amount of time that may be spent in the location. Specifically, the location
should be left before the invariant becomes invalid. Semantically, this situation
causes time evolution to halt. Intuitively, if a location invariant consists of aless
thanrelation, the invariant can be considered as a deadline.

17 2.2. TIMED EXTENDED FINITE AUTOMATA

The clocks can be seen as regular variables that are synchronized with a
global digital clock. The clocks will evolve implicitly at the locations, each time
the global clock “ticks”. In other words, all clocks evolve synchronically at rate
one. The value of a clock denotes the amount of time that has been elapsed since
its last reset. Potentially, the clocks inC can have an infinite domain because
the time will elapse forever. Nevertheless, based on the following argument a
finite domain can be considered for each clock. Among the possible values of
a clock, only a subset is relevant: those that can impact the guards’ evaluations.
For instance, for a guardc1 ≤ 4, the values above 4 will all have the same impact
on the guard; thus the relevant values ofc1 is {0, . . . , 5}. ConsideringµlargestCi
to be the largest constant in the model (including all guards), which the clockci
is compared to, the domain of the clockci is DCi = {0, 1, . . . , µlargestCi + 1}.
Thus,µmaxCi = µlargestCi + 1. Consequently, the domain of the clocksDC =
DC1 × . . .×D

C
p will be finite.

For a variablevi, D
V0
i consists of the initial values ofvi. Since TEFAs are

specifically designed to conform to the supervisory controltheory (described in
Chapter3), it becomes natural to include a set of marked location and values in
the tuple of definition of a TEFA. If the set of marked locations, evaluations of a
variable or a clock is empty, then the entire domain is considered as marked.The
statesof a TEFA is defined asQ ⊆ L × DV × DC. The state for a locationℓ,
variable evaluationsµV , and clock evaluationsµC is represented as〈ℓ, µV , µC〉.
Based on the states of a TEFA, a state transition system can bedefined.

Definition 2.5 State Transition System of a TEFA

LetTE = (L,DV , C,Σ,→, Inv, L0, DV0, Lm, Dm) be a TEFA. Its correspond-
ing state transition system (STS), denoted bySTS(TE) = (Q,Σ, 7→, Q0, Qm),
is a 5-tuple where

- Q = L×DV ×DC is a finite set of states,

- Σ is a set of events,

- 7→⊆ Q × Σ × Q is anexplicit state transition relationdefined by the fol-
lowing rule:

(l, σ, g, a, ĺ) ∈→ ∧ (µV , µC) |= g ∧ (µV , µC) |= Inv(l)

(〈l, µV , µC〉, σ, 〈ĺ, aV(µV , µC), aC(µC)〉) ∈7→
; (2.1)

- Q0 = L0 ×DV0 × 0
p is a set of initial states (0p is ap-tuple of zeros),

- Qm = Lm × Dm is a set of marked states, i.e., the states that are desired
to end up in.

Indeed an STS is a FA with marked states. We deliberately use this new termi-
nology to avoid confusions.

CHAPTER 2. MODELING FORMALISMS 18

As mentioned earlier, we are only interested in deterministic systems.

Definition 2.6 Deterministic TEFA

A TEFA is deterministic if its corresponding STS is deterministic (based on Def-
inition 2.2).

In the sequel, where ever we mention “TEFA”, we refer to deterministic TEFA.

Remark (Nonzenoness). We have omitted requirements on the definition nec-
essary for executability. From every reachable state, the TEFA should admit the
possibility of time to diverge. For example, the automaton should not enforce
infinitely many events in a finite interval of time. A TEFA satisfying this opera-
tional requirement is callednon-zeno[39].

Similar to DFAs, FSC can be defined for TEFAs, referred to asextended FSC
(EFSC). For a model with a number of TEFAs, we assume that the variablesV
and clocksC are allglobal, i.e., they are shared between the TEFAs, and that the
clocks evolve synchronously with the same rate.

Definition 2.7 Extended Full Synchronous Composition

Consider the following two TEFAs

TE k = (Lk, D
V , C,Σk,→k, Invk, L

0
k, D

V0, Lm
k , D

m),

for k = 1, 2. The Extended Full Synchronous Composition (EFSC) ofTE 1 and
TE 2, denoted byTE 1‖TE 2, is defined as

TE 1‖TE 2 = (L,DV , C,Σ,→, Inv, L0, DV0, Lm, Dm),

where

- L = L1 × L2,

- Σ = Σ1 ∪ Σ2:

- the transition relation→⊆ L×GC ×Σ×G×A×L is defined as follows,

→= {(l, σ, g, a, ĺ) | ∀(l, σ, g, â, ĺ) ∈⇀:

∀i ∈ {1, . . . , |V|} :

(âi = ξ ∧ ai = vi)∨

(âi 6= ξ ∧ ai = âi)}, (2.2)

where

19 2.2. TIMED EXTENDED FINITE AUTOMATA

(a) σ ∈ Σ1 ∩ Σ2:

(l1, σ, g1, a1, ĺ1) ∈→1 ∧ (l2, σ, g2, a2, ĺ2) ∈→2

((l1, l2), σ, g, â, (ĺ1, ĺ2)) ∈⇀

such that,

* g = g1 ∧ g2,

* For i = 1, . . . , |V|,

âVi =

aV1,i if aV1,i = aV2,i
aV1,i if aV2,i = ξ
aV2,i if aV1,i = ξ

ξ otherwise

,

whereaVk,i is the action function belonging to→k, updating the
i-th variable, and̂aC is defined exactly aŝaV but on clocks,

(b) σ ∈ Σ1\Σ2:

(l1, σ, g1, a1, ĺ1) ∈→1 ∧ l2 ∈ L2

((l1, l2), σ, g1, a1, (ĺ1, l2)) ∈⇀
,

(c) σ ∈ Σ2\Σ1:

(l2, σ, g2, a2, ĺ2) ∈→2 ∧ l1 ∈ L1

((l1, l2), σ, g2, a2, (l1, ĺ2)) ∈⇀
,

- ∀(l1, l2) ∈ L : Inv(l1, l2) = Inv(l1) ∧ Inv(l2),

- L0 = L0
1 × L

0
2, and

- Lm = Lm
1 × L

m
2 .

Intuitively, in (2), an action function of form̂ai = ξ indicates that variablevi
keeps its current value. Similar to the proof in [38], it can be proved that the
EFSC operator is both commutative and associative and can beextended to mul-
tiple TEFAs. Note that, in the case of multiple TEFAs, the transition relation⇀
in (2) refers to all TEFAs. In other words,⇀ should first be computed for all
TEFAs and then replaceξ with the current value. In the above definition, also
observe that when the action functions ofTE 1 andTE 2 explicitly try to update
a shared variable to different values, we assume that the variable is not updated.
It can indeed be discussed whether such a transition should be executed, never-
theless, such a situation is usually a consequence of bad modeling.

CHAPTER 2. MODELING FORMALISMS 20

EXAMPLE 2.2 Timed Railroad Crossing

Recall Example2.1, and the issue of not being able to specify real-time con-
straints. Let us assume that a train does not exceed a certainmaximum speed.
For each component, the following timing properties are considered:

TRAIN The train needs more than 2 minutes to reach the crossing after sending
theapproachsignal; and it leaves the crossing 5 minutes after approaching
it, at the latest.

GATE Lowering the gate takes at most 1 minute, and raising it takesat least 1
and at most 2 minutes.

CONTROLLER When the controller receives the signalapproach, after ex-
actly 1 minute it will close the gate by sending the signallower. After
receiving theexit signal, the controller raises the gate only if another train
does not approach the crossing within 1 minute.

This timed system can be modeled by the following TEFAs

Train = ({far , near , in}, ∅, {c1}, {approach, enter, exit},→1, Inv1,

{far}, ∅, {far}, ∅),

Gate= ({up, comingdown, down, goingup}, ∅, {c2},

{lower, closed, raise, opened},→2, Inv2, {up}, ∅, {up}, ∅),

Controller= ({l0, . . . , l3}, {0, 1}, {c3}, {approach, lower, exit, raise},→3,

Inv3, {0}, {0}, {0}, {0}),

where their corresponding transition relations and invariants are depicted in Fig-
ure 2.3. The invariants are illustrated by putting guards in the locations and a
marked location is illustrated by a double line around the location. Compared
to the DFA in Figure2.2, it can be observed that the eventsswitch_off and
switch_onhave been modeled by a variableswitch with domain {0,1}, where
values 0 and 1 correspond to eventsswitch_offandswitch_on, respectively.

In the TEFAGATE , clockc1 is set to zero on the occurrence of eventlower
and thus measures the elapse of time since that occurrence. Hence, the invariant
c1 ≤ 1 at locationcomingdown models the fact that the time delay between the
occurrence of eventlower and the change to locationdown is at most 1 minute.
Note that this would not have been established by putting a guard c1 ≤ 1 on
the transition(comingdown, closed , down), as the value ofc1 would not refer
to the time of occurrencelower. Similarly, the invariantc1 ≤ 2 at location
goingup indicates that raising the gate takes at most 2 minutes. No constraints
are imposed on the residence time for locationsup anddown, i.e.,Inv1(up) =
Inv1(down) = ⊤.

21 2.3. RELATED WORK

In the TEFATRAIN , on approaching the gate, clockc2 is reset, and only if
c2 > 2 is the train allowed to enter the crossing.

The TEFA of the controller is depicted in Figure2.3cand is forced to send
the signallower to the gate exactly after 1 minute after the train has signaled its
approaching. In locationl3, the invariantc3 ≤ 1 indicates that if no other train
comes within 1 minute, the signalraiseshould be sent to the gate.

The synchronized TEFAGATE‖TRAIN ‖CONTROLLER represents the
global behavior of the system. From the definition of STS (2.5), the reachable
states of the synchronized model is a subset of

{far , near , in} × {up, comingdown, down, goingup} × {l0, . . . , l3}×

{0, . . . , 6} × {0, . . . , 3} × {0, . . . , 2} × {0, 1},

where{0, . . . , 6}, {0, . . . , 3}, {0, . . . , 2}, and{0, 1} correspond to the domains
of c1, c2, c3, andswitch, respectively. Note that in the synchronized TEFA, the
location(in, up, l1) is not reachable. In this location, the train is at the crossing
while the gate is open. The location can only be reached whenc1 > 2, but asc1
andc3 are reset at the same time (on entrance of the preceding location), c1 > 2

impliesc3 > 2, which is impossible due tol1’s invariantc3 ≤ 1.

2.3 Related Work

In model checking, a well-known modeling formalism that is used to model real-
time applications, istimed automata (TAs)[21]. A timed automaton is a finite
automaton extended with a finite set of real-valued clocks. Automated analysis
of timed automata relies on the construction of a finite quotient of the infinite
space of clock valuations. In an extended version, TAs can also include integer
variables, denoted as ETAs [41]. Syntactically, TEFAs and ETAs are quite sim-
ilar, however, from a semantical point of view, TEFAs are specifically designed
to conform with the supervisory control theory. The main difference is how the
composition operator is defined for TEFAs and TAs. In TEFAs, full synchronous
composition is considered, where the synchronization is performed on all shared
events and variables. In particular, two transitions can only be synchronized
if both are labeled with the same shared event and if the guards are satisfied,
while in TAs they also introduce a new type of events calledurgent channelsthat
can be taken as soon as they are enabled. Furthermore, the variable updates are
treated differently. For a more elaborate and verbose exposition of TAs and their
composition operator, refer to [41].

CHAPTER 2. MODELING FORMALISMS 22

far
near

c1 ≤ 5

in

c1 ≤ 5

approach
c1 = 0

enter
c1 > 2exit

(a) TRAIN .

up
comingdown

c2 ≤ 1

down
goingup

c2 ≤ 2

lower
c2 = 0

closed

raise
c2 = 0

opened
c2 ≥ 1

(b) GATE .

l0
l1

c3 ≤ 1

l2
l3

c3 ≤ 1

approach
c3 = 0

lower
c3 == 1

switch = 1

exit
c3 = 0

approach

raise
switch = 0

(c) CONTROLLER .

Figure 2.3: TEFAs modeling the timed railroad crossing example.

Chapter 3

Supervisory Control Theory

In 1987, Ramadge and Wonham showed that, for a DES, given a setmodels rep-
resenting the behavior of the system,plant, and some desired properties,spec-
ification, there exists a unique control function, referred to assupervisor, that
restricts the plant towards the specification, only when it is necessary. They
called such a supervisorminimally restrictive. The main feature of a minimally
restrictive supervisor is that it contains all the possiblesolutions a plant can be
safely restricted towards the given specifications. This solution can later be used
for quantitative analysis as well, such as time optimization. Later, they proposed
a framework calledsupervisory control theory (SCT)[8], which is a mathemat-
ical framework for formal reasoning about supervision of systems modeled as
DES. Traditionally, in SCT, a DES is based on formal languages, modeled by
DFAs, and thus all the theory is defined on such models. In thischapter, in
order to obtain compact models, we discuss how DES can also bemodeled by
EFAs. The supervisor will then be computed by transforming the EFAs to their
corresponding FAs and applying conventional SCT.

However, the correct behavior of many real-time systems such as air traf-
fic control systems and networked multimedia systems depends on thedelays
between events. Consequently, the researchers started to propose different ap-
proaches to apply SCT to TDES. There have been many attempts to model TDES
and generalize SCT considering the real-time aspects [42]. These works can be
divided into two categories; they are either based oncontinuoustime ordiscrete
time. In continuous time, the time is represented as real values while in discrete
time, it is represented as integers. The question of which one to choose to model
the systems is highly dependent on the structure of the specific applications and
the properties that we want to check. For instance, in a manufacturing cell, where
the components are synchronized by a PLC, discrete time is adequate to model
the system and express most of its timing properties. A comparison between
continuous and discrete time, according to their complexity and expressiveness,
can be found in [43, 44]. In this thesis, we merely focus on discrete time.

The most settled framework, where SCT has been applied to TDES is a work

23

CHAPTER 3. SUPERVISORYCONTROL THEORY 24

carried out by Brandin and Wonham in 1994 [17], where a TDES is modeled
by timed transition models (TTMs)[45]. In this framework, it is assumed that
there exists a global digital clock. Furthermore, lower andupper time bounds
are associated to the events to restrict their occurrence time points. To be able to
apply the theory to TTMs, they transform such models to FAs byintroducing a
special event calledtick , which represents the passage of time, and is generated
by the global clock.

Similarly, in our framework, we model TDES by TEFAs; and in order to
apply SCT, we transform the TEFAs to their corresponding EFAs by introducing
a tick event to the model. Note that in this manner, we do not need to directly
define SCT for TEFAs and thus refer all the formal discussionsabout SCT on
TEFAs to [17].

Finally, in this chapter, we discuss how the computed supervisor can be rep-
resented modularly by generating guards based on the statesof the computed
supervisor and attach them to the original models, in order to restrict their be-
haviors towards the specifications. Representing the supervisor modularly can
be beneficial in cases where the supervisor consists of a large number od states.

3.1 SCT of Untimed DES

In this section, we describe the main concepts of SCT, definedfor untimed DES.
Figure3.1shows thefeedback loopin the SCT. The plant spontaneously gener-
ates events inΣ that the supervisor can enable or disable as a functionf(·) of the
earlier behavior of the plant (the observed sequence of events). As assumed ear-
lier, the plant is modeled by DFAs. In [46], it was shown that the FSC operator
can be used to model the supervision. That is, the supervisorcan be considered
as an automaton too. For example, when a supervisorS supervises a plantP ,
the behavior thatS tries to enforce isP‖S. Notably, ifS is not designed prop-
erly, some parts of the plant may not be susceptible to the control imposed by
S, so the actual behavior may be another. This is the reason whyS should be
synthesized using formal methods that guarantee thatS does not try to control
parts of the plant that can not be controlled or, in other words, that theclosed
loop behaviorreally isP‖S. In this work, we assume that the supervisor always
refinesthe plant, that is,S = P‖S. We refer to the states of the supervisor as
safe statesand denote it byQsafe .

The supervisor decides to enable or disable events based on agiven speci-
fication in terms of an automaton. It is also possible to explicitly specify some
states in the plant or the specification asexplicitly forbiddenstates, that are states
where the system should not end up in. As pointed out earlier,for real systems,
modeling the plant or the specification as a single automatonmay become very
large and complex. Therefore, the plant and specification are typically modeled
as a set of sub-plansP1, P2, . . . and sub-specificationsSp1, Sp2, . . ., and thus the

25 3.1. SCTOF UNTIMED DES

Supervisor

Plant

f(·)Σ

Figure 3.1: The feedback loop in the SCT.

plant and the specification will be represented by the composition of their sub-
components, i.e.,P = P1‖P2‖ . . . andSp = Sp1‖Sp2‖ For a composed
automaton, a state is explicitly forbidden if at least one ofits sub-states is explic-
itly forbidden in its corresponding automaton.

Controllability

In general, it is reasonable to assume that some events in theplant are not sus-
ceptible to disablement by a supervisor. For example, the plant may sometimes
act randomly or have internal doings that the supervisor canhave no influence
on. To incorporate this, the SCT introduces the notions ofcontrollableandun-
controllableevents. Controllable events can be disabled by the supervisor while
uncontrollable can not.

It is important that the supervisor iscontrollable, meaning that while it re-
stricts the plant towards the specification, it never tries to disable uncontrollable
events. To this end, the alphabetΣ of the plant is divided into two disjoint sets of
controllable eventsΣc and uncontrollable eventsΣu. Controllability, is assumed
to be universally defined, that is, if an eventσ is controllable in one automa-
ton it is controllable in all other automata that consider that event. In figures,
uncontrollable events are prefixed by an exclamation mark “!”.

The formal definition of controllability is defined as follows.

Definition 3.1 Controllability

LetG andK be two DFAs. A state(p, q) ∈ QG ×QK is controllableif,

∀σ ∈ Σu : σ ∈ ΓG(p)⇒ σ ∈ ΓG‖K((p, q)).

K is controllable with respect toG if, for every state(p, q) that is reachable in
G‖K it holds that(p, q) is controllable.

CHAPTER 3. SUPERVISORYCONTROL THEORY 26

Intuitively, K is controllable with respect toG if, in any reachable state in the
composition, the enabled uncontrollable events inG are also enabled inG‖K.
For the event to be enabled inG‖K, it must not be disabled in the corresponding
state ofK. That is, the event must either be enabled in the current state ofK or
not even present in the alphabet ofK, in which case that event can be thought of
as enabled in all states ofK.

Nonblocking

Even though a supervisor is controllable, it is not necessarily very useful. The
supervisor guarantees that the plant does not violate the specification, however,
the case may be that the supervisor restricts the plant from doing what it was
supposed to do. For instance, the supervisor may allow the plant to get stuck
somewhere, referred to asdeadlock, or end up in a loop from which it can not
get out, referred to aslivelock. To care of this, states of particular interest in the
plant and in the specification can bemarked, denoted byQm. The idea, then, is
to design the supervisor so that it always allows the plant toreach at least one of
the states that both plant and the specification have marked.Such a supervisor is
callednonblocking, which in SCT is a property that a supervisor should have.

In the following, the definition of the nonblocking propertyis given.

Definition 3.2 Nonblocking

LetG be a DFA. A stateq ∈ QG is said to benonblockingif, starting fromq at
least a marked state belonging toQm could be reached.G is nonblocking if, for
every stateq that is reachable, it holds thatq is nonblocking.

That is, an automaton is nonblocking when “all” reachable states can continue
to reach some marked state. In a composed automaton, a state is marked if all
its sub-states are marked in their corresponding automata.Essentially, the non-
blocking states can be computed by taking the intersection between the reachable
states andcoreachable states, which are the states from which a marked state can
be reached by a number of event executions.

Minimally Restrictiveness

A careful reader may have realized that there does not exist aunique controllable
and nonblocking supervisor. It is possible to supervise oneand the same system
in many different ways. More specifically, it is possible to design a controllable
and nonblocking supervisor that restricts the plant more than necessary. It is nat-
ural to regard a supervisor that restricts the plant at little as possible, referred to as
aminimally restrictive1 supervisor. Designing a minimally restrictive supervisor

1In some literature, it is also called maximally permissive,supremal, or optimal.

27 3.1. SCTOF UNTIMED DES

has several advantages. It gives the designers all the possible ways they can con-
trol a system, which could be beneficial from different perspectives. Especially,
in this work, since we deal with timed systems, the supervisor will include some
timing information, which can later be used for timing analysis. For instance,
we may want to minimize the total time it takes to reach a marked state from
any state in the supervisor. One way to this, is to have all possible solutions and
select the proper ones.

In this thesis, we are interested in computing theunique controllable, non-
blocking, and minimally restrictive supervisor, from now on, shortly “supervi-
sor”.

3.1.1 DES Modeled by EFAs

So far, we have assumed that DES are modeled by FAs. It is also possible to
model DES by EFAs that also include discrete-valued variables. The main ben-
efit of using EFAs, as a modeling tool, is that the values of thevariables in state
transitions can be hidden, yielding compact models.

In the previous section, we explained the conventional SCT on DES modeled
by FAs, where their transition relations are represented explicitly by their states
and events. Hence, the theoretical framework of the conventional SCT cannot
be directly applied to EFAs, where the states are implicitlyrepresented in the
models. The SCT can be applied to EFAs in two ways: 1) define a new theoretical
framework for EFAs that conforms with the conventional SCT,or 2) transform
the EFAs to their corresponding STS, i.e., FAs, and then apply the conventional
SCT.

In [47], a theoretical framework is proposed, where SCT can be applied di-
rectly on EFAs. They symbolically compute the supervisor directly based on the
EFAs by performing algebraic operations.

In this work, we follow the second approach, by transformingthe EFAs to
FAs having the same properties. In this way, by showing the correctness of
the correlation between EFAs and FAs, the conventional SCT can be directly
applied. Furthermore, FAs can easily be transformed to BDDs, described in
Section4.2.1, which are the symbolic representation used in this work. InPaper
2, it is shown how EFAs can be directly converted to BDDs, representing the
corresponding FAs of the EFAs.

Transformation of EFAs to FAs

A single EFA can be directly transformed to FA by computing its corresponding
STS, based on Definition2.5. GivenN EFAsE1, . . . , EN , the global behavior of
the system can be obtained by computing the corresponding STS ofE1‖ . . . ‖EN .
One could say why not transform each EFA to its correspondingSTS and apply

CHAPTER 3. SUPERVISORYCONTROL THEORY 28

the FSC defined for FAs. However, in this way, the global behavior will not be
the same:

STS(E1‖ . . . ‖EN) 6= STS(E1)‖ . . . ‖STS(EN). (3.1)

This is because of the special treatment of the update of variables defined in the
EFSC operator on EFAs (Definition2.7). For instance, if a variable is not up-
dated on a transition or if its action conflicts with an actionon another transition,
it is considered that the variable will keep its current value. Intuitively, the shared
variables interact via the EFSC and can via their action functions exchange in-
formation during the synchronization process. To obtain the corresponding FAs,
access to all guards and updating actions is needed. If we transform interacting
EFAs separately to FAs, information is lost.The transformation must consider
all components simultaneously.

In [40], it was shown howN EFAs withn variables can be transformed toN
locationFAs andn variableFAs, where:

STS(E1‖ . . . ‖EN) = A1‖ . . . ‖AN+n.

However, it has been observed that this transformation procedure can be very
time consuming, especially, for models with many guards andactions [48]. In
Paper2, it is explained how EFAs are transformed to FAs, based on a similar
approach to [40], but on the symbolic level using BDDs. The symbolic transfor-
mation will in most of the cases resolve the transformation issue in [48].

Basically, the transformation algorithm collects the information stored in the
guards and actions, and builds two kinds of automatavariable automataandlo-
cation automata. The variable automata model the updating of the variables in
all EFAs, and the location automata have the same structure as the original ex-
tended automata without considering the action functions.The composed model
of all variable automata, denoted asAV , will model the updating of all variables
simultaneously. We denote the location automaton of an EFA by Aloc .

HavingN = N1+N2 EFAs, withN1 sub-plantsEP1
, . . . , EPN1

and aN2 sub-
specificationsESp1

, . . . , ESpN2
, the corresponding plant FAAP and specification

FA ASp can be computed as follows:

AP = Aloc
P1
‖ . . . ‖Aloc

PN1
‖AV ,

ASp = Aloc
Sp1
‖ . . . ‖Aloc

SpN2

‖AV .

Consequently, basedAP andASp, the conventional SCT can be applied to the
model. Recall that this procedure is performed symbolically using BDDs.

3.2 SCT of Timed DES

As stated earlier, we model TDES by TEFAs. In Section3.1.1, we showed how
SCT can be applied to EFAs by transforming them to their corresponding FAs.

29 3.2. SCTOF TIMED DES

In order to apply SCT to TEFAs, we transform TEFAs to EFAs by introducing
an eventtick that will be be treated in a special manner.

3.2.1 Transformation of TEFAs to EFAs

As mentioned earlier, the evolvement of the clocks occur implicitly by the global
digital clock. However, to addapt TEFAs to the conventionalSCT, we need to
have an explicit representation of the clocks. In particular, we need to somehow
consider the global clock in the models. The global clock canbe imagined as a
functiontickcount : R+ → N,

tickcount(t) = n, n ≤ t < n+ 1,

whereR+ = {t ∈ R|t ≥ 0} is the set of positive real values. Consequently,
the temporal resolution available for modeling purposes isthus just one unit of
clock time. For a TEFA, this behavior, can be represented by an EFA (consisting
of only regular variables) by introducing an additional event tick as in [45]. The
eventtick occurs exactly at the real time moments, which can be imagined to be
generated by the global clock. In Paper3, it is shown how a TEFA can be trans-
formed to its corresponding EFA, referred to as thetick -EFA. In the following,
we briefly describe the transformation procedure.

Initially, the eventtick is added to the alphabet of the TEFA. For each clock
c in the model with maximum valueµmax, the clock is considered as a regular
variable with domain{0, . . . , µmax}. For each invariant-free locationl in the
TEFA, the following transitions are added:

(l, tick , c < µmax, c := c+ 1, l) and

(l, tick , c ≥ µmax, c := c, l).

This transition extension is performed for all clocks in theTEFA.
In the existence of an invariant forl, it should not be possible to execute the

tick event if the invariant is not satisfied. For instance, if the locationl has an
invariantc ≤ 3, only a transition(l, tick, c < 3, c := c + 1, l) should be added.
Note that in the newtick transition,c ≤ 3 has been changed toc < 3; because
based on the invariant semantics,c should not evolve when value 3 is reached.
In general, a locationl with invariantInv(l) can be described by the following
tick transition,

(l, tick, Înv(l), c := c+ 1, l),

whereÎnv(l) is obtained by replacing all terms in form ofc < ω, c ≤ ω, and
c == ω appearing inInv(l) with c < ω − 1, c ≤ ω − 1 and c == ω − 1,
respectively.

In the next section, we describe how thetick event is treated from an SCT
point of view.

CHAPTER 3. SUPERVISORYCONTROL THEORY 30

3.2.2 Controllability of TDES

We base the theory of controllability for thetick -based models on the framework
in [49], where the eventtick is treated in a special manner.

A new category of events that arises naturally in the presence of timing is
the forcible events, Σf ⊆ Σ\{tick}. A forcible event is one that can preempt
a tick of the global clock. If at a given state of the plant, atick and one or
more forcible events are enabled, then the SCT permits the effective erasure of
tick from the current list of enabled events. Notice that a forcible event may
be controllable or uncontrollable; a forcible event that isuncontrollable cannot
be directly prevented from occurring by disablement. By thegiven description
of forcible events, the status oftick lies intuitively between ’controllable’ and
’uncontrollable’: no technology could ’prohibit’ tick in the sense of ’stopping
the clock’, although a forcible event, if it is enabled, may preempt it. However,
to simplify terminology, in [49], tick is considered to be controllable.

To define controllability for thetick models, the definition of controllability
of untimed DES (Definition3.1) is extended. LetG andK be two DFAs. A state
(p, q) ∈ QG ×QK is controllable if,

-
(
ΓG‖K((p, q)) ∩ Σf

)
6= ∅, then

∀σ ∈ Σu : σ ∈ ΓG(p)⇒ σ ∈ ΓG‖K((p, q)),

-
(
ΓG‖K((p, q)) ∩ Σf

)
= ∅, then

∀σ ∈
(
Σu ∪ {tick}

)
: σ ∈ ΓG(p)⇒ σ ∈ ΓG‖K((p, q)).

Thus,K controllable means that an eventσ (in the full alphabetΣ including
tick) may occur inG‖K if σ is currently enabled inG and either (i)σ is uncon-
trollable, or (ii)σ = tick and no forcible event is currently enabled inG‖K. The
effect of the definition is to allow the occurrence oftick (when it is enabled in
G) to be ruled out ofG‖K only when a forcible event is enabled inG‖K and
could thus (perhaps among other events inΣ\{tick}) be relied on to preempt it.
Notice, however, that a forcible event need not preempt the occurrence of com-
peting non-tick events that are enabled simultaneously. Ingeneral the model will
leave the choice of tick-preemptive transition nondeterministic. In the sequel,
we refer to the states that become uncontrollable due to the elimination of tick ,
astimed uncontrollable states.

Notice that the introduction of the eventtick will not impact the ’nonblock-
ing’ definition for untimed DES (Definition3.2).

In the following, we show an example taken from [49].

31 3.2. SCTOF TIMED DES

EXAMPLE 3.1 Endangered Pedestrian

Consider two TEFAs, shown in Figure3.2aand3.2b, representing a bus and a
pedestrian. The TEFABUShas a clockc1 with domain{0, 1, 2, 3} andPED has
a clockc2 with domain{0, 1, 2}. The bus can make a single transitionpass be-
tween the activities ’approaching’ and ’gone by’, and the pedestrian may make
a single transitionjump from ’road’ to ’curb’. We assume that the eventsjump

andpass are controllable and uncontrollable, respectively. In addition, we as-
sume thatjump is a forcible event. Suppose it is required that the pedestrian be
saved, such that she jumps before the bus passes. The specification automaton of
this requirement is shown in Figure3.2c.

To apply the SCT of timed DES to this example, we first transform the TEFAs
to their correspondingtick -EFAs, shown in Figure3.3. Next, we transform the
EFAs to DFAs.

a
c1 ≤ 2

g

pass

c1 == 2

(a) The TEFABUS.

r c

jump

c2 ≥ 1

(b) The TEFAPED.

s0 s1 s2
jump pass

(c) The specificationSPEC.

Figure 3.2: The TEFAs representing the plant and specification of Example 3.1.

Figure3.4shows the corresponding DFA ofBUS‖PED‖SPEC. In the DFA,
a state is represented as〈(lBUS, lPED), (µ

C
1 , µ

C
2)〉. For brevity, we have not included

the location names of the specification in the figure. It can beobserved that state
〈(a, r), (2, 2)〉 is uncontrollable because at this state the uncontrollableevent
pass is enabled in the plant (the transition ofBUS) but not inBUS‖PED‖SPEC.
By removing this state, the supervisor is obtained. Notice that removing this
state will disable thetick event at〈(a, r), (1, 1)〉, however, since the eventjump

is forcible it can preempt thetick .

CHAPTER 3. SUPERVISORYCONTROL THEORY 32

a g

tick

c1 < 2
c1 = c1 + 1

pass

c1 == 2

tick

c1 < 3
c1 = c1 + 1

tick

c1 ≥ 3
c1 = c1

(a) Thetick -EFA of BUS.

r c

tick

c2 < 2

c2 = c2 + 1

tick

c2 ≥ 2

c2 = c2
jump

c2 ≥ 1

tick

c2 < 2

c2 = c2 + 1

tick

c2 ≥ 2

c2 = c2

(b) Thetick -EFA of PED.

s0 s1 s2

tick

jump

tick

pass

tick

(c) Thetick -EFA of SPEC.

Figure 3.3: The correspondingtick -EFAs of the TEFAs in Figure3.2.

〈(a, r), (0, 0)〉 〈(a, r), (1, 1)〉 〈(a, r), (2, 2)〉

〈(a, c), (1, 1)〉 〈(a, c), (2, 2)〉

〈(g, c), (2, 2)〉〈(g, c), (3, 2)〉

tick tick

jump jump

tick

pass

tick

tick

Figure 3.4: The corresponding DFA ofBUS‖PED‖SPEC.

33 3.3. SYNTHESIS

3.3 Synthesis

As stated earlier, the process of automatically computing the supervisor is called
synthesis. Generally, the synthesis can be performed in two ways:monolithic
or structural. In monolithic synthesis, a first candidate of the supervisor is ob-
tained by computing the composed automatonP ‖ Sp, which we refer to asS0

in the sequel. After the synthesis procedure, the forbiddenstates are removed
from S0, yielding the safe states [8, 50]. Having the safe states, the automaton
representing the supervisor can be constructed. It is also possible to exploit the
structure of the sub-plants and sub-specifications by considering the modularity
properties of the system or using abstraction techniques [51–55]. This can im-
prove the synthesis task considerably, because such algorithms usually cope with
a smaller number of states. In this work, we compute the supervisor based on
the monolithic approach. However, we will later show how we can represent the
supervisor modularly by employing the monolithic supervisor.

Typically, the synthesis procedure is performed byfixed pointcomputations,
that is, starting from a set of states, extend the set iteratively with new states until
a fixed point is reached, where no new states can be found. In the following, we
first describe the conventional fixed point computations performed on untimed
models. In the next part, we show how the fixed point computations can be
modified to conform to the SCT for TDES.

Algorithm 1: SAFESTATESYNTHESIS

Input : A set of forbidden statesQx

Output : The safe states

1 i← 0;
2 Qx

0 ← Qx;
3 repeat
4 i← i+ 1;
5 Q′ ← RESTRICTEDBACKWARD(Qm , Qx

i−1);
6 Q′′ ← UNCONTROLLABLEBACKWARD(Q\Q′);
7 Qx

i ← Qx
i−1 ∪Q

′′ ;
until Qx

i = Qx
i−1;

8 return RESTRICTEDFORWARD(Qx
i);

3.3.1 Untimed DES

Given an STS, modeled by FAs or EFAs, Algorithm1 shows a simple algorithm
for computing the safe states [27] for an untimed DES. The algorithm starts with
a set of forbidden statesQx, which is the union of the explicitly forbidden states
and theinitially uncontrollable states that can be computed based on Definition

CHAPTER 3. SUPERVISORYCONTROL THEORY 34

3.1. Then,Qx is iteratively extended by adding all states that can reach the
forbidden states or the non-coreachable states in an uncontrollable manner until
a fixed point is reached. To obtain a supervisor that only consist of reachable
states, based on the extended set of forbidden states, a reachability computation
is performed (Algorithm4), finding all reachable states that do not contain any
forbidden state. Note that based on SCT, a supervisor that contains unreachable
states can also be considered as a correct supervisor, however, we remove the
unreachable states for the purpose of this work, described later. The setQ is the
universal set, that is, the cross product of all automata.

Algorithm2computes the set of coreachable states by avoiding any forbidden
states given as input.

Algorithm3 computes the set of states that can reach a set of forbidden states,
given as input, by only executing uncontrollable events, yielding the uncontrol-
lable states. In particular, if a state is forbidden inS0, then all ingoing transitions
to this state should be removed. Hence, if one of the ingoing transitions includes
an uncontrollable event, it will be removed while the plant can execute it, which
is the definition of an uncontrollable state.

Given a set of statesW ⊆ Q, the set-based operatorImage(W, 7→) computes
the set of states that can be reached by executing one transition, formally defined
as:

Image(W, 7→) , {q́ ∈ Q|∃q ∈ W : (q, σ, q́) ∈7→}. (3.2)

The operatorPreImage(W, 7→) computes the set of states that, by one transition,
can reach a state inW , formally defined as below:

PreImage(W, 7→) , {q ∈ Q|∃q́ ∈ W : (q, σ, q́) ∈7→}. (3.3)

The transition relation7→S0
represents the entire transition relation ofS0, while

u
7→S0

includes only those transitions that consider the uncontrollable events.

Algorithm 2: RESTRICTEDBACKWARD

Input : A set of marked statesQm, and a set of forbidden statesQx

Output : The coreachable states

1 i← 0;
2 Q0 ← Qm\Qx;
3 repeat
4 i← i+ 1;
5 Qi ← (Qi−1∪ PreImage(Qi−1, 7→S0

))\Qx;
until Qi = Qi−1;

6 return Qi;

35 3.3. SYNTHESIS

Algorithm 3: UNCONTROLLABLEBACKWARD

Input : A set of forbidden statesQx

Output : The uncontrollable states

1 i← 0;
2 Qx

0 ← Qx;
3 repeat
4 i← i+ 1;
5 Qx

i ← Qx
i−1∪ PreImage(Q

x
i−1,

u
7→S0

);
until Qx

i = Qx
i−1;

6 return Qx
i ;

Algorithm 4: RESTRICTEDFORWARD

Input : A set of initial statesQ0, and a set of forbidden statesQx

Output : The reachable states

1 i← 0;
2 Q0 ← Q0;
3 repeat
4 i← i+ 1;
5 Qi ← (Qi−1∪ Image(Qi−1, 7→S0

))\Qx ;
until Qi = Qi−1;

6 return Qi;

EXAMPLE 3.2

Consider a plant and a specification, shown in Figure3.5, for which we will
synthesize a supervisor. The alphabet of each automaton is its corresponding
events shown in the figure. The only marked state in the systemis s3, which is
illustrated by a double-line around the state. By convention, all states in the plant
are supposed to be implicitly marked.

We apply Algorithm1 to this example. As stated earlier, a fist candidate of
the supervisor is the composed automatonS0 = P ‖ SP, shown in Figure3.5c.
Initially, the system has one uncontrollable state(p6, s2), which will be the input
to the algorithm, i.e.,Qx = Qx

0 = {(p6, s2)}. In this state the uncontrollable
eventu2 is blocked by the supervisor, while it is enabled by the plant. In the first
iteration, the setsQ′,Q′′, andQx

1 are,

Q′ = RESTRICTEDBACKWARD ({(p4, s3)}, {(p6, s2)}) =

{(p4, s3), (p1, s1), (p0, s0), (p2, s2)},

Q′′ = UNCONTROLLABLEBACKWARD ({(p6, s2), (p5, s2), (p3, s1)}) =

{(p1, s1), (p6, s2), (p5, s2), (p3, s1)},

Qx
1 = Qx

0 ∪Q
′′ = {(p1, s1), (p6, s2), (p5, s2), (p3, s1)}

CHAPTER 3. SUPERVISORYCONTROL THEORY 36

SinceQx
0 6= Qx

1 , a fixed point has not been reached, and thus another iteration
of SAFESTATESYNTHESIS will be carried out:

Q′ = RESTRICTEDBACKWARD ({(p4, s3)}, Q
x
1) =

{(p4, s3), (p0, s0), (p2, s2)},

Q′′ = UNCONTROLLABLEBACKWARD ({(p1, s1), (p6, s2), (p5, s2), (p3, s1)}) =

{(p1, s1), (p6, s2), (p5, s2), (p3, s1)},

Q2
x = Q1

x ∪Q
′′ = {(p1, s1), (p6, s2), (p5, s2), (p3, s1)}.

At this step, a fixed point is reached becauseQx
1 = Qx

2 .
By performing RESTRICTEDFORWARD(Qx

2) and removingQx
2 from the reach-

able states inS0, the safe states are computed, yielding:

Qsafe = {(p4, s3), (p0, s0), (p2, s2)}.

The supervisor is shown in Figure3.5d.

For a more formal and detailed explanation of the conventional supervisory syn-
thesis, refer to [50, 56, 57].

3.3.2 Timed DES

As pointed out in Section3.2.2, the nonblocking analysis of TDES is exactly
the same as for the untimed DES, described in the previous section. We will
thus explain how the fixed point computation UNCONTROLLABLEBACKWARD

(Algorithm 3) can be modified to conform with the definition of controllability
of TDES. In particular, in addition to the uncontrollable states caused by uncon-
trollable events, we also need to find the timed uncontrollable states.

Algorithm 5 shows how the uncontrollable states computed in Algorithm3
are extended with the timed uncontrollable states. The transition functionstick7→S0

and
f
7→S0

, represent the transitions inS0, which only includetick and forcible
events, respectively. Given a set of statesW ⊆ Q; Disabled(W, 7→) computes
the states that are not among the source-states of7→, formally defined as below:

Disabled(W, 7→) , {q ∈ W | 6 ∃(q, σ, q́) ∈7→}. (3.4)

In line 5, PreImage(Qx
i−1,

tick
7→S0

) computes the set of states that can reach a
state inQx

i−1 by executing atick event. Among these states, those that do not
have an outgoing forcible event are the timed uncontrollable states,QtimedUnc .
Notice that the initially uncontrollable states that will be passed to SAFES-
TATESYNTHESIS (Algorithm 1) should also include the initially timed uncon-
trollable states.

37 3.3. SYNTHESIS

p0

p1 p2

p3 p4 p5

p6
e1 e3

!u1
e2 e4

e6

e5

!u2

(a) PlantP.

s0

s1 s2

s3

e1 e3

e2 e4

(b) SpecificationSP.

(p0, s0)

(p1, s1) (p2, s2)

(p3, s1) (p4, s3) (p5, s2)

(p6, s2)

e1 e3

!u1
e2 e4

e6

e5

(c) S0 = P‖SP.

(p0, s0) (p2, s2) (p4, s3)e3 e4

(d) The supervisor.

Figure 3.5: The plant, the specification, the composed model, and the supervisor for
Example3.2.

CHAPTER 3. SUPERVISORYCONTROL THEORY 38

Algorithm 5: TICKUNCONTROLLABLEBACKWARD

Input : A set of forbidden statesQx

Output : The uncontrollable states

1 i← 0;
2 Qx

0 ← Qx;
3 repeat
4 i← i+ 1;

5 QtimedUnc ← Disabled(PreImage(Qx
i−1,

tick
7→S0

) ,
f
7→S0

);
6 Qx

i ← Qx
i−1∪ PreImage(Q

x
i−1,

u
7→S0

) ∪ QtimedUnc;
until Qx

i = Qx
i−1;

7 return Qx
i ;

Tick Elimination

The tick models suffer from a major problem. The state size is very sensitive
to the clock frequency: atick event must be associated with the passage of each
unit of time. As the clock frequency increases, so must the number oftick events.
As a consequence, performing reachability analysis based on tick models usually
needs many iterations in the fixed point computations. In addition, as we will see
in Chapter4, in a BDD-based approach, the intermediate BDDs representing the
reachable states can be very big, causing state space explosion. In the following,
we explain how the iterations caused by thetick event can be eliminated to tackle
the aforementioned issues.

Consider a TDES modeled by TEFAs. The idea lies in the fact that time
cannot be stopped. In tick-EFAs, this indicates that all thetick transitions will
eventually occur, unless there exists a location invariant. For instance, consider
two clocks with domains{0, . . . , 3} and{0, . . . , 5} and assume〈ℓ, 1, 2〉 is the
current state of the system. The sequence of the states that can be reached by the
tick event is:

〈ℓ, 1, 2〉
tick
7→ 〈ℓ, 2, 3〉

tick
7→ 〈ℓ, 3, 4〉

tick
7→ 〈ℓ, 3, 5〉.

Since alltick transitions will eventually occur, it can be directly computed that
when the state〈ℓ, 1, 2〉 is reached, the states{〈ℓ, 2, 3〉, 〈ℓ, 3, 4〉, 〈ℓ, 3, 5〉} are also
reachable. Given a set of statesW ⊆ Q, we define the set-based operator
TimedImage(W) as below:

TimedImage(W) , {〈l, µV , µ́C〉 | ∀〈l, µV , µC〉 ∈ W :

∀d ∈ DC∪ : µ́
C = ̺(µC + d)}, (3.5)

whereµC + d = (µC1 + d, . . . , µCp + d). Essentially, theTimedImage opera-
tor represents thetime evolution. Similarly, we defineTimedPreImage(W) as

39 3.3. SYNTHESIS

below:

TimedPreImage(W) , {〈l, µV , µ́C〉 | ∀〈l, µV , µC〉 ∈ W :

∀d ∈ DC∪ : µ́
C = ̺(µC − d)}. (3.6)

For brevity and simplicity, we write(q, σ, Q́) to denote a number of explicit
transitions{(q, σ, q́1), . . . , (q, σ, q́m)}, whereQ́ = {q́1, . . . , q́m}. Based on the
TimedImage operator, we propose the following definition.

Definition 3.3 Reachability Transition Relation

For a TEFA with transition relation→, its correspondingreachability transition
relation, denoted by, is defined as below,

(l, σ, g, a, ĺ) ∈→ ∧ (µV , µC) |= g ∧ µC |= Inv(l)

(〈l, µV , µC〉, σ, Q́) ∈
, (3.7)

where

Q́ = {q́ | ∀q́ ∈ TimedImage({〈ĺ, aV(µV , µC), aC(µC)〉}) : q́ |= Inv(ĺ)}.

Consequently, by using in a fixed point computation, (as the transition rela-
tion passed to theImage andPreImage operators), rather than transitions based
on tick-EFAs:

1. a number of states can be reached with a single iteration, compared to the
tick transitions, where multiple iterations are required (multiple calls of
Image andPreImage operators);

2. usually the corresponding BDD of a set of states becomes smaller than the
intermediate BDDs resulted after executing atick transition.

The elimination of thetick event will not impact the correctness of the fixed point
computations related to the nonblocking property. However, for controllability,
since TICKUNCONTROLLABLEBACKWARD is based on thetick event, we need
a new way to compute the timed uncontrollable states.

By looking at Figure3.6, we explain how the timed uncontrollable states can
be computed, based on the reachability transition relation. The figure shows a
sample path ofS0, starting from state 0, executing some eventss and reaching
state 1, and by the occurrence of sometick events, it will end up in state 7,
which is assumed to be forbidden due to some reason, e.g., uncontrollability.
Let us assume that the eventσf is the only forcible event going out among the
states 2-7. Based on TICKUNCONTROLLABLEBACKWARD, it can be deduced
that the timed uncontrollable states for this example are states 5 and 6. Since

CHAPTER 3. SUPERVISORYCONTROL THEORY 40

7 is forbidden, it should be removed, causing state 6 to be uncontrollable and
removing state 6 will cause state 5 to be uncontrollable. Notice that removing
state 5 will not make state 4 uncontrollable because it has anoutgoing forcible
event. Also observe that the outgoing transitions from states 2 and 3 will not
impact the timed uncontrollability. The general procedureof finding the timed
uncontrollable states can be described as follows. For a forbidden state, sayqx,
find the closest state, sayqf , that can reach the forbidden state by executing a
number oftick events (in the figure, this state is 4). The timed uncontrollable
states are then

(
TimedPreImage({qx})\TimedPreImage({qf})

)
\{qx}. For this

example, we have{1, . . . , 7}\{1, . . . , 4}\{7} = {5, 6}. Observe that since the
timed uncontrollable states should eventually be removed from S0, we can in-
clude the forbidden stateqx in the set of timed uncontrollable states, yielding
TimedPreImage({qx})\TimedPreImage({qf}.

Based on the aforementioned reasoning, in Paper4, it is shown how the timed
uncontrollable states can be computed according to a new fixed point algorithm.

0 1 2 3 4 5 6 7
s tick tick tick tick tick tick

σf

Figure 3.6: A sample path ofS0.

3.4 Supervisor Representation

So far, we have discussed how the supervisor is “computed” asa monolithic
automaton. The next concern is how to “represent” the supervisor. This issue
can be treated from two different perspectives:modelingandimplementation.

Modeling

A typical issue that arises, when modeling a system modularly based on conven-
tional SCT, is that for large and complex systems, representing the supervisor
monolithically, may become untractable for the designers.More specifically, the
designers retrieve the final supervisor as a black box, without clearly understand-
ing why some events become disabled after the synthesis. Furthermore, after the
synthesis, the designers will end up in a different scope, starting by a modular
representation and ending in a monolithic one. This could becumbersome if the
designers later on desire to make some certain modificationsin the specification.

41 3.4. SUPERVISORREPRESENTATION

Implementation

From another point of view, implementing a huge monolithic supervisor in a
hardware may require more memory than available. Typically, a modular super-
visor consumes less memory in a controller. The reason is that the synchroniza-
tion will be performed online in the controller, see [57–59], which will alleviate
the problem of exponential growth of the number of states in the synchronization.
In addition, in industry, the controller is typically implemented based on other
representations such as sequential final charts (SFCs), ladder diagrams, Gantt
charts, and PERT charts, where the controller is mainly represented as logical
constraints. Hence, to implement a monolithic supervisor in a controller, one
should transform some parts of the automaton to logical constraints, which may
not be straightforward.

To tackle the aforementioned issues, in this section, we discuss how the
monolithic supervisor can be represented modularly by extracting guards from
the safe states and restricting the plant by adding the guards to the original mod-
els. In this way,

1. the designers will remain in the modular scope, which makes it possible
to easily perform modifications on the resulting supervisor, e.g., changing
the specification,

2. it becomes possible to implement the supervisor in a modular manner,
which could especially be beneficial for hierarchial approaches,

3. the final representation will be closer to the one typically used in the in-
dustry for implementing a controller.

The guards are generated based on the computed supervisor, discussed in the
following.

3.4.1 Representing the Supervisor as Guards

Recall that the supervisor influences the plant by preventing it to execute some
events in its current state, in order to avoid violations on the given specification.
Accordingly, at any state inS0, an event is eitherallowedor forbiddento occur,
in order to end up in a state of the supervisor. It is also possible that the execution
of an event at a state does not affect the synthesis result, e.g., if the state is not
reachable. For each eventσ, we can thus generate a guard based on the states
of the DFA representing the supervisor, indicating whenσ is allowed to be exe-
cuted. Our goal is to make the generated guards as compact andcomprehensible
as possible for the designers.

Concerning the states that are retained or removed after thesynthesis pro-
cedure, for each eventσ, threebasic state setscan be considered that form the
basis for generating the guard:

CHAPTER 3. SUPERVISORYCONTROL THEORY 42

1. the states, whereσ must be enabled in order to end up in states that belong
to the supervisor,

2. the states, whereσ must be disabled in order to avoid ending up in states
that were removed after the synthesis procedure,

3. the states, where enabling or disablingσ does not make any changes in the
final supervisor.

In the sequel, each state set will be described formally and in more detail. In the
following definitions, we useS to denote the DFA representing the supervisor.

Definition 3.4 Forbidden state set,Qσ
f

Forbidden state set,Qσ
f , is the set of states in the supervisor where the execution

of σ is defined forS0, but not for the supervisor:

Qσ
f = {q ∈ Qsafe | σ ∈ ΓS0

(q) ∧ σ 6∈ ΓS (q)}.

Definition 3.5 Allowed state set,Qσ
a

Allowed state set, Qσ
a , is the set of states in the supervisor where the execution

of σ is defined for the supervisor:

Qσ
a = {q ∈ Qsafe | σ ∈ ΓS (q)}.

Notice that, ifQσ
a is restricted to a smaller set, the guard generated from thisstate

set will disableσ on transitions where the target-state has been retained after the
synthesis procedure; characterizing a supervisor which isnot minimally restric-
tive. On the other side, ifQσ

a is extended to a larger set, the generated guard will
let σ to be executed on transitions, where the target-state has been removed after
the synthesis procedure; characterizing a supervisor, which might be blocking or
uncontrollable. In other words, for each eventσ ∈ Σ, Qσ

a represents the set of
states where eventσ mustbeallowedto be executed in order to end up in states
belonging to the supervisor (an analogous argument can be given forQσ

f). A
similar explanation can be given forQσ

f .
In order to obtain compact and simplified guards, inspired from the Boolean

minimization techniques, we determine a set of states whereexecutingσ will not
impact the result of the synthesis and utilize these states to minimize the guards,
referred to as thedon’t carestates. The formal definition of don’t care states
is given below. In the following, for a state setQα, the complement ofQα is
denoted asC(Qα) = Q\Qα.

Definition 3.6 Don’t-care state set,Qσ
dc

Don’t-care state set,Qσ
dc, is the set of states where eventσ could either be enabled

or disabled, without having any impact on the supervisor. Itis formally defined
asQσ

dc = C(Qσ
a ∪Q

σ
f).

43 3.4. SUPERVISORREPRESENTATION

From Definition1.2and Definition1.1it can be concluded that for a given event
σ, the states that can impact the supervisor are only the states whereσ mustbe
allowed,Qσ

a , or forbidden,Qσ
f , to occur and the remaining states can be consid-

ered as don’t-care. It can also be shown thatQσ
dc = C(Qσ)∪C(Qsafe); the proof

is included in [60].

Guard generation

Recall that a system can be modularly modeled as a number of sub-plants and
sub-specifications, which together formN automataA1, . . . , AN . Hence, a state
qS0
∈ QS0

, is anN-tuple(qA1
, . . . , qAN

). For an eventσ, the guardGσ : QA1
×

QA2
× . . .×QAN

→ B is desired:

Gσ(qA1
, . . . , qAN

) =

⊤ (qA1
, . . . , qAN

) ∈ Qσ
a

⊥ (qA1
, . . . , qAN

) ∈ Qσ
f

don′t care otherwise

whereB is the set of Boolean values. In particular,σ is allowed to be executed
from the state(qA1

, . . . , qAN
) if the guard is evaluated to⊤.

Before showing how the guard is generated, we first show how a proposi-
tional formula representing a set of states can be computed.Let us assume that
a sub-stateqAi

belonging to a specific automatonAi can be extracted fromqS0

by the functionΦ : (QA1
× QA2

× . . . × QAN
) × Ai → QAi

. LetQα ⊆ QS0
.

The following procedure shows how a propositional formula,representingQα,
can be computed:

1. IntroduceN new variables{qA1
, qA2

, . . . , qAN
} whereDVi = QAi

.

2. The corresponding propositional formula ofQα, PF(Qα), will be:

PF(Qα) :
∨

q∈Qα

N∧

i=1

(
qAi

== Φ(q, Ai)
)

 (3.8)

where== is the equality operator.

For the sake of brevity, havingqkAi
as a state belonging toAi, we denote¬(qAi

=
qkAi

) as(qAi
6= qkAi

).

Definition 3.7 Size of a propositional formula

The number of equality terms, which has either the form(qAi
= qkAi

) or (qAi
6=

qkAi
), in the propositional formula is referred to as thesizeof the formula. We

denote the size of a propositional formulap by |p|.

The guards can now be generated either based onQσ
a denoted asGσ

a , or based on
Qσ

f denoted asGσ
f , by computing the corresponding propositional formulae, i.e.,

Gσ
a = PF(Qσ

a) andGσ
f = ¬PF(Qσ

f).

CHAPTER 3. SUPERVISORYCONTROL THEORY 44

Guard Simplification

From a modeling perspective, asmallerformula would typically be more read-
able and comprehensible. Furthermore, in many cases, the generated guards can
be very big and memory-intensive, which could make it difficult to implement
them in a hardware with limited amount of memory, such as microcontrollers.
Our goal is to find the smallest guard. Inspired by minimization methods of
Boolean functions, simplified guards can be obtained by utilizing the don’t-care
states and applying some heuristic techniques. This minimization is performed
on the symbolic level, explained in Chapter4. Since the minimization and specif-
ically the guard generation, are carried out on a symbolic level, some information
related to the structure of the automata may be lost. Sometimes, by utilizing the
structure of the system, the guards can be simplified. Here, we briefly describe
two heuristics that can be applied in an attempt to obtain smaller guards:

1. Complement states (CS): Consider an automaton consisting of statesQ and
letQα ⊆ Q. By considering the fact that the corresponding propositional
formula ofQα can be represented in two ways; either directly based onQα

or based on its complementC(Qα) = Q\Qα, we can make the conclusion
that

|C(Qα)| < |Qα| ⇒ |¬PF(C(Qα))| < |PF(Qα)|.

Informally, if the complement ofQα has less states thanQα itself, then the
propositional formula computed based onC(Qα) is smaller than the one
based onQα.

2. Independent states (IS): Consider an example, where there exist 4 au-
tomata, and let assume that for eventσ the following holds

Qσ
a = {(q1A1

, q1A2
, q1A3

, q1A4
), (q1A1

, q3A2
, q1A3

, q1A4
)},

Qσ
f = {(q1A1

, q2A2
, q1A3

, q2A4
)}, and

Gσ
f = qA1

6= q1A1
∨ qA2

6= q2A2
∨ qA3

6= q1A3
∨ qA4

6= q2A4
.

An interesting feature about this example is that the sub-stateq2A2
is not

included inQσ
a . Thus, it suffices to merely includeqA2

6= q2A2
in the guard

without concerning about the other terms. In other words, ifqA2
= q2A2

, no
matter what the current states of the other automata are, event σ should be
disabled. In such a case, stateq2A2

is called anindependent state. It can be
concluded that if a stateq ∈ Qσ

a ∪ Q
σ
f includes an independent stateqkAi

,
it suffices to merely include the term based onqkAi

in the corresponding
propositional formula.

For a more detailed information about the simplification procedure and the sym-
bolic computations, refer to Paper1.

45 3.4. SUPERVISORREPRESENTATION

SimplifyingGσ
a by utilizing the don’t-care states and the heuristic techniques,

yields a new guard, which we refer to theallowed guardand denote it byGσa .
Similarly, theforbidden guardGσf can be defined.

Depending on the internal structure of a model, either the allowed or the
forbidden guard can be smaller. In the implementation both guards are computed
and the smallest one, referred to as theadaptive guardand denoted byGσ⋆ , is
given to the designer.

Guard Attachment

To obtain a modular representation of the supervisor, the generated guards can
be attached to the original models. Since the supervisor merely can restrict
the plant’s controllable events, the guards are generated for controllable events.
Based on the following procedure, the supervisor can be represented as a number
of EFAs or TEFAs:

1. for each eventσ ∈ Σc in the model, computeGσ⋆ ,

2. for each automatonAi, add variableqAi
, holding the current state of the

automaton, to the model,

3. for each transition in automatonAi, add an action function that updates
qAi

to its new value, and

4. for each eventσ ∈ Σc, attachGσ⋆ to all transitions that includeσ.

Note that if a transition in the original model contains a guard, then in the last
step the computed guardGσ⋆ will be logically conjuncted with the existing guard.

We summarize this section by applying the above procedure toan illustrative
example.

EXAMPLE 3.3

Consider a resource booking problem where two “dumb” robotsneed to book
two resources in opposite order in order to carry out their tasks, shown in Figure
3.7. The resources can be considered as spatial zones that are going to be entered
by the robots. To avoid collisions, the robots should not occupy the zones simul-
taneously. Hence, each robot can enter a zone if it is not occupied. These zones
are shown by two shaded areas in the figure. The tasks of Robot 1and Robot 2
are to reach Zone 2 and Zone 1, respectively. By assuming thatthe robots work
independently, the system will obviously stuck in a deadlock after that robot 1
and robot 2 have occupied zones 1 and 2, respectively. In suchsituation, robot 1
cannot enter Zone 2 because it is occupied by robot 2 and vice versa. We model
this example and compute the guards based on the monolithic supervisor.

CHAPTER 3. SUPERVISORYCONTROL THEORY 46

Robot A Robot B

Zone 1 Zone 2

Figure 3.7: A robot cell consisting of two robots that book two resourcesin opposite
order.

r10 r11 r12
R1bookZ1 R1bookZ2

(a) Sub-plantR1.

r20 r21 r22
R2bookZ2 R2bookZ1

(b) Sub-plantR2.

s10 s11

R2bookZ1 R1bookZ1

R1bookZ2

(c) Sub-specificationZ1.

s20 s21

R1bookZ2 R2bookZ2

R2bookZ1

(d) Sub-specificationZ2.

Figure 3.8: The automata modeling Example3.3.

47 3.4. SUPERVISORREPRESENTATION

We model the robots’ tasks as two sub-plants and the requirement of not
colliding as two sub-specifications, shown in Figure3.8. All the events are con-
trollable. The reachable states of the composed automatonS0 is shown in Figure
3.9. We can observe that the state(r11, r21, s11, s21) is blocking. By removing
the blocking state fromS0, the supervisor is obtained.

(r10, r20, s10, s20)

(r10, r21, s10, s21)

(r11, r21, s11, s21)

(r11, r20, s11, s20)

(r10, r22, s10, s20) (r12, r20, s10, s20)

(r11, r22, s11, s20) (r12, r21, s10, s21)

(r22, r22, s10, s20)

R2bookZ2 R1bookZ1

R1bookZ1

R2bookZ1

R2bookZ2

R1bookZ2

R1bookZ1 R2bookZ2
R1bookZ2 R2bookZ1

Figure 3.9: The composed automatonS0 for Example3.3.

Let us computeGR1bookZ1
f . For the eventR1bookZ1, the forbidden state set

isQR1bookZ1
f = {(r10, r21, s10, s21)}. Hence,

GR1bookZ1
f = qR1 6= r10 ∨ qR2 6= r21 ∨ qZ1 6= s10 ∨ qZ2 6= s21,

where the size is 4. SinceQR1bookZ1
a = {(r10, r20, s10, s20), (r10, r22, s10, s20)},

we can conclude thats21 is an independent state. Thus, by applying the heuristic
rule, we obtainGR1bookZ1

f = qZ2 6= s21. This shows that eventR1bookZ1 is
not allowed to occur when the current state of automatonZ2 is s21, i.e., when
Robot 2 has booked Zone 1. Note that an alternative guard could beqR2 6= r21.
Similarly, the guards for the other events can be computed.

CHAPTER 3. SUPERVISORYCONTROL THEORY 48

3.5 Related Work

Beside SCT, there exist other methods and theories for generating control func-
tions for TDES. Among them, the one that is closely related tothe SCT, is a
game-theoretic approach based ontimed game automata (TGAs)[61]. In UP-
PAAL [6, 62], the most well-known model checking tool, TGAs are used to
model the systems. In this approach, the problem is modeled by two players,
where player 1 (considered as the controller) executes controllable events, and
player 2 (considered as the environment) executes uncontrollable events. The
goal is to find astrategy(can considered as the supervisor in the SCT context),
where player 1 should be guaranteed to reach a marked state, no matter what
player 2 does. There are three main differences between the game-theoretic ap-
proach and the SCT. First, the synthesis theory for TGAs is based on states, while
in SCT it is based on events. Second, in the SCT, it is guaranteed that a mini-
mally restrictive supervisor is computed, while in the TGA-based approach the
goal is find any strategy that ensures that a marked state is reached. Finally, in
the SCT, the plant and specification are modeled by differenttypes of automata,
which will be the basis of the controllability definition, while the TGA-based
approach define the controllability merely on the events, independent of what
automata the uncontrollable events belong to. Hence, from acontrol point of
view, the SCT defines controllability in a more natural manner.

Chapter 4

Symbolic Representation and
Computation

As mentioned earlier, a system is typically modeled modularly by a number of
sub-plants and sub-specifications. The global model is thenobtained by compos-
ing the models. HavingN automataA1, . . . , AN , an upper bound for the number
of states in the composed model is

∏N
i=1 |Q

Ai|, i.e., |QA1‖...‖AN | ≤
∏N

i=1 |Q
Ai |.

By assuming that each automaton consists ofk states, the upper bound will be
kN . This clearly indicates that the number of states of the composed model grows
exponentiallyas the number of components increases. Therefore, the composed
model for industrial applications with many components, could end up in a huge
number of states, e.g.,1020 states. As a consequence, computing a supervisor
for such systems could be a very time consuming and memory intensive pro-
cess. In many cases, the number of states can exceed the amount of available
hardware memory, which is known as thestate space explosion problemand is
the main complication when state-exploration methods are used for analysis of
systems. This problem becomes more acute when the states arerepresented and
enumeratedexplicitly, state by state.

Theoretically, the time complexity of synthesizing a nonblocking supervisor
for a system isNP-complete[63, 64]. Hence, an approach that can compute a
nonblocking supervisor in polynomial time is unlikely to befound. Neverthe-
less, various researchers have attacked this obstacle fromdifferent perspectives
[52, 53, 65–67]. These approaches can be divided into two main categories.
One way is to exploit the internal structure of the models such as modular and
compositional synthesis [51, 54, 55]. However, most of them work under some
preassumptions, which makes them unsuitable for our purposes such as guard
generation and timing analysis. Another approach is to represent the statessym-
bolically (or implicitly) by describing the state space and transitions by means
of logical constraints. The main difference between explicit and symbolic repre-
sentation is that in the former one the states are manipulated individually, while
in the latter onesets of statesare manipulated simultaneously. In addition, sym-

49

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 50

bolic computations are typically carried out more efficiently compared to the
explicit-state operations. It has been shown that symbolictechniques can allow
significant gains in the size of systems that can be handled [27, 68].

In this thesis, all computations are “purely” carried out symbolically using
binary decision diagrams (BDDs)[26], useful data structures for representing
Boolean functions. It has been shown that BDD-based algorithms can improve
the efficiency of synthesis dramatically [27, 30, 69]. For instance, in [27], the
supervisor of a transfer line example with more than10200 states was synthesized
in few minutes.

4.1 Basics

Given a set ofx Boolean variablesB, a Boolean functionf : Bx → B (B is the
set of Boolean values, i.e., 0 and 1) can be expressed using Shannon’s decom-
position [70]. This decomposition can be expressed by a directed acyclicgraph,
calledbinary decision diagram (BDD), which consists of two types of nodes:
decision nodesandterminal nodes. A terminal node can either be0-terminalor
1-terminal, which corresponds to the resultant value of the function, i.e. 0 or
1. Each decision node is labeled by a Boolean variable and hastwo edges to
its low-child andhigh-child, corresponding to assigning 0 and 1 to the variable,
respectively. Thesizeof a BDD, denoted as|B|, refers to the number of decision
nodes.

Using Shannon’s decomposition [70], a BDD f can be recursively expressed
as below

f = (¬b ∧ f [0/b]) ∨ (b ∧ f [1/b]) for b ∈ B,

wheref [0/b] and f [1/b] refer to assigning 0 and 1 to all occurrences of the
Boolean variableb, respectively. Furthermore, the notationf [b′/b] is used to
describe the result of substituting all free occurrences ofb in f by b′.

A variableb1 has a lower (higher)order than variableb2 if b1 is closer (or
further) to the root and is denoted byb1 ≺ b2 (or b2 ≺ b1). If the variables in the
BDD follow a total order, i.e. all variables occur in the sameorder on all paths,
the BDD is calledOrdered BDD (OBDD). The variable ordering will impact the
size of the BDD, however, finding an optimal variable ordering of a BDD is an
NP-complete problem [71]. To find the optimal variable ordering is out of the
scope of this thesis. In this work, all BDDs follow a fixed variable ordering,
described later.

A BDD that fulfills the following conditions is referred to asreduced BDD
(RBDD):

1. no two distinct decision nodes have the same variable nameand low- and
high-children,

51 4.1. BASICS

2. no decision node has identical low- and high-children.

The BDDs in this work are assumed to be both ordered and reduced, calledROB-
DDs. ROBDDs provide compact and canonical (unique) representation for a
particular function and variable order [72]. Before reduction, the size of a BDD,
is always exponential in the number of Boolean variables. This does not apply
to ROBDDs, as they are sometimes reduced to “extremely compact” graphs.

Binary operations can be carried out efficiently on Boolean functions by
applying tree operations on their corresponding ROBDDs. A binary operator
< op > between two BDDsf andg can be computed as

f < op > g =
(
¬b ∧ (f [0/b] < op > g[0/b])

)
∨
(
b ∧ (f [1/b] < op > g[1/b])

)
.

If the operator is implemented based on dynamic programming, the time com-
plexity of the algorithm will beO(|f | · |g|). Beside the compactness and effi-
ciency of representing sets as BDDs, the set operations can also be simply im-
plemented by BDDs. For instance, let BDDsf andg represent two state setsQ1

andQ2, respectively. Then,Q1 ∪Q2 andQ1\Q2 can be computed byf ∨ g and
f ∧ ¬g, respectively. Note that the negation of a BDD is simply the substitution
of 0-terminal and 1-terminal.

An operation that is used extensively in reachability analysis is theexistential
quantificationoperator over a Boolean variableb:

∃b : f = f [0/b] ∨ f [1/b].

The existential quantification can indeed be applied to a setof Boolean variables.
Intuitively, the effect is that the variableb will be eliminated from the graph.

For a more elaborate and verbose exposition of BDDs and the implementa-
tion of different operators, refer to [73, 74].

To summarize, the power of BDDs lies in their simplicity and efficiency to
perform binary operations, especially, when the BDDs have small sizes.

4.1.1 Characteristic Function

As stated earlier, in a symbolic representation, the computations are performed
on sets of states. To this end,characteristic functionsare used to to represent the
corresponding BDDs of finite sets.

Definition 4.1 Characteristic function (CF)

Let Y be a finite set so thatY ⊆ U , whereU is the finite universal set. A
characteristic function (CF)χY : U → B is defined by:

χY (a) =

{
1 iff a ∈ Y
0 otherwise

.

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 52

Since the setU is finite, in practice its elements are represented with numbers in
Z|U | or their corresponding binaryx-tuples belonging toBx (x = ⌈log

|U |
2 ⌉). For

a binary CF, an injective functionθ : U → B
x is used to map the elements inU

to elements inBx. In general,χY (a) is constructed as

χY (a) =
∨

w∈Y

a↔ θ(w), (4.1)

where↔ on two binaryx-tuplesb1 andb2 is defined as

b1 ↔ b2 ,
∧

0≤i<x

(b1i ↔ b2i), (4.2)

wherebji denotes thei-th element ofbj . In this way, different set-operations can
be carried out onχ using basic Boolean operators.

In the sequel, all formal discussions will be based on the corresponding CFs
of the BDDs. In the text, we will freely use “BDD” interchangeably with “char-
acteristic function”.

4.2 Representation of Models

In the following, we describe how DFAs and TEFAs can be symbolically repre-
sented by BDDs, i.e., how their corresponding CFs are computed.

4.2.1 Representation of DFAs

Reachability analysis on a DFA can be carried out based on itsinitial state and
transition function. We define three tuples of Boolean variablesbQ, b́Q, and
b
Σ, used to represent the source-states, target-states, and events of a transition,

respectively. Note that, for the states, two Boolean tupleswith different sets of
Boolean variables are needed to distinguish between source-states and target-
states. Hence,|bQ| = |b́Q| = ⌈log

|Q|
2 ⌉ and|bΣ| = ⌈log

|Σ|
2 ⌉. The automaton can

then be represented as two BDDs for the initial state and the transition function

χ{q0}(b
Q) = b

Q ↔ θ(q0)

χ7→(b
Q, b́Q,bΣ) =

∨

(q,σ,q́)∈7→

χ(q,σ,q́), (4.3)

where

χ(q,σ,q́)(b
Q, b́Q,bΣ) = b

Q ↔ θ(q) ∧ b́
Q ↔ θ(q́) ∧ b

Σ ↔ θ(σ). (4.4)

In particular, first the BDD of each transition is created, and then all the BDDs
are disjuncted to represent the total transition function.

53 4.2. REPRESENTATION OFMODELS

HavingN DFAsA1, . . . , AN , the BDD representing the transition relation of
A = A1‖ . . . ‖AN can be computed in two steps. Sinceb

Σ is common in the
CFs of all automata, first, we need to make all DFAs to have the same alphabet.
To this end, for each DFAAi and eachσ ∈ ΣA\ΣAi

, a self-loop transition is
added to all states ofAi. The BDD of the synchronized model is then computed
by conjuncting all BDDs representing the automata’s transition relations, i.e.,
χ7→A

=
∧N

i=1 χ7→Ai
.

For a DFA, we use a fixed variable ordering for its corresponding BDD that
is based on the method presented in [75]. In this method, the variable ordering
is influenced by the ordering of interacting automata, basedon weighted search
in their correspondingprocess communication graph (PCG). A PCG for a set
of automata is a weighted undirected graph, where the weightbetween two au-
tomataA1 andA2 is defined as|ΣA1 ∩ ΣA2 |. In some cases, the ordering can be
improved [27].

4.2.2 Representation of TEFAs

Having a number TEFAs, in Section3.3.2, we showed how the supervisor can
be computed based on the corresponding reachability transition relation of the
composed model, i.e.,S0

. In the following, the main idea for computing the
corresponding BDD ofS0

is given. For a detailed description of this proce-
dure, refer to Paper3.

Initially, the clocks of the TEFAs are treated as regular variables, yielding
pure EFAs. Next, the BDD representing the composed model of the EFAs is
computed. To consider the time semantics into the composed BDD, the target
statesẂ of all transitions are replaced by the states inTimedImage(Ẃ), rep-
resenting the time evolution. We denote the resulting BDDχInv

S0

. The BDD
representing the reachability transition relation is obtained by conjuctingχInv

S0

with a BDD representing the invariants. The invariant BDD represents a set of
pairs{(l, µC) | µC |= Inv(l)}.

In the following, we first describe how EFAs and their EFSC operator can be
represented by BDDs; and second, we give the main idea how theBDD repre-
senting the time evolution can be computed. For a detailed description of this
procedure, refer to Paper4.

Representation of EFAs

The CF of the transition function of an EFA is represented based on its corre-
sponding STS (Definition2.5). Similar to the computation of DFAs, the CF is
computed based on a set of Boolean variablesb

L, bVi , b́L, b́Vi , andbΣ, used
to represent the source-locations, current values of variable vi, target-locations,
updated values of variablevi, and the events, respectively. The CF of a single

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 54

transition(l, σ, g, a, ĺ) ∈→ will thus be,

χ(l,σ,g,a,ĺ)(b
V
1 , . . . ,b

V
n , b́

V
1 , . . . , b́

V
n ,b

L, b́L,bΣ) =
(∨

µV |=g

n∧

i=1

b
V
i ↔ θ(µVi) ∧ b́

V
i ↔ θ(aVi (µ

V
i))
)
∧

b
L ↔ θ(l) ∧ b́

L ↔ θ(ĺ) ∧ b
Σ ↔ θ(σ). (4.5)

In our framework, we assume that overflows on variables are not allowed and
thus we omit the cases where an overflow occurs. This is performed by remov-
ing all the variable assignments that result in values outside the domain of the
variables. Consequently, the characteristic function of the explicit transition re-
lation of an EFAE will be

χ7→E
=

∨

(l,σ,g,a,ĺ)∈→

χ(l,σ,g,a,ĺ) ∧
n∧

i=1

χDV
i
(bVi) ∧

n∧

i=1

χDV
i
(b́Vi). (4.6)

The following example shows how the transition function of an EFA can be
represented by a BDD.

EXAMPLE 4.1

Consider a nim game with 5 sticks on a table, and two players that take turn by
removing one or two sticks. The winner is the player that takes the last stick(s).
Fig. 4.1depicts the EFA model for this game.

player1

player2

player1remove2

sticks > 1
sticks = sticks − 2

player1remove1

sticks > 0
sticks = sticks − 1

player2remove2

sticks > 1
sticks = sticks − 2

player2remove1

sticks > 0
sticks = sticks − 1

Figure 4.1: The EFA model for Example2.1.

Fig. 4.2 shows the corresponding transition function for the EFA shown in Fig.
4.1. Note that the BDD does not contain the cases wheresticks < 0 andsticks >

55 4.2. REPRESENTATION OFMODELS

5. The BDD variables in the figure are labeled with numbers as follows

b
Σ = (bΣ1 , b

Σ
0) = (‘1’ , ‘0’),

b
L = (bL0) = (‘2’),

b́
L = (b́L0) = (‘3’),

b
sticks = (bsticks3 , bsticks2 , bsticks1 , bsticks0) = (‘7’ , ‘6’ , ‘5’ , ‘4’),

b́
sticks = (b́sticks3 , b́sticks2 , b́sticks1 , b́sticks0) = (‘11’ , ‘10’ , ‘9’ , ‘8’),

whereb0 is the least significant bit. Note that since the integers arerepresented in
two’s complement, four Boolean variables are used to represent sticks because
of the sign-bit. The location and event encoding is shown in Table1.

Table 4.1: Event and location encoding for the EFA in Fig.2.

Event (bΣ1 , b
Σ
0) Location bL0

player1remove1 (0,0) player1 0

player1remove2 (0,1) player2 1

player2remove1 (1,0)

player2remove2 (1,1)

For instance, let us track the transition

(player2 , player2remove2 , sticks > 1, sticks = sticks− 2, player1)

on the BDD in Fig.3. Eventplayer2remove2 is identified by starting from node
‘0’, following the high-child to node ’1’ and following the high-child to node ‘2’,
i.e. bΣ1 ∧ b

Σ
0 . The locationplayer2 is identified by following the high-child from

node ‘2’, i.e. bL0 , and locationplayer1 is identified by following the low-child
from node ‘1’, i.e.¬b́L0 . The guard and action are identified by all the paths from
node ‘3’ to node ‘11’.

As it can be observed, the BDD in this example is larger than its correspond-
ing EFA, however, for larger models the BDDs typically become much more
compact.

We denote the CF, where the Boolean variablesb́
V have been removed by

χ′
(l,σ,g,aĺ)

:

χ′
(l,σ,g,aĺ)

(bV1 , . . . ,b
V
n ,b

L, b́L,bΣ) = ∃b́V : χ(l,σ,g,a,ĺ).

HavingN ≥ 2 EFAsE1, . . . , EN , similar to the transformation of EFAs
to FAs, described in Section3.1.1, the CF of the explicit transition function of
E = E1‖ . . . ‖EN , χ7→E

, can be computed in three steps:

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 56

01

0

1 1

22 2 2

33

4

55

6 666

7 7

8

9

10

11

8

9

77 7

88

9

10

8

4

5

6 6

3 3

Figure 4.2: The corresponding BDD for the transition function of the EFAin Fig. 2.

1. Compute a CF, representing7→E without including the actions,χ′7→E
. This

CF can be compared to the variable automatonAloc , pointed out in Section
3.1.1.

2. Compute a CF, representing the update of the EFA variables, χ7→V
E

. This
CF can be compared to the variable automatonAV , pointed out in Section
3.1.1.

3. Based onχ′7→E
andχ7→V

E
, computeχ7→E

= χ′7→E
∧ χ7→V

E
.

As discussed earlier in (3.1), note that the result will be incorrect if steps 1 and 2
are carried out in a single step:

χ7→E1‖...‖EN
6=

N∧

k=1

χ7→Ek
.

The procedure of computing the aforementioned CFs is presented in Paper2.

Time Consideration

A stated earlier, having the BDD representing the composed model of the iso-
morphic EFAs, denoted asχ7→S0

, the time evolution is computed by replacing

57 4.3. SYMBOLIC SYNTHESIS

each target state by a set of states, representing the statesthat can be reached by
the passage of time. We define thetimed transition relation99K, where a tuple of
clock evaluationsµC is expanded to the clock evaluationsµ́C that can be reached
by the passage of time:

99K= {(µC, µ́C) | ∀µC ∈ DC : ∀d ∈ DC∪ : µ́
C = ̺(µC + d)}.

Introducing a set of temporary Boolean variablesb̂, the corresponding BDD of
the timed transition relation can be computed :

χ99K(b́
C
1 , . . . , b́

C
n, b̂

C
1 , . . . , b̂

C
n) =

∨

µC∈DC

(p∧

i=1

b́
C
i ↔ θ(µCi) ∧

|DC
∪|∨

d=0

p∧

j=1

b̂
C
j ↔ θ(̺(µCj + d))

)
.

Based onχ99K, χInv
S0

can be computed:

χInv
S0

=
(
∃b́C : (χ7→S0

∧ χ99K)
)
[b́C/b̂C].

Essentially, in Paper3, we show how the saturation function̺ and the synchro-
nization between the clocks, i.e.,µC + d, are implemented symbolically using
BDDs.

4.3 Symbolic Synthesis

In the following, we describe how the conventional synthesis based on untimed
DES (explained in Section3.3.1) can be performed symbolically by BDDs. For
symbolic synthesis of timed DES, refer to Paper4.

In Section3.3, we showed how the synthesis can be carried out based on fixed
point computations. Basically, each algorithm starts by aninitial state set and
iteratively extends the set by theImage or PreImage operator until a fixed point
is reached. Earlier, we showed how a transition function anda set of states can
be represented by BDDs based on their corresponding CFs. Themain issue that
remains is the BDD implementation of the operatorsImage (2) andPreImage
(3). Algorithm 6 shows the BDD-based implementation of theImage operator.
The BDDsBW andB 7→S0

represent a set of statesW and the transition function
of S0, respectively. The BDD(B7→S0

∧ BW) represents all transitions, where
their source-states are included inW . Consequently,∃bQ,bΣ : (B7→S0

∧ BW)

will represent all target-states that can be reached from states inW . Finally, in
BnextStates[b

Q/b́Q], the Boolean variables representing the target-states will be
substituted by their corresponding source-state variables.

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 58

q0 q1

q2

q3

a

dc

b

Figure 4.3: A sample automaton.

Algorithm 6: SYMBOLIC IMAGE

Input : BW , B 7→S0

Output : The corresponding BDD forImage(W, 7→S0
)

1 BnextStates ← ∃b
Q,bΣ : (B7→S0

∧ BW);

2 return BnextStates [b
Q/b́Q];

For thePreImage operator, we first define thebackward transition relationfor
7→ as← [= {(q́, σ, q) | (q, σ, q́) ∈7→}. The corresponding BDD of← [, denoted by
B← [

, can be computed by substituting the source and target variables inB7→ with
three BDD operations

B1 = B7→[b̀Q,bQ],

B2 = B1[b
Q, b́Q],

B← [
= B2[b́

Q, b̀Q],

whereb̀Q is a new set of Boolean variables that is temporally used during the
substitutions. ThePreImage operator can then simply be implemented using
Algorithm 6 by passingB← [S0

to the routine rather thanB7→S0
.

EXAMPLE 4.2

Let synthesize the automaton shown in Figure4.3, representingS0 for a sample
system, by using BDD operations. It is assumed that all the events are control-
lable. Based on the state encoding in Table4.2, we have:

χ{q0}(b
Q) = ¬bQ1 ∧ ¬b

Q
0 ,

χQm(bQ) = ¬bQ1 ∧ b
Q
0 ,

59 4.3. SYMBOLIC SYNTHESIS

χ7→(b
Q, b́Q) = (¬bQ1 ∧ ¬b

Q
0 ∧ ¬b́

Q
1 ∧ b́

Q
0) ∨ (¬bQ1 ∧ b

Q
0 ∧ b́

Q
1 ∧ ¬b́

Q
0)

∨ (bQ1 ∧ b
Q
0 ∧ ¬b́

Q
1 ∧ b́

Q
0) ∨ (¬bQ1 ∧ b

Q
0 ∧ ¬b́

Q
1 ∧ b́

Q
0),

χ← [
(bQ, b́Q) = (¬b́Q1 ∧ ¬b́

Q
0 ∧ ¬b

Q
1 ∧ b

Q
0) ∨ (¬b́Q1 ∧ b́

Q
0 ∧ b

Q
1 ∧ ¬b

Q
0)

∨ (b́Q1 ∧ b́
Q
0 ∧ ¬b

Q
1 ∧ b

Q
0) ∨ (¬b́Q1 ∧ b́

Q
0 ∧ ¬b

Q
1 ∧ b

Q
0).

Table 4.2: State encoding table for the automaton in Figure4.3.

State (bQ1 , b
Q
0)

q0 (0,0)

q1 (0,1)

q2 (1,0)

q3 (1,1)

Table 4.3: Fixed point computation carried out by SAFESTATESYNTHESIS.

i Q′ χQ′(bQ) Qx
i χQx

i
(bQ)

0 {} ⊥ {} ⊥

1 {q0, q1, q3} ¬bQ1 ∨ b
Q
0 {q2} bQ1 ∧ ¬b

Q
0

2 {q0, q1, q3} ¬bQ1 ∨ b
Q
0 {q2} bQ1 ∧ ¬b

Q
0

Table 4.4: Fixed point computation carried out by RESTRICTEDBACKWARD .

i Qi χQi
(bQ)

0 {q1} ¬bQ1 ∧ b
Q
0

1 {q0, q1, q3} ¬bQ1 ∨ b
Q
0

2 {q0, q1, q3} ¬bQ1 ∨ b
Q
0

We now perform SAFESTATESYNTHESIS(Qx) (Algorithm1), whereQx is empty
as there does not exists any explicitly forbidden state. Since the automaton
does not contain uncontrollable events, UNCONTROLLABLEBACKWARD can be
skipped from the algorithm and thusQ′′ = Q\Q′ in all iterations. Table4.3
shows the elements and the characteristic function ofQ′ andQx

i for different
iterations in the fixed point computations.

Table4.4 shows the fixed point computation in RESTRICTEDBACKWARD ,
shown in Algorithm2, that is carried out in the first and second iteration of
SAFESTATESYNTHESIS.

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 60

Table 4.5: Fixed point computation carried out by RESTRICTEDFORWARD.

i Qi χQi
(bQ)

0 {q0} ¬bQ1 ∧ ¬b
Q
0

1 {q0, q1} ¬bQ1

2 {q0, q1} ¬bQ1

iterations

B
D

D
si

ze

Figure 4.4: The typical pattern of the size of intermediate BDDs during the fixed point
computations of reachability analysis.

Finally, by havingQx
2 = {q2}, the safe states can be computed by calling

RESTRICTEDFORWARD({q2}), shown in Algorithm4. The fixed point compu-
tation is shown in Table4.5. Consequently, the reachable safe states will be
{q0, q1}.

4.3.1 Size of Intermediate BDDs

Typically, the size of the intermediate BDDs computed in each iteration of a fixed
point computation for reachability analysis, follows a common pattern, shown in
Figure4.4. The important point that can be concluded from this figure is: the
size of the BDD representing the fixed point is typically smaller than the maxi-
mum size that the intermediate BDDs can reach. Hence, even though there may
exist enough memory to represent the final BDD, it is not sure that the interme-
diate BDDs can be computed. This is the main reason why eliminating thetick
event in the fixed point computations of TDES can be better. Inparticular, by
reaching a number of states in one iteration (by theTimedImage operator, de-
fined in (5)), the computation of the intermediate BDDs in thetick -based fixed
point computations (obtained by executing thetick event in each iteration) can
be avoided.

61 4.4. SYMBOLIC GUARD GENERATION

4.4 Symbolic Guard Generation

In Section3.4, we described how the guards, representing the supervisor,can be
generated based on the basic state sets. The process of symbolic generation of a
guard for an event can be divided into three consequent steps:

1. compute the corresponding BDDs for the basic state sets,

2. convert the BDDs to integer decision diagrams (IDDs),

3. generate the guard based on the IDDs.

We describe each step separately.

4.4.1 Symbolic Computation of the Basic State Sets

The first step of generating the guard is to compute the corresponding BDDs
for the basic state sets, as described in Section3.4. The corresponding BDD of
S0’s transition function is used as the basis for generating these state sets. For
an eventσ, we first compute the BDD representing the states from whichσ is
enabled, denoted byQσ:

χQσ = ∃b́Q,bΣ : χ7→S0
∧ χ{σ}.

In the above computation, first, the BDD representation of all transitions that
include eventσ is extracted. Next, the BDD-variables used for representing the
target-states and events are excluded, yielding the statesin S0 from whichσ is
enabled. Based onχ7→S0

, χQsafe , andχQσ (all computed earlier), the correspond-
ing BDDs for the basic state sets are computed as below,

χQforbidden = ∃b́Q,bΣ : (χ7→S0
∧ ¬χQsafe),

χQσsafe = χQσ ∧ χQsafe ,

χQσ
f
= χQσsafe ∧ χQforbidden ,

χQσ
a
= χQσsafe ∧ ¬χQσ

f
,

χQσ
dc
= ¬(χQσ

a
∨ χQσ

f
).

The BDD forχQforbidden represents all states that, by one transition, lead to a state
not belonging to the supervisor. The BDD forχQσsafe represents the safe states
that enable the eventσ. By conjuncting the aforementioned BDDs, all safe states,
whereσ must be forbidden to occur are obtained,χQσ

f
. Similarly, the other two

state sets can be computed.
As stated earlier, the don’t-care states will be utilized insimplifying the guard

expressions. This operation is carried out directly on the BDD representation of
the state set, based on the RESTRICT function by Coudert and Madre, described

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 62

in [76]. Given two BDDsB1 andB2, B3 = RESTRICT(B1,B2) simplifiesB1,
i.e., reduces the size ofB1, under a constraintB2, so thatB1 ∧B2 = B3 ∧B2.
Hence,B3 is logically equal toB1, on the domain defined byB2 and isoften
smaller thanB1. In this manner, we can simplify the BDD representations of the
state sets by constraining them underχQσ

dc
. Consequently, the guard generated

from the simplified BDD,usuallybecomes smaller. For an elaborate and verbose
exposition of the symbolic computation of the basic state sets, refer to Paper1.

4.4.2 IDD Generation

To generate the guards based on the BDDs, we need to map the Boolean variables
to their corresponding states. To this end, we convert a BDD to its corresponding
integer decision diagram(IDD) [77]. IDD is an extension to a BDD where the
number of terminals is arbitrary and the domain of the variables in the graph is
an arbitrary set of integers. For our purpose, we use an IDD with two terminals,
0-terminal and 1-terminal.

Using IDDs to generate guards has some advantages in comparison to BDDs:
1) they make it easier to handle and manipulate propositional formulae; 2) they
exploit some of the common subexpressions in a guard yielding a more factor-
ized and smaller formula; 3) they depict a more understandable model of the
state set, since the nodes and edges represent names of the automata and states,
respectively.

Each IDD-variable is associated to an automatonAi, and each outgoing edge
from nodeAi represents a state inAi, giving a maximum number of edges|QAi

|.
A BDD is converted to an IDD by traversing it in a top-down depth-first

manner and performing the following main steps:

1. For each new BDD-nodebQAs
i that is reached, create an IDD rooted byAs,

denoted asidd .

2. Continue traversing until a variableb
QAt
j is reached whereAt 6= As.

3. Create an IDD rooted byAt, denoted aschild .

4. Extract the sub-BDD betweenbQAs
i andb

QAt
j that represents some states of

automatonAs.

5. Addchild to idd ’s children and label the edge withQedge
As

.

6. Repeat the procedure from step 1.

The result is correct under the assumption that the BDD has a fixed variable
ordering. A pseudo algorithm of this procedure is presentedin Paper1.

63 4.4. SYMBOLIC GUARD GENERATION

4.4.3 Guard Generation

The last step of obtaining the guard is to convert the IDDs to propositional for-
mulae. For a given IDD, a top-down depth first search is used totraverse the
graph and generate its corresponding propositional formula. In Paper1, an al-
gorithm is presented that generates a guard based on an IDD byconsidering the
heuristic techniques, described in Section3.4.1, to simplify the guard. The algo-
rithm starts from the root and visits the nodes, while generating the expression
and ends at the 1-terminal. For each node in the IDD, the corresponding expres-
sions of the edges belonging to the same level (the children of that node) are
logically disjuncted and if the edges belong to different levels they are logically
conjuncted. Hence, the propositional formula for the IDD inFigure4 is

r ∧ ((p1 ∧ S1) ∨ (p2 ∧ S2)),

wherepi is the corresponding expression of the edge that lead to one of A’s
children andSi is the corresponding expression from the node to the 1-terminal,
that is recursively computed.

R

A

B B

1

r

p1 p2

S1 S2

Figure 4.5: Recursive representation of an IDD.

4.4.4 Guard Reduction by Genetic Algorithms

Since a guard is generated indirectly from a BDD, the guard’ssize becomes very
sensitive to the size of the BDD. Hence, the variable ordering of the BDD, can
impact the size of the guard. Note that the smallest BDD does not necessarily
yield the smallest guard. In [78], we usedgenetic algorithms(GA) to reduce the
size of the generated guard by changing the variable ordering of the underlying
BDD.

A GA is a search heuristic that mimics the process of natural evolution. Ge-
netic algorithms belong to the larger class of evolutionaryalgorithms, which
generate solutions to optimization problems using techniques inspired by natural
evolution, such as inheritance, mutation, selection, and crossover. In a genetic al-
gorithm, a population of strings (calledchromosomes), which encode candidate

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 64

solutions(calledindividuals) to an optimization problem, evolves toward better
solutions. The evolution usually starts from a population of randomly gener-
ated individuals and iteratively continues by creating newgenerations. In each
generation, thefitnessof every individual in the population is evaluated, multi-
ple individuals are stochastically selected from the current population (based on
their fitness), and modified (recombined and possibly randomly mutated) to form
a new population. The new population is then used in the next iteration of the
algorithm.

In the following, we briefly describe each of the operations performed during
the GA.

Representation

Traditionally, GA works on binary strings of 0’s and 1’s. However, such en-
coding require a special repair operation to avoid creationof invalid solutions.
Another encoding was introduced for solving Traveling Salesmen Problem [79]
and later used for minimization of BDDs [80], which represents a variable or-
dering as an integer string of lengthn, wheren is the number of variables in a
BDD, and each integer appears in the string once. In [78], we used the latter
representation and thus each individual consists of a string of variables in the
BDD.

Initialization

The population is initialized by generating random individuals. Starting from a
randomly generated individual, the other individuals are generated by randomly
permutating the chromosomes in the initial individual. If anew individual al-
ready exists in the population, it is discarded. Individuals are added until popu-
lation size reaches a predefined size.

Selection

The selection of the individuals for mating pool is performed by roulette wheel
selection, where each individual is chosen with a probability proportional to its
fitness. As a fitness measure of an individual, the size of the guard generated us-
ing the variable ordering encoded by the individual is used.Additionally, some
of the best individuals of the old generation are also included in the new genera-
tion, to ensure that the best element is never lost.

Crossover

For each new solution to be produced, a pair of “parent” solutions is selected for
breeding from the mating pool selected previously. Two parents are combined

65 4.5. RELATED WORK

with each other usingcrossoveroperation to produce a “child”. New parents are
selected for each new child, and the process continues untila new population of
solutions of appropriate size is generated. In a traditional implementation of the
crossover operation, a random cut point is selected, and thechromosome of the
first parent is taken up to the cut point, and chromosome of thesecond parent is
taken from cut point to the end. This, however, would produceinvalid variable
orderings. Instead, a crossover illustrated in Figure4.6 is used [80, 81], where
genes of the chromosome of the first parent are taken up to the cut point, while
from the second parent all other missing genes are taken in the order they appear.
This preserves relative order of some of the variables of both parents, and always
generates valid solutions.

(a) Conventional crossover

3 2 4 1 5 5 3 1 4 2

3 2 4 5 1
(b) Order crossover

Figure 4.6: Crossover operation.

Mutation

Mutation helps diversifying solutions and escaping local minima. The mutation
operation is carried out by swapping two genes in an individual.

Termination

The algorithm is terminated after a predefined number of iterations, or when no
better individuals were produced after several consecutive iterations.

Worth to emphasise that in the GA-based approach, the goal isto find the optimal
variable ordering yielding the smallest guard, rather thanthe smallest BDD.

4.5 Related Work

Another symbolic approach that has been applied to SCT is based onBoolean
satisfiability (SAT) solvers. SAT solvers are programs that solve the problem

CHAPTER 4. SYMBOLIC REPRESENTATION ANDCOMPUTATION 66

of determining if the variables in a Boolean formula can be assigned in a way
so that the formula is satisfied, i.e. evaluates totrue. SAT-based techniques
have been utilized in various domains, especially verification of models, and
promising results have been obtained [82–85]. However, SAT-based techniques
are not always efficient for synthesis [86]. In general, depending on the problem
to be solved, either SAT- or BDD-based methods could be suitable, and can
therefore be seen as complementary techniques.

Chapter 5

Case Studies

In this chapter, we apply the presented framework to an illustrative and an indus-
trial example. We show how the examples can be modeled by TEFAs and how
their supervisor can be computed and represented. We also briefly discuss about
the BDD implementation. For more case studies and experimental results, refer
to Paper1-4.

5.1 Illustrative Example

Consider a manufacturing cell, shown in Figure5.1, taken from [49].

MACH1 MACH2

CONV1 CONV2

Figure 5.1: The manufacturing cell. The solid and dottel lines correspond to partsp1
andp2, respectively.

The manufacturing cell consists of machinesMACH1 andMACH2 , with an
input conveyorCONV1 as an infinite source of workpieces and output conveyor
CONV2 as an infinite sink. Each machine may process two types of parts, p1
and p2; and each machine is liable to break down, but then may be repaired.
For simplicity, the transfer of parts between machines willbe absorbed as a step
in machine operation. The machine TEFAs are displayed in Figure5.2, includ-
ing some given timed restrictions. ForMACH1 andMACH2 we define two

67

CHAPTER 5. CASE STUDIES 68

clocks c1 and c2, respectively, with domains{0, . . . , 4} and{0, . . . , 5} . The
eventαij occurs whenMACH i starts working on apj-part, whileβij represents
whenMACH i finishes working on apj-part;λi andγi represent respectively the
breakdown and repair ofMACH i.

The events are categorized as follows:

Σf = {αij | i, j = 1, 2},

Σu = {λj, βij | i, j = 1, 2},

Σc = Σf ∪ {γ1, γ2}.

We shall impose (i) logic-based specifications, (ii) a temporal specification, and
(iii) a quantitative optimality specification as follows:

(i) 1. a given part can be processed by just one machine at a time,

2. ap1-part must be processed first byMACH1 and then byMACH2 ,

3. ap2-part must be processed first byMACH2 and then byMACH1 ,

4. onep1-part and onep2-part must be processed in each production
cycle,

5. if both machines are down,MACH2 is always repaired before
MACH1 ;

(ii) 5. in the absence of breakdown/repair events a production cycle must
be completed in at most 10 time units;

(iii) 6. subject to (ii), production cycle time is to be minimized.

We introduce two assisting variablesp1b andp2b that are set to 1 when parts
p1 andp2 are being processed, respectively and set to 0 when they are not pro-
cessed. Thus,p1b will be set to 1 on transitions including eventsαi1 and set to
zero on outgoing transitions from locationl1; and similarly for variablep2b. The
specification 1 can then be directly modeled on the machine plants, by restricting
the transitions includingαi1 with the guardp1b == 0; and similarly for transi-
tions includingαi2. Notice that since the guards are added to transitions with
controllable events, it will not cause any controllabilityissue. Specifications 2-
6 are modeled by automataSPEC2-SPEC6, respectively, shown in Figure5.3.
The alphabet of each automaton is the events illustrated in each corresponding
figure. It can be verified that, in fact, specification 1 is automatically enforced
by specifications 2 and 3 together. We therefore only consider the composition
of SPEC2-SPEC5as the specification of the cell. And the cell’s open-loop be-
havior, i.e., the plant, will be the composition ofMACH1 andMACH2 .

The system consists of 2656 reachable states, whereas 1073 states belong
to the minimally restrictive supervisor. Notice that thesenumbers differ from

69 5.1. ILLUSTRATIVE EXAMPLE

l0
l1

c1 ≤ 3
l2

c1 ≤ 2

l3

α11

c1 ≥ 1
α12

c1 ≥ 1

!β11
c1 == 3

!λ1
c1 ≤ 3

!βi2
c1 == 2

!λ1
c1 ≤ 3

γ1
c1 ≥ 1

(a) MACH1 .

l0
l1

c2 ≤ 1
l2

c2 ≤ 4

l3

α21

c2 ≥ 1
α22

c2 ≥ 1

!β21
c2 == 1

!λi
c2 ≤ 4

!β22
c2 == 4

!λ2
c2 ≤ 4

γ2
c2 ≥ 1

(b) MACH2 .

Figure 5.2: The TEFAs ofMACH1 andMACH2 .

CHAPTER 5. CASE STUDIES 70

0 1

!β11

α11, !β21

α21

(a) SPEC2.

0 1

!β22

α22, !β12

α12

(b) SPEC3.

0

1

2

3

!β21

!β12

!β12

!β21

(c) SPEC4.

0 1

!λ2

γ1

γ2

(d) SPEC5.

Figure 5.3: The specifications of the timed manufacturing cell.

the numbers in [49]. The reason is that in our approach we implicitly let thetick

event occur until all clocks reach their maximum values, yielding different states.
On the other side, in [49], there does not exist any clocks and thus self-looptick

transitions will be added to states, wheretick does not change the behavior of
the model. However, the control function behavior, in the sense of Figure3.1, of
both approaches is the same.

Based on the supervisor, guards were generated for eventsα11 andα22, with
sizes 12 and 2, respectively. The remaining events do not require any restrictions,
i.e., they are always allowed to occur without causing any problem. From an im-
plementation point of view, an event that is always allowed or forbidden, can
be directly ’hard-coded’ in the plant. Hence, the plant doesnot need to ask the
supervisor whether it is allowed to execute such an event, resulting in less com-
munication between the plant and the supervisor. It is also worth to mention that,
from a modeling perspective, knowing that some events are always allowed or
forbidden to occur could be helpful, e.g., to realize what events cause problems.

As an example, the sufficient restriction ona22 is:

Ga22⋆ : lSPEC4== 0 ∨ lSPEC4== 1,

wherelSPEC4 is a new variable introduced to the model with domain 0,. . . ,3, rep-
resenting the current location ofSPEC4. This indicates that eventa22 is allowed
to be executed only if the system is in location 0 or 1 ofSPEC4. Consequently, a
supervisor with 1073 states has been represented by two relatively small guards.
In this controlled behavior, forcing plays no role.

71 5.1. ILLUSTRATIVE EXAMPLE

Figure 5.4 shows the size of intermediate BDDs in each iteration, during
the reachability analysis (the RESTRICTEDFORWARD algorithm, described in
3.3.1), for both thetick -based approach usingtick -EFAs and thetick -eliminated
approach (in the sequel referred to as the TEFA-based approach) using TEFAs. It
is observed that the fixed point computation based on TEFAs needs less iterations
to reach a fixed point due to the fact that, in contrast to thetick -based approach,
it does not perform iterations for thetick event. Furthermore, the maximum size
of the intermediate BDD in the TEFA-based approach is smaller than thetick -
based approach. For larger examples, this could avoid statespace explosion.
Notice that since the TEFA-based approach starts with a set of states, the initial
BDD is larger than thetick -based approach, which starts with a single state.

0 10 20 30 40

0

100

200

300

400

iterations

B
D

D
si

ze

tick-EFA
TEFA

Figure 5.4: The size of intermediate BDDs in each iteration, during the reachability
analysis for the timed manufacturing cell.

To address the temporal specification (ii), we first modify the models, under the
stated assumption that breakdowns are absent, by removingSPEC5and all tran-
sitions includingλi or γi events inMACH i. Next, we introduce a clockc3 with
domain{0, . . . , 10}. We can now model the temporal specification by a TEFA
with a single location with invariantc3 ≤ 10. Sincec3 evolves synchronously
with c1 andc2, only those marked states that include ac3 value less than 10, i.e.,
µC3 ≤ 10, will be extracted. The supervisor is computed in less than asecond
and consists of 933 states. In [49], this specification has been modeled by an
automaton with 11-tick sequence all of whose states are marked. We conclude
that, in the absence of breakdowns, a production cycle can indeed be forced to
complete in at most 10 time units. Here, of course, the use of forcible events is
essential.

Finally, to address specification (iii), based on the the marked states of the
previously computed supervisor for specification (ii), theminimal value ofc3

CHAPTER 5. CASE STUDIES 72

can be extracted. Considering the state with the minimal value as the marked,
we perform a new synthesis to ensure that the marked state canbe reached in
a controllable manner. If the synthesis does not return a supervisor, the same
procedure is performed on the next minimal value ofc3. In this case, there exists
a supervisor for the minimal value ofc3, having the value 7. In [49], this speci-
fication is implemented as in (ii) with successive timer sequences oftick -length
9, 8, . . . until the synthesis algorithm returns an empty result.

5.2 Industrial Case Study

Consider a real industrial case study, taken from [87]. The goal is to design
a robust and optimal controller for a plastic injection molding machine. The
system to be controlled is depicted in Figure2. It is composed of: “(1) a machine
which consumes oil, (2) a reservoir containing oil, (3) an accumulator containing
oil and a fixed amount of gas in order to put the oil under pressure, and (4) a
pump” [87]. When the system starts, the machine consumes oil under pressure
made by the accumulator. The pump can control the the level ofthe oil and the
pressure within the accumulator to introduce additional oil into it.

Pump

Reservoir

Accumulator

Machine/Consumer

Vmax

Vmin

+2.2 litres/second

Figure 5.5: Overview of the oil pump system.

The controller must turn the pumpon andoff to ensure the following two
main requirements [87]:

R1: “the level of oilv(t) at timet (measured in litres) into the accumulator must
always stay within two safety bounds[Vmin ;Vmax], in the sequelVmin =
4.9l andVmax = 25.1l”;

R2: “a large amount of oil in the accumulator implies a high pressure of gas
in the accumulator. This requires more energy from the pump to fill in

73 5.2. INDUSTRIAL CASE STUDY

the accumulator and also speeds up the wear of the machine. Itis thus
desired to keep the level of oil minimal during operation, inthe sense that∫ t=T
t=0 v(t) is minimal for a given operation periodT ” .

RequirementR1 can be seen as a qualitative specification, representing a safety
property, while requirementR2 is a quantitative specification, representing an
optimality property.

The machine consumes the oil in a cyclic manner. In each period, the ma-
chine consumes the oil by a specific rate, expressed as numberof litres per sec-
ond. “At time 2, the rate of the machine goes to 1.2l/s for two seconds. From
8 to 10 it is 1.2 again and from 10 to 12 it goes up to 2.5 (which ismore than
the maximal output of the pump). From 14 to 16 it is 1.7 and from16 to 18
it is 0.5” [87]. However, there exists anoiseof 0.1l/s. Hence, for a specific
period, if the mean consumption iscl/s, in reality the rate will lie in the interval
[c− 0.1, c+ 0.1]. This property is notedF.

The initial volume of the oil within the accumulator is assumed to be 10l.
The pump is initiallyoff and when it ison the output rate is2.2l/s. It is desired
that after any change of state of the pump (on or off), at least two seconds must
last before the next change can happen. Furthermore, the number of times the
pump can be turned on and off is restricted to two times.

Consequently, a controller is desired that, with respect tothe mentioned re-
strictions on the pump and the measurement noise of the machine, turns the
pump on and off at appropriate time points to satisfy requirementR1 and try to
minimize the accumulated oil during each cycle (requirement R2). The controller
should work for an arbitrary long period of time.

In [87], this system has been modeled by timed game automata [25], and the
controller is synthesized using Uppaal-Tiga [62].

We transform the timed game automata in [87] to TEFAs, such that they
adapt to the SCT. In contrast to the approach in [87], where around 10,000 short
executions were needed to compute the optimal controller, here we compute the
controller in two steps: (1) compute the minimally restrictive supervisor satis-
fying requirementR1, (2) based on this supervisor, compute a new supervisor
satisfying requirementR2. The TEFAs of the machine, pump, and scheduler are
shown in Figure3, 4, and5, respectively. We briefly describe the TEFAs and
explain how they have been modeled in the context of SCT. Since the TEFAs are
quite similar to the models in [87], for a detailed description of the TEFAs, the
reader is referred to [87].

The machine and the pump TEFAs are considered as plant. The specification
is modeled by the scheduler and the explicitly forbidden locationbad . The events

CHAPTER 5. CASE STUDIES 74

cy ≤ 2 cy ≤ 4 cy ≤ 8 cy ≤ 10 cy ≤ 12

cy ≤ 14cy ≤ 16cy ≤ 18cy ≤ 20cy ≤ 20

bad

!rc
cy == 2

Vrate− = 12

!rc
cy == 4

Vrate+ = 12

!rc
cy == 8

Vrate− = 12

!rc
cy == 10

Vrate− = 13

!rc
cy == 12

Vrate+ = 25

!rc
cy == 14

Vrate− = 17

!rc
cy == 16

Vrate+ = 12

!rc
cy == 18
Vrate+ = 5

!rc
cy == 20
Vdone+ = 1

!noise
Noise(time − 2)

!noise
Noise(2)

!noise
Noise(time − 6)

!noise
Noise(time − 6)

!noise
Noise(6)

!noise
Noise(time − 8)

!noise
Noise(time − 8)

!noise
Noise(10)|

(cy == 20 & FinalNoise)

Figure 5.6: The TEFA of the cyclic consumption of the machine.

off on

turnOn

cz ≥ 2 & i < 2
Vrate+ = 22, cz = 0

turnOff

cz ≥ 2
Vrate− = 22, cz = 0, i ++

!updatePump !updatePump

Figure 5.7: The TEFA of the pump.

75 5.2. INDUSTRIAL CASE STUDY

ct ≤ 1

ct ≤ 0

ct ≤ 1

end

!startScheduler
ct == 0

!updateCy
ct == 1 & done == 0

time+ = 1, V+ = Vrate , Vacc+ = (2 ∗ V + Vrate)

!updatePump, turnOn, turnOff

ct == 1
ct = 0

!rc
ct == 0

!endScheduler
ct == 0 & done == 1

Figure 5.8: The TEFA of the scheduler.

are categorized as follows:

Σf = {turnOn, turnOff , startScheduler , endScheduler},

Σc = {turnOn, turnOff },

Σu = Σ\Σc.

The alphabet of each TEFA is the set of events depicted in eachcorresponding
figure. The model consists of the following variables clocks:

V : a variable with domain{0, . . . , 255}, representing the current volume of
oil,

Vrate : a variable with domain{−25, . . . , 25}, representing the rate thatV evolves,

Vacc : a variable with domain{0, . . . , 2047}, representing the accumulated vol-
ume of oil,

time: a variable with domain{0, . . . , 31}, representing the global time since the
beginning of the cycle,

i: a variable with domain{0, . . . , 2}, representing the number of timed the
pump has been turned on and off,

done: a variable with domain{0, . . . , 1}, representing when a cycle is finished,

cy: a clock with domain{0, . . . , 21},

cz: a clock with domain{0, . . . , 21},

ct: a clock with domain{0, . . . , 2}.

CHAPTER 5. CASE STUDIES 76

We have considered a precision of0.1l and thus, to use integers, the value of the
volume is multiplied by 10.

The transitions of the TEFA, except the ingoing transitionsto locationbad , of
the machine follow easily from the given cyclic definition ofthe consumption of
the machine. The guardNoise(s) will be satisfied if the current volume exceeds
the boundary ofVmin andVmax , i.e., 4.9 and 25.1, due to fluctuations of the
consumption:

Noise(s) = (V − s < 50) | (V + s) > 250.

The guardFinalNoise checks the same but for the volume obtained at the end
of cycle and against the interval represented byV 1F and V 2F that are two
variables with equal domains{0, . . . , 255}:

FinalNoise = (V − 10 < V 1F) | (V + 10) > V 2F.

Notice thatNoise andFinalNoise are modeling the propertyF.
The scheduler is used to get the correct behavior of the model: the variables

time, V , andVacc should be updated after each rate change, i.e., after each tran-
sition, whereVrate gets updated.

The compositional model will correspond to a single cycle. However, as
stated earlier, the goal is to have a controller that works properly for any number
of cycles. To extend the approach to a number of cycles, we follow the same
technique as [87]: “find some intervalI1 = [V1, V2] ⊆ [4.9; 25.1] such that:

(i) I1 is stable: from all initial volumeV0 ∈ I1, there exists a strategy for
the controller to ensure that whatever the fluctuations on the consumption,
the value of the volume is always between 5l and 25l and the volume at
the end of the cycle is within intervalI2 = [V 1F, V 2F], whereV 1F =
V1 + 0.4 andV 2F = V2 − 0.4, and 0.4 is a margin parameter considered
to ensure robustness,

(ii) I1 is optimal among stable intervals: the worst accumulated volume of the
solutions ofI1 is minimal”.

We perform each step separately.
We start by satisfying property (i). As it can be observed, the objective of this

problem is to find some proper values for variables, which is slightly different
from the objectives usually defined in the SCT context. To handle this, we use
a trick: let the initial values of the variablesV , V 1F , andV 2F be the entire
corresponding domains. Fortunately, this can be handled easily by BDDs. In
particular, by starting with all possible values ofV we compute several supervi-
sors in parallel (this is the main advantage of symbolic computations). However,

77 5.2. INDUSTRIAL CASE STUDY

0 20 40 60 80 100

0

2

4

·104

iterations

B
D

D
si

ze

tick-EFA
TEFA

Figure 5.9: The size of intermediate BDDs in each iteration, during the reachability
analysis for the oil pump systems.

to keep track of the corresponding initial values ofV for the marked states, we
construct the following BDD that will represent the initialstates:

255∨

i=1

b
V
V ↔ θ(i) ∧ b

V
V 0 ↔ θ(i),

whereV 0 is a new variable with domain{0, . . . , 255}. The value of variable
V 0 can be considered as the identity of the states that will be followed during
the fixed point computations. Consequently, the synthesized supervisor will only
contain those initial values where a marked state can be reached, which repre-
sents the intervalI1. The minimally restrictive supervisor was computed in 2
minutes and 13 seconds and consists of 7,846,603 states. Figure6 shows the size
of intermediate BDDs in each iteration, during the reachability analysis, for the
tick -based approach and the TEFA-based approach. It can be observed that, in
both cases, due to the special treatment of the variables, the size of the BDDs
grows exponentially. Furthermore, we can see that the TEFA-based approach
has reached a fixed point much earlier than thetick -based approach. However,
from a BDD size point of view, eliminating thetick event did not gain so much.

Based on the computed supervisor, we perform the optimization, i.e., prop-
erty (ii). The main idea is to select a subset of the reached marked states and
perform a further backward reachability. Note that each marked state of the su-
pervisor, now includes the values of the variablesV 0 andVacc. Hence, among
the marked states, fixingV 0 to a specific valuev, we obtain all values ofVacc,
which can be reached safely by starting with volumev. By a simple BDD op-
eration, we can extract the minimal value ofVacc among all marked states with

CHAPTER 5. CASE STUDIES 78

V 0 = v. By performing this on all values ofv ∈ V0, we get a BDD, repre-
senting the states that include(v,min{V v

acc)}. Among these states, we extract an
intervalI1 = [v1, v2], where the maximum value ofmin{V v

acc)} among all values
in I1 is minimal compared to other possible intervals. We consider the states
that contain the intervalI1 as the new marked states. Based on the computed
marked states, by performing a backward reachability on theearlier computed
supervisor, we get a new supervisor with 2,431,982 states that was computed in
58 seconds. The corresponding intervalI1 of this supervisor is[51, 100]. The
time points for turning the pump on and off can be obtained by checking the
time variable in the corresponding guards of eventsturnOn andturnOff . Due
to many different configurations the system can be in, the guards become very
large, and not tractable for the designers. They can though be implemented in a
controller directly. Basically, the guards have the following format:

(V 0 == v ∧ time == t ∧ . . .) ∨

Hence, for each eventturnOn or turnOff , it can be deduced at what time the
pump should be turned on or off, respectively. However, since the guards are
large, to identify the above statement among hundreds of terms is not easy.
Nonetheless, we can still use the BDD representing the allowed state set (de-
scribed in Section3.4.1), to achieve this information. Table1 shows the time
points at which the pump should be turned on and off for different initial vol-
umes in the intervalI1. In the table,timeon

i andtimeoff
i , represents the time point

the pump should be turned on and off, respectively, fori = 1, 2.

Table 5.1: The time points at which the pump should be turned on and off for different
initial volumes in the intervalI1 = [5.1, 10.0].

V 0 timeon
1 / timeoff

1 timeon
2 / timeoff

2

[5.1, 5.3] 2 / 4 9 / 15

[5.3, 6.4] 2 / 4 9 / 14

[6.4, 6.7] 3 / 5 9 / 14

[6.7, 7.5] 3 / 5 10 / 15

[7.5, 7.7] 3 / 5 10 / 14

[7.7, 8.5] 8 / 12 14 / 16

[8.5, 8.8] 8 / 12 15 / 17

[8.8, 9.0] 8 / 11 14 / 17

[9.0, 9.7] 9 / 12 14 / 17

[9.7, 10.0] 9 / 12 14 / 16

79 5.3. IMPLEMENTATION REMARKS

These results conform with results obtained in [87].

5.3 Implementation Remarks

The entire framework, discussed in the thesis, has been implemented and inte-
grated in Supremica [29] which usesJavaBDD[88] as the BDD package. The
experiments were carried out on a standard PC (Intel Core 2 Quad CPU @ 2.4
GHz and 3 GB RAM) running Windows 7.

80

Chapter 6

Summary of Appended Papers

PartII of the thesis consists of four papers. In this chapter the papers are sum-
marized and important contributions are pointed out. It is also briefly discussed
how the papers relate to each other.

Paper1

S. Miremadi, K. Åkesson and B. Lennartson. Symbolic computation of reduced
guards in supervisory control.IEEE Transactions on Automation Science and
Engineering, October 2011.

The main focus in this paper is to, based on DFAs, show how to generate guards
representing the supervisor. Based on the supervisor, for each controllable event
σ, the states whereσ can be enabled in the composed model is divided into two
basic sets: the states from whichσ must be enabled to end up in the supervisor,
and the states from whichσ must be forbidden to be executed to not end up in
an undesired state. The basic state sets are symbolically computed using BDDs.
The remaining states are identified as don’t-care states that are used in a BDD
operator to reduce the size of the BDDs representing the basic state sets, which
could lead to smaller guards. To obtain tractable guard expressions, by exploiting
the structure of the given models, some heuristic techniques are applied to the
guards.

Paper2

S. Miremadi, B. Lennartson and K. Åkesson. A BDD-based approach for mod-
eling plant and supervisor by extended finite automata.IEEE Transactions on
Control Systems Technology, November 2012.

This paper extends the approach in Paper1, by performing the guard generation
on EFAs, FAs augmented by discrete variables. Modeling systems using EFAs
will typically yield more compact models by hiding some of the states of the

81

CHAPTER 6. SUMMARY OF APPENDEDPAPERS 82

system in variables. The main contribution of this paper wasto show how EFAs
and their full synchronous composition can be symbolicallycomputed by BDDs
representing the corresponding DFAs of the EFAs. Based on the symbolic rep-
resentations, the guards can be generated according to Paper 1. The generated
guards can then be attached to the original models, yieldinga modular supervi-
sor.

Paper 3

S. Miremadi, Z. Fei, K. Åkesson and B. Lennartson. Symbolic representation
and computation of timed discrete event systems. Submittedto IEEE Transac-
tions on Automation Science and Engineering, 2012.

This paper considers time in EFAs, by presenting timed EFAs.It is shown how
TEFAs can be transformed to EFAs by treating the clocks as regular variables
and introducing thetick event to the model, representing the time evolution.
However,tick models suffer from a major problem: the state size is very sen-
sitive to the clock frequency. To tackle this problem, we proposed a method to
eliminate thetick events while still obtain the same behavior. The main contri-
bution was to show howtick -eliminated models can be symbolically represented
by BDDs. It was shown that, in this way, smaller intermediateBDDs and less
iterations in the fixed point computations can be obtained. We showed how SCT
can be applied to the symbolic representations by considering thetick event as
an uncontrollable event.

Paper 4

S. Miremadi, Z. Fei, K. Åkesson and B. Lennartson. Symbolic supervisory con-
trol of timed discrete event systems. Submitted toIEEE Transactions on Control
Systems Technology, 2012.

In Paper3, we assumed that thetick event is uncontrollable. In Paper4, in the
context of SCT for TDES [49], we treat thetick event in a special manner. As
in [49], the concept of forcible events are introduced that can preempt thetick
event. The main contribution of this paper is to show how the synthesis, espe-
cially controllability, can be symbolically performed on thetick -eliminated mod-
els, presented in Paper3. Papers1-4 can be considered as a framework, where
one is able to model a DES or TDES as EFAs or TEFAs, and symbolically com-
pute its supervisor based on the SCT, and finally generate guards representing
the supervisor and attach them to the original models.

Chapter 7

Conclusions and Future Research

As discussed in the thesis, supervisory control theory is a model-based theoret-
ical framework for computing a control function, i.e., supervisor, that restricts a
given plant towards a given specification only when it is necessary. In Chapter
1, we pointed out three challenges that exist when SCT is used:

(i) Most of the existing work on SCT, has been carried out on untimed DES
for analyzing the qualitative properties of the systems. However, in most
of the real-time applications, the correct behavior can only be obtained by
taking time into consideration. Also, including time in themodels, opens
the possibility of performing quantitative analysis such as time optimiza-
tion.

(ii) As discussed, the number of states of a system consisting of a number of
components grows exponentially as the number of componentsincreases.
For many of the industrial applications that consist of a large number of
components, this leads to state space explosion, that is thenumber of states
cannot be represented in the hardware.

(iii) For industrial applications, typically the synthesized supervisor consists
of a large number of states. Representing the supervisor could then be
challengeable, both from a modeling and implementation perspective.

In this thesis, we tackled the above issues. To meet Challenge (i), we modeled
the systems by TEFAs that include a set of discrete-valued clocks. The SCT for
TEFAs was defined based on their correspondingtick -EFAs as in [49], where
the clocks were considered as regular variables and the timesemantics was im-
plemented by thetick event, treated in a special manner. We showed that the
tick models suffer from a major problem: the state size is very sensitive to the
clock frequency. To tackle this problem, we proposed a method to eliminate the
tick events while still obtain the same behavior.

To tackle Challenge (ii), all computations were performed symbolically using
BDDs. Essentially, based on a given set of TEFAs, the supervisor was computed

83

CHAPTER 7. CONCLUSIONS ANDFUTURE RESEARCH 84

symbolically using BDDs. We showed that the symbolic implementation of the
tick -eliminated models result in smaller intermediate BDDs andless iterations
in the fixed point computations. For some applications, thiscould resolve the
state space explosion, caused by time.

Finally, to tackle Challenge (iii), the supervisor was represented in a modu-
lar fashion by extracting constraining guards and attaching them to the original
models. In this way,

1. the designers will remain in the modular scope, which makes it possible
to easily perform modifications on the resulting supervisor, e.g., changing
the specification,

2. it becomes possible implement the supervisor in a modularmanner, which
could especially be beneficial for hierarchical approaches,

3. the final representation will be closer to the ones typically used in the in-
dustry for implementing a controller.

The guards were generated based on some categorized states of the supervisor,
referred to as the basic state sets. It was shown how the basicstate sets can
be symbolically computed using BDDs. Furthermore, different techniques were
proposed to simplify the guards. Notice that the entire procedure can also be
applied to untimed DES modeled by EFAs. A process overview ofthe entire
framework is illustrated in Figure7.1.

The framework has been implemented and verified in the supervisory tool
Supremica, and has been applied to different examples and industrial case stud-
ies, some discussed in Chapter5.

There are some possible directions for future research. In this work, the
main emphasis has been on representing the systems symbolically, rather than
developing efficient synthesis algorithms. It is indeed possible to improve the
efficiency of the supervisory synthesis, e.g., by utilizingpartitioning techniques
in the BDD computations such as [89, 90]. Furthermore, even though some
techniques have been proposed to simplify the guards, stillfor some applications,
the guards may become complicated. Essentially, it is possible to simplify the
guards more by utilizing the behavioral structure of the models.

Analyzing timed systems, a missing piece in this thesis, is an approach to
automatically perform time optimization on the TEFAs. The interesting point
about time optimization on TEFAs is the existence of uncontrollable events that
may lead to several optimal solutions. In particular, disregarding the uncontrol-
lable events, there may exist a path from the initial state toa marked state that
takes minimal time to reach. However, if there exists an outgoing uncontrol-
lable event from a state in the optimal path, which could not be restricted by the
supervisor, the system can end up in a state not belonging to the optimal path
anymore. In such a case, we may desire a new minimal path from the new state

85

Compute the
Supervisor

Transform
the TEFAs to

BDDs

Generate
Guards

Simplify the
Guards

Attach the
Guards to the
Initial Models

0 1 0 1 0 1

0 1

1

2

3

4

5

Figure 7.1: Process overview of the approach.

CHAPTER 7. CONCLUSIONS ANDFUTURE RESEARCH 86

to a marked state. A possible way for solving this problem could be to, first, com-
pute the minimal time from each state to a marked state. This can be achieved
by performing a backward reachability computation from allthe marked states
including all possible values of the global clock. Second, based on the minimal
times, a one-step lookahead strategy could be computed for each state, indicating
the event(s) that will finally yield the minimal time.

Bibliography

[1] A. Wolfe, “For Intel, it’s a case of FPU all over again,”EE Times, 1997.

[2] A. Mishkin, J. Morrison, T. Nguyen, H. Stone, B. Cooper, and B. Wilcox,
“Experiences with operations and autonomy of the Mars Pathfinder Mi-
crorover,” inIEEE Aerospace Conference, vol. 2, 1998, pp. 337–351.

[3] J. Rawlinson, “Report on the Therac-25,” inOCTRF/OCI Physicists Meet-
ing, Kingston, Ontario, 1987.

[4] V. D’Silva, D. Kroening, and G. Weissenbacher, “A surveyof automated
techniques for formal software verification,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no.
7, pp. 1165–1178, Jul. 2008.

[5] C. Kern and M. R. Greenstreet, “Formal verification in hardware design: a
survey,”ACM Transactions on Design Automation of Electronic Systems,
vol. 4, no. 2, pp. 123–193, Apr. 1999.

[6] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL –
a tool suite for automatic verification of real-time systems,” Lecture Notes
in Computer Science, vol. 1066, no. 1996, pp. 232–243, 1996.

[7] S. Yovine, “KRONOS: a verification tool for real-time systems,”Interna-
tional Journal on Software Tools for Technology Transfer, vol. 1, no. 1-2,
pp. 123–133, 1997.

[8] P. Ramadge and W. M. Wonham, “Supervisory control of a class of dis-
crete event processes,”SIAM Journal of Control and Optimization, vol.
25, no. 1, pp. 635–650, 1987.

[9] B. A. Brandin and F. E. Charbonnier, “The supervisory control of the au-
tomated manufacturing system of the AIP,” inProceedings of the 4th In-
ternational Conference on Computer Integrated Manufacturing and Au-
tomation Technology, Oct. 1994, pp. 319–324.

[10] V. Chandra, Z. Huang, and R. Kumar, “Automated control synthesis for
an assembly line using discrete event system control theory,” IEEE Trans.
on Systems, Man and Cybernetics, vol. 33, no. 2, pp. 284–289, 2003.

87

BIBLIOGRAPHY 88

[11] A. Giua and C. Seatzu, “Supervisory control of railway networks with
Petri nets,” inProceedings of the 40th IEEE Conference on Decision and
Control, vol. 5, 2001, 5004–5009 vol.5.

[12] M. A. Jafari, H. Darabi, T. O. Boucher, and A. Amini, “A distributed
discrete event dynamic model for supply chain of business enterprises,” in
Proceedings of the 6th International Workshop on Discrete Event Systems,
WODES’02, 2002, pp. 279–285.

[13] L. Feng, W. M. Wonham, and P. S. Thiagarajan, “Designingcommunicat-
ing transaction processes by supervisory control theory,”Form. Methods
Syst. Des., vol. 30, no. 2, pp. 117–141, 2007.

[14] M. Seidl, “Systematic controller design to drive high-load call centers,”
IEEE Transactions on Control Systems Technology, vol. 14, no. 2, pp. 216–
223, Mar. 2006.

[15] K. Åkesson, M. Fabian, H. Flordal, and A. Vahidi, “Supremica—A tool
for verification and synthesis of discrete event supervisors,” in 11th Medite-
rranean Conference on Control and Automation, Rhodos, Greece, 2003.

[16] L. Feng and W. M. Wonham, “TCT: A computation tool for supervisory
control synthesis,” inProceedings of the 8th international Workshop on
Discrete Event Systems, WODES’06, 2006, pp. 388–389.

[17] B. A. Brandin and W. M. Wonham, “Supervisory control of timed discrete-
event systems,”IEEE Transactions on Automatic Control, vol. 39, no. 2,
pp. 329–342, 1994.

[18] H. Chen and H. Li, “Maximally permissive state feedbacklogic for con-
trolled time Petri nets,” inProceedings of the 1997 American Control Con-
ference, vol. 4, American Autom. Control Council, 1997, pp. 2359–2363.

[19] A. Saadatpoor, “Timed state tree structures: superviory control and fault
diagnosis,” Ph.D. dissertation, University of Toronto, 2009.

[20] H. Wong-Toi and G. Hoffmann, “The control of dense real-time discrete
event systems,” inProceedings of the 30th IEEE Conference on Decision
and Control, IEEE, 1991, pp. 1527–1528.

[21] R. Alur and D. L. Dill, “A theory of timed automata,”Theoretical Com-
puter Science, vol. 126, no. 2, pp. 183–235, Apr. 1994.

[22] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for dis-
crete and timed systems,”Hybrid Systems II - Lecture Notes in Computer
Science, vol. 999, pp. 1–20, 1995.

[23] P. Niebert, S. Tripakis, and S. Yovine, “Minimum-time reachability for
timed automata,” in8th IEEE Mediterranean Conf. on Control and Au-
tomation, 2000.

89 BIBLIOGRAPHY

[24] T. Brihaye, T. A. Henzinger, V. S. Prabhu, and J.-F. Raskin, “Minimum-
time reachability in timed games,” in34th International Colloquium,
Springer Berlin Heidelberg, 2007, pp. 825–837.

[25] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime,“Efficient on-
the-fly algorithms for the analysis of timed games,” inProceedings of the
16th International Conference on Concurrency Theory, 2005, pp. 66–80.

[26] S. B. Akers, “Binary Decision Diagrams,”IEEE Transactions on Comput-
ers, vol. 27, pp. 509–516, Jun. 1978.

[27] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory synthesis
of large systems,”Control Engineering Practice, vol. 14, no. 10, pp. 1157–
1167, Oct. 2006.

[28] Supremica,WWW.SUPREMICA.ORG. THE OFFICIAL WEBSITE FOR
THE SUPREMICA PROJECT, 2004.

[29] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - An inte-
grated environment for verification, synthesis and simulation of discrete
event systems,” in2006 8th International Workshop on Discrete Event
Systems, Ann Arbor, MI, USA, 2006, pp. 384–385.

[30] S. Miremadi, K. Åkesson, M. Fabian, A. Vahidi, and B. Lennartson, “Solv-
ing two supervisory control benchmark problems using Supremica,” in9th
International Workshop on Discrete Event Systems, 2008, WODES 08.,
May 2008, pp. 131–136.

[31] A. Arnold and J. Plaice,Finite transition systems: semantics of communi-
cating systems. Hertfordshire, UK, UK: Prentice Hall International (UK)
Ltd., 1994.

[32] R. P. Kurshan,Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton, NJ, USA: Princeton University
Press, 1994.

[33] A. Giua, “Petri Nets as discrete event models for supervisory control,”
PhD thesis, Rensselaer Polytechnic Institute, Troy, New York, USA, Jul.
1992.

[34] J. Bergstra and J. Klop, “Process algebra for synchronous communica-
tion,” Information and control, vol. 60, no. 1-3, pp. 109–137, 1984.

[35] K. M. Inan and P. P. Varaiya, “Algebras of discrete eventmodels,”Pro-
ceedings of the IEEE, vol. 77, no. 1, pp. 24–38, Jan. 1989.

[36] Z. Manna and A. Pnueli,The temporal logic of reactive and concurrent
systems. New York, NY, USA: Springer-Verlag New York, Inc., 1992.

[37] G. D. Plotkin, “A structural approach to operational semantics,” Århus
University, Tech. Rep., Sep. 1981.

BIBLIOGRAPHY 90

[38] C. A. R. Hoare, “Communicating sequential processes,”Communications
of the ACM, vol. 21, no. 8, pp. 666–667, 1978.

[39] C. Baier and J.-P. Katoen,Principles of Model Checking. The MIT Press,
2008, p. 975.

[40] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables,”Decision and Control, 2007
46th IEEE Conference on, pp. 3387–3392, 2007.

[41] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” Lectures on Concurrency and Petri Nets, vol. 3098/2004, pp. 87–
124, 2004.

[42] A. Dubey, “A discussion on supervisory control theory in real-time dis-
crete event systems,” Institute for Software Integrated Systems, Tech. Rep.,
2009, p. 9.

[43] R. Alur and T. Henzinger, “Real-time logics: complexity and expressive-
ness,” inProceedings of 5th Annual IEEE Symposium on Logic in Com-
puter Science, IEEE Comput. Soc. Press, 1990, pp. 390–401.

[44] T. A. Henzinger, Z. Manna, and A. Pnueli, “What good are digital clocks?,”
in 19th International Colloquium on Automata, Languages and Program-
ming, 1992, pp. 545–558.

[45] J. S. Ostroff and W. M. Wonham, “A framework for real-time discrete
event control,”IEEE Transactions on Automatic Control, vol. 35, no. 4,
pp. 386–397, Apr. 1990.

[46] R. Kumar, V. K. Garg, and S. I. Marcus, “On Controllability and Normal-
ity of DEDS,” Systems and Control Letters, vol. 17, pp. 157–168, 1991.

[47] L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson, “Nonblocking and
safe control of discrete-event systems modeled as extendedfinite automata,”
IEEE Transactions on Automation Science and Engineering, vol. 8, no. 3,
pp. 560–569, Jul. 2011.

[48] G. Cengic, “A control software development method using IEC 61499
function blocks , simulation and formal verification,”Development, pp. 22–
27, 2008.

[49] B. A. Brandin and W. M. Wonham, “The supervisory controlof timed
DES,” IEEE Transactions on Automatic Control, vol. 39, no. 2, pp. 329–
342, 1994.

[50] P. Ramadge and W. M. Wonham, “The control of discrete event systems,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[51] W. M. Wonham and P. Ramadge, “Modular supervisory control of discrete-
event systems,”Mathematics of Control Signals and Systems, vol. 1, no.
1, pp. 13–30, 1988.

91 BIBLIOGRAPHY

[52] M. H. de Queiroz and J. E. R. Cury, “Modular supervisory control of
large scale discrete event systems,” inDiscrete Event Systems, Analysis
and Control, R. Boel and G. Stremersch, Eds., Kluwer, 2000, pp. 103–
110.

[53] K. Åkesson, H. Flordal, and M. Fabian, “Exploiting modularity for syn-
thesis and verification of supervisors,” in15th IFAC World Congress,
Barcelona, Spain, 2002.

[54] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional synthe-
sis of maximally permissive supervisors using supervisionequivalence,”
Discrete Event Dynamic Systems, vol. 17, no. 4, pp. 475–504, Aug. 2007.

[55] S. Mohajerani, R. Malik, S. Ware, and M. Fabian, “Compositional syn-
thesis of discrete event systems using synthesis abstraction,” in Chinese
Control and Decision Conference CCDC, IEEE, May 2011, pp. 1549–
1554.

[56] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event Sys-
tems, 2nd. Springer, 2008.

[57] K. Åkesson, “Methods and tools in supervisory control theory: operator
aspects, computation efficiency and applications,” PhD thesis, Signals and
Systems, Chalmers University of Technology, Göteborg, Sweden, 2002.

[58] A. Hellgren, M. Fabian, and B. Lennartson, “Synchronized execution of
discrete event models using sequential function charts,” in Proceedings of
the 38th IEEE Conference on Decision and Control, Phoenix AZ, USA,
1999, pp. 2237–2242.

[59] A. Hellgren, B. Lennartson, and M. Fabian, “Modelling and PLC-based
implementation of modular supervisory control,” inDiscrete Event Sys-
tems, 2002. Proceedings. Sixth International Workshop on, 2002, pp. 371–
376.

[60] S. Miremadi, K. Åkesson, and B. Lennartson, “Symbolic computation of
reduced guards in supervisory control,”IEEE Transactions on Automation
Science and Engineering, vol. 8, no. 4, pp. 754–765, 2011.

[61] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, “Controller symthesis for
timed automata,” inIn Proceedings of IFAC Symposium on System Struc-
ture and Control, 1998, pp. 469–474.

[62] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D.
Lime, “Uppaal-tiga: Time for playing games!,” inProceedings of the 19th
international Conference on Computer Aided Verification, 2007,

BIBLIOGRAPHY 92

[63] P. Gohari and W. M. Wonham, “On the complexity of supervisory control
design in the RW framework.,”IEEE transactions on systems, man, and
cybernetics. Part B, Cybernetics : a publication of the IEEESystems, Man,
and Cybernetics Society, vol. 30, no. 5, pp. 643–52, Jan. 2000.

[64] K. Rohloff and S. Lafortune, “On the computational complexity of the
verification of modular discrete-event systems,” inProceedings of the 41st
IEEE Conference on Decision and Control, vol. 1, IEEE, 2002, 16–21
vol.1.

[65] G. Hoffmann and H. Wong-Toi, “Symbolic synthesis of supervisory con-
trollers,” in 1992 American Control Conference, Chicago, IL, USA, 1992,
pp. 2789–2793.

[66] C. Ma and W. M. Wonham, “Nonblocking supervisory control of state
tree structures,”IEEE Transactions on Automatic Control, vol. 51, no. 5,
pp. 782–793, May 2006.

[67] K. Schmidt, H. Marchand, and B. Gaudin, “Modular and decentralized
supervisory control of concurrent discrete event systems using reduced
system models,” inProceedings of the 8th International Workshop on Dis-
crete Event Systems, WODES’06, Jul. 2006, pp. 149–154.

[68] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking:1020 states and beyond,” inProceedings of
the Fifth Annual IEEE Symposium on e Logic in Computer Science, 1990.,
Jun. 1990, pp. 428–439.

[69] C. Ma and W. M. Wonham, “STSLib and its application to twobench-
marks,” in9th International Workshop on Discrete Event Systems, 2008,
WODES’08., May 2008, pp. 119–124.

[70] C. E. Shannon, “A mathematical theory of communication,” The Bell Sys-
tem Technical Journal, vol. 27, pp. 379–423, 625656–, 1948.

[71] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs is
NP-complete,”IEEE Trans. Comput., vol. 45, no. 9, pp. 993–1002, 1996.

[72] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[73] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-decis-
ion diagrams,”ACM Comput. Surv., vol. 24, no. 3, pp. 293–318, 1992.

[74] H. Andersen, “An introduction to binary decision diagrams,” Department
of Information Technology, Technical University of Denmark, Tech. Rep.,
1999.

93 BIBLIOGRAPHY

[75] A. Aziz, S. Tasiran, and R. K. Brayton, “BDD variable ordering for inter-
acting finite state machines,” inProceedings of the 31st annual Design
Automation Conference, DAC ’94, New York, NY, USA: ACM, 1994,
pp. 283–288.

[76] O. Coudert and J. C. Madre, “A unified framework for the formal ver-
ification of sequential circuits,”1990 IEEE International Conference on
Computer-Aided Design, 1990. ICCAD-90. Digest of Technical Papers.,
pp. 126–129, Nov. 1990.

[77] J. Gunnarsson, “Symbolic methods and tools for discrete event dynamic
systems,” PhD thesis, Electrical Engineering, Linköping University,
Linköping, Sweden, 1997.

[78] S. Miremadi and A. Voronov, “Symbolic reduction of guards in supervi-
sory control using genetic algorithms,” Chalmers University of Technol-
ogy, Gothenburg, Sweden, Tech. Rep., 2012, p. 7.

[79] L. D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling problems
and traveling salesmen: The genetic edge recombination operator,” inPro-
ceedings of the 3rd International Conference on Genetic Algorithms, 1989,
pp. 133–140.

[80] R. Drechsler, “Genetic algorithm for variable ordering of OBDDs,” inIEE
Proceedings of Computers and Digital Techniques, 1996, pp. 364–368.

[81] D. Goldberg and R. Lingle, “Alleles, loci, and the traveling salesman prob-
lem,” in Proceedings of the First International Conference on Genetic Al-
gorithms and Their Applications, Pittsburgh, PA, USA, 1985, pp. 156–
159.

[82] N. Amla, R. Kurshan, K. L. McMillan, and R. Medel, “Experimental
analysis of different techniques for bounded model checking,” in Pro-
ceedings of the 9th international conference on Tools and algorithms for
the construction and analysis of systems, TACAS’03, Berlin, Heidelberg:
Springer-Verlag, 2003, pp. 34–48.

[83] A. Biere, E. Clarke, R. Raimi, and Y. Zhu, “Verifying safety properties of a
powerPC microprocessor using symbolic model checking without BDDs,”
in In Proc. 11 th Int. Conf. on Computer Aided Verification, Springer-
Verlag, 1999, pp. 60–71.

[84] P. Bjesse, T. Leonard, and A. Mokkedem, “Finding bugs inan Alpha mi-
croprocessor using satisfiability solvers,” inProceedings of the 13th Inter-
national Conference on Computer Aided Verification, CAV’01, London,
UK: Springer-Verlag, 2001, pp. 454–464.

BIBLIOGRAPHY 94

[85] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Y. Vardi, “Benefits of bounded model checking at an industrial setting,”
in Proceedings of the 13th International Conference on Computer Aided
Verification, CAV’01, London, UK: Springer-Verlag, 2001, pp. 436–453.

[86] A. Voronov and K. Åkesson, “Supervisory control using satisfiability solv-
ers,” in 9th International Workshop on Discrete Event Systems, 2008.,
May 2008, pp. 81–86.

[87] F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A. Reynier, “Au-
tomatic synthesis of robust and optimal controllers — an industrial case
study,” in Proceedings of the 12th International Conference on Hybrid
Systems: Computation and Control, 2009, pp. 90–104.

[88] JavaBDD. [Online]. Available:javabdd.sourceforge.net.

[89] B. J.R., C. D, and D. E. Long, “Symbolic model cheking with partitioned
transition relations,” inA. Halaas and P.B. Denyer, editors, International
Conference on Very Large Scale Integration, Aug. 1991, pp. 49–58.

[90] Z. Fei, K. Åkesson, and B. Lennartson, “Symbolic reachability compu-
tation using the disjunctive partitioning technique in supervisory control
theory,” in IEEE International Conference on Robotics and Automation,
Shanghai, China, 2011, pp. 4364–4369.

javabdd.sourceforge.net

Part II

Appended Papers

Paper 1

Symbolic Computation of Reduced Guards in
Supervisory Control

S. Miremadi, K. Åkesson and B. Lennartson

IEEE Transactions on Automation Science and Engineering,
October 2011

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Paper 2

A BDD-based Approach for Modeling Plant and
Supervisor by Extended Finite Automata

S. Miremadi, B. Lennartson and K. Åkesson

IEEE Transactions on Control Systems Technology, November2012

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Paper 3

Symbolic Representation and Computation of Timed
Discrete Event Systems

S. Miremadi, Z. Fei, K. Åkesson and B. Lennartson

submitted to
IEEE Transactions on Automation Science and Engineering, 2012

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

Paper 4

Symbolic Supervisory Control of Timed Discrete
Event Systems

S. Miremadi, Z. Fei, K. Åkesson and B. Lennartson

submitted to
IEEE Transactions on Control Systems Technology, 2012

Comment: The layout of this paper has been reformatted in order to
comply with the rest of the thesis.

	Abstract
	Acknowledgments
	Publications
	Contents
	List of Acronyms
	I Introductory Chapters
	Introduction
	Discrete Event Systems
	Verification
	Supervisory Control Theory
	Challenges
	Supervisor Representation
	Qualitative and Quantitative Analysis
	Computational Complexity

	Contributions
	Outline

	Modeling Formalisms
	Finite Automata
	Timed Extended Finite Automata
	Related Work

	Supervisory Control Theory
	SCT of Untimed DES
	DES Modeled by EFAs

	SCT of Timed DES
	Transformation of TEFAs to EFAs
	Controllability of TDES

	Synthesis
	Untimed DES
	Timed DES

	Supervisor Representation
	Representing the Supervisor as Guards

	Related Work

	Symbolic Representation and Computation
	Basics
	Characteristic Function

	Representation of Models
	Representation of DFAs
	Representation of TEFAs

	Symbolic Synthesis
	Size of Intermediate BDDs

	Symbolic Guard Generation
	Symbolic Computation of the Basic State Sets
	IDD Generation
	Guard Generation
	Guard Reduction by Genetic Algorithms

	Related Work

	Case Studies
	Illustrative Example
	Industrial Case Study
	Implementation Remarks

	Summary of Appended Papers
	Conclusions and Future Research
	Bibliography

	II Appended Papers
	Paper 1 Symbolic Computation of Reduced Guards in Supervisory Control
	Introduction
	Preliminaries
	Deterministic Finite Automata
	Supervisory Control Theory

	Supervisor as Guards
	Basic State Sets
	Guards

	BDD Representation
	From BDDs to Guards
	BDD Computation
	IDD Generation
	Heuristic Minimization Techniques
	Guard Generation

	From Guards to EFA
	Case Study - Car Manufacturing Cell
	Conclusions and Future Works
	References

	Paper 2 A BDD-based Approach for Modeling Plant and Supervisor by Extended Finite Automata
	Introduction
	Preliminaries
	Extended Finite Automata
	Binary Decision Diagrams

	Supervisory Control Theory
	Symbolic Computation of S0
	BDD representation of an EFA
	BDD representation of EFSC on EFAs

	Representation of the Supervisor as EFAs
	Guard Generation
	Guard Attachment

	Case Studies
	Model classification
	Benchmark examples
	Results

	Conclusions
	References

	Paper 3 Symbolic Representation and Computation of Timed Discrete Event Systems
	Introduction
	Timed Extended Finite Automata
	Syntax and Semantics
	Extended Full Synchronous Composition

	Supervisory Control Theory
	EFA semantics of TEFA
	Symbolic Representations and Computations
	Abstraction of Tick-EFAs
	BDD Representation of S0

	Case Study: A Production Cell
	Conclusions and Future Works
	References

	Paper 4 Symbolic Supervisory Control of Timed Discrete Event Systems
	Introduction
	Preliminaries
	Timed Extended Finite Automata
	Supervisory Control Theory

	Supervisory Synthesis of TDES
	Symbolic Representation and Computation
	Basics
	BDD representation
	Synthesis

	Industrial Case Study
	Conclusions and Future Work
	References

