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Abstract
This thesis deals with experimental and theoretical aspects of the phase-sensitive

fiber optic parametric amplifier (FOPA) and their applications. FOPAs can be
operated as both phase-insensitive and phase-sensitive amplifiers (PSAs), with the
latter requiring phase-locked input waves, which, until recently, has limited their
practical use. Based on the realization that a phase-insensitive FOPA, called the
copier, can generate the phase-locked waves required, several applications of a copier-
PSA configuration are proposed and demonstrated. These include phase excursion
amplification, ultra-low noise amplification, and, by using the copier for carrier
recovery, black-box all-optical phase- and amplitude regeneration.

A large part of this thesis deals with characterization of the PSA. The copier-PSA
configuration is useful in this regard, since, by modulating the signal in between the
copier and PSA, the phase-response of the PSA can be studied. The output signal
was investigated both in terms of amplitude and phase, using a coherent receiver.

Finally, methods to suppress stimulated Brillouin scattering (SBS) in highly
nonlinear fibers (HNLFs) are investigated. Without suppression, SBS will severely
limit the available pump power for parametric amplification. The most common
way to suppress the SBS is to increase the spectral width of the pump, but this is
undesirable in phase-sensitive amplification and many other applications. Therefore,
the application of a strain gradient to the fibers to decrease the SBS is studied,
together with the resulting trade-offs. A cascade of HNLFs with strain gradients,
separated by low-loss and low-dispersion isolators is proposed and evaluated, with
a large increase in the SBS threshold demonstrated.

Keywords: fiber nonlinearities, fiber optic parametric amplification, four-wave mix-
ing, phase-sensitive amplification, nonlinear optical signal processing, phase regen-
eration, stimulated Brillouin scattering
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Chapter 1

Introduction

T
he advent of the low-loss optical fiber proposed in 1966 [1] and realized in
the early seventies [2, 3] not only ushered in a revolution in human commu-
nication, but also spurred much fundamental research into their properties

and how light behaves as it propagates through them. Optical communication (tele-
com, datacom) is the most important application for optical fibers and much of
the research work regarding optical fibers was and is conducted in the context of
communications. Indeed, the work upon which this thesis is based also concerns a
fiber property, namely the Kerr nonlinearity (also called the third-order nonlinear-
ity), the parametric nonlinear interactions it gives rise to, and their use for optical
communications-applications.

The field of modern optics, including the studies of most optical nonlinearities,
started in 1960 with the invention of the laser [4]. Normally, the photons that make
up an optical wave can propagate without interacting with each other, but when
the number of photons per unit time (i.e. the optical intensity) become very large,
the nonlinear response of the medium will start playing a role, which can couple the
optical waves and make them interact with one another. Such nonlinearities can be
extremely fast, with response times on the scale of femtoseconds, which opens up
the possibility for ultrafast all-optical applications that are typically not possible in
electronic devices, which are limited by the much slower speed of the electronics.

Parametric nonlinear effects in nonlinear optical media (crystals) was studied
soon after the first laser was realized [5–7] and fiber-based parametric effects have
been a topic of active research since the availability of low-loss optical fibers [8, 9].
In fiber-optical communications systems, fiber nonlinearities can be a detrimental
effect, but the nonlinearities can also be exploited for many different applications.
Parametric effects in either nonlinear crystals or in fibers can be used for signal

1



amplification as well as for many different all-optical signal processing applications.
However, fiber-based nonlinear devices are more easily made compatible with exist-
ing fiber-based communications systems. Hence, for telecommunications, parametric
effects in fibers have long been one of the main focuses for research on nonlinear sig-
nal processing, with many pioneering demonstrations in the 1990s of applications
of parametric effects in fibers, such as demultiplexing [10], sampling [11], phase
conjugation [12] and wavelength conversion [13]. However, the efficiency of those
devices was often not good, until advances in nonlinear fibers around the turn of the
century [14–17] made them more practical and capable of large and broadband net
gains [18,19]. Many new signal processing applications in fibers have since emerged,
such as signal amplitude regeneration [20–22], multicasting [23], all-optical tunable
delays [24] and format conversion through phase erasure [25], to name a few.

In particular, parametric amplification offers the possibility of phase-sensitive
amplification (PSA), something of the holy grail in amplification, because of their
ability to amplify without adding excess noise, whereas all other amplifiers add
noise to the signal, thereby degrading its signal-to-noise ratio (SNR) [26]. Phase-
sensitive amplification means amplification that is dependent on the phase of the
optical signal. Signal photons with a certain phase will be amplified while photons
in the opposite quadrature will be de-amplified. PSAs are based on the parametric
nonlinearity in a nonlinear medium and can thus be implemented in both nonlinear
crystals and in optical fibers of various kinds, as well as optical waveguides (e.g.
silicon). PSAs have long been considered an exotic type of amplifier mainly because
of the difficult requirement of having phase-synchronized waves at the input, and
thus not so excessively studied experimentally previously, beyond simpler proof-of-
concept experiments.

In addition to noiseless amplification, another important application for PSAs
is the regeneration of the optical phase, i.e. since only certain phase states will
be amplified, deviations from this state (i.e. phase noise) will be reduced. Phase
regeneration have been a topic of interest in telecommunications, as phase-encoded
signals have become more common, with phase noise often being a limiting factor for
the performance of optical communications links. Phase regeneration is not easy to
accomplish otherwise, without first converting the phase information to amplitude,
and subsequently regenerating the amplitude. This additional step is undesirable,
and PSAs make it possible to regenerate the phase directly.

Fiber-based PSAs, unlike those based on nonlinear crystals, can be operated in
two fundamentally different ways; either being sensitive to the absolute signal phase
and thus regenerate the signal phase, or being insensitive to the absolute phase
which enables noiseless amplification of all phase-states of the signal. In this thesis,
both kinds are studied.

2



The PSA is a new type of optical amplifier, and thus fundamental studies of
its properties and abilities are a prerequisite for further, more applications-oriented,
research and development. In this thesis, PSAs are studied in a communications
context, and applications in optical communications are discussed and evaluated.
However, other large fields where optics play an important role include sensing,
test-and-measurement and spectroscopy. Additionally, fields such as photon count-
ing and quantum communications are other potential use-cases for ultralow-noise
amplification. Moreover, since PSAs can be implemented in a number of different
nonlinear media, they can be made to operate over different wavelength ranges,
dictated only by the dispersive properties of the chosen medium. The potential of
e.g. low-noise amplification in essentially arbitrary wavelength ranges offered by
PSAs may prove useful in the applications mentioned above, or in any application
where low levels of light need to be amplified and/or detected with high fidelity.
With PSAs being the immature technology it is today, an increase in the general
understanding of their potential performance and what is required to reach this
performance in practice should be beneficial regardless of intended application or
wavelength range of interest.

1.1 This thesis

This thesis is based on ten appended papers. The driving motivation for the work
in Papers [A-H] has been to understand the fundamental behavior and performance
of phase-sensitive parametric amplifiers and to identify and demonstrate possible
applications and benefits in a communications context, but also to realize PSAs with
performance comparable or better in many important aspects than other state-of-
the-art optical amplifiers. To this end, an experimental configuration which we refer
to as the copier - mid-stage - PSA is used. The “copier” generates a phase-correlated
idler wave that is needed to ensure phase-sensitivity in the PSA. Essentially, this
configuration is phase-insensitive as a whole, but phase-sensitive to any phase-shifts
or phase decorrelations that is introduced in the mid-stage. We investigate the
phase-to-phase and phase-to-amplitude transfer functions of the PSA by introducing
a phase modulation in the mid-stage, and investigate the noise properties of the PSA
by decorrelating the waves by a large loss in the mid-stage. The exception is Paper
[E], in which a black-box PSA-based phase regenerator was constructed. Black-
box here means that the regenerator was sensitive to the phase of the incoming
signal, and that the free-running signal is the only input needed to the regenerator.
Finally, Papers [I-J] concerns the suppression of another nonlinear effect, stimulated
Brillouin scattering (SBS), which is a large limiting factor for the performance of
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fiber-based parametric amplifiers, as it will significantly limit the available pump
power. It can be suppressed by spectral broadening of the pump; however, this
is very problematic for phase-sensitive amplifiers that require very good control of
the phases of the interacting waves. Hence, new, passive, methods are needed to
suppress the SBS.

Outline

This thesis is organized as follows: Chapter 2 introduces the fundamental theory of
optical propagation through a fiber that is relevant for this work, and its physical
origin. This includes linear effects and the nonlinear effects of self- and cross-phase
modulation, four-wave mixing (the basis of parametric effects in fibers), as well
as nonlinear scattering effects. Chapter 3 delves into further detail on one of the
scattering nonlinearities, stimulated Brillouin scattering, as well as a discussion on
how to suppress it and the trade-offs involved. An overview of phase-sensitive ampli-
fication in fibers, and various implementations, including the copier-PSA structure
follows in Chapter 4. In Chapter 5, we discuss potential applications of PSAs, both
in communications and in other fields, as well as other potential nonlinear media
that may be developed and used to implement PSAs. We also discuss practical
implementation issues that should be addressed, as well as topics in need of further
investigation. Finally, in Chapter 6, the appended papers are summarized.
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Chapter 2

Fiber dispersion and
nonlinearities

S
ince this work deals with fiber-based devices, we describe the propagation
effects affecting a light wave in optical (silica-based) fibers in this chapter.
Fundamentally, these effects can be divided into linear and nonlinear effects.

While nonlinear effects are the main topic of this thesis, the interplay between linear
and nonlinear effects form the basis of many of the investigated phenomena. Lin-
ear effects include attenuation and chromatic dispersion (the spreading out in time
of different frequency components), but also polarization-mode dispersion (PMD).
Common for the linear effects is that they occur independently for each frequency
component in the fiber, and are not affected by other waves (at other frequencies)
also present. The nonlinear effects are so-called since they are dependent on the
optical power of the wave(s) in the fiber, meaning that one wave can affect the
properties of another, and that power can be transferred between optical waves of
different frequencies during propagation, and even introduce components at frequen-
cies not originally present. Throughout this thesis, we concern ourselves only with
single-mode fibers, in which only one spatial mode can propagate (at least at the
frequencies we consider). The modes represent different solutions to the Maxwell
equations with the boundary conditions given by the physical properties of the fiber.

The nonlinear effect that we mostly concern ourselves with in this work is the
Kerr nonlinearity, which modifies the index of refraction in response to the intensity
(i.e. power) in the fiber. The refractive index is usually written as

n(ω, I) = n(ω) + n2I, (2.1)
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where ω and I is the frequency and intensity of the optical wave, respectively.
The linear (dispersive) part of the refractive index is 1 in free space, and approx-
imately 1.5 in optical fibers. The nonlinear refractive index n2 is on the order of
10−20 m2/W in silica-based optical fibers, and can be increased somewhat by doping
the silica with GeO2 [27, p. 17]. The large difference in magnitude of the linear and
nonlinear part means that large intensities are required for nonlinear effects to play
a significant role.

From Eq. 2.1 it is also evident how the aforementioned interplay between linear
and nonlinear effects arises. Since the propagation speed of an optical wave is given
by the refractive index, which changes with frequency and power of the wave, the
change in phase of the wave as it propagates is also dependent on its frequency and
power. The phase-shifts a wave imposes on itself and on other waves are called self-
phase modulation and cross-phase modulation (SPM and XPM), respectively. The
coupling between several waves through this nonlinearity is called four-wave mixing
(FWM). FWM can be described as the the periodic modulation of the refractive
index by the beating frequency of two waves, since the local intensity in the fiber
varies at this beat note. Thus, the relative phase of the interacting waves become
important, leading to both the concept of phase-matching as well as the phase-
sensitive effects that are important parts of this thesis.

As the nonlinearities are dependent on the intensity and thus the area of the
optical beam, the nonlinearity coefficient is commonly used as a measure of how
strong the nonlinear effects of a particular fiber are. It is denoted by γ and written
as

γ =
2πn2

λAeff
, (2.2)

where λ represents the signal wavelength, and Aeff is the effective area of the
mode of the optical wave in the fiber. Conventional single-mode fibers (SMFs) used
in transmission usually have a γ of around 1-3 W−1km−1 [27, p. 424].

There is also another class of nonlinear effects in optical fibers, namely the in-
elastic scattering processes, in which the optical wave transfers part of its energy to
a phonon (vibrational quantum) in the fiber. Raman scattering describes scatter-
ing against optical phonons, while Brillouin scattering describes scattering against
acoustic phonons. Especially Brillouin scattering can be a detrimental effect for
building fiber-based devices based on the Kerr nonlinearity; hence, we devote Chap-
ter 3 to further describing the phenomenon, its adverse effect in these cases, and
how it can be suppressed.
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Nonlinear fibers

It should be noted that in optical communications systems, fiber nonlinearities are
typically considered an unwanted effect that should be minimized. On the other
hand, nonlinearities can also be exploited for e.g. amplification and signal processing
applications. In those cases, so-called highly nonlinear fibers (HNLFs) are often used
in purpose-built nonlinear devices (rather than in the transmission fiber). They are
fibers designed to have a large nonlinearity coefficient, between 10-20 W−1km−1,
usually achieved by decreasing the effective area of the fiber. This increases the
magnitude of both the Kerr and the scattering nonlinearities, however.

There is also a large ongoing effort in developing other types of nonlinear fibers
with even larger nonlinearity coefficients, for example fibers based on materials other
than SiO2, such as BiO2 [28, 29], which have a larger nonlinear index, and also
Photonic Crystal Fibers (PCFs), sometimes called holey fibers [30–32], in which
there are holes along the propagation direction, making the effective area very small.
Very high nonlinearities (γ ≈ 100 − 1000 W−1km−1) can be achieved in such fibers
[33], allowing short lengths of fiber to be used and thus avoiding non-uniformity
problems such as varying dispersion. However, there are other issues with such
novel fibers, most notably the attenuation, which can be very large, sometimes
several dB/m. Another problem is that it can be difficult to achieve a low splice
or coupling loss to conventional single-mode fibers, something that is not a major
problem with conventional HNLFs.

The most commonly used figure-of-merit for nonlinear media is γ/α, i.e. non-
linearity coefficient divided by attenuation coefficient. This quantity is still highest
for conventional silica HNLFs, and in that coupling losses are not even considered,
further making the case for conventional HNLFs as the best platform for nonlinear
devices at the moment.

This chapter

This chapter is intended to serve as an introduction to optical nonlinearities and
define the quantities and concepts necessary for the discussion in subsequent chapters
in this thesis, as well as in the appended papers. It begins with a brief introduction
to the linear propagation effects in section 2.1. In section 2.2 we discuss the physical
origin for the nonlinear effects described in the rest of this chapter. In section 2.3 the
concepts of self- and cross-phase modulation are introduced. Four-wave mixing is a
central part of this thesis and is introduced in section 2.4. FWM is the nonlinear
effect that is exploited in parametric amplifiers, but for them to be efficient and
produce any significant gain, the FWM process need to be phase-matched. This
concept is explained in section 2.4.1, and parametric amplification is discussed in
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section 2.5. Finally, the scattering nonlinearities are briefly described in section 2.6.

2.1 Linear effects

Attenuation

Attenuation of the optical wave is one of the fundamental propagation effects that
is always present, though in many cases it can be neglected. The majority of atten-
uation in silica fibers (at low-loss wavelengths) originate from Rayleigh scattering
against the silica molecules, though some material absorption is also present, and
dominates outside the low-loss window. In conventional single-mode fibers, the at-
tenuation can be as low as 0.16−0.20 dB/km, and in typical HNLFs the attenuation
is usually around 0.8 − 1.2 dB/km. Since a nonlinear device implemented in HNLF
often needs only a few hundreds of meters of fiber, the total attenuation is often only
a few tenths of a dB. In connection with fiber nonlinearities, attenuation is usually
accounted for via the effective length, defined as

Leff ≡
1 − exp(−αL)

α
, (2.3)

where α is the attenuation coefficient in m−1 and L is the length of the fiber. By
using the effective length instead of the actual length L, the effects of attenuation
can be accounted for. We can also deduce that the effective length grows increasingly
slower with the physical length, meaning that in practice there is a length after which
there is little or no gain to be had from increasing the physical length, with the
effective length finally reaching a maximum of 1/α when L >> 1/α. For an HNLF
with α = 1 dB/km, the maximal effective length is about 4.3 km, however, about
11 km of physical length is required to reach 4 km of effective length. Fortunately,
in most applications only a few hundred meters of HNLF is sufficient, and for such
short sections of HNLF, the effective length is not much shorter than the physical
length.

Chromatic dispersion

The first term in Eq. 2.1 is the linear part of the refractive index, and since it is
frequency dependent, it is the term that is responsible for the chromatic disper-
sion, or group-velocity dispersion (GVD). Fundamentally, it means that the speed
of light (the group velocity) is different for different frequencies, and thus differ-
ent frequencies will experience a relative phase shift as they propagate through
a dispersive medium. We usually express this through the propagation constant,

8



β(ω) = n(ω) ·ω/c (here, we ignore the intensity-dependent part of the refractive in-
dex). The second derivative with respect to frequency of β(ω) is responsible for the
difference in propagation speed among frequency components and hence is known
as the GVD parameter. It is written as

β2(ω) =
d2β(ω)

dω2
. (2.4)

Often, the dispersion parameter D, defined as

D = −
2πc

λ2
β2, (2.5)

and expressed in units of ps/(nm·km), is used instead.
GVD causes dispersive broadening (spreading out in time) of pulses, since a

pulse with a limited duration in time will contain a spectrum of frequencies. GVD
is also responsible for dispersive walk-off meaning that two pulses at different center
frequency will only overlap for a limited time, known as the dispersive walk-off time.
This is an important limiting factor in applications where it is desired to have two
distinct pulses interact through some nonlinear effect.

The case of β2 > 0, where higher frequencies will propagate with lower speed,
is said to be normal dispersion, while the opposite case is known as anomalous dis-
persion. The third-order derivative of β(ω), or alternatively S = dD/dλ, represents
the frequency (wavelength) dependence of the dispersion. This parameter becomes
important for phase-matching, as it dictates the difference in dispersion and thus
relative phase-shift between two waves of different frequencies as they propagate
through a fiber.

Polarization effects

Even a single-mode fiber supports two separate polarization modes at each fre-
quency. Generally, these modes will have different propagation speeds, because the
fiber does not have perfect cylindrical symmetry and/or it might be bent or twisted.
This leads to polarization-mode dispersion (PMD). The time-domain manifestation
of PMD is pulse splitting, which occurs if an input pulse excites both polarization
modes. In nonlinear devices, the main impact of PMD is usually the frequency-
domain manifestation, namely that waves of different frequencies will change their
polarization states as they propagate, often reducing the efficiency of nonlinear in-
teraction between the waves. This is because many nonlinear effects usually require
that the interacting waves are co-polarized for maximal efficiency. To overcome
this problem, usually one tries to find a principal axis of propagation of the fiber,
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meaning an input state of polarization (SOP) for which different frequencies do not
change their relative SOP significantly.

Furthermore, the output SOP and principal axis of a fiber usually changes with
mechanical and thermal perturbations. There are so-called polarization-maintaining
fibers for which this is not the case, but usually polarization-maintaining HNLFs are
much worse in other aspects, such as nonlinearity and dispersion uniformity. Thus,
conventional HNLFs are most often used and need to be in a controlled environment
for the nonlinear device to operate stably.

2.2 Origins of nonlinear effects

χ
(2)- and χ

(3)-nonlinearities

We have already established that the Kerr nonlinearity fundamentally means the
intensity-dependence of the refractive index. But how does this dependence arise?
The answer lies in the higher-order susceptibilities of a material. When light prop-
agates through a dielectric medium, its (time-varying) electric field E causes some
amount of (time-varying) electric polarization in the medium, i.e. a shift in distribu-
tion of the electrically charged particles of the medium, typically the loosely bound
valence electrons. Normally, this polarization field, P, follows the electrical field, i.e.
has the same direction and time variance. The proportionality constant describing
this relation is called the susceptibility, χ, with

P = ε0χE. (2.6)

However, in the case of very large electrical field strengths, this relation saturates.
We thus have to resort to a more general relation (assuming an isotropic medium
where P̃ and Ẽ are parallel, so that the relation can be reduced to the scalar):

P = ε0

(

χE + χ(2)E2 + χ(3)E3 + ...
)

. (2.7)

Clearly, the polarization field (and thus the reradiated light) now contains new
frequencies at integer multiples of the original frequency. Moreover, if the initial field
contains multiple frequencies, new frequencies at the sum and difference frequencies
of (integer multiples of) the original frequencies will appear. In typical cases, in
media without inversion symmetry, such as many crystals, the χ(2)-term (2nd-order
susceptibility) dominates over the χ(3)- (3rd-order susceptibility) and subsequent
terms. In isotropic media, e.g. gases, liquids and amorphous solids such as silica
glass, the even-order terms vanish, and the χ(3)-term dominates [34, pp. 2-3]. We
can thus talk about χ(2)- and χ(3)-media. Finally, it should be noted that we have
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significantly simplified things here, by ignoring the fact that the susceptibilities are
in fact tensors, and the nonlinear response depends on the direction of the electrical
field (i.e. the polarization) as well as any symmetry axes of the medium. The non-
instantaneous response, which will be discussed later in this section, has been ignored
as well. We also note that the real part of the first-order (linear) susceptibility of Eq.
2.7 is responsible for GVD and the imaginary part is responsible for attenuation.

Some effects that arise in χ(2)-media are second-harmonic generation (SHG), i.e.
frequency-doubling, and sum- and difference-frequency generation (SFG, DFG) [34,
pp. 4-9]. In χ(3)-media, the refractive index becomes intensity-dependent, which is
what we call the Kerr nonlinearity, leading to intensity-dependent phase-shifts [27,
pp. 14-15]. Moreover, both χ(2)- and χ(3)-media support parametric amplification
[34, pp. 9-13], where energy from one wave is transferred to another, which thus
is amplified. Besides glasses, silicon is another media that can be used for χ(3)-
nonlinearities [35].

Scattering nonlinearities

All the effects that have been described so far are elastic, meaning that no energy
is exchanged between the propagating lightwave and the medium. In the quantum-
mechanical picture, they thus amount to the annihilation and creation of photons of
different frequencies (energies), while the total energy of the light is conserved. The
other class of nonlinearities are inelastic [27, pp. 15-16], and the lightwave exchanges
energy with the medium, specifically through vibrational excitation modes of the
medium, i.e. phonons. In the quantum-mechanical picture, an incident photon is
annihilated and a new is created at a lower frequency, together with a phonon,
making the total energy conserved. Raman scattering involves optical phonons,
while Brillouin scattering involves acoustic phonons [27, p. 16].

Raman scattering can also be described classically in terms of the nonlinear pola-
rization field [34, p. 372]. The Raman effect is a consequence of its non-instantaneous
response. Often, the Kerr nonlinearity is considered to be the purely electronic (and
hence instantaneous) part of the of the third-order-nonlinearity, originating in the
real part of χ(3), while the delayed response (Raman) part originate in the imaginary
part of χ(3) and form the remaining contributions to the nonlinear susceptibility.
(Compare the real (dispersion) and imaginary (attenuation) parts of the linear sus-
ceptibility). Brillouin scattering on the other hand, occurs via the electrostriction
effect that causes the medium to compress in the presence of an electrical field, and
thereby couples optical and acoustic (sound) waves in the nonlinear medium.
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2.3 Self- and cross-phase modulation

We have established that the refractive index, and thus the speed of light, is depen-
dent on the optical intensity in the fiber, as described by Eq. 2.1, meaning that the
phases of propagating waves will change dependent on the power of the waves in the
fiber. This effect is called self-phase modulation (SPM) when the wave affects its
own phase, and cross-phase modulation (XPM) when the phase of a wave is affected
by other waves. The accumulated phase shift along a fiber of length L due to this
effect is called the nonlinear phase shift, and when m frequency components are
propagating through a fiber, it is written for frequency component n as [27, p. 230]

ΔΦNL,n = γL (2P1 + ... + 2Pn−1 + Pn + 2Pn+1 + ... + 2Pm) , (2.8)

where Pn is the optical power at frequency component n. Note in particular that
the effect on the phase from other frequency components (XPM), is twice as large
as the effect a frequency component has on its own phase (SPM). This is true if
the waves are parallel-polarized. Otherwise, XPM is between one and two times as
strong as SPM [36]. For XPM, one must also consider the dispersive walk-off if the
interacting waves are pulses. SPM causes spectral broadening of pulses, or SPM-
induced frequency chirp. XPM can be exploited in signal-processing applications for
e.g. switching/demultiplexing [37].

An interesting phenomenon arises when the nonlinear phase shift and the dis-
persive phase shift cancel each other. This can give rise to pulses that propagate
without being broadened in time, so-called solitons [27, 38]. Balancing nonlinear
and dispersive phase shifts in a certain way is also the condition that maximizes
the efficiency of nonlinear effects such as FWM, discussed further in section 2.4.1.
Note, however, that since the the nonlinear phase shift is always positive, solitons
can normally only occur for waves in the anomalous dispersion regime (β2 < 0).

2.4 Four-wave mixing

Four-wave mixing (FWM), or synonymously four-photon mixing, is a process origi-
nating from the χ(3)-nonlinearity. As can be deduced from the name, it involves the
nonlinear coupling of four distinct waves at different frequencies, but there is also a
degenerate FWM, in which two of these frequencies are identical.

A classical description of FWM is as follows: two optical waves at different
frequencies ω1 and ω2 co-propagate in an optical fiber. The local field intensity at a
specific coordinate in the fiber thus varies by the beating frequency ω2 −ω1 of these
two waves. Through the Kerr nonlinearity, the index of refraction will be modulated
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by this beat note. Now, if a third wave at frequency ω3 is introduced, it will be phase
modulated with the frequency ω2 − ω1 by propagating in the fiber with modulated
refractive index. As a result, sidebands at frequencies ω3 ± (ω2 − ω1) are generated.
The wave at ω3 will also beat with the wave at ω1, which phase modulates the
wave at ω2 and introduces sidebands at ω2 ± (ω3 − ω1). Considering all possible
non-degenerate and degenerate combinations in a system with three frequencies at
the input, new frequency components will be generated at frequencies

ωjkl = ωj + ωk − ωl. (2.9)

In the degenerate combinations, two of the waves are identical, e.g. j = k. Fig. 2.1
shows all frequencies. Note that some of the generated frequency components overlap
with each other, or with the original waves. The latter is the origin of parametric
gain. Some frequency components, e.g. at ω321 = ω231, are stronger than the others
and are usually referred to as the idlers. Often, all other generated components are
neglected. As follows from this discussion, in the typical case, FWM will generate
one new frequency of significance (an idler) from each combination of either two or
three input waves, forming either a triplet (degenerate FWM) or quadruplet (non-
degenerate FWM) of coupled waves.

Just like the χ(2)-phenomena of SHG, SFG and DFG, the process is called para-
metric since the medium does not actively participate in the process, like in the
scattering nonlinearities, but rather participates as a passive catalyst. It involves
the modulation of a medium parameter, specifically the susceptibility, or the refrac-
tive index, in the case of χ(3)-nonlinearities.

FWM can also be interpreted from a quantum mechanical point of view, in which
two photons annihilate and two photons are created at new frequencies, under energy
(i.e. frequency) and momentum conservation. The momentum conservation is the
quantum-mechanical manifestation of phase-matching, which is what dictates the
efficiency of each FWM process, and will be discussed in the next section.

When there are many different frequency components present from the start,
such as in a wavelength division-multiplexing (WDM) system, there are of course
many FWM processes acting simultaneously, and a very large number of new fre-
quency components can be created. Depending on the frequency allocation, some
of these can overlap with each other, or with the original frequency components,
thus causing crosstalk. Indeed, FWM is often a major limitation in WDM sys-
tems [39]. However, it is important to note that each FWM process involves only
three (degenerate) or four (nondegenerate) waves, as in Eq. 2.9.

Now, consider the case in which only a strong wave at ωp, called the pump,
and a weak wave at ωs, called the signal, is injected into a fiber. Then, in the
dominating process, sidebands of the pump wave will appear at ωs and the idler
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Figure 2.1: All frequency components that are generated through FWM in all pos-

sible degenerate and nondegenerate combinations when three waves (ω1, ω2 and ω3)

are present at the input. Nine new frequencies are generated.

frequency ωi = 2ωp−ωs. Since the pump wave is much stronger than the signal, the
process in which sidebands from the signal at ωp and 2ωs −ωp are generated can be
neglected. The case described above is what is commonly referred to as degenerate
or single-pumped FWM, in which a pump provides gain to a signal, while at the
same time an idler wave is generated.

This case can also be extended to nondegenerate, or dual-pumped, FWM in
which two strong pumps at frequencies ωp1 and ωp2 provides gain to an initially
weak signal at ωs and creates an idler at ωi = ωp1 + ωp2 − ωs.

FWM is highly polarization dependent, and the analysis in this thesis normally
assumes that all interacting waves are co-polarized. It is, however, possible to make
FWM polarization independent in principle, by using two orthogonally polarized
pump waves [40,41], but this is a much less efficient process, and is also difficult to
maintain in practice.

Moreover, since FWM originates from the Kerr nonlinearity, it has a response
time on the order of femtoseconds, making it instantaneous for most purposes. This
property is what makes FWM interesting for ultrafast signal processing applications.

Finally, it is also important to understand that FWM also will occur between
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actual waves and vacuum fluctuations (quantum fluctuations of the vacuum state,
sometimes referred to as virtual photons) in the fiber. This phenomenon is the source
of parametrically generated noise, so-called amplified quantum noise (AQN), some-
times also called parametric amplified spontaneous emission (ASE) or parametric
fluorescence. This is the fundamental origin of noise in parametric amplification.

2.4.1 Phase-matching

Many of the nonlinear processes discussed above, both χ(2)- and χ(3)-based nonlin-
earities, require phase-matching to be efficient. Phase-matching essentially means
that the relative phase, θrel between interacting waves is maintained during prop-
agation through the nonlinear medium. If this is the case, the contribution to the
nonlinearly generated wave(s) will be the same, i.e. in phase, throughout the prop-
agation in the medium. If the process is not phase-matched, the contributions from
different locations in the medium will not add constructively, resulting in a weak
nonlinear interaction. A properly phase-matched nonlinearity, on the other hand,
will result in exponential growth of the generated wave along the propagation direc-
tion.

This can be understood by realizing that the transfer of power between frequen-
cies is proportional to some product of the fields (or complex conjugate fields) of the
interacting waves, since the nonlinear polarization field in the medium (and thus the
reradiated field, i.e. the generated wave) is proportional to such a product. This
product of complex fields should be kept maximal for maximum power transfer effi-
ciency, and with the correct sign to get power transfer in the desired direction (i.e.
from the pump rather than vice versa). This puts a requirement on the phase of
the complex field product and hence on the phases of the interacting waves. Phase-
matching thus means keeping waves, usually of different frequencies, in phase. In
other words, the phase-shifts that they experience during propagation should cancel
out so the relative phase is kept constant. The phase-matching condition is usually
expressed in terms of the propagation constants of the interacting waves, which may
have different contributions (linear and nonlinear).

In the perfectly phase-matched case, the relative phase remains constant
throughout propagation. Then, the complex field-product is dependent only on the
power of the interacting waves, and the power of the generated wave grows exponen-
tially (as long as its power is small compared to that of the pumps). In near-phase
matched cases, the relative phase changes somewhat over propagation, but only by
so little that the field product never changes its sign. Thus, good efficiency is still
possible in the near-phase matched case. In the absence of phase matching, the rel-
ative phase will change rapidly, and thus, the sign of the field product and direction
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Figure 2.2: The evolution of the relative phase in a perfectly phase-matched case

(green line), an near-phase-matched case (blue line) and an un-phase-matched case

(red line).

of power flow, will change, possibly many times, over the propagation. This will
lead to an initial growth of the generated wave that subsequently changes direction,
resulting in an oscillation, rather than monotonous growth, of the generated wave.
Fig. 2.2 illustrates the concept of phase-matching and shows how the relative phase,
the sine of the relative phase (which is related to and sometimes proportional to the
field product), and the power of the generated wave evolves in the corresponding
cases. Note that the power initially grows at the same rate in all three cases.

Clearly, in phase-matching, chromatic dispersion must always be considered,
since it means different phase-shifts for different frequencies. Nonlinear phase-shifts
from SPM and XPM are always present in χ(3)-media, and must be taken into
account. Birefringence can also be used for phase-matching, and is the usual phase-
matching technique for many nonlinear crystals, but is not so common to use in
fibers.

Notably SPM and XPM themselves do not require phase-matching to be efficient
(or can be considered to be automatically phase-matched), since they are dependent
only on the intensity, though they are very important for phase-matching of other
nonlinearities via their induced phase-shifts. The above discussion is general in the
sense that it can concern both χ(2)- and χ(3)-nonlinearities, and the generated wave
can originate from e.g. SHG, SFG/DFG or be the parametric gain of a signal wave.
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In the remainder of this section, we discuss phase-matching of FWM in optical fibers,
achieved by balancing SPM/XPM and chromatic dispersion.

Phase-matching of fiber FWM

Let us consider the dual-pumped FWM case with four distinct interacting waves,
two pumps at frequencies ωp1,p2

and signal and idler at frequencies ωs,i. The sum of
the electrical fields is written as [27, p. 369]:

E(x, y, z) = f(x, y)
1

2
[Ap1

(z) exp(iβ(ωp1
)z − iωp1

t) +

Ap2
(z) exp(iβ(ωp2

)z − iωp2
t) +

As(z) exp(iβ(ωs)z − iωst) +

Ai(z) exp(iβ(ωi)z − iωit)] + c.c. (2.10)

Here, c.c. is the complex conjugate that is usually omitted in calculations and f(x, y)
is the transverse mode profile, assumed to be the same for all waves. Each wave
is represented by the slowly varying complex field amplitude, A(z), and have a
propagation constant denoted by β.

By inserting the expression above into the basic propagation equation, i.e. the
nonlinear Schrödinger equation (NLSE), which in turn can be derived from Maxwell’s
Equations, the following coupled equations can be derived, (ignoring fiber attenu-
ation, higher-order dispersion, any wavelength dependence in γ and the Raman
effect) [9, 27,42]:

dAp1

dz
= iγ[

(

|Ap1
|2 + 2

(

|Ap2
|2 + |As|

2 + |Ai|
2
))

Ap1

+2A∗

p2
AsAi exp(iΔβz)], (2.11)

dAp2

dz
= iγ[

(

|Ap2
|2 + 2

(

|Ap1
|2 + |As|

2 + |Ai|
2
))

Ap2

+2A∗

p1
AsAi exp(iΔβz)], (2.12)

dAs

dz
= iγ

(

|As|
2 + 2

(

|Ap1
|2 + |Ap2

|2 + |Ai|
2
))

As

+2Ap1
Ap2

A∗

i exp(−iΔβz)], (2.13)

17



dAi

dz
= iγ[

(

|Ai|
2 + 2

(

|Ap1
|2 + |Ap2

|2 + |As|
2
))

Ai

+2Ap1
Ap2

A∗

s exp(−iΔβz)], (2.14)

where

Δβ = β(ωp1
) + β(ωp2

) − β(ωs) − β(ωi), (2.15)

is the propagation constant mismatch. Looking at Eqs. 2.11-2.14, the first four
terms on the right hand side represent SPM- and XPM-induced phase shifts, and
the last term represents the power transfer between frequencies due to FWM. The
maximization of this term leads to the phase-matching condition for FWM. If it is
fulfilled, the signal and idler powers will grow exponentially as the waves propagate
through the fiber.

Defining A(z) =
√

P (z) exp (iθ(z)), with P and θ being the power and phase
of the wave, respectively, we can rewrite Eq. 2.11-2.14 in terms of the power and
phases, by multiplying them with the corresponding field conjugate:

dPp1

dz
=

dPp2

dz
= −2γ

√

Pp1
Pp2

PsPi sin(θrel), (2.16)

dPs

dz
=

dPi

dz
= 2γ

√

Pp1
Pp2

PsPi sin(θrel), (2.17)

dθrel

dz
= Δβ + γ(Pp1

+ Pp2
− Ps − Pi)

+2γ
√

Pp1
Pp2

PsPi

(

1

Ps
+

1

Pi
−

1

Pp1

+
1

Pp2

)

cos(θrel). (2.18)

Here, θ is the relative phase between the waves, defined as

θrel ≡ θp1
+ θp2

− θs − θi. (2.19)

From Eq. 2.16-2.17 it is evident that the total power is conserved, and that the
power growth in signal and idler is the same and corresponds to an equal reduction
in power of the two pumps (or vice versa, depending on the sign of the relative
phase), i.e. Ps − Pi = constant and Pp1

− Pp2
= constant. This is often referred to

as the Manley-Rowe relation [42, p. 33] for FWM.
Notably, the last term in Eq. 2.18 can be neglected as long as we operate close

to the phase-matched condition. The relative phase normally (in the absence of an
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input idler) sets itself to π/2 at the start, so this term is initially zero, and will
remain so in the case of ideal phase-matching.

The relative phase among the waves thus govern the magnitude, and indeed the
direction of the power flow, as is readily seen from Eqs. 2.16-2.17. The change in
relative phase as the waves propagate are influenced by the linear phase shifts due
to the different propagation constants (the first term on the right hand side of Eq.
2.18), and the nonlinear phase shifts, due to SPM and XPM (the second term).

In the single-pumped case, ωp1
= ωp2

= ωp and the relative phase θrel ≡ 2θp −
θs − θi, and Eqs. 2.16-2.18 become:

dPp

dz
= −4γ

√

P 2
p PsPi sin(θrel), (2.20)

dPs

dz
=

dPi

dz
= 2γ

√

P 2
p PsPi sin(θrel), (2.21)

dθrel

dz
= Δβ + γ(2Pp − Ps − Pi)

+2γ
√

P 2
p PsPi

(

1

Ps
+

1

Pi
−

2

Pp

)

cos(θrel). (2.22)

Following from the requirement that the relative phase should remain constant
at π/2 throughout propagation, the condition for perfect phase matching is (if the
pump powers remain much larger than that of the signal and idler):

κ ≡ Δβ + γ(Pp1
+ Pp2

) = 0, (2.23)

or in the single-pumped case:

κ ≡ Δβ + 2γPp = 0. (2.24)

The first term represents the linear propagation mismatch, and the second term the
nonlinear phase shift, and they need to cancel out in order for the phase-matching
condition to be fulfilled, and the FWM efficiency maximized.

It can be shown [19,42] that in the single-pumped case, when operating the pump
close to the-zero-dispersion frequency ω0 of the fiber, the phase matching condition
can be written as

κ = β3(ωp − ω0) · (ωs − ωp)
2 + 2γPp = 0, (2.25)
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where β3 is the third derivative of the propagation constant at the zero-dispersion
frequency. In the dual-pumped case, the phase-matching condition can similarly be
shown to be [42, p. 117]

κ = β3(ωc − ω0) ·
[

(ωs − ωc)
2 − ω2

d

]

+ γ(Pp1
+ Pp2

) = 0, (2.26)

where ωc = (ωp1
+ ωp2

)/2 and ωd = (ωp1
− ωp2

)/2.
Much can be learned about FWM from these equations. In order for the linear

propagation mismatch and nonlinear phase shift to cancel out, Δβ must be negative.
From the above equations, it is clear that this can only occur when the pump
frequency or average pump frequency is in the anomalous dispersion regime1.

In the single-pump case, we can see that there is only two signal frequencies for
each given pump frequency that maximizes the efficiency. However, in the dual-
pumped case, a wide spectrum of signal/idler frequencies between the pumps can
fulfill good phase matching. Another observation is that fibers with low dispersion
slopes give the largest FWM bandwidths since that reduces the dependency on the
signal frequency. If the nonlinear phase shift dominates, i.e. if the pump powers are
very large, the dispersive phase shifts play a smaller role, which is why the FWM
bandwidth increases with pump power.

If the powers change considerably during propagation, the nonlinear phase shift
will also change. This is the phenomenon behind saturation of FWM [42, 43]. As
the signal and idler powers increase, and the pump powers decrease, the FWM
efficiency is decreased, and eventually a point at which the relative phase changes
sign is reached, thus the direction of the power flow is reversed, i.e. power flows
from signal/idler to pump.

Finally, we have up until this point assumed that the idler was not present at
the input, but generated in the FWM process. If this is the case, the idler will
automatically obtain a phase so that the efficiency is maximized. Since the FWM
efficiency is maximized for θrel = π/2, the idler phase will set itself so that this
condition is achieved after an infinitesimally short length of the fiber. The idler can
be thought of as being initially generated with the “correct” phase. This can also be
seen by considering the last term of Eq. 2.14. This explains why a generated idler
phase carries a dependence on the pump phases and conjugated signal phase, as the
relative phase at the input (or, more precisely, after the infinitesimal length after
which the idler has formed) should be a constant. If, however, an idler at the correct
frequency is present at the input, the initial generation of the idler does not take

1Phase matching is also possible over very narrow bandwidth regions far from the pump
frequency when the pump is in the normal dispersion regime, when taking higher order
dispersion into account.
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place, leading to the FWM process to become dependent on the relative phase at
the input, and the process is said to be phase sensitive. This is the topic of Chapter
4.

2.5 Parametric amplifiers

Previously in this chapter, we have established that both χ(2)- and χ(3)-nonlinearities
can result in the conversion of energy from one frequency to others, and that this
conversion can, in the case of good phase-matching be very efficient. When energy
is converted from a pump wave to a weak signal present at the input (as opposed
to e.g. SHG where only the pump is present at the input), we call this phenomenon
parametric amplification. This conversion of pump photons to signal photons is
also accompanied by the generation of an idler wave. Normally, we consider non-
degenerate idler parametric amplification, in which the signal and idler are two
distinct waves. Conversely, in degenerate-idler parametric amplification they are in-
distinguishable. Degenerate-idler parametric amplification is always phase-sensitive.
In section 2.4, the case in which a strong pump wave and a weak signal wave in-
teract through FWM, leading to amplification of the signal and the generation of
an idler wave, was discussed. In section 2.4.1, we discussed the concept of phase
matching, and its importance for the efficiency of FWM. A fiber device with one or
two high-power pumps, in which phase-matched FWM can take place is commonly
referred to as a fiber optic parametric amplifier (FOPA) [27, p. 387].

In second-order-nonlinear media, non-degenerate idler parametric amplification
occurs between a pump, a signal and an idler fulfilling the frequency relation
ωp = ωs + ωi. This is closely related to DFG. In the degenerate case, the pump
frequency must be exactly two times the signal frequency. In third-order-nonlinear
media such as optical fibers, parametric amplification is essentially phase-matched
FWM. Therefore, we can have either single-pumped or dual-pumped parametric
amplification in fibers. Single-pumped parametric amplification can only be of the
non-degenerate idler variety, as it needs to fulfill the frequency relation 2ωp = ωs+ωi,
unless interferometers are used to separate the pump from the signal, since in that
case all three waves need to have the same frequency. Single-pumped parametric
amplification is only phase-sensitive if a wave triplet fulfilling the frequency relation
is present at the input. Dual-pumped parametric amplification fulfills the frequency
relation ωp1+ωp2 = ωs+ωi, and can thus operate in the degenerate idler mode if the
signal frequency is exactly the average of the two pump frequencies. Therefore, both
single-pumped non-degenerate idler and dual-pumped degenerate idler parametric
amplification are cases of degenerate FWM, involving only three waves. Fully non-
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Figure 2.3: Typical construction of a single-pumped FOPA. PM: Phase modula-

tor, EDFA: Erbium-doped fiber amplifier, OBPF: optical bandpass filter, WDM:

Wavelength division multiplexing coupler, HNLF: highly nonlinear fiber.

degenerate FWM (i.e. non-degenerate idler dual-pumped parametric amplification)
can also be made phase-sensitive, if all four waves are present at the input.

In the remainder of this section, we will discuss how fiber-optic parametric am-
plifiers usually are implemented, and how their gain and gain spectrum can be
described mathematically. This will form the basis for the remainder of the thesis,
and in Chapter 4, we will extend the discussion to phase-sensitive cases, where the
performance and applications of phase sensitive amplifiers will be reviewed.

2.5.1 Implementation of fiber-optic parametric ampli-

fiers

A typical FOPA is constructed around an HNLF of length around 0.1-1 km with a
zero-dispersion wavelength (ZDW) in the low-loss regime of the fiber around 1550
nm. The pump power required is then usually in the 0.5-10 W-range, meaning that
Erbium-doped fiber amplifiers (EDFAs) are normally required to boost the pump to
this range. In Fig. 2.3, a typical construction for a phase-insensitive single-pumped
continuous-wave FOPA is shown. Light from the pump laser is in this case passed
through a phase modulator that serves to spectrally broaden the pump wave in
order to avoid SBS, though this can be omitted if other SBS-suppression methods
are used. SBS-suppression is discussed further in Chapter 3. The pump light is
amplified by a high-power EDFA to the required power levels. An optional optical
bandpass filter serves to remove out-of-band ASE noise originating in the EDFA. A
coupler, preferably a low-loss WDM coupler, combines the pump with the signal and
injects them into the nonlinear fiber wherein the parametric interaction takes place.
Since parametric amplification is polarization-dependent, one must ensure that the
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polarization of the waves are aligned in the HNLF, and with its principal axis, so
that the drift of relative polarization states between the waves are minimized. Here
a manual polarization controller is used. Finally, the pump is removed by one or
more optical filters and the signal/idler retrieved. OBPF2 could thus be either a
bandpass filter selecting the signal/idler, as in this case, or a notch filter rejecting
the pump. The dual-pumped case is similar.

Perhaps the most important part of the FOPA design is to ensure that the
phase matching condition is fulfilled. This requires the pump wavelength (for single-
pumped FOPAs) or average pump wavelength (for dual-pumped FOPAs) to be in
the anomalous dispersion regime, but close to the ZDW. Thus, a nonlinear fiber
with a ZDW in or near the C-band is needed for a gain over the C-band. A single-
pumped FOPA can only be perfectly phase-matched for two signal wavelengths (the
signal and idler wavelengths), but can exhibit a rather wide spectrum around these
wavelengths where the phase-matching is good enough to provide substantial net
gain. A dual-pumped FOPA on the other hand can exhibit almost perfect phase-
matching over a large range of wavelengths between the two pumps. The gain
spectrum is essentially dependent on the GVD of the HNLF, but also on the pump
powers. Extensive discussions on how the FOPA gain spectrum is synthesized can
be found in the literature, e.g. in [19,42,44]. Figure 2.4 shows example gain spectra
for a single-pumped and a dual-pumped FOPA. Notable is that both the single-
pumped and dual-pumped case have the same maximum gain, if pumped with the
same amount of total pump power. The HNLF parameters are the same in both
cases. How the gain and gain spectrum is computed is discussed further in the
section below.

Many demonstrations of dual-pumped FOPAs exist in the literature [45–47].
We will limit the discussion to single-pumped FOPAs in the remainder of the thesis,
as that is what has been investigated in all appended papers except Paper [E].
The main advantages of dual-pumped FOPAs over single-pumped are spectrally
flat and wide gain [48, 49], potential polarization independence through the use of
orthogonally polarized pumps [50], and the suppression of idler spectral broadening
by phase modulating the two pumps synchronously, either in-phase or out-of-phase
[51]. For the purpose of investigating the properties of phase-sensitive amplification,
the main topic of this thesis, such benefits are of secondary importance; hence single-
pumped FOPAs form the basis for this work.

2.5.2 The parametric gain

We have established that the gain of a parametric amplifier is dependent on the
phase-matching, i.e. the GVD values of the HNLF at the pump, signal and idler
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Figure 2.4: Example gain spectra for a single-pumped (left) and dual-pumped (right)

FOPA in a fiber of length 500 m, γ = 11 (W·km)−1 and total pump power 1 W.

The arrows indicate the wavelengths of the pumps.

wavelengths, and that for a single-pumped FOPA, perfect phase-matching is only
possible at two distinct signal wavelengths, with a gain spectrum around these wave-
lengths. In this section, we introduce an analytical expression for the small-signal
gain and use this to introduce the transfer-matrix model for the parametric gain,
a usable model to compute e.g. the impact of varying dispersion in HNLFs. Fur-
thermore, we discuss the case of pump depletion, i.e. where the gain saturates, and
the simpler analytical expression no longer are valid, meaning that one has to resort
to a numerical solution of the so-called three-wave model. Neither of these models
include noise (which we will discuss in Chapter 4), nor do they account for higher-
order FWM (i.e. other FWM processes than the best phase-matched one, including
those involving the generated components) and other concurrent nonlinear effects
(e.g. Raman) that occurs simultaneously in the HNLF. For such a complete descrip-
tion, one has to resort to a full numerical solution of the propagation equation (the
so-called Nonlinear Schrödinger Equation) [27,42].

Exponential and quadratic gain

In addition to the phase-matching, the gain value that can be attained is dependent
on the nonlinear phase shift in the fiber, i.e. on the 2γPpL-product. This can be
seen from Eq. 2.17, in which we reached the conclusion that the growth rate of
the signal and idler power along the fiber is directly dependent on 2γPp (in the
single-pumped case). We can easily identify that in the ideal case of perfect phase
matching, where the relative phase is π/2 and does not change during propagation,
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the growth of the signal power (i.e. the gain) is exponentially dependent on 2γPpL.
In the absence of perfect phase matching, one needs to consider the change of the
relative phase during propagation, but it is nevertheless quite straightforward to
derive an expression for the gain in terms of the phase mismatch parameter κ (Eq.
2.25) [19,27,42,52], assuming no pump depletion and a “small” signal, meaning that
we can neglect signal and idler SPM and XPM throughout the propagation, as

G =

(

1 +

[

γPp

g
sinh (gLeff )

])

, (2.27)

where

g2 =
[

(γPp)
2 − (κ/2)2

]

. (2.28)

Two special cases can be identified, κ = 0 (perfect phase-matching), and κ =
−2γPP (no relative phase-shift due to dispersion, i.e. signal and pump wavelength
are the same). In the first case, Eq. 2.27 can be shown in the case of large nonlinear
phase-shift (and thus gain) to simplify to (using the Taylor expansion of the sinh-
function) [19]

Gexp ≈
1

4
exp [2γPpLeff ]. (2.29)

Since the gain is approximately exponentially dependent on the nonlinear phase-
shift, we refer to this case as exponential gain. The other limit case is valid when
the pump and signal are close in wavelength, so that any dispersive contribution to
the phase-mismatch is negligible. Then, Eq. 2.27 can be shown in the case of large
nonlinear phase-shift to simplify to [19]

Gquad ≈ (2γPpLeff)2 . (2.30)

In this case, the gain is approximately quadratically dependent on the nonlinear
phase-shift, so we call this case quadratic gain. Using Eq. 2.29-2.30, one can with
relatively good accuracy calculate the gain in a real single-pumped FOPA at a given
pump power. Figure 2.5 shows the gain spectrum for an example single-pumped
FOPA with the exponential and quadratic gain regimes indicated.

Transfer matrix-description

While Eqs. 2.27-2.28 are useful, they will only give the power gain of a uniform
FOPA in the exponential and quadratic gain regimes. Moreover, if one wishes to
consider a phase-sensitive case, i.e. a non-zero idler at the input, a more accommo-
dating model is needed. Also, in that case, the full output field, rather than just the
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power, might be interesting. In fact, instead of deriving an expression for the power
gain from Eqs. 2.16-2.18 , one can just as easily derive one for the complex field,
that contains both amplitude and phase information. The input-output relation for
the signal and idler in an unsaturated FOPA can be written in matrix form (in the
lossless case) [53,54]

[

As(L)
A∗

i (L)

]

= T

[

As(0)
A∗

i (0)

]

, (2.31)

where the transfer matrix:

T =

[

cosh(gL) − i κ
2g

sinh(gL) i
γPp

g
sinh(gL)

−i
γPp

g
sinh(gL) cosh(gL) + i κ

2g
sinh(gL)

]

. (2.32)

This is a simple relation that enables an analytical analysis of FOPAs in many dif-
ferent cases. It can account for different pump powers and different phase-matching
(dispersion). It will prove very useful in Chapter 4, where we will use it to ana-
lyze phase-sensitive FOPAs, but it can also be applied to cases where one wants
to consider several cascaded FOPAs. There may be no idler at the input of such a
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cascade, but there is of course an idler at the input of every subsequent part. One
application of this is analysis of non-uniform FOPAs, e.g. where the HNLF has a
varying dispersion.

Dispersion-fluctuations

We can observe that if an output signal/idler pair from one FOPA is the input to
another FOPA with another transfer matrix, it follows from matrix algebra that the
two matrices can be multiplied to form the combined transfer matrix. Hence, we
can divide a transfer matrix into many factors, each representing an arbitrarily short
section of the propagation through the FOPA. The transfer matrix-method can thus
be used to analyze FOPAs with varying dispersion, and thus phase-matching, by
dividing it into many short segments of constant dispersion. Not only is this useful
because real FOPAs implemented with HNLF always will suffer from some amount
of dispersion-fluctuations due to manufacturing tolerances [55–57], in section 3.2 and
Papers [I, J], we use the transfer-matrix method to analyze SBS-suppressed HNLFs
that intentionally has a large non-uniformity.

Three-wave model and gain saturation

However, one aspect that the transfer-matrix model does not account for is when the
signal and idler grows large enough to be comparable with the pump. This will affect
the parametric interaction in two ways. First, the pump will be depleted and lose
power. Second, the assumption that signal and idler SPM/XPM can be neglected
no longer holds. Both of these effects will affect the relative phase, and therefore
the strength, and eventually also direction of the power flow. Simply put, as the
signal and idler grow and the pump is depleted, the gain per unit length decreases
until some point where the direction of power flow reverses and the pump starts
growing again. Note that this usually does not mean that the pump is completely
depleted. If the FOPA is long enough, this oscillation of power between pump and
signal/idler can continue over several periods. This phenomenon is illustrated in
Fig. 2.6, showing the pump and signal power evolution along the fiber propagation
in an example FOPA. In this example, the maximal small-signal gain if calculated
with Eq. 2.29 would be 168 dB, which clearly is not possible in practice. Hence, the
amplifier will be saturated.

Gain saturation also means that if the input signal power is increased to levels
beyond the small-signal regime, the FOPA gain starts decreasing from the value
found from e.g. Eq. 2.27 (i.e. saturating) and eventually become negative (“signal”
is pumping the “pump”). Fig. 2.7 plots output pump and signal powers as input
signal power is increased. Initially, the amplifier operates linearly, but as the pump
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Figure 2.6: Pump and signal power evolution along the propagation for a FOPA

where input pump and signal power is 2 W and 10 mW, respectively. The phase

matching differs between the two cases, leading to different maximal pump depletion

as well as different periodicity.

depletes, the output signal power saturates and reaches a regime where output signal
power does not depend greatly on input signal power.

To account for these effects, a full solution of Eqs. 2.11-2.14 is necessary. It
is usually most straightforward to solve them numerically, but analytical solutions
in terms of elliptical functions are possible [43], though quite involved. This is
often called the three-wave model, since, in the single-pumped case, we have three
waves coupled through parametric interaction (and hence three coupled differential
equations). Of course, those solutions are fully consistent with the transfer matrix-
model in the small-signal case.

It should be noted that in practice, large pump depletion and/or large sig-
nal/idler powers usually also means much larger higher-order FWM (the generation
of additional frequency components). This is not accounted for in the three-wave
model and may affect experimental results if the higher-order components are non-
negligible. In such a case, one can either resort to a more involved multi-wave model
with a larger system of coupled differential equations, or a full numerical solution of
the NLSE. Fig. 2.8 shows an example optical output spectrum of a saturated FOPA
with higher-order FWM products, and a power imbalance between signal and idler
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mainly due to the Raman effect (see next section), but also to different levels of
higher-order FWM (the signal is pumping the higher-order FWM more efficiently
than the idler).

2.6 Scattering effects

We have already established that the inelastic scattering processes can be described
as the exchange of energy between the lightwave and vibrational modes of the
medium. Unlike parametric nonlinearities, e.g. FWM, they do not require phase-
matching, but rather can be considered to be automatically phase-matched thanks
to the active participation of the medium, similar to amplification through stimu-
lated emission in a medium with population inversion. In this section we elaborate
further on how Raman and Brillouin scattering manifest in an optical fiber, and how
these processes can be made to be stimulated.
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[D]).

Raman scattering

Spontaneous Raman scattering was first observed by Raman in 1928 [58]. Sim-
ply put, the Raman effect is the emittance by an excited molecule of a photon of
lower-frequency (Stokes-shifted) or higher-frequency (anti-Stokes-shifted) than the
absorbed photon. The difference in energy is a phonon, i.e. a vibration of the
molecule, and thus the energy difference is a characteristic of the material. In an
optical fiber, the Raman effect becomes important if it is stimulated. Stimulated
Raman scattering (SRS) was first discovered in 1962 [59] and is the process in which
power from an optical wave (the pump wave) is transferred through the Raman effect
to another optical wave with a lower frequency, known as the Stokes wave. If two
such waves are present at the input of the fiber, and their frequency shift matches
that of the material in the fiber, a chain reaction starts in which pump photons are
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annihilated and Stokes photons as well as phonons are created. Since more phonons
are created, the vibrational energy increases thereby stimulating the process further.
Hence, the Stokes wave will be amplified. The opposite is also possible, wherein the
so-called anti-Stokes wave is attenuated by a strong pump.

In a silica-based fiber, the peak frequency downshift is about 13 THz, though
Raman scattering occurs over a broad spectrum. It occurs in both the forward and
backward direction and can be used for signal amplification [27, 60, 61]. Similar to
FWM, SRS has a very fast response time, on the order of femtoseconds, and is pola-
rization dependent, though only in the forward direction; if the pump and signal
have opposite propagation directions, the Raman process is polarization indepen-
dent. Moreover, the Raman gain grows exponentially with pump power, the fiber
length and the inverse of the effective area.

Brillouin scattering

Much like Raman scattering, Brillouin scattering involves the generation of a Stokes
wave from a pump wave, with the difference in energy being in the form of a phonon
and can occur spontaneously but also be stimulated. Stimulated Brillouin scattering
(SBS) was first observed in 1964 [62] and occur in a similar fashion to SRS. SBS can
become the dominant process if the pump wave exceeds a power threshold. However,
unlike Raman scattering, Brillouin scattering only generates a Stokes wave in the
backwards direction, relative to the pump. The frequency downshift is dictated by
the speed of sound in the material, and in a silica fiber, the downshift is typically
around 10 GHz with a frequency bandwidth of only tens of MHz [27,63].

Spontaneous Brillouin scattering can also occur in the forward direction, some-
thing that is known as guided acoustic wave Brillouin scattering (GAWBS) [64]. This
phenomenon is normally very weak, but e.g. in fiber Sagnac loop interferometers it
can play an important role.

Since SBS limits the input power it often becomes a large limiting factor for
nonlinear fiber devices that are dependent on large pump powers to drive other
nonlinearities, such as the parametric devices discussed in this thesis. Fortunately,
there are ways to suppress SBS. We devote Chapter 3 to SBS in nonlinear fibers,
how to suppress it, and the resulting performance trade-offs.
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Chapter 3

Stimulated Brillouin Scattering

I
n optical fibers, stimulated Brillouin scattering (SBS) typically manifests as a
threshold power, above which any increase in the input power (e.g. of the pump
in a parametric amplifier) will be backscattered, limiting the available usable

power. In this chapter, we discuss the Brillouin gain in fibers, specifically conven-
tional HNLFs, how it can be suppressed, and what the performance penalties for
parametric devices arise from these suppression methods.

SBS in an optical fiber [63] can be understood in the classical picture as follows:
through the electrostriction effect an intense pump field will generate an acoustic
wave in the fiber, co-propagating with the pump, but at the speed of sound vA.
This acoustic wave modulates the refractive index, forming a moving index grating.
The scattering of a lightwave against a grating into a counter-propagating wave is
described by the Bragg condition [27, p. 330]:

Λ =
λp

2n
. (3.1)

Here, Λ is the period of the grating, i.e. the wavenumber of the acoustic wave,
λp the wavelength of the pump wave and n the refractive index of the fiber. Since
the grating is moving at the speed of sound, typically around 6 km/s in silica,
the scattered wave will be downshifted through the Doppler effect. The frequency
downshift is given by

νB =
2vAn

λp
, (3.2)

and using 6 km/s and 1.5 for vA and n, respectively, we find a downshift of 11.6
GHz at a pump wavelength of 1550 nm. The backscattered wave will also inter-
fere with the pump, which strengthens the grating even further, resulting in even
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stronger scattering. The backscattering process occurs over a spectrum of downshift
frequencies around the peak downshift, the so-called Brillouin spectrum, ΔνB , which
typically is Lorentzian with a bandwidth of around 50-100 MHz and is related to
the lifetime of the acoustic phonons.

If the input wave exceeds a certain threshold power, known as the SBS threshold
of the fiber, all or almost all of the additional pump power above this threshold is
transferred to the Stokes wave. The Stokes wave is seeded from noise and subse-
quently stimulates the process. Moreover, a wave that exceeds the SBS threshold
and is backscattered to a significant degree will have substantial amplitude noise.
For this reason it is crucial to avoid SBS on data signals.

3.1 The Brillouin gain

When an input pump wave is backscattered through SBS, the backscattered wave is
downshifted in frequency by the SBS downshift νB, which is in the 9-12 GHz range
in typical silica fibers. Since the backscattered wave is seeded from noise (vacuum
fluctuations), it will have a spectral width that corresponds to that of the Brillouin
gain. Normally, this spectrum has a Lorentzian shape, with a bandwidth ΔνB of
tens of MHz [27, pp. 330-333]. Since the Brillouin gain bandwidth is so narrow, in
most cases two separate optical input waves will undergo SBS independently of each
other1, as the frequency separation of two optical waves is often much larger than
ΔνB.

For a wave that has a spectral width below that of ΔνB, the SBS threshold,
Pthreshold can be shown to be approximated by [27,65]

Pthreshold ≈
21kAeff

gBLeff
. (3.3)

Here, k is a polarization factor varying between 1 and 2 and gB the Brillouin gain
coefficient. The gain coefficient is dependent on, among other parameters, the speed
of sound, the material density and the phonon lifetime [27, p. 331], some of which
can be affected by the doping levels in the fiber. Of course, it also varies with the
downshift frequency and has its maximum at ν = νB, which is the value we consider
here. Neglecting loss in the fiber, the power of the backscattered wave Pbs will grow
with (backwards) distance at a rate given by

dPbs

dz′
= gBPpPbs, (3.4)

1Of course SBS of one wave will affect the other if they are otherwise coupled, e.g. by
parametric interaction.
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where z′ = −z is the negative coordinate along the fiber. This means exponential
growth, as long as the pump is undepleted, i.e. before reaching the SBS threshold.

Eq. 3.3 shows that the SBS threshold scales inversely with effective fiber length,
meaning that the relevant measure for parametric amplification, and most other
nonlinearities, the nonlinear phase shift, given by the γPpLeff -product, will be limited
to the same value regardless of fiber length when the pump power Pp is SBS-limited,
since an increase in fiber length will lower the SBS threshold and thus the usable
pump power. The same holds true for the effective area; increasing the nonlinearity
by decreasing it will lower the SBS threshold by the same amount. However, if the
nonlinear index n2 increase, the strength of the Kerr nonlinearity relative to SBS will
increase. The larger nonlinear index is one of the main reasons for using fibers made
from non-silica glasses. There are thus not so many options available to improve the
Kerr-to-SBS ratio in conventional silica fibers.
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Figure 3.1: Measured backscattered and transmitted power through an 150 m HNLF

as function of input power. For low input powers, the backscattered power is domi-

nated by Rayleigh scattered light, typically about 40 dB lower than the input power.

Fig. 3.1 shows the measured backscattered and transmitted power as a function
of the input power in a typical HNLF of 150 m length. From a measurement such
as the one in Fig. 3.1, different definitions of the threshold exist, e.g. where the
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backscattered power has increased a certain amount (3 dB, 10 dB, etc.) above the
Rayleigh-only case, or alternatively where the transmitted power has saturated by
a certain amount.

For a standard HNLF of 1 km, the threshold is on the order of only about 20-40
mW. Since the SBS threshold in a typical HNLF will limit the pump to powers much
below what is needed for e.g. efficient FWM, there is a need to suppress SBS.

3.2 Suppression techniques and performance

trade-offs

One can consider manufacturing fibers with improved Kerr-to-SBS ratio by reduced
gB , and/or increased nonlinear index n2. This is typically accomplished by increasing
the GeO2 doping level of the core and/or by introducing another dopant such as
Al2O3 [66–68]. Increased GeO2 doping increases n2, thereby increasing the Kerr-
to-SBS ratio, but unfortunately also significantly increases the fiber attenuation.
Introducing Al2O3 doping modifies the strength of the coupling between the acoustic
and optical field, lowering gB . Again, the main drawback is most notably severely
increased fiber attenuation.

To increase the SBS threshold in HNLFs, one needs to reduce the exponential
growth of the backscattered wave found from Eq. 3.4. Assuming a given gB in the
fiber, an increase in threshold can in principle be achieved by either:

1. Broaden the spectral width Δνp of the pump to cover a bandwidth larger than
ΔνB, by means of e.g. phase modulation.

2. Modify the fiber to be non-uniform, so that downshift frequency νB changes
along the fiber, leading to a broadening of the average Brillouin gain spectrum
ΔνB.

3. Simply block the propagation of the backscattered wave at some point in the
fiber, by e.g. an in-line isolator or a narrow band-stop filter, thereby forcing
the backscattered wave to start building up from zero again.

The first corresponds to dividing the pump into several spectral components that
undergo SBS independently. The latter two effectively amounts to reducing the
length of fiber in which a seeded backscattered wave participates in stimulating SBS
further. All three methods essentially means dividing a single SBS process into
many, either in the frequency or spatial domain.
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Pump spectral broadening

In the case of a pump with a broader spectrum than the Brillouin gain linewidth,
the SBS threshold will be reduced. It can be shown [27, p. 333] that the threshold
is increased by a factor

Pthreshold,mod

Pthreshold
=

ΔνB + Δνp

ΔνB
, (3.5)

if the pump linewidth is also Lorentzian, and it remains a reasonable approximation
also in other cases.

This is the most commonly used method for SBS suppression, usually by external
phase modulation with several radio frequency (RF) tones [18,69], though it can also
be accomplished with external modulation using electrical white noise [70] or pseudo-
random data [71], as well as by direct modulation of the laser current [71]. When
phase modulating with RF tones, the pump wave is spread out over 3N frequency
components, (neglecting higher-order sidebands) where N is the number of RF tones
used. If the separation between frequency components is larger than ΔνB, the
threshold will be reduced by a factor of 3N , with carefully chosen frequencies and
amplitudes of the RF tones [69], as each sideband experiences SBS independently.
Each added RF tone thus increases the threshold by a factor of 3 (4.7 dB), at the
expense of a pump spectral broadening, by a factor of (3N −1) ·f1, where f1 > ΔνB

is the lowest-frequency RF tone. Fig. 3.2 shows the measured optical spectrum of
a wave modulated with one and two RF tones, respectively. Here, it can also be
seen that it is difficult in practice to achieve sidebands that are perfectly equal in
amplitude.

To increase the threshold more than 100 times (20 dB), five tones are needed (in
theory providing 24 dB threshold increase), which typically means a pump spectral
broadening of about 25 GHz [72]. Often, one desires to have the smallest spectral
increase for a given amount of suppression. Then, modulation with white noise is
preferable, since it is then, in principle, possible to achieve a pump spectrum that
is flat over the desired spectral width.

While this suppression method is straightforward, in many applications the pump
broadening is undesirable, particularly in FWM, where the generated idler phase
includes the sum of the pump phases (Eq. 2.19). Even more problematic are appli-
cations where phase tracking of input waves are needed, such as for phase-sensitive
processes. In that case, PM with a few RF tones is usually preferred over the other
modulation signals, since the perturbation frequencies are few and known, so one
can e.g. perform measurements at other frequencies than those affected, such as the
noise figure measurements in Papers [C] and [H], or filter out those frequencies in
software as was done for the transfer function measurements in Papers [B] and [D].
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Figure 3.2: Measured optical spectra of a wave modulated with (a): one RF tone at

frequency f1, (b): two RF tones at frequencies f1 and f2 ≈ 3f1. In (a), the spectrum

contains three sidebands separated by f1 with a total width of approximately 2f1.

In (b), the spectrum contains nine sidebands separated by f1 with a total width of

approximately 8f1. In both cases, weaker higher-order sidebands are also visible.

Fiber strain gradients

There are many ways of imposing a non-uniformity on the fiber, either during man-
ufacturing or afterwards. One can can use different dopant concentrations [73] or
different core geometries [74], or impose a temperature gradient [75] on the fiber.
The most investigated method for HNLFs, however, is to impose a strain gradi-
ent along the fiber [68, 76, 77], Papers [I, J]. A strain gradient is practical, since
it only requires spooling of the fiber once. A temperature gradient on the other
hand, requires active heating and/or cooling. Regardless of method, it could either
be a continuous or stepwise gradient along the fiber, or even be accomplished by
concatenating different fibers, though then coupling/splicing losses become an issue.

In all these cases, the SBS is suppressed because the Brillouin gain spectrum
shifts along the fiber, making a Stokes wave generated in one end not participate
in the SBS process further down the fiber, where it is outside the Brillouin gain
bandwidth. Ideally, the gradient is such that the SBS downshift frequency is uni-
formly distributed over all its values along the fiber. It does not have to be linearly
varying along the fiber, but for practical reasons, this is usually the case. Fig. 3.3
shows the measured Brillouin gain spectrum of an HNLF with and without a strain
gradient applied. A broadening of the Brillouin gain spectrum 10-dB bandwidth of
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Figure 3.3: Measured Brillouin gain spectrum of an HNLF without strain (dashed)

and with a linear strain gradient. (From Paper [I].)

from about 20 MHz to about 300 MHz was observed.
The fundamental problem when using these methods to suppress SBS in HNLFs

for parametric amplifier-applications is that the change in SBS downshift is accom-
panied by a change in dispersion, leading to a dispersion gradient along the fiber
that all these methods are marred by. The HNLF in Fig. 3.3 showed a ZDW gra-
dient over about 10 nm with the strain gradient applied. Nevertheless, a dispersion
gradient does not have to be an issue for some applications. It is well established
that a zero-dispersion variation impairs the phase-matching of FWM, and thus the
gain spectrum of parametric amplifiers [56, 78]. However, as is discussed in Paper
[I], by shifting the pump wavelength far enough from the ZDW, the influence of the
dispersion variation is reduced, at the expense of total bandwidth. Thus, the same
maximal gain is achievable as in the case without ZDW variations, but over a much
smaller bandwidth (assuming the same pump power), which may be an acceptable
trade-off to increase the SBS threshold. It can also be noted that strain gradients
have been used to reduce existing dispersion variations in HNLFs [79].

However, there has recently been an effort to develop HNLFs designed to have
small dispersion variations after being strained, either by designing them to have an
initial variation in dispersion and subsequently strained to simultaneously increase
the SBS threshold and cancel the initial dispersion variations [80], or by designing
them to be dispersion-robust when the geometry varies [81–83]. Increased PMD due
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to the straining remains an issue, however [83].

In-line isolators

First demonstrated in [84], and for an HNLF in [85], the SBS can be reduced by
periodically blocking the backscattered wave in the fiber by using isolators (or cir-
culators), forcing it to start growing again from a very low level. Since the power of
the backscattered wave grows exponentially along the fiber, this can mean a large
difference in total backscattered power. The principle is shown in Fig. 3.4. In
this example, the backscattered wave (with relative power of unity at the fiber end)
grows by a factor of G over a fiber length of L/4. Hence, the backscattered wave
(and thus depletion of the pump) becomes G3 times larger in the case of no blocking
of the backscattered wave compared to the case where it is blocked at three points
along the fiber (effectively dividing the fiber into four sections). Assuming lossless
isolators and fibers, the threshold of the cascade will then be equal to the threshold
of a single piece, since they operate independently in terms of SBS, i.e. the threshold
will scale with the number of isolators plus one, assuming that they are uniformly
distributed in a uniform fiber. However, the insertion loss and input/output coupling
or splicing loss that isolators have must of course be considered. In Paper [J], an
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HNLF cascade of four pieces was constructed where the threshold of each individual
HNLF piece compared with the preceding was lowered (by increasing the length) by
approximately the loss of the isolator before it. This design yielded approximately a
5 dB larger net threshold, to be compared with the theoretical 6 dB, had the lengths
perfectly matched the isolator losses. Another issue is that inserting components,
especially if they are pigtailed with SMF, may perturb e.g. the phase matching in
FWM [85]. In Paper [J], this issue was addressed by using isolators with very short
(a few cm) pigtails. In addition to the isolators, the HNLF segments used in Paper
[J] had a strain gradient applied, which increased the SBS threshold by about 6 dB.
Hence, the total net threshold increase was 11 dB, which enabled a parametric net
gain of 10 dB without any pump spectral broadening.
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Chapter 4

Phase-sensitive amplification

A
phase-sensitive process is one where a property other than the phase (e.g. the
amplitude) is affected by the input phase. The most obvious example is an
interferometer where two lightwaves are combined and through constructive

or destructive interference the output power is affected by the input phase. How-
ever, a regular interferometer does not provide any gain. As we know from Chapter
2, nonlinear devices, on the other hand, can through nonlinear processes generate
new frequency components and provide signal gain. We have also discussed how
these processes are inherently phase-sensitive, in that they are sensitive to the rela-
tive phase of the interacting lightwaves, which is what leads to the phase-matching
condition. Usually though, they are often phase-insensitive (PI) with respect to the
phases of the waves at the input. However, under some input conditions, nonlinear
processes such as parametric amplification can typically be made phase-sensitive
(PS), meaning that it is dependent on the value of the relative phase of the inter-
acting waves (e.g. pump and signal) at the input, or alternatively, if e.g. the pump
is considered to have a fixed phase, it becomes dependent on the absolute signal
phase. Normally, one considers the signal phase to be the variable, and thereby
assumes that the pump waves are perfectly phase stable. Thus, the idler needs to
be phase-correlated (and frequency-locked) to the signal (and in practice also the
pumps) by some other process before the phase-sensitive amplifier (PSA). This is
what makes PS amplification challenging to achieve. In the discussion in this chap-
ter, unless stated otherwise, we will assume that the pump phase is fixed, giving a
relative phase that is equal to θs + θi. (Compare Eq. 2.19).

Throughout this chapter we will discuss PS amplification based on parametric
amplification (i.e. FWM) in optical fibers. In addition to FWM, PSA is also pos-
sible through nonlinear fiber interferometers, with many important experimental
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demonstrations [86–90]. However, such a device is completely frequency degenerate,
i.e. pump and signal are indistinguishable, making them less interesting in practice.
It should be mentioned that there have been many experimental demonstrations of
PSA in χ(2)-media [91–94], including using cascaded SHG-DFG rather than para-
metric amplification [95–97]. However, such PSAs have not been demonstrated with
particularly large gain, as can routinely be achieved in fibers. The work in this thesis
that involve PSA is based only on FWM in fibers.

We begin this chapter by describing the basic concepts behind phase-sensitive
amplification, and how it can be implemented in optical fibers in section 4.1 and the
concept of squeezing is also introduced. In section 4.2 we build on the mathemati-
cal descriptions of parametric gain established in Chapter 2 to develop expressions
for how a PSA affects the signal amplitude and phase. PSAs in saturation is an
interesting topic since it is well known that a saturated FOPA can operate as an
amplitude limiter, thereby reducing amplitude noise [20, 22, 98–100]. How this can
be exploited in together with phase squeezing in PSA is discussed in section 4.3. Fi-
nally, a very important property of PSA that has been the subject of several earlier
investigations [87, 88, 101–103], is the possibility of noiseless amplification, i.e. an
amplifier with a 0 dB noise figure (NF). This topic will be addressed in section 4.4.

4.1 Basic concept

Consider the dependence on the relative phase in conventional parametric gain in
section 2.4.1. This quantity controls the magnitude and direction of the power flow,
as seen in Eq. 2.16-2.17. In the phase-insensitive case, where there is no idler at
the input, a vacuum fluctuation will seed the idler at the correct frequency, with a
phase giving the optimal condition (θrel = π/2). During propagation, the relative
phase will subsequently drift from this value if the phase-matching is not perfect.
The idler thus tracks changes in the input signal and pump phase, so that the
relative phase remains constant at a given point in the amplifier (e.g. the output).
If we instead have an idler at the input, we can control the parametric process by
controlling the idler phase (or that of any other wave). Since we have a device
whose gain varies strongly with the signal phase, the output signal will have almost
only the phase(s) giving the maximal gain. Recall that changing the relative phase
from π/2 to −π/2 changes sign but not magnitude of the right hand side of Eq.
2.17, i.e. the signal/idler growth rate. As an example, if the gain varies between
±20 dB for different phases, an input signal giving θrel = π/2 will yield a 40 dB
larger output signal than a signal giving θrel = −π/2. Of course, other signal phases
will end up at powers in between these extremes. By considering all input signal
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phases a linear combination of these two orthogonal states, we can understand phase
squeezing in the classical (wave) picture. A signal of an arbitrary input phase will
at the output have a part at the in-phase (max. gain) quadrature, and a part at
the orthogonal (max. attenuation) quadrature that usually can be neglected, due
to the large difference in gain, resulting in a constant output phase. Since only the
in-phase part of the input signal will contribute significantly to the output signal,
the output power will be dependent on how large a fraction of the input signal is
in the in-phase quadrature - i.e. the output power depends on the input phase.
Essentially, we have transferred a variation in phase to one in amplitude. The main
application of this phenomenon is reduction of phase noise [90], Paper [E], but it has
also been suggested for dispersion compensation and pulse compression [104, 105],
Paper [G].

We often call the reduction of noise in either phase or amplitude squeezing. Fig.
4.1 illustrates this concept. As described above, squeezing can be interpreted clas-
sically as interference of two waves. In the quantum-mechanical (photon) interpre-
tation phase-sensitive amplifiers can also produce squeezed states of light [106,107].
They are so called, since the interaction will “squeeze” the uncertainty, or noise, in
one quadrature at the expense of the other. Such non-classical light can for instance
exhibit amplitude noise below the otherwise fundamental shot-noise limit. Funda-
mentally, squeezed states is a quantum-mechanical phenomenon, originating in the
interaction of correlated wave functions (i.e. photons). Here, the uncertainty in the
two quadratures are quantum uncertainties, i.e. the product of them are limited
by the Heisenberg uncertainty relation [106, p. 210]. A squeezed state is generated
from a coherent state (a state of highly correlated photons exhibiting Poisson statis-
tics, first introduced by Glauber in 1963 [108]) or from the vacuum state through
a nonlinear interaction. Experimental amplitude-squeezed light has been presented
at a noise level 10 dB below the otherwise fundamental shot noise limit [109], using
PSA in a nonlinear crystal, but generation of amplitude-squeezed light has been
demonstrated in a fiber-based PSA as well [110].

4.1.1 Implementations of phase-sensitive amplifiers in

fibers

Figure 4.2 shows the frequency allocation in different implementations of PSA in
optical fibers [111]. In the first case, a so-called 1-mode PSA [112, 113], the signal
and idler are degenerate and is in the frequency domain symmetrically surrounded
by two CW pumps. A clear advantage of this scheme is of course that no generation
of an idler (i.e. with the data of the signal) is necessary, however, two frequency- and
phase-locked pumps must somehow be generated. If the signal and one of the pumps
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originate from two separate, free-running lasers, the second pump must be locked
with the phase θp2

= 2θs − θp1
. It should be pointed out that if θs only includes

the phase of the optical carrier of the signal (as is the normal case; otherwise the
pump would need to carry data), the PSA will be phase-sensitive with respect to the
added phase modulation and/or phase noise of the signal; hence such a PSA would
be useful to reduce (squeeze) phase noise of a signal with binary phase-encoded
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data. Multiple-level phase-modulated data will be destroyed of course, as the PSA
will amplify only one quadrature. Finally, we mention that the degenerate-idler
PSA scheme can also be implemented in the vector configuration, where the pumps
have orthogonal polarizations, and the signal and idler are degenerate in frequency
but not in polarization. However, we will limit the discussion in this chapter to
scalar FWM, where all waves have parallel polarization, and will not consider vector
schemes further.

The second case shows so-called 2-mode PSA [112,113], wherein a non-degenerate
signal-idler pair symmetrically surrounds a pump in the frequency-domain. As indi-
cated in the figure, multiple signal-idler pairs can be simultaneously phase-sensitively
amplified in this case [114]. However, an idler carrying the same data as the signal,
must in the normal case be generated. Additionally, the pump must be phase-locked
with respect to the signal and idler. If the idler is an identical copy of the signal,
then this scheme behaves much in the same way as the degenerate-idler scheme,
with amplification of a single signal (and idler) quadrature. However, if the idler is
the conjugate of the signal, the absolute dependence on the signal (i.e. data) phase
will cancel out when the phases are summed, and the PSA will amplify all signal
phases, but still be able to amplify with a quantum-limited NF of 1, as the signal
will be amplified more efficiently than uncorrelated noise (refer to section 4.4 for a
more elaborate discussion on this topic). The non-degenerate idler scheme can also
be implemented with two pumps, and the signal idler pair must then have the same
average frequency as that of the pump pair.

Finally, the third case shows a fully degenerate, interferometric PSA [86]. It

47



involves only two waves, pump and signal, that share the same frequency, and must
be phase-locked. By injecting them into the two ports of a Sagnac loop nonlinear
interferometer, the waves will experience a phase-shift due to SPM and the gain
and phase-sensitivity arises by constructive/destructive interference between pump
and signal at the output port [115]. Since this configuration requires generation of
a CW pump of the same frequency as the signal, it is very similar to homodyne
coherent detection. The loop mirror configuration is, however, sensitive to guided
acoustic-wave Brillouin scattering (GAWBS) [54], which can make them unstable.
Moreover, the small-signal gain in such a device is quadratic with respect to the
nonlinear phase shift, whereas in FWM it can be made exponential, meaning that
less pump power is needed to reach a certain gain.

Generation of phase-locked waves

Common for all three configurations detailed above, and indeed for all kinds of
phase-sensitive amplifiers, is the need to generate phase-locked waves. In earlier
proof-of-concept experiments, this has usually been done by generating sidebands
from a single laser through electro-optic modulation [101, 116, 117]. Then, phase-
locked CW components are obtained, that subsequently can be split, in order to
impose data modulation on some, amplify some, etc. However, the drawback of this
method is that the frequency separation is limited by the bandwidth of the electro-
optic modulators (tens of GHz). To overcome this bandwidth limitation, the use of
a phase-insensitive parametric amplifier to generate the locked waves was proposed
in [118]. This is the so-called copier-PSA-configuration used in Papers [A-D, F-H],
the principle of which is shown in Fig. 4.3 (top). It is further detailed in the next
section of this chapter. Another important advantage of using a copier to generate
the waves is that it is capable of copying also signal data, a very important feature
that enables low-noise amplification of arbitrary signals. It can thus both be used to
generate correlated CW waves that subsequently are modulated, as is possible with
modulator-generated sidebands, but also for direct generation of a data-carrying
idler.

In Paper [E], which is based on the degenerate-idler PSA configuration, a similar
method to generate the phase-locked pump is used. This is work is, to the best of
our knowledge, the first demonstration of a full “black-box” PSA, meaning that
the only input is a free-running, data-carrying signal. In order to generate the
locked pump, the signal is combined with the free-running pump in a first-stage
phase-insensitive parametric amplifier, but the signal acts as pump in this stage.
Since the signal carries binary phase-shift-keyed (PSK) data modulation, the data
is “stripped” [119, 120], and the generated idler is phase-locked with respect to
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the signal carrier (actually two times this phase), and the phase conjugate of the
other pump, thus any dependence on the free-running lasers will cancel out when
these three wave interact in the PSA. In subsequent work, this method has also been
extend to signals with quartenary PSK data modulation by using higher-order FWM
products [121,122], but it is inherently limited to M-ary PSK signals, more advanced
modulation formats (e.g. quadrature amplitude modulation (QAM)) cannot be
modulation-stripped in this manner. The principle (for binary PSK) is illustrated
in Fig. 4.3.

To be able to exploit the often weak generated FWM component as a PSA
pump in Paper [E], injection locking was used to recover its SNR. Injection locking
of lasers is a way of making a slave laser track a master by injecting power from
the master laser into it. It is normally capable of tracking phase and amplitude
variations of the master up to the MHz level easily [123, 124], making it possible
to lock to a free-running laser. It thus serves two purposes; low-pass filtering the
phase, so that only the desired (relatively slow) phase variations originating from the
laser linewidth remains, and to amplify the master without adding any significant
amplitude noise. Another application of injection locking in the PSA context is
pump recovery after transmission, e.g. a weak pump tracking the signal phase is
generated at the transmitter and co-propagates with the signal. To use the pump
in a PSA after transmission, simple amplification is not sufficient, as it would give a
much to low optical signal-to-noise ratio (OSNR) of the pump. This was proposed
in Paper [H] and subsequently experimentally demonstrated in [125].

In the case where the generated correlated waves are separated for individual
processing prior to the PSA, some active phase-locking must also be done to cancel
the relative drift they will experience from thermal and acoustic drifts. Fortunately,
such slow drifts can be canceled by phase-locked loops are relatively straightforward
to construct. They are based on lock-in amplification of a weak dithering tone and
piezo-electric transducers (PZT) to stretch the fiber in order to cancel such drifts.

4.1.2 Copier-PSA implementation

Throughout this thesis, the copier-PSA configuration is used. In essence, this is a
single parametric amplifier that is “split” into a phase-insensitive part (where an
idler is generated) and a phase-sensitive part that is analyzed. It is based on the
realization that all parametric amplifiers are phase-sensitive internally as soon as
the idler has formed. By deliberately modifying the waves in a so-called mid-stage,
the PSA behavior can be analyzed. Moreover, a very tangible benefit can be had in
terms of noise performance if there is a large loss in the mid-stage, as we will see in
section 4.4. Figure 4.4 illustrates the copier-PSA configuration schematically, with
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Figure 4.3: Generation of phase-locked waves using first-stage FWM. The frequency

allocation and phases of interacting waves are shown. Top: a conjugate copy of the

signal, carrying both pump and signal phase information is generated in a ”copier”

(conventional parametric amplifier). This wave triplet has a constant relative phase.

Bottom: A pump is generated from a signal carrying binary PSK data by modulation

stripping through phase-doubling by FWM. The generated wave triplet has a relative

phase of two times the signal data, meaning that the two phase states of the signal

can be amplified in a PSA.

the signal and idler being modified in some manner in the mid-stage.
The copier-PSA implementation is of course a practical one in the sense that

the copier generates a correlated wave triplet, since the idler is carrying the phase
of the pump and signal. Otherwise, generating waves that is completely frequency-
and phase stable with respect to each other is a challenging proposition indeed. It
should be emphasized that since the first stage generates a conjugated idler, the
relative phase remains constant, regardless of the signal phase at the copier input.
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Figure 4.4: Schematic copier-PSA setup in the single-pumped non-degenerate idler

configuration. The signal and idler are modified in the mid-stage, and some phase

control feedback mechanism is necessary to keep pump and signal/idler stably phase-

locked at the PSA input.

The full copier+PSA system is thus phase-insensitive (and has a quantum-limited
NF of 3 dB, for example). In PSA experiments described in Papers [A-D, F, G],
the phases of the signal and idler was modified in the mid-stage, and the PSA was
phase-sensitive with respect only to the added phase modification in the mid-stage.
In Papers [A, G], this modification was static, while in the others it was dynamic.

A similar method was used in Paper [E] to generate the pumps. Here, the
implementation was of the non-degenerate idler variety, hence, two pumps needed
to be generated from a data-carrying signal. With the additional step of modulation
stripping through FWM, two CW pumps could be generated.

4.2 Phase dependence of phase-sensitive am-

plifiers

Considering the transfer-matrix description of a FOPA in Eq. 2.31, we observe that
it can be written on the form

As,out = μAs,in + νA∗

i,in

A∗

i,out = ν∗As,in + μ∗A∗

i,in

, (4.1)

with the complex coefficients μ and ν fulfilling the relation

|μ|2 − |ν|2 = 1. (4.2)
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This is called a two-mode squeezing transformation, and is known to produce
squeezed states [106, 111]. From Eq. 4.1, it is also easy to see that when there
is no idler at the input, one that is proportional to the signal conjugate will be
generated, while the signal field is merely scaled (and undergoes a constant phase
rotation), i.e. it is phase-preserved. When both signal and idler are present, the out-
put complex signal field will be a linear combination of both input fields, and thus
the phase will not be preserved. Furthermore, if the input signal and idler power
are equal, and |μ| ≈ |ν|, as is the case for large gL, i.e. large small-signal gains, the
output signal field amplitude will be twice as large in the case of idler present as
compared to the case without idler. The fields are added coherently, meaning that
in the case of high gain the output signal power will then be four times (6 dB) larger
in the phase sensitive case, despite only having twice (3 dB) the total input power
(signal+idler). This is valid not only at the perfectly phase-matched signal/idler
wavelengths, but for all signal/idler wavelengths where the gain is large.

In Paper [B], explicit expressions for the output signal power and phase in terms
of |μ|, |ν|, and the signal and idler power and phases were published for the first
time, to the best of our knowledge. The full derivation of these expressions can be
found in Appendix A, together with some limit cases of practical interest. The main
conclusions that follow are:

• The output signal power is periodic in the signal phase with a period of π.

• The extremas of the gain with respect to the signal phase are Gmax,min =
(|μ| ± |ν|)2, hence Gmin = 1/Gmax.

• The output signal power is 6 dB larger in the presence of an input idler of equal
size and proper phase, if the gain is large, compared with the case without
input idler, i.e. Gmax = 4 · GPIA.

• The output signal phase has a one-to-one relation with the input phase in the
limit of no gain, and the output signal phase dependence on the input phase
is successively reduced as the gain increases.

• The output signal phase has a one-to-one relation with the input signal phase
in the limit of no input idler, and the output signal phase dependence on the
input phase is minimized when the input signal and idler are equal in power.

• In the high-gain limit, the output signal phase reduces to two discrete phase
states, as long as the input signal and idler have the same power.

In Paper [A], the phase-to-amplitude transfer functions of a PSA were experi-
mentally measured, using static phase-shifts and direct measurement of the signal
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power. In Paper [B], the phase-to-phase transfer functions were experimentally mea-
sured, using dynamic phase-shifts in the mid-stage, and a self-homodyne approach,
where the signal laser is tapped and used as local oscillator. In both cases, the
measurement included the dependence on pump power and signal-to-idler power
ratio.

4.3 Saturation effects in phase-sensitive am-

plifiers

With an established theory for the phase-dependence of PSAs in the undepleted-
pump approximation, it follows to ask what will happen when this assumption no
longer holds. As we saw in Chapter 2, the phase-matching condition will be affected
by the growth in power of the signal and idler, leading to a more complex interaction
between the waves that requires resorting to the three-wave model, rather than
the simpler transfer-matrix. How are the phase-to-amplitude and phase-to-phase
transfer functions affected? It is reasonable to assume that different signal phases
will be affected vastly different, since the small-signal gain varies so much with the
phase.

Moreover, it is well-known that a saturated phase-insensitive parametric ampli-
fier works well as an amplitude limiter, i.e. a regenerator, since the power response
becomes flat over a range of input signal powers, and thanks to the ultrafast re-
sponse time it will saturate for individual pulses rather than average power, which
has been used for amplitude regeneration of both amplitude- [20, 98] and phase-
encoded data [22,99,100].

A PSA will convert any phase noise (PN) to amplitude noise (AN) since its
gain is phase-dependent. In regenerating the optical phase using PSAs one may
therefore want to operate the PSA in saturation. To enable this, the PSA must be
saturated over the range of phases for which one wishes to squeeze both PN and AN.
However, a large saturation also means a reduction in the FWM efficiency and thus,
in the phase squeezing. Hence, this raises the question of what level of saturation
is optimal, and how the phase-to- phase transfer function behaves as the amplifier
is saturated. In Paper [E] good performance was achieved by operating the PSA
in gain saturation in order to both reduce the inherent PN to AN conversion as
well as to suppress any existing amplitude noise on the input signal by amplitude
limiting, as had previously been suggested [126, 127]. Paper [D] investigates how
an increase in signal and idler power beyond the small-signal condition affects the
transfer functions experimentally as well as using numerical solutions of the three-
wave model.
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4.4 Noise in parametric amplifiers and PSAs

The main interest for investigating the noise properties of PSAs is their ability to
amplify a signal without adding noise. Normally, FOPAs, like any other amplifier,
add noise to the signal being amplified. This is usually quantified by the noise figure
(NF), defined as

NF =
SNRin

SNRout
, (4.3)

i.e. the degradation of the SNR, as measured in the electrical domain, after the
amplifier, if SNRin is shot-noise limited when detected and converted into a pho-
tocurrent. The input and output SNR are thus electrical SNR:s measured with an
ideal detector. The noise photons have a random phase, and it is the beating bet-
ween signal and noise photons on the photodetector that will limit the SNR after
the amplifier. When discussing the noise figure, one usually assumes that the noise
bandwidth is small enough to neglect the beating between the noise photons. In an
EDFA, the noise photons originates from spontaneous emission of photons from the
excited Erbium ions, photons that subsequently are amplified. The noise is therefore
called amplified spontaneous emission (ASE). The lowest NF that has been exper-
imentally demonstrated in an EDFA is of 3.1 dB [128]. It can be shown that the
quantum limited noise figure for an amplifier with high gain is 3 dB [129, p. 195]. In
a FOPA, the fundamental noise source is similar to the ASE in EDFAs, but there are
no excited particles involved, rather, the noise originates from vacuum fluctuations.
Such fluctuations can be amplified by the FOPA. Therefore, ASE in a parametric
amplifier is often called amplified quantum noise (AQN).

A phase-sensitive FOPA (or any PSA) on the other hand, has a quantum-limited
NF of 0 dB for the in-phase component (the out-of-phase component has a NF of at
least its attenuation). Sub-3 dB NFs have been measured in both PSAs implemented
in χ(2) (Lithium niobate) [92] and χ(3) (fibers) [88] media. The difference in NF
between phase-insensitive and phase-sensitive amplifiers can be understood from a
semiclassical approach [130], where the input signal and idler fields of Eq. 2.31 are
considered to be the sum of the signal field and an uncorrelated vacuum noise field,
which is assumed to be a stochastic complex quantity with a Gaussian distribution
and an expectation value of 0 for the amplitude, and hfs,i/2 for the power, where
h denotes Planck’s constant and fs,i the signal and idler frequency. In Paper [D],
this is used to derive the NF of a FOPA, giving the well-known 3 dB NF in the
high-gain regime for a FOPA without idler at the input (the signal is amplified a
factor G, while the fluctuations are amplified 2G). The NF is found to be 0 dB when
considering both the input signal and input idler as part of the “signal”, i.e. the
enumerator, in the SNR, and -3 dB when only considering the signal. Intuitively,
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this can be understood by realizing that the vacuum fluctuations will only be phase-
insensitively amplified, while the signal will be phase-sensitively amplified, i.e. with
6 dB larger gain, as discussed earlier in this chapter. Hence, the signal is amplified
4G while the fluctuations are amplified 2G [112], giving the SNR improvement.
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Figure 4.5: Basic principle of a copier-loss-PSA transmission link.

Importantly, the copier-PSA structure can be used to gain a practical benefit
of the NF advantage of PSA. If there is a large loss (much larger than the copier
gain) in the mid-stage between the copier and the PSA, any introduced correlated
fluctuations in the copier will be insignificant compared with the introduced vacuum
fluctuation in the loss element (e.g. a transmission fiber). Then, the PSA (if ideal)
will amplify the signal-idler pair without added noise, giving the entire link a 6 dB
SNR benefit compared to the same link with two PI amplifiers, and since the idler
is the generated conjugate of the signal input to the copier, both signal quadratures
will be amplified by the PSA [131]. Such a link has an increased information capacity
compared to a conventional PI-based link [132]. Fig. 4.5 illustrates the copier-loss-
PSA concept. To make it work after a real transmission link, the pump needs to
be recovered and reamplified. Furthermore, control of phase, relative delay and
polarization is necessary, as well as accurate dispersion compensation. In Paper [H],
a proof-of-concept experiment demonstrates the link SNR benefit of the copier-loss-
PSA scheme. Subsequently, it has been demonstrated with an actual 80 km SMF
link in [125].

In addition to the quantum limited NF, the NF of a FOPA will typically be
degraded by a number of other effects [103, 133]. One is the unavoidable Raman
scattering of the FOPA pump. In addition, if the pump is noisy, this will further
degrade the noise performance of the FOPA, since amplitude variations of the pump
is transferred to the signal by the near-instantaneous gain of the FOPA. The pump
is typically amplified by an high-power EDFA, giving it a limited OSNR. Imper-
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fect filtering of pump ASE also degrades the FOPA NF. Even if the pump is not
amplified, it will have a limited relative-intensity noise (RIN), meaning its inten-
sity is fluctuating. Despite these imperfections, NFs close to the quantum limit are
achievable in FOPAs.
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Chapter 5

Future applications and outlook

W
hile phase-sensitive optical parametric amplifiers have been the subject of
experimental investigations for at least two decades, they still remain an
exotic device, seemingly far from practical applications. However, while

more work is undoubtedly necessary, one can now envision new developments and
novel applications that may lift the PSA from research curiosity to commercial
applications. Certainly, one can easily imagine technological developments that can
make PSAs simpler and cheaper to build, such as lasers of suitable characteristics
with large output power, obviating the need for pump amplification. However, we
might also need to raise our perspective from the telecom- and optical fiber-centric
view we take in this thesis. The PSAs of the future may well be implemented in other
nonlinear media, such as silicon, and primarily used for non-telecom-applications
such as scientific tools or for military or space communications. While speculative to
some degree, in this chapter we discuss current implementation issues and potential
future developments and applications for PSAs.

5.1 PSA applications

We have in this thesis discussed the phase-regenerative property of PSAs. As shown
in Paper [D], it is possible to simultaneously reduce both amplitude and phase noise
(up to a certain degree) by operating the PSA in saturation. It has also been shown
to be able to scale beyond binary PSK to higher-order (M-ary) PSK data modulation
by using cascaded FWM [121, 122]. However, like for most other all-optical signal
processing, the chief competitor is digital signal processing (DSP) in software, which
obviously always is a very flexible solution. DSP together with coherent detection
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has also been the main focus of optical transmission research in the past few years.
The inherent advantages of all-optical signal processing over DSP is speed and power
consumption. Unlike silicon chips, the processing speed (i.e. the possible symbol
rate) of optical signal processing can be increased virtually arbitrarily. Moreover,
doing so will not affect the power consumption of the optical device. So far, the
speed of the electronics and the symbol rate of optical communications systems have
kept pace, with a large part of the increase in data rates coming from additional
WDM channels and recently the use of multilevel modulation. Should a time come,
however, where it proves to be easier and/or more cost efficient to increase the
symbol rate, all-optical regeneration might be beneficial or even necessary.

The most spectacular ability of PSAs is undoubtedly their capability of noiseless
amplification. In Paper [H], it has been shown that the copier - link - PSA con-
figuration is likely the most practical way to exploit this capability, primarily since
it can noiselessly amplify arbitrary signal formats and unlike many other PSA con-
figurations only require comparatively slow phase-tracking. Recent developments
have shown that the required pump recovery is achievable using an injection-locked
laser [134]. However, in fiber-optic communications they must also compete with dis-
tributed amplification, in which the transmission fiber is the amplification medium
as well (usually by Raman amplification). Copier-PSA is, in principle, compatible
with distributed amplification and would then outperform all other amplification
schemes (Paper [C]); unfortunately keeping the waves phase-synchronized through-
out the entire fiber is not likely to be practical. A hybrid approach using the copier
- link - PSA configuration together with conventional distributed Raman amplifica-
tion in the link might very well be an attractive option for ultra-long span single-hop
links.

Another potential development may come from current research that is looking
to develop novel kinds of transmission fibers (photonic bandgap fibers) with signifi-
cantly reduced attenuation and nonlinearity compared with current silica fibers [135].
Should such fibers become a reality, distributed amplification will no longer be vi-
able, nor will current EDFAs be usable, since the fibers will have their low-loss
window in the 2000 nm-wavelength range. Hence, new kinds of amplifiers are re-
quired; PSAs (as well as PI-FOPAs) have no inherently limited wavelength range of
operation.

Moreover, there are other specialty applications in which high-fidelity amplifica-
tion and/or amplification of very low-power signals are required because high-power
laser sources are unavailable or because signal absorption is large or because signal
powers must be kept low because of nonlinearities or damage thresholds. Any such
application may benefit from the ultra-low noise amplification potentially offered by
PSAs, since PSAs can, with suitable choice of gain medium, be made to operate

58



at nearly any wavelength. Application examples may include few-photon-detection,
medical applications and bio-photonics, spectroscopy, LIDAR (LIght Detection And
Ranging)-type sensing etc. It is also interesting to consider that if the signal and
idler are unequally attenuated during the propagation, the PSA will significantly
improve the SNR of the lower-power one [136].

Finally, we point out another important capability of non-degenerate PSAs,
namely that the NF improvement can scale further by using additional idlers. A
PSA employing two pumps and a set of four correlated signal-idlers (four-sideband
interaction [48]) would in principle exhibit a noise figure of -9 dB when considering
the signal only. Such a four-mode PSA has been experimentally verified in a recent
experiment [137].

5.2 PSA platforms

Presently, silica-based nonlinear fibers are the preferred nonlinear medium for para-
metric amplification and nonlinear signal processing mainly because of their low
attenuation. This gives HNLFs a very competitive nonlinearity coefficient over at-
tenuation (γ/α) figure-of-merit when compared with other nonlinear optical me-
dia [17,138]. Additionally, which in many cases may be equally important, HNLFs
have very low coupling/splicing loss, allowing for large net efficiencies, and makes
them capable of handling large optical powers, and allows them to be easily inte-
grated in fiber-based systems. In this thesis, we have made the case for FWM in
HNLF as a good way of implementing a PSA. However, we should also recognize
that HNLF have a number of limitations and disadvantages compared with other
nonlinear platforms. Since HNLF is made from silica, which intrinsically has a very
low Kerr nonlinearity, the nonlinearity coefficient is not particularly large in HNLF,
thereby making a fairly large length required. This is disadvantageous because
nonuniformities along the fiber may be a limitation (dispersion variations, PMD),
and because of walk-off time and/or latency. The lengths required also means that
the nonlinear device necessarily will be large in size, at least compared to many
other optical components. As we have discussed, SBS also remains a substantial
issue in HNLFs.

So-called holey fibers, microstructured fibers or photonic crystal fibers [30], ei-
ther made from silica or from other types of nonlinear glasses, e.g. Chalcogenide,
Tellurite, lead-silicate or bismuth-oxide [139], as well as e.g. silicon nanowires typi-
cally outperform silica-based HNLFs in terms of nonlinearity as well as Kerr-to-SBS
ratio, in many cases by orders of magnitude. With a large enough reduction in
attenuation/coupling loss, they can become the medium of choice. Silicon in partic-
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ular is interesting, and has been the topic of many recent experiments [35,140–142],
in no small part due to its potential for on-chip integration. However, silicon is
not particularly suitable for operation in the 1550 nm-wavelength regime, due to
large two-photon absorption [140], but may be suitable in e.g. the 2 μm-wavelength
regime and beyond, where silica fibers on the other hand have large attenuation.
PCFs, can, in principle, be tailor-made to operate at any wavelength, by designing
them with the desired single-mode cut-off wavelength and GVD, by proper choice
of glass and microstructure design.

The above are all χ(3)-media, but χ(2)-media should also be considered, especially
when using quasi-phase-matching techniques. This is likely required for χ(2)-media
to be competitive, so as to avoid phase matching through birefringence, which is
often impractical in many applications. In particular, quasi-phase-matched (period-
ically poled) Lithium-niobate crystals (PPLN) have already been used to implement
PSAs through cascaded SHG/DFG [95–97].

One may expect that many of the platforms discussed may be suitable for PSA
implementations, albeit for different applications. For instance, we can consider
that the copier-link-PSA configuration means having two different devices at two
different locations. The nonlinear medium does not have to be the same for the two,
even though the wavelengths obviously must be compatible with both. Indeed, they
can and should be analyzed separately when choosing platform.

5.3 Issues and future developments

In Paper [C], a number of future developments were identified to be required for
PSAs to be more practically viable. Remarkably, significant steps have been taken
towards most of them. We now have nonlinear fibers that are less susceptible to
SBS (Papers [I-J]), even though their gain bandwidth remains limited. Recently
developed HNLFs that allow strain gradients without noticeable GVD variations
[81–83] addresses this issue. Injection-locking-based pump recovery as well as the
required phase, delay and dispersion control [143] has been proven to be possible in
an actual transmission experiment through 80 km of fiber [125]. Nevertheless, many
issues still remain.

In order to make PSAs less complex it would be desirable to obviate the need
for auxiliary high-power EDFAs to boost the pump to sufficiently large powers. The
development of lasers with large enough output power with otherwise maintained
qualities (single-mode, relatively narrow linewidth, low intensity noise) is thus ben-
eficial for PSAs. Otherwise, the required components are mostly passive optics
that should be relatively simple to implement inexpensively. No fast electronics are
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required, and the phase locking circuit can be built at low cost.
Another major issue that remains to be addressed is the polarization dependence

that PSAs normally exhibit. While parametric amplifiers can be made polarization
independent by using orthogonal dual-pumps [40, 41, 50], this may not always be
a good choice, since the FWM efficiency is lower and having two pumps means
additional complexity especially for PSAs where all waves must be phase-locked.
Moreover, it is difficult in practice to maintain the orthogonality of the pumps, due
to the PMD in the fiber, giving an unwanted polarization dependence. Polarization-
diversity techniques might thus be necessary in order to construct polarization-
independent PSAs.

In the longer term, we should acknowledge that PSAs remain an immature tech-
nology at present, an neither their main applications nor their implementation plat-
form is written in stone today. The application will also dictate the wavelength
range of interest and other performance requirements, and hence implementation
and nonlinear platform. It thus remains clear that further research on PSA should
be conducted with an open mind regarding platforms, and any developments ad-
dressing the various limitations on different nonlinear media, as those discussed
above can only further the developments of PSAs towards practical applications.
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Chapter 6

Summary of papers

T
he thesis includes ten appended papers, which are outlined below. Papers [A-
D] concerns mainly the investigation of fundamental characteristics of phase-
sensitive fiber optic parametric amplifiers, while Papers [E-H] are focused on

different applications of PSAs in a communications context, based on the fundamen-
tal characteristics that are unique to PSAs. These applications include simultaneous
phase- and amplitude regeneration, modulation signal enhancement, short-pulse am-
plification and ultra-low noise amplification. Additionally, Papers [I-J] addresses the
topic of stimulated Brillouin scattering suppression in the nonlinear fibers constitut-
ing the parametric amplifiers.

Paper A: Detailed characterization of a fiber-optic para-
metric amplifier in phase-sensitive and phase-insensitive

operation

Due to the stringent requirement of phase control of the ingoing waves, phase-
sensitive amplifiers are very difficult to implement and characterize. Here, a first-
stage FOPA is used to generate a set of phase-correlated waves, and through an in-
termediate optical processor the amplitude and phase of the waves can be changed.
The second-stage FOPA that operates in phase-sensitive mode can thus be charac-
terized. A symmetric gain bandwidth of 24 nm and a maximum gain of 33 dB was
measured, showing that a phase-sensitive FOPA can have performance similar to
their phase-insensitive counterparts. We also investigated PSA gain and attenua-
tion versus input phase, pump power, signal power and signal-to-idler power ratio.

My contribution: J. Kakande and myself came up with the idea for the experi-
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ments and set them up and conducted them jointly. I presented the work at ECOC
2009, and contributed in writing the subsequent paper.

Paper B: Phase-to-phase and phase-to-amplitude trans-
fer characteristics of a non-degenerate-idler phase-

sensitive amplifier

In this paper, the phase-to-phase and phase-to-amplitude transfer functions of a
phase-sensitive FOPA are experimentally measured and compared with theory. The
experimental results were obtained by imposing a linear phase modulation onto
the signal and idler wave simultaneously, and detecting the input and output sig-
nal using a self-homodyne coherent receiver. We also measure the phase-to-phase
transfer functions for different gains and signal-to-idler power ratios and find that
the phase-squeezing capability is significantly impaired if the gain is too low or the
signal-to-idler power ratio too large.

My contribution: I came up with the idea for the experiment, set up the ex-
periment together with Z. Tong and conducted the measurements and wrote the
paper.

Paper C: Ultra-low noise, broadband phase-sensitive op-

tical amplifiers and their applications (Invited paper)

In this invited paper many aspects of our work based on the copier-PSA scheme is
reviewed. This includes gain, noise performance, and phase-transfer functions. A
record-low 1.1 dB noise figure was measured at 26 dB gain. Potential applications
as well as practical challenges are also discussed.

My contribution: Z. Tong and myself jointly designed and built the copier-PSA
setup. I performed the phase measurements and contributed in writing the paper.

Paper D: Phase and amplitude transfer characteristics of
a phase-sensitive parametric amplifier operating in gain
saturation

Here, the work on phase-to-phase and phase-to-amplitude transfer functions is ex-
tended to PSAs in the gain saturation regime. This enables a suppression of the
inherent phase-to-amplitude conversion, and indeed of simultaneous reduction in
phase- and amplitude deviations of a signal. However, the phase-to-phase transfer
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characteristics becomes impaired when operating in saturation, and we evaluate the
impact of this on the noise reduction using the numerical three-wave model. The
validity of this model was shown by comparing it to experimental transfer functions
with very good agreement.

My contribution: I designed and set up the experiment, performed the measure-
ments and the numerical simulations, and wrote the paper.

Paper E: All-optical phase- and amplitude regenerator

for next-generation telecommunications systems

Phase noise is a major limitation in data transmission using (differential) phase shift
keying ((D)PSK). This could be mitigated by using phase regenerators in the trans-
mission link. Here, the first such phase regenerator based on the phase-squeezing
capability of phase-sensitive amplifiers (PSAs) in a black-box configuration is pre-
sented. The carrier is recovered from the incoming DPSK signal in an auxiliary
four-wave mixing stage, and subsequently used to injection lock a laser. This com-
ponent thus carries the phase of the signal laser and the auxiliary pump (but not
the data). The signal was phase regenerated with a very low amplitude penalty by
operating the PSA in saturation. The large reduction of phase noise was quantified
through differential eye diagrams, coherently measured constellation diagrams and
Bit-Error-Ratio (BER) measurements.

My contribution: I built the constellation diagram analysis together with M.
Sjödin, performed the constellation measurements and assisted in performing the
other measurements.

Paper F: Optical modulation signal enhancement using
a phase sensitive amplifier

A method using a phase-sensitive amplifier as a modulation signal enhancer is pro-
posed and demonstrated. Using the phase-to-phase and phase-to-amplitude charac-
teristics of the PSA, it can generate both phase- and amplitude modulated signals
from low-extinction inputs, for instance providing a phase-excursion amplification.
High-extinction amplitude modulation can also be generated.

My contribution: I invented the concept. I designed and set up the experiment,
performed the measurements and wrote the paper.
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Paper G: Short-pulse amplification in a phase-sensitive

amplifier

The amplification of picosecond-pulses in a PSA is demonstrated in this paper. We
investigate the tolerance on residual delay and dispersion on the signal and idler,
important for copier-PSA-based transmission links. Moreover, the PSAs ability to
selectively amplify one of the quadratures of the signal and the effect this has on
dispersively broadened pulses, is discussed and we show an experimental demonstra-
tion of this effect for the first time.

My contribution: The question of dispersion tolerance between copier and PSA
arose during Z. Tong’s work on such links. I designed and set up the experiment,
performed the measurements and wrote the paper.

Paper H: Towards ultrasensitive optical links enabled by

low-noise phase-sensitive amplifiers

The noiseless amplification of the PSA can provide a practical benefit in a copier-
PSA configuration as well if the loss between the copier and PSA is sufficiently
large. Then, a copier-loss-PSA link will outperform the same link implemented
with phase-insensitive amplifiers, despite the copier-PSA being phase-insensitive as
a whole. Here, this is demonstrated experimentally for the first time with a near-
6 dB link NF advantage and a 5.5 dB sensitivity improvement. The modulation
format independence and compatibility with WDM signals is also shown.

My contribution: The copier-PSA setup was jointly designed by Z. Tong and
myself. I contributed in writing the paper.

Paper I: Tension-optimized highly nonlinear fibers for
parametric applications

It is known that applying a tension gradient to a fiber will increase its SBS thresh-
old. However, the dispersion will then also change along the fiber. Here, this is
investigated for a highly nonlinear fiber. We found a variation in SBS frequency
over 300 MHz and zero-dispersion wavelength of 11.5 nm for this particular fiber,
and calculate what this means when using this fiber in parametric applications.

My contribution: I devised and performed the experiments with the exception of
the localized measurements, performed the theoretical calculations and wrote the
paper.
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Paper J: Fiber optic parametric amplifier with 10 dB net

gain without pump dithering”

An SBS-suppressed HNLF cascade using four HNLFs with strain gradients and
three optical isolators was designed and constructed. The effective total threshold
increase was about 11 dB. A record net CW parametric gain without any pump spec-
tral broadening for SBS suppression of 10 dB was measured in this cascade. We also
verified its performance as a wavelength converter of phase-encoded data. When
using pump spectral broadening, such a wavelength converted signal will be sig-
nificantly degraded because of the pump-to-idler phase transfer, but in the HNLF
cascade we achieved 9.3 dB net conversion efficiency with no appreciable penalty
found.

My contribution: I planned the HNLF-cascade concept and the experiment. To-
gether with S.L.I. Olsson, I performed the characterization of the HNLF pieces and
designed the cascade. I advised on the construction and measurement of the cascade
and the wavelength conversion experiment and wrote the paper.
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Chapter A

Appendix

I
n this Appendix we derive the expressions for the phase-to-phase and phase-
to-power transfer functions of a single-pumped non-degenerate-idler PSA in the
small-signal regime. We also highlight some limit cases. Henceforth, we shall

refer to the case of no input idler as PI-case, and the case of equal input signal and
idler power and phase (Ps,in = Pi,in, θs,in = θi,in) as the ideal PS-case. We also
consider the nonlinear fiber to be lossless, but one can easily account for loss by
replacing L by Leff throughout the Appendix.

A.1 General phase-to-power and phase-to-

phase transfer functions of a fiber PSA

Starting from Eq. 4.1 we know that:

Ps,out = |As,out|
2 = |μAs,in + νA∗

i,in|
2. (A.1)

By rewriting the signal and idler fields in terms of their powers P and phases θ
(relative to that of the pump), such that:

As,i =
√

Ps,i · exp (iθs,i) (A.2)

we can easily find a general expression for the output signal power as

Ps,out = |μ|2Ps,in + |ν|2Pi,in + 2|μ||ν|
√

Ps,inPi,in · cos (Δθ) (A.3)

with Δθ = θμ − θν + θs,in + θi,in, where we have defined θμ,ν as the phase angles of
the complex transfer functions. We may observe that the first two terms of the right
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hand side of Eq. A.3 corresponds to the PI-gain of the signal and PI-wavelength
conversion of the idler, respectively. These two terms cannot be negative. The last
term is responsible for the additional coherent gain or attenuation when both signal
and idler are present at the input, and is the phase-dependent term. This term can
be both positive and negative. It is also immediately apparent that in the PI-case,
any dependence on the signal phase vanishes, as should be expected, and the PI-
gain is |μ|2. Finally, one may easily find that if Ps,in = Pi,in, then the signal gain
G = Ps,out/Ps,in is

G = |μ|2 + |ν|2 + 2|μ||ν| · cos (Δθ) (A.4)

with extremas Gmax,min = (|μ| ± |ν|)2, and hence Gmin = 1/Gmax for all μ and ν.
From Eq. 2.32 we have the expressions for the transfer coefficients μ and ν as:

μ = cosh(gL) − i
κ

2g
sinh(gL) (A.5)

and

ν = i
(γPp)

g
sinh(gL) (A.6)

with the phase angles of μ and ν, respectively, being θμ = −κ tanh(gL)
2g

and θν = π/2.

Furthermore1,

|μ|2 = 1 +
(γPp)

2

g2
sinh2(gL) (A.7)

and

|ν|2 =
(γPp)

2

g2
sinh2(gL). (A.8)

Hence, μ and ν fulfills the relation |μ|2 − |ν|2 = 1.
Starting out by rewriting the right hand side of Eq. A.3 using a standard trigono-

metric identity as

Ps,out = |μ|2Ps,in + |ν|2Pi,in

+2|ν|
√

Ps,inPi,in · [|μ| cos(θμ) · cos(−θν + θs + θi) + |μ| sin(θμ) · sin(−θν + θs + θi)] ,
(A.9)

realizing that |μ| cos θμ = Re(μ) and |μ| sin θμ = Im(μ), and inserting the expressions
for μ and ν we find that we can write the full expression for the output power in

1While the result for |μ|2 may not be immediately obvious, it can be found by inserting
the expressions for κ (Eq. 2.24) and g (Eq. 2.28) into Eq. A.5 and using the relation
cosh2(x) = 1 − sinh2(x).
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the general case as:

Ps,out = Ps,in + (Ps,in + Pi,in)
(γPp)

2

g2
sinh2(gL)

+ 2 sinh(gL)
(γPp)

g

√

Ps,inPi,in·

·

(

κ

2g
sinh(gL) cos (θs,in + θi,in) + cosh(gL) sin (θs,in + θi,in)

)

. (A.10)

To retrieve the output signal phase we start from the expression for the output
signal field:

As,out = μAs,in + νA∗

i,in

= |μ|eiθμ
√

Ps,ine
iθs,in + |ν|eiθν

√

Pi,ine
−iθi,in . (A.11)

Thus, the general expression for the output signal phase becomes:

tan(θs,out) =
Im(As,out)

Re(As,out)

=
|μ|

√

Ps,in sin (θμ + θs,in) + |ν|
√

Pi,in sin (θν − θi,in)

|μ|
√

Ps,in cos (θμ + θs,in) + |ν|
√

Pi,in cos (θν − θi,in)
. (A.12)

Clearly, the output phase is dependent on the transfer coefficients as well as the
signal and idler input powers and phases. In the PI-case, the terms containing the
idler power vanishes and all that remains is:

θs,out = arctan

[

|μ|
√

Ps,in sin (θμ + θs,in)

|μ|
√

Ps,in cos (θμ + θs,in)

]

= θμ + θs,in, (A.13)

i.e. the output signal phase is equal to the input signal phase (plus a constant
phase shift). We can also see that in the ideal PS-case, the dependence on input
signal/idler power vanishes, meaning that in the general case, the output phase is
only dependent on the ratio between signal and idler power and not the absolute
power (as long as we remain in the small-signal regime).

Inserting the expressions for μ and ν into Eq. A.12 and following the same
method as above to rewrite in terms of the real and imaginary parts of μ and ν, we
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find that the output phase is given by

tan(θs,out) =
√

Ps,in

[

cosh(gL) sin (θs,in) −
κ
2g

sinh(gL) cos (θs,in)
]

+
√

Pi,in

[

γPp

g
sinh(gL) cos (θi,in)

]

√

Ps,in

[

cosh(gL) cos (θs,in) + κ
2g

sinh(gL) sin (θs,in)
]

+
√

Pi,in

[

γPp

g
sinh(gL) sin (θi,in)

] .

(A.14)

A.2 Special cases

Perfect phase-matching (Exponential gain regime)

In the case of perfect phase matching, κ = 0 and g = γPp so that μ = cosh(gL) and
ν = i sinh(gL). Then, the output signal power of Eq. A.10 simplifies to

Ps,out = Ps,in + (Ps,in + Pi,in) sinh2(gL)

+ sinh(2gL)
√

Ps,inPi,in · sin (θs,in + θi,in), (A.15)

where the relation 2 cosh(x) · sinh(x) = sinh(2x) was used.
In the ideal PS-case, this simplifies further to:

Ps,out = Ps,in

[

1 + 2 sinh2(gL) + sinh(2gL) · sin(2θs,in)
]

, (A.16)

which may be expressed in exponential functions as

Ps,out =
Ps,in

2

[

e2gL + e−2gL +
(

e2gL − e−2gL
)

· sin(2θs,in)
]

. (A.17)

It is then readily seen that the maximum and minimum values of the gain G =
Ps,out/Ps,in is Gmax,min = exp (±2gL), respectively.

The phase-to-phase transfer function, in the case of ideal phase matching, sim-
plifies to

tan(θs,out) =
√

Ps,in [cosh(gL) sin (θs,in)] +
√

Pi,in [sinh(gL) cos (θi,in)]
√

Ps,in [cosh(gL) cos (θs,in)] +
√

Pi,in [sinh(gL) sin (θi,in)]
, (A.18)

which, in the ideal PS-case, may be further simplified as

tan(θs,out) =
[cosh(gL) sin (θs,in)] + [sinh(gL) cos (θs,in)]

[cosh(gL) cos (θs,in)] + [sinh(gL) sin (θs,in)]
. (A.19)
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In the limit of large gain, i.e. gL >> 1, cosh(gL) ≈ sinh(gL) >> 1. Then, the
dependence on the gL-product vanishes in Eq. A.19, and all that remains is

tan(θs,out) = 1 (A.20)

with solutions θs,out = π/4, 5π/4, .... Conversely, in the unity-gain limit, i.e. gL → 0,
cosh(gL) = 1 and sinh(gL) = 0. Then, one finds from Eq. A.19 that θs,out → θs,in.

Quadratic gain-regime

In the quadratic gain regime, κ = 2γPp and g = 0. Using the Taylor series expansions
of the hyperbolic functions, we can find that μ = 1 − iγPpL and ν = iγPpL. Then,
the output signal power becomes

Ps,out =Ps,in + (Ps,in + Pi,in) · (γPpL)2 + 2
√

Ps,inPi,in·

·
[

(γPpL) · sin (θs,in + θi,in) + (γPpL)2 · cos (θs,in + θi,in)
]

(A.21)

=Ps,in + (Ps,in + Pi,in) · (γPpL)2 + 2
√

Ps,inPi,in·

(γPpL) ·
√

1 + (γPpL)2 · sin(θs,in + θi,in + arctan(γPpL)).

In the ideal PS-case, this simplifies to

Ps,out =Ps,in

[

1 + 2(γPpL)2
(

1 +
√

(1 + (γPpL)−2 · sin(2θs,in + arctan(γPpL))

)]

.

(A.22)

with the maximum and minimum values of the gain being Gmax,min =
(√

1 + (γPpL) ± γPpL
)2

, respectively.
The phase-to-phase transfer function in the quadratic gain regime becomes

tan(θs,out) =

√

Ps,in [sin (θs,in) − (γPpL) cos (θs,in)] +
√

Pi,in(γPpL) cos (θi,in)
√

Ps,in [cos (θs,in) + (γPpL) sin (θs,in)] +
√

Pi,in(γPpL) sin (θi,in)
,

(A.23)

which, in the ideal PS-case, reduces to

tan(θs,out) =
sin (θs,in)

cos (θs,in) + (2γPpL) sin (θs,in)
. (A.24)

Here, it is easy to see that in the limit 2γPpL → 0 i.e. when the gain goes toward
unity, then θs,out → θs,in, and in the limit 2γPpL >> 1 i.e. when the gain is large,
then

tan(θs,out) → 0 (A.25)

with solutions θs,out = 0, π, ....
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