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Phase-Sensitive Fiber Optic Parametric Amplifiers and
Their Applications in Optical Communication

CARL LUNDSTROM

Photonics Laboratory,
Department of Microtechnology and Nanoscience (MC2)
Chalmers University of Technology, SE-412 96 Goéteborg, Sweden

Abstract

This thesis deals with experimental and theoretical aspects of the phase-sensitive
fiber optic parametric amplifier (FOPA) and their applications. FOPAs can be
operated as both phase-insensitive and phase-sensitive amplifiers (PSAs), with the
latter requiring phase-locked input waves, which, until recently, has limited their
practical use. Based on the realization that a phase-insensitive FOPA, called the
copier, can generate the phase-locked waves required, several applications of a copier-
PSA configuration are proposed and demonstrated. These include phase excursion
amplification, ultra-low noise amplification, and, by using the copier for carrier
recovery, black-box all-optical phase- and amplitude regeneration.

A large part of this thesis deals with characterization of the PSA. The copier-PSA
configuration is useful in this regard, since, by modulating the signal in between the
copier and PSA, the phase-response of the PSA can be studied. The output signal
was investigated both in terms of amplitude and phase, using a coherent receiver.

Finally, methods to suppress stimulated Brillouin scattering (SBS) in highly
nonlinear fibers (HNLFs) are investigated. Without suppression, SBS will severely
limit the available pump power for parametric amplification. The most common
way to suppress the SBS is to increase the spectral width of the pump, but this is
undesirable in phase-sensitive amplification and many other applications. Therefore,
the application of a strain gradient to the fibers to decrease the SBS is studied,
together with the resulting trade-offs. A cascade of HNLFs with strain gradients,
separated by low-loss and low-dispersion isolators is proposed and evaluated, with
a large increase in the SBS threshold demonstrated.

Keywords: fiber nonlinearities, fiber optic parametric amplification, four-wave mix-
ing, phase-sensitive amplification, nonlinear optical signal processing, phase regen-
eration, stimulated Brillouin scattering
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Chapter 1

Introduction

the early seventies [2,3] not only ushered in a revolution in human commu-

nication, but also spurred much fundamental research into their properties
and how light behaves as it propagates through them. Optical communication (tele-
com, datacom) is the most important application for optical fibers and much of
the research work regarding optical fibers was and is conducted in the context of
communications. Indeed, the work upon which this thesis is based also concerns a
fiber property, namely the Kerr nonlinearity (also called the third-order nonlinear-
ity), the parametric nonlinear interactions it gives rise to, and their use for optical
communications-applications.

The field of modern optics, including the studies of most optical nonlinearities,
started in 1960 with the invention of the laser [4]. Normally, the photons that make
up an optical wave can propagate without interacting with each other, but when
the number of photons per unit time (i.e. the optical intensity) become very large,
the nonlinear response of the medium will start playing a role, which can couple the
optical waves and make them interact with one another. Such nonlinearities can be
extremely fast, with response times on the scale of femtoseconds, which opens up
the possibility for ultrafast all-optical applications that are typically not possible in
electronic devices, which are limited by the much slower speed of the electronics.

Parametric nonlinear effects in nonlinear optical media (crystals) was studied
soon after the first laser was realized [5-7]| and fiber-based parametric effects have
been a topic of active research since the availability of low-loss optical fibers [8,9].
In fiber-optical communications systems, fiber nonlinearities can be a detrimental
effect, but the nonlinearities can also be exploited for many different applications.
Parametric effects in either nonlinear crystals or in fibers can be used for signal

THE advent of the low-loss optical fiber proposed in 1966 [1] and realized in



amplification as well as for many different all-optical signal processing applications.
However, fiber-based nonlinear devices are more easily made compatible with exist-
ing fiber-based communications systems. Hence, for telecommunications, parametric
effects in fibers have long been one of the main focuses for research on nonlinear sig-
nal processing, with many pioneering demonstrations in the 1990s of applications
of parametric effects in fibers, such as demultiplexing [10], sampling [11], phase
conjugation [12] and wavelength conversion [13]. However, the efficiency of those
devices was often not good, until advances in nonlinear fibers around the turn of the
century [14-17] made them more practical and capable of large and broadband net
gains [18,19]. Many new signal processing applications in fibers have since emerged,
such as signal amplitude regeneration [20-22], multicasting [23], all-optical tunable
delays [24] and format conversion through phase erasure [25], to name a few.

In particular, parametric amplification offers the possibility of phase-sensitive
amplification (PSA), something of the holy grail in amplification, because of their
ability to amplify without adding excess noise, whereas all other amplifiers add
noise to the signal, thereby degrading its signal-to-noise ratio (SNR) [26]. Phase-
sensitive amplification means amplification that is dependent on the phase of the
optical signal. Signal photons with a certain phase will be amplified while photons
in the opposite quadrature will be de-amplified. PSAs are based on the parametric
nonlinearity in a nonlinear medium and can thus be implemented in both nonlinear
crystals and in optical fibers of various kinds, as well as optical waveguides (e.g.
silicon). PSAs have long been considered an exotic type of amplifier mainly because
of the difficult requirement of having phase-synchronized waves at the input, and
thus not so excessively studied experimentally previously, beyond simpler proof-of-
concept experiments.

In addition to noiseless amplification, another important application for PSAs
is the regeneration of the optical phase, i.e. since only certain phase states will
be amplified, deviations from this state (i.e. phase noise) will be reduced. Phase
regeneration have been a topic of interest in telecommunications, as phase-encoded
signals have become more common, with phase noise often being a limiting factor for
the performance of optical communications links. Phase regeneration is not easy to
accomplish otherwise, without first converting the phase information to amplitude,
and subsequently regenerating the amplitude. This additional step is undesirable,
and PSAs make it possible to regenerate the phase directly.

Fiber-based PSAs, unlike those based on nonlinear crystals, can be operated in
two fundamentally different ways; either being sensitive to the absolute signal phase
and thus regenerate the signal phase, or being insensitive to the absolute phase
which enables noiseless amplification of all phase-states of the signal. In this thesis,
both kinds are studied.



The PSA is a new type of optical amplifier, and thus fundamental studies of
its properties and abilities are a prerequisite for further, more applications-oriented,
research and development. In this thesis, PSAs are studied in a communications
context, and applications in optical communications are discussed and evaluated.
However, other large fields where optics play an important role include sensing,
test-and-measurement and spectroscopy. Additionally, fields such as photon count-
ing and quantum communications are other potential use-cases for ultralow-noise
amplification. Moreover, since PSAs can be implemented in a number of different
nonlinear media, they can be made to operate over different wavelength ranges,
dictated only by the dispersive properties of the chosen medium. The potential of
e.g. low-noise amplification in essentially arbitrary wavelength ranges offered by
PSAs may prove useful in the applications mentioned above, or in any application
where low levels of light need to be amplified and/or detected with high fidelity.
With PSAs being the immature technology it is today, an increase in the general
understanding of their potential performance and what is required to reach this
performance in practice should be beneficial regardless of intended application or
wavelength range of interest.

1.1 This thesis

This thesis is based on ten appended papers. The driving motivation for the work
in Papers [A-H| has been to understand the fundamental behavior and performance
of phase-sensitive parametric amplifiers and to identify and demonstrate possible
applications and benefits in a communications context, but also to realize PSAs with
performance comparable or better in many important aspects than other state-of-
the-art optical amplifiers. To this end, an experimental configuration which we refer
to as the copier - mid-stage - PSA is used. The “copier” generates a phase-correlated
idler wave that is needed to ensure phase-sensitivity in the PSA. Essentially, this
configuration is phase-insensitive as a whole, but phase-sensitive to any phase-shifts
or phase decorrelations that is introduced in the mid-stage. We investigate the
phase-to-phase and phase-to-amplitude transfer functions of the PSA by introducing
a phase modulation in the mid-stage, and investigate the noise properties of the PSA
by decorrelating the waves by a large loss in the mid-stage. The exception is Paper
[E], in which a black-box PSA-based phase regenerator was constructed. Black-
box here means that the regenerator was sensitive to the phase of the incoming
signal, and that the free-running signal is the only input needed to the regenerator.
Finally, Papers [I-J] concerns the suppression of another nonlinear effect, stimulated
Brillouin scattering (SBS), which is a large limiting factor for the performance of



fiber-based parametric amplifiers, as it will significantly limit the available pump
power. It can be suppressed by spectral broadening of the pump; however, this
is very problematic for phase-sensitive amplifiers that require very good control of
the phases of the interacting waves. Hence, new, passive, methods are needed to
suppress the SBS.

Outline

This thesis is organized as follows: Chapter 2 introduces the fundamental theory of
optical propagation through a fiber that is relevant for this work, and its physical
origin. This includes linear effects and the nonlinear effects of self- and cross-phase
modulation, four-wave mixing (the basis of parametric effects in fibers), as well
as nonlinear scattering effects. Chapter 3 delves into further detail on one of the
scattering nonlinearities, stimulated Brillouin scattering, as well as a discussion on
how to suppress it and the trade-offs involved. An overview of phase-sensitive ampli-
fication in fibers, and various implementations, including the copier-PSA structure
follows in Chapter 4. In Chapter 5, we discuss potential applications of PSAs, both
in communications and in other fields, as well as other potential nonlinear media
that may be developed and used to implement PSAs. We also discuss practical
implementation issues that should be addressed, as well as topics in need of further
investigation. Finally, in Chapter 6, the appended papers are summarized.



Chapter 2

Fiber dispersion and
nonlinearities

effects affecting a light wave in optical (silica-based) fibers in this chapter.
Fundamentally, these effects can be divided into linear and nonlinear effects.
While nonlinear effects are the main topic of this thesis, the interplay between linear
and nonlinear effects form the basis of many of the investigated phenomena. Lin-
ear effects include attenuation and chromatic dispersion (the spreading out in time
of different frequency components), but also polarization-mode dispersion (PMD).
Common for the linear effects is that they occur independently for each frequency
component in the fiber, and are not affected by other waves (at other frequencies)
also present. The nonlinear effects are so-called since they are dependent on the
optical power of the wave(s) in the fiber, meaning that one wave can affect the
properties of another, and that power can be transferred between optical waves of
different frequencies during propagation, and even introduce components at frequen-
cies not originally present. Throughout this thesis, we concern ourselves only with
single-mode fibers, in which only one spatial mode can propagate (at least at the
frequencies we consider). The modes represent different solutions to the Maxwell
equations with the boundary conditions given by the physical properties of the fiber.
The nonlinear effect that we mostly concern ourselves with in this work is the
Kerr nonlinearity, which modifies the index of refraction in response to the intensity
(i.e. power) in the fiber. The refractive index is usually written as

SINCE this work deals with fiber-based devices, we describe the propagation

n(w,I) = n(w) + nal, (2.1)



where w and I is the frequency and intensity of the optical wave, respectively.
The linear (dispersive) part of the refractive index is 1 in free space, and approx-
imately 1.5 in optical fibers. The nonlinear refractive index no is on the order of
1072° m? /W in silica-based optical fibers, and can be increased somewhat by doping
the silica with GeOy [27, p. 17]. The large difference in magnitude of the linear and
nonlinear part means that large intensities are required for nonlinear effects to play
a significant role.

From Eq. 2.1 it is also evident how the aforementioned interplay between linear
and nonlinear effects arises. Since the propagation speed of an optical wave is given
by the refractive index, which changes with frequency and power of the wave, the
change in phase of the wave as it propagates is also dependent on its frequency and
power. The phase-shifts a wave imposes on itself and on other waves are called self-
phase modulation and cross-phase modulation (SPM and XPM), respectively. The
coupling between several waves through this nonlinearity is called four-wave mixing
(FWM). FWM can be described as the the periodic modulation of the refractive
index by the beating frequency of two waves, since the local intensity in the fiber
varies at this beat note. Thus, the relative phase of the interacting waves become
important, leading to both the concept of phase-matching as well as the phase-
sensitive effects that are important parts of this thesis.

As the nonlinearities are dependent on the intensity and thus the area of the
optical beam, the nonlinearity coefficient is commonly used as a measure of how
strong the nonlinear effects of a particular fiber are. It is denoted by ~ and written
as

o 27T7‘L2
’Y - )\Aeﬁ"

(2.2)

where \ represents the signal wavelength, and A.g is the effective area of the
mode of the optical wave in the fiber. Conventional single-mode fibers (SMFs) used
in transmission usually have a v of around 1-3 W~ lkm™1! [27, p. 424].

There is also another class of nonlinear effects in optical fibers, namely the in-
elastic scattering processes, in which the optical wave transfers part of its energy to
a phonon (vibrational quantum) in the fiber. Raman scattering describes scatter-
ing against optical phonons, while Brillouin scattering describes scattering against
acoustic phonons. Especially Brillouin scattering can be a detrimental effect for
building fiber-based devices based on the Kerr nonlinearity; hence, we devote Chap-
ter 3 to further describing the phenomenon, its adverse effect in these cases, and
how it can be suppressed.



Nonlinear fibers

It should be noted that in optical communications systems, fiber nonlinearities are
typically considered an unwanted effect that should be minimized. On the other
hand, nonlinearities can also be exploited for e.g. amplification and signal processing
applications. In those cases, so-called highly nonlinear fibers (HNLFs) are often used
in purpose-built nonlinear devices (rather than in the transmission fiber). They are
fibers designed to have a large nonlinearity coefficient, between 10-20 W~'km™1,
usually achieved by decreasing the effective area of the fiber. This increases the
magnitude of both the Kerr and the scattering nonlinearities, however.

There is also a large ongoing effort in developing other types of nonlinear fibers
with even larger nonlinearity coefficients, for example fibers based on materials other
than SiOg, such as BiOy [28, 29|, which have a larger nonlinear index, and also
Photonic Crystal Fibers (PCFs), sometimes called holey fibers [30-32], in which
there are holes along the propagation direction, making the effective area very small.
Very high nonlinearities (7 ~ 100 — 1000 W—'km™!) can be achieved in such fibers
[33], allowing short lengths of fiber to be used and thus avoiding non-uniformity
problems such as varying dispersion. However, there are other issues with such
novel fibers, most notably the attenuation, which can be very large, sometimes
several dB/m. Another problem is that it can be difficult to achieve a low splice
or coupling loss to conventional single-mode fibers, something that is not a major
problem with conventional HNLFs.

The most commonly used figure-of-merit for nonlinear media is 7/, i.e. non-
linearity coefficient divided by attenuation coefficient. This quantity is still highest
for conventional silica HNLFs, and in that coupling losses are not even considered,
further making the case for conventional HNLFs as the best platform for nonlinear
devices at the moment.

This chapter

This chapter is intended to serve as an introduction to optical nonlinearities and
define the quantities and concepts necessary for the discussion in subsequent chapters
in this thesis, as well as in the appended papers. It begins with a brief introduction
to the linear propagation effects in section 2.1. In section 2.2 we discuss the physical
origin for the nonlinear effects described in the rest of this chapter. In section 2.3 the
concepts of self- and cross-phase modulation are introduced. Four-wave mixing is a
central part of this thesis and is introduced in section 2.4. FWM is the nonlinear
effect that is exploited in parametric amplifiers, but for them to be efficient and
produce any significant gain, the FWM process need to be phase-matched. This
concept is explained in section 2.4.1, and parametric amplification is discussed in



section 2.5. Finally, the scattering nonlinearities are briefly described in section 2.6.

2.1 Linear effects

Attenuation

Attenuation of the optical wave is one of the fundamental propagation effects that
is always present, though in many cases it can be neglected. The majority of atten-
uation in silica fibers (at low-loss wavelengths) originate from Rayleigh scattering
against the silica molecules, though some material absorption is also present, and
dominates outside the low-loss window. In conventional single-mode fibers, the at-
tenuation can be as low as 0.16 —0.20 dB/km, and in typical HNLF's the attenuation
is usually around 0.8 — 1.2 dB/km. Since a nonlinear device implemented in HNLF
often needs only a few hundreds of meters of fiber, the total attenuation is often only
a few tenths of a dB. In connection with fiber nonlinearities, attenuation is usually
accounted for via the effective length, defined as

1 —exp(—alL
Ly = 1 0PCL) (2.3)

where « is the attenuation coefficient in m~! and L is the length of the fiber. By
using the effective length instead of the actual length L, the effects of attenuation
can be accounted for. We can also deduce that the effective length grows increasingly
slower with the physical length, meaning that in practice there is a length after which
there is little or no gain to be had from increasing the physical length, with the
effective length finally reaching a maximum of 1/a when L >> 1/a. For an HNLF
with @ = 1 dB/km, the maximal effective length is about 4.3 km, however, about
11 km of physical length is required to reach 4 km of effective length. Fortunately,
in most applications only a few hundred meters of HNLF is sufficient, and for such
short sections of HNLF, the effective length is not much shorter than the physical
length.

Chromatic dispersion

The first term in Eq. 2.1 is the linear part of the refractive index, and since it is
frequency dependent, it is the term that is responsible for the chromatic disper-
sion, or group-velocity dispersion (GVD). Fundamentally, it means that the speed
of light (the group velocity) is different for different frequencies, and thus differ-
ent frequencies will experience a relative phase shift as they propagate through
a dispersive medium. We usually express this through the propagation constant,



B(w) = n(w) -w/c (here, we ignore the intensity-dependent part of the refractive in-
dex). The second derivative with respect to frequency of 3(w) is responsible for the
difference in propagation speed among frequency components and hence is known
as the GVD parameter. It is written as

d*B(w)
Often, the dispersion parameter D, defined as
2me

and expressed in units of ps/(nm-km), is used instead.

GVD causes dispersive broadening (spreading out in time) of pulses, since a
pulse with a limited duration in time will contain a spectrum of frequencies. GVD
is also responsible for dispersive walk-off meaning that two pulses at different center
frequency will only overlap for a limited time, known as the dispersive walk-off time.
This is an important limiting factor in applications where it is desired to have two
distinct pulses interact through some nonlinear effect.

The case of B > 0, where higher frequencies will propagate with lower speed,
is said to be normal dispersion, while the opposite case is known as anomalous dis-
persion. The third-order derivative of 3(w), or alternatively S = dD/dA\, represents
the frequency (wavelength) dependence of the dispersion. This parameter becomes
important for phase-matching, as it dictates the difference in dispersion and thus
relative phase-shift between two waves of different frequencies as they propagate
through a fiber.

Polarization effects

Even a single-mode fiber supports two separate polarization modes at each fre-
quency. Generally, these modes will have different propagation speeds, because the
fiber does not have perfect cylindrical symmetry and/or it might be bent or twisted.
This leads to polarization-mode dispersion (PMD). The time-domain manifestation
of PMD is pulse splitting, which occurs if an input pulse excites both polarization
modes. In nonlinear devices, the main impact of PMD is usually the frequency-
domain manifestation, namely that waves of different frequencies will change their
polarization states as they propagate, often reducing the efficiency of nonlinear in-
teraction between the waves. This is because many nonlinear effects usually require
that the interacting waves are co-polarized for maximal efficiency. To overcome
this problem, usually one tries to find a principal azis of propagation of the fiber,



meaning an input state of polarization (SOP) for which different frequencies do not
change their relative SOP significantly.

Furthermore, the output SOP and principal axis of a fiber usually changes with
mechanical and thermal perturbations. There are so-called polarization-maintaining
fibers for which this is not the case, but usually polarization-maintaining HNLF's are
much worse in other aspects, such as nonlinearity and dispersion uniformity. Thus,
conventional HNLFs are most often used and need to be in a controlled environment
for the nonlinear device to operate stably.

2.2 Origins of nonlinear effects

x?- and y®-nonlinearities

We have already established that the Kerr nonlinearity fundamentally means the
intensity-dependence of the refractive index. But how does this dependence arise?
The answer lies in the higher-order susceptibilities of a material. When light prop-
agates through a dielectric medium, its (time-varying) electric field E causes some
amount of (time-varying) electric polarization in the medium, i.e. a shift in distribu-
tion of the electrically charged particles of the medium, typically the loosely bound
valence electrons. Normally, this polarization field, P, follows the electrical field, i.e.
has the same direction and time variance. The proportionality constant describing
this relation is called the susceptibility, x, with

P = ¢yE. (2.6)

However, in the case of very large electrical field strengths, this relation saturates.
We thus have to resort to a more general relation (assuming an isotropic medium
where P and E are parallel, so that the relation can be reduced to the scalar):

P = ¢ (XE +xPE? + O B3 + ) . (2.7)

Clearly, the polarization field (and thus the reradiated light) now contains new
frequencies at integer multiples of the original frequency. Moreover, if the initial field
contains multiple frequencies, new frequencies at the sum and difference frequencies
of (integer multiples of) the original frequencies will appear. In typical cases, in
media without inversion symmetry, such as many crystals, the X(Q)-term (2nd-order
susceptibility) dominates over the x(3)- (3rd-order susceptibility) and subsequent
terms. In isotropic media, e.g. gases, liquids and amorphous solids such as silica
glass, the even-order terms vanish, and the y(®-term dominates [34, pp. 2-3]. We
can thus talk about x(@- and y®)-media. Finally, it should be noted that we have
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significantly simplified things here, by ignoring the fact that the susceptibilities are
in fact tensors, and the nonlinear response depends on the direction of the electrical
field (i.e. the polarization) as well as any symmetry axes of the medium. The non-
instantaneous response, which will be discussed later in this section, has been ignored
as well. We also note that the real part of the first-order (linear) susceptibility of Eq.
2.7 is responsible for GVD and the imaginary part is responsible for attenuation.

Some effects that arise in x(?)-media are second-harmonic generation (SHG), i.e.
frequency-doubling, and sum- and difference-frequency generation (SFG, DFG) [34,
pp. 4-9]. In y®)-media, the refractive index becomes intensity-dependent, which is
what we call the Kerr nonlinearity, leading to intensity-dependent phase-shifts [27,
pp. 14-15]. Moreover, both X(z)_ and X(3)—media support parametric amplification
(34, pp. 9-13], where energy from one wave is transferred to another, which thus
is amplified. Besides glasses, silicon is another media that can be used for X(3)—
nonlinearities [35].

Scattering nonlinearities

All the effects that have been described so far are elastic, meaning that no energy
is exchanged between the propagating lightwave and the medium. In the quantum-
mechanical picture, they thus amount to the annihilation and creation of photons of
different frequencies (energies), while the total energy of the light is conserved. The
other class of nonlinearities are inelastic [27, pp. 15-16], and the lightwave exchanges
energy with the medium, specifically through vibrational excitation modes of the
medium, i.e. phonons. In the quantum-mechanical picture, an incident photon is
annihilated and a new is created at a lower frequency, together with a phonon,
making the total energy conserved. Raman scattering involves optical phonons,
while Brillouin scattering involves acoustic phonons [27, p. 16].

Raman scattering can also be described classically in terms of the nonlinear pola-
rization field [34, p. 372]. The Raman effect is a consequence of its non-instantaneous
response. Often, the Kerr nonlinearity is considered to be the purely electronic (and
hence instantaneous) part of the of the third-order-nonlinearity, originating in the
real part of x(®), while the delayed response (Raman) part originate in the imaginary
part of x® and form the remaining contributions to the nonlinear susceptibility.
(Compare the real (dispersion) and imaginary (attenuation) parts of the linear sus-
ceptibility). Brillouin scattering on the other hand, occurs via the electrostriction
effect that causes the medium to compress in the presence of an electrical field, and
thereby couples optical and acoustic (sound) waves in the nonlinear medium.
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2.3 Self- and cross-phase modulation

We have established that the refractive index, and thus the speed of light, is depen-
dent on the optical intensity in the fiber, as described by Eq. 2.1, meaning that the
phases of propagating waves will change dependent on the power of the waves in the
fiber. This effect is called self-phase modulation (SPM) when the wave affects its
own phase, and cross-phase modulation (XPM) when the phase of a wave is affected
by other waves. The accumulated phase shift along a fiber of length L. due to this
effect is called the nonlinear phase shift, and when m frequency components are
propagating through a fiber, it is written for frequency component n as [27, p. 230]

A®npp=vL(2P1+...+2P,_1+ P, + 2P, 1+ ... + 2P,,), (2.8)

where P, is the optical power at frequency component n. Note in particular that
the effect on the phase from other frequency components (XPM), is twice as large
as the effect a frequency component has on its own phase (SPM). This is true if
the waves are parallel-polarized. Otherwise, XPM is between one and two times as
strong as SPM [36]. For XPM, one must also consider the dispersive walk-off if the
interacting waves are pulses. SPM causes spectral broadening of pulses, or SPM-
induced frequency chirp. XPM can be exploited in signal-processing applications for
e.g. switching/demultiplexing [37].

An interesting phenomenon arises when the nonlinear phase shift and the dis-
persive phase shift cancel each other. This can give rise to pulses that propagate
without being broadened in time, so-called solitons [27, 38]. Balancing nonlinear
and dispersive phase shifts in a certain way is also the condition that maximizes
the efficiency of nonlinear effects such as FWM, discussed further in section 2.4.1.
Note, however, that since the the nonlinear phase shift is always positive, solitons
can normally only occur for waves in the anomalous dispersion regime (82 < 0).

2.4 Four-wave mixing

Four-wave mixing (FWM), or synonymously four-photon mixing, is a process origi-
nating from the y®)-nonlinearity. As can be deduced from the name, it involves the
nonlinear coupling of four distinct waves at different frequencies, but there is also a
degenerate FWM, in which two of these frequencies are identical.

A classical description of FWM is as follows: two optical waves at different
frequencies w; and wy co-propagate in an optical fiber. The local field intensity at a
specific coordinate in the fiber thus varies by the beating frequency ws — w; of these
two waves. Through the Kerr nonlinearity, the index of refraction will be modulated
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by this beat note. Now, if a third wave at frequency ws is introduced, it will be phase
modulated with the frequency ws — w; by propagating in the fiber with modulated
refractive index. As a result, sidebands at frequencies w3 & (ws — w1) are generated.
The wave at wg will also beat with the wave at wy, which phase modulates the
wave at wo and introduces sidebands at ws + (w3 — wy). Considering all possible
non-degenerate and degenerate combinations in a system with three frequencies at
the input, new frequency components will be generated at frequencies

Wikl = Wj + Wk — W. (2.9)

In the degenerate combinations, two of the waves are identical, e.g. 7 = k. Fig. 2.1
shows all frequencies. Note that some of the generated frequency components overlap
with each other, or with the original waves. The latter is the origin of parametric
gain. Some frequency components, e.g. at wss; = wesy, are stronger than the others
and are usually referred to as the idlers. Often, all other generated components are
neglected. As follows from this discussion, in the typical case, FWM will generate
one new frequency of significance (an idler) from each combination of either two or
three input waves, forming either a triplet (degenerate FWM) or quadruplet (non-
degenerate FWM) of coupled waves.

Just like the x@-phenomena of SHG, SFG and DFG, the process is called para-
metric since the medium does not actively participate in the process, like in the
scattering nonlinearities, but rather participates as a passive catalyst. It involves
the modulation of a medium parameter, specifically the susceptibility, or the refrac-
tive index, in the case of x(®)-nonlinearities.

FWM can also be interpreted from a quantum mechanical point of view, in which
two photons annihilate and two photons are created at new frequencies, under energy
(i.e. frequency) and momentum conservation. The momentum conservation is the
quantum-mechanical manifestation of phase-matching, which is what dictates the
efficiency of each FWM process, and will be discussed in the next section.

When there are many different frequency components present from the start,
such as in a wavelength division-multiplexing (WDM) system, there are of course
many FWM processes acting simultaneously, and a very large number of new fre-
quency components can be created. Depending on the frequency allocation, some
of these can overlap with each other, or with the original frequency components,
thus causing crosstalk. Indeed, FWM is often a major limitation in WDM sys-
tems [39]. However, it is important to note that each FWM process involves only
three (degenerate) or four (nondegenerate) waves, as in Eq. 2.9.

Now, consider the case in which only a strong wave at w,p, called the pump,
and a weak wave at wg, called the signal, is injected into a fiber. Then, in the
dominating process, sidebands of the pump wave will appear at ws; and the idler
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Figure 2.1: All frequency components that are generated through FWM in all pos-
sible degenerate and nondegenerate combinations when three waves (w1, ws and ws3)
are present at the input. Nine new frequencies are generated.

frequency w; = 2w, —w,. Since the pump wave is much stronger than the signal, the
process in which sidebands from the signal at w, and 2w, — w,, are generated can be
neglected. The case described above is what is commonly referred to as degenerate
or single-pumped FWM, in which a pump provides gain to a signal, while at the
same time an idler wave is generated.

This case can also be extended to nondegenerate, or dual-pumped, FWM in
which two strong pumps at frequencies wy,; and wpz provides gain to an initially
weak signal at wy and creates an idler at w; = wp1 + wp2 — ws.

FWM is highly polarization dependent, and the analysis in this thesis normally
assumes that all interacting waves are co-polarized. It is, however, possible to make
FWM polarization independent in principle, by using two orthogonally polarized
pump waves [40,41], but this is a much less efficient process, and is also difficult to
maintain in practice.

Moreover, since FWM originates from the Kerr nonlinearity, it has a response
time on the order of femtoseconds, making it instantaneous for most purposes. This
property is what makes FWM interesting for ultrafast signal processing applications.

Finally, it is also important to understand that FWM also will occur between
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actual waves and vacuum fluctuations (quantum fluctuations of the vacuum state,
sometimes referred to as virtual photons) in the fiber. This phenomenon is the source
of parametrically generated noise, so-called amplified quantum noise (AQN), some-
times also called parametric amplified spontaneous emission (ASE) or parametric
fluorescence. This is the fundamental origin of noise in parametric amplification.

2.4.1 Phase-matching

Many of the nonlinear processes discussed above, both x(#- and x(®)-based nonlin-
earities, require phase-matching to be efficient. Phase-matching essentially means
that the relative phase, 0,.; between interacting waves is maintained during prop-
agation through the nonlinear medium. If this is the case, the contribution to the
nonlinearly generated wave(s) will be the same, i.e. in phase, throughout the prop-
agation in the medium. If the process is not phase-matched, the contributions from
different locations in the medium will not add constructively, resulting in a weak
nonlinear interaction. A properly phase-matched nonlinearity, on the other hand,
will result in exponential growth of the generated wave along the propagation direc-
tion.

This can be understood by realizing that the transfer of power between frequen-
cies is proportional to some product of the fields (or complex conjugate fields) of the
interacting waves, since the nonlinear polarization field in the medium (and thus the
reradiated field, i.e. the generated wave) is proportional to such a product. This
product of complex fields should be kept maximal for maximum power transfer effi-
ciency, and with the correct sign to get power transfer in the desired direction (i.e.
from the pump rather than vice versa). This puts a requirement on the phase of
the complex field product and hence on the phases of the interacting waves. Phase-
matching thus means keeping waves, usually of different frequencies, in phase. In
other words, the phase-shifts that they experience during propagation should cancel
out so the relative phase is kept constant. The phase-matching condition is usually
expressed in terms of the propagation constants of the interacting waves, which may
have different contributions (linear and nonlinear).

In the perfectly phase-matched case, the relative phase remains constant
throughout propagation. Then, the complex field-product is dependent only on the
power of the interacting waves, and the power of the generated wave grows exponen-
tially (as long as its power is small compared to that of the pumps). In near-phase
matched cases, the relative phase changes somewhat over propagation, but only by
so little that the field product never changes its sign. Thus, good efficiency is still
possible in the near-phase matched case. In the absence of phase matching, the rel-
ative phase will change rapidly, and thus, the sign of the field product and direction
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Figure 2.2: The evolution of the relative phase in a perfectly phase-matched case

(green line), an near-phase-matched case (blue line) and an un-phase-matched case
(red line).

of power flow, will change, possibly many times, over the propagation. This will
lead to an initial growth of the generated wave that subsequently changes direction,
resulting in an oscillation, rather than monotonous growth, of the generated wave.
Fig. 2.2 illustrates the concept of phase-matching and shows how the relative phase,
the sine of the relative phase (which is related to and sometimes proportional to the
field product), and the power of the generated wave evolves in the corresponding
cases. Note that the power initially grows at the same rate in all three cases.

Clearly, in phase-matching, chromatic dispersion must always be considered,
since it means different phase-shifts for different frequencies. Nonlinear phase-shifts
from SPM and XPM are always present in x(®)-media, and must be taken into
account. Birefringence can also be used for phase-matching, and is the usual phase-
matching technique for many nonlinear crystals, but is not so common to use in
fibers.

Notably SPM and XPM themselves do not require phase-matching to be efficient
(or can be considered to be automatically phase-matched), since they are dependent
only on the intensity, though they are very important for phase-matching of other
nonlinearities via their induced phase-shifts. The above discussion is general in the
sense that it can concern both y)- and y®)-nonlinearities, and the generated wave
can originate from e.g. SHG, SFG/DFG or be the parametric gain of a signal wave.
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In the remainder of this section, we discuss phase-matching of FWM in optical fibers,
achieved by balancing SPM/XPM and chromatic dispersion.

Phase-matching of fiber FWM

Let us consider the dual-pumped FWM case with four distinct interacting waves,
two pumps at frequencies wy, p, and signal and idler at frequencies ws ;. The sum of
the electrical fields is written as [27, p. 369]:

E(z,y,z) = f(z, y)%[Apl (2) exp(iB(wp, )z — twp, t) +

Ap, (2) exp(iff(wp, )z — iwp,t) +
As(z) exp(if(ws)z — iwst) +
A;(2) exp(if(w;)z — iwt)] + c.c. (2.10)

Here, c.c. is the complex conjugate that is usually omitted in calculations and f(z,y)
is the transverse mode profile, assumed to be the same for all waves. Each wave
is represented by the slowly varying complex field amplitude, A(z), and have a
propagation constant denoted by £.

By inserting the expression above into the basic propagation equation, i.e. the
nonlinear Schrédinger equation (NLSE), which in turn can be derived from Maxwell’s
Equations, the following coupled equations can be derived, (ignoring fiber attenu-
ation, higher-order dispersion, any wavelength dependence in v and the Raman
effect) [9,27,42]:

dA .
S = (14 + 2 (Al + A2+ AP) Ay,

+2A5 AsA;exp(iABz)], (2.11)
= (A +2 (1A, + AP+ A4)) Ay,

+2A45 AgA;exp(iABz)], (2.12)
dAS—'A22A2A2A~2A
P VY(’ 5’ + (| p1| +| pzl +| Z’ )) s

+24p, Ap, Aj exp(—iABz)], (2.13)

17



dA;
dz

=y [(JAil? + 2 (|Ap, * + [Apal? +145]7)) As
+24,, Ay, AT exp(—iAB2))], (2.14)

where
A = Blwp,) + Blwpy) — Blws) — B(wi), (2.15)

is the propagation constant mismatch. Looking at Eqs. 2.11-2.14, the first four
terms on the right hand side represent SPM- and XPM-induced phase shifts, and
the last term represents the power transfer between frequencies due to FWM. The
maximization of this term leads to the phase-matching condition for FWM. If it is
fulfilled, the signal and idler powers will grow exponentially as the waves propagate
through the fiber.

Defining A(z) = /P(z)exp (i6(z)), with P and 6 being the power and phase
of the wave, respectively, we can rewrite Eq. 2.11-2.14 in terms of the power and
phases, by multiplying them with the corresponding field conjugate:

dP, dP, :
d,jl - d—,:Q = =29/ Py, Bp, Py P; sin(bre1), (2.16)

dP, dP; )
i = e = 2/ Pp, Pp, Ps P; sin(be1), (2.17)

derel
dz :Aﬁ+’7(Pp1 +Pp2 _Ps_Pi)
1 1 1 1
—|—2’y PplprPSPi FS + E — P—pl + P—pZ COS(Qrel). (218)

Here, 6 is the relative phase between the waves, defined as
Orel = 0, +0p, — 05 —0;. (2.19)

From Eq. 2.16-2.17 it is evident that the total power is conserved, and that the
power growth in signal and idler is the same and corresponds to an equal reduction
in power of the two pumps (or vice versa, depending on the sign of the relative
phase), i.e. Ps — P; = constant and P, — F,, = constant. This is often referred to
as the Manley-Rowe relation [42, p. 33| for FWM.

Notably, the last term in Eq. 2.18 can be neglected as long as we operate close
to the phase-matched condition. The relative phase normally (in the absence of an
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input idler) sets itself to /2 at the start, so this term is initially zero, and will
remain so in the case of ideal phase-matching.

The relative phase among the waves thus govern the magnitude, and indeed the
direction of the power flow, as is readily seen from Eqs. 2.16-2.17. The change in
relative phase as the waves propagate are influenced by the linear phase shifts due
to the different propagation constants (the first term on the right hand side of Eq.
2.18), and the nonlinear phase shifts, due to SPM and XPM (the second term).

In the single-pumped case, wp, = wp, = w), and the relative phase 0, = 20, —
0s — 0;, and Eqs. 2.16-2.18 become:

dP, .
d—zp = —47\/%sm(9rel), (2.20)

dP, dP;
s p— ? p— 2 > 1
P p 274/ P3PsP;sin(0re1), (2.21)

darel
dz

1 1 2
29y/P2P;P; | — + — — — Orel)- 2.22
+ Y p (Ps + PZ Pp) COS( el) ( )

Following from the requirement that the relative phase should remain constant
at m/2 throughout propagation, the condition for perfect phase matching is (if the
pump powers remain much larger than that of the signal and idler):

:Aﬁ+7(2pp_Ps—R)

k=AB+ (B, + Pp,) =0, (2:23)
or in the single-pumped case:
k=AB+2vFP, =0. (2.24)

The first term represents the linear propagation mismatch, and the second term the
nonlinear phase shift, and they need to cancel out in order for the phase-matching
condition to be fulfilled, and the FWM efficiency maximized.

It can be shown [19,42] that in the single-pumped case, when operating the pump
close to the-zero-dispersion frequency wy of the fiber, the phase matching condition
can be written as

k= P3(wp —wo) - (ws — wp)2 +2vP, =0, (2.25)

19



where (33 is the third derivative of the propagation constant at the zero-dispersion
frequency. In the dual-pumped case, the phase-matching condition can similarly be
shown to be [42, p. 117]

k= P3(we — wp) - [(ws —w,)? — wcﬂ +y(Pp, + Pp,) =0, (2.26)

where w, = (wp, + wp,)/2 and wg = (wWp, — wp,)/2.

Much can be learned about FWM from these equations. In order for the linear
propagation mismatch and nonlinear phase shift to cancel out, AZ must be negative.
From the above equations, it is clear that this can only occur when the pump
frequency or average pump frequency is in the anomalous dispersion regime’.

In the single-pump case, we can see that there is only two signal frequencies for
each given pump frequency that maximizes the efficiency. However, in the dual-
pumped case, a wide spectrum of signal/idler frequencies between the pumps can
fulfill good phase matching. Another observation is that fibers with low dispersion
slopes give the largest FWM bandwidths since that reduces the dependency on the
signal frequency. If the nonlinear phase shift dominates, i.e. if the pump powers are
very large, the dispersive phase shifts play a smaller role, which is why the FWM
bandwidth increases with pump power.

If the powers change considerably during propagation, the nonlinear phase shift
will also change. This is the phenomenon behind saturation of FWM [42,43]. As
the signal and idler powers increase, and the pump powers decrease, the FWM
efficiency is decreased, and eventually a point at which the relative phase changes
sign is reached, thus the direction of the power flow is reversed, i.e. power flows
from signal/idler to pump.

Finally, we have up until this point assumed that the idler was not present at
the input, but generated in the FWM process. If this is the case, the idler will
automatically obtain a phase so that the efficiency is maximized. Since the FWM
efficiency is maximized for 6, = 7/2, the idler phase will set itself so that this
condition is achieved after an infinitesimally short length of the fiber. The idler can
be thought of as being initially generated with the “correct” phase. This can also be
seen by considering the last term of Eq. 2.14. This explains why a generated idler
phase carries a dependence on the pump phases and conjugated signal phase, as the
relative phase at the input (or, more precisely, after the infinitesimal length after
which the idler has formed) should be a constant. If, however, an idler at the correct
frequency is present at the input, the initial generation of the idler does not take

!Phase matching is also possible over very narrow bandwidth regions far from the pump
frequency when the pump is in the normal dispersion regime, when taking higher order
dispersion into account.
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place, leading to the FWM process to become dependent on the relative phase at
the input, and the process is said to be phase sensitive. This is the topic of Chapter
4.

2.5 Parametric amplifiers

Previously in this chapter, we have established that both y(?)- and x(®)-nonlinearities
can result in the conversion of energy from one frequency to others, and that this
conversion can, in the case of good phase-matching be very efficient. When energy
is converted from a pump wave to a weak signal present at the input (as opposed
to e.g. SHG where only the pump is present at the input), we call this phenomenon
parametric amplification. This conversion of pump photons to signal photons is
also accompanied by the generation of an idler wave. Normally, we consider non-
degenerate idler parametric amplification, in which the signal and idler are two
distinct waves. Conversely, in degenerate-idler parametric amplification they are in-
distinguishable. Degenerate-idler parametric amplification is always phase-sensitive.
In section 2.4, the case in which a strong pump wave and a weak signal wave in-
teract through FWM, leading to amplification of the signal and the generation of
an idler wave, was discussed. In section 2.4.1, we discussed the concept of phase
matching, and its importance for the efficiency of FWM. A fiber device with one or
two high-power pumps, in which phase-matched FWM can take place is commonly
referred to as a fiber optic parametric amplifier (FOPA) [27, p. 387].

In second-order-nonlinear media, non-degenerate idler parametric amplification
occurs between a pump, a signal and an idler fulfilling the frequency relation
wp = ws + w;. This is closely related to DFG. In the degenerate case, the pump
frequency must be exactly two times the signal frequency. In third-order-nonlinear
media such as optical fibers, parametric amplification is essentially phase-matched
FWM. Therefore, we can have either single-pumped or dual-pumped parametric
amplification in fibers. Single-pumped parametric amplification can only be of the
non-degenerate idler variety, as it needs to fulfill the frequency relation 2w, = ws+w;,
unless interferometers are used to separate the pump from the signal, since in that
case all three waves need to have the same frequency. Single-pumped parametric
amplification is only phase-sensitive if a wave triplet fulfilling the frequency relation
is present at the input. Dual-pumped parametric amplification fulfills the frequency
relation wp1 +wp2 = ws+wj, and can thus operate in the degenerate idler mode if the
signal frequency is exactly the average of the two pump frequencies. Therefore, both
single-pumped non-degenerate idler and dual-pumped degenerate idler parametric
amplification are cases of degenerate FWM, involving only three waves. Fully non-
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Figure 2.3: Typical construction of a single-pumped FOPA. PM: Phase modula-
tor, EDFA: Erbium-doped fiber amplifier, OBPF: optical bandpass filter, WDM:
Wavelength division multiplexing coupler, HNLF: highly nonlinear fiber.

degenerate FWM (i.e. non-degenerate idler dual-pumped parametric amplification)
can also be made phase-sensitive, if all four waves are present at the input.

In the remainder of this section, we will discuss how fiber-optic parametric am-
plifiers usually are implemented, and how their gain and gain spectrum can be
described mathematically. This will form the basis for the remainder of the thesis,
and in Chapter 4, we will extend the discussion to phase-sensitive cases, where the
performance and applications of phase sensitive amplifiers will be reviewed.

2.5.1 Implementation of fiber-optic parametric ampli-
fiers

A typical FOPA is constructed around an HNLF of length around 0.1-1 km with a
zero-dispersion wavelength (ZDW) in the low-loss regime of the fiber around 1550
nm. The pump power required is then usually in the 0.5-10 W-range, meaning that
Erbium-doped fiber amplifiers (EDFAs) are normally required to boost the pump to
this range. In Fig. 2.3, a typical construction for a phase-insensitive single-pumped
continuous-wave FOPA is shown. Light from the pump laser is in this case passed
through a phase modulator that serves to spectrally broaden the pump wave in
order to avoid SBS, though this can be omitted if other SBS-suppression methods
are used. SBS-suppression is discussed further in Chapter 3. The pump light is
amplified by a high-power EDFA to the required power levels. An optional optical
bandpass filter serves to remove out-of-band ASE noise originating in the EDFA. A
coupler, preferably a low-loss WDM coupler, combines the pump with the signal and
injects them into the nonlinear fiber wherein the parametric interaction takes place.
Since parametric amplification is polarization-dependent, one must ensure that the
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polarization of the waves are aligned in the HNLF, and with its principal axis, so
that the drift of relative polarization states between the waves are minimized. Here
a manual polarization controller is used. Finally, the pump is removed by one or
more optical filters and the signal/idler retrieved. OBPF2 could thus be either a
bandpass filter selecting the signal/idler, as in this case, or a notch filter rejecting
the pump. The dual-pumped case is similar.

Perhaps the most important part of the FOPA design is to ensure that the
phase matching condition is fulfilled. This requires the pump wavelength (for single-
pumped FOPAs) or average pump wavelength (for dual-pumped FOPAs) to be in
the anomalous dispersion regime, but close to the ZDW. Thus, a nonlinear fiber
with a ZDW in or near the C-band is needed for a gain over the C-band. A single-
pumped FOPA can only be perfectly phase-matched for two signal wavelengths (the
signal and idler wavelengths), but can exhibit a rather wide spectrum around these
wavelengths where the phase-matching is good enough to provide substantial net
gain. A dual-pumped FOPA on the other hand can exhibit almost perfect phase-
matching over a large range of wavelengths between the two pumps. The gain
spectrum is essentially dependent on the GVD of the HNLF, but also on the pump
powers. Extensive discussions on how the FOPA gain spectrum is synthesized can
be found in the literature, e.g. in [19,42,44]. Figure 2.4 shows example gain spectra
for a single-pumped and a dual-pumped FOPA. Notable is that both the single-
pumped and dual-pumped case have the same maximum gain, if pumped with the
same amount of total pump power. The HNLF parameters are the same in both
cases. How the gain and gain spectrum is computed is discussed further in the
section below.

Many demonstrations of dual-pumped FOPAs exist in the literature [45-47].
We will limit the discussion to single-pumped FOPAs in the remainder of the thesis,
as that is what has been investigated in all appended papers except Paper [E].
The main advantages of dual-pumped FOPAs over single-pumped are spectrally
flat and wide gain [48, 49|, potential polarization independence through the use of
orthogonally polarized pumps [50], and the suppression of idler spectral broadening
by phase modulating the two pumps synchronously, either in-phase or out-of-phase
[51]. For the purpose of investigating the properties of phase-sensitive amplification,
the main topic of this thesis, such benefits are of secondary importance; hence single-
pumped FOPAs form the basis for this work.

2.5.2 The parametric gain

We have established that the gain of a parametric amplifier is dependent on the
phase-matching, i.e. the GVD values of the HNLF at the pump, signal and idler
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Figure 2.4: Example gain spectra for a single-pumped (left) and dual-pumped (right)
FOPA in a fiber of length 500 m, v = 11 (W-km)~! and total pump power 1 W.
The arrows indicate the wavelengths of the pumps.

wavelengths, and that for a single-pumped FOPA, perfect phase-matching is only
possible at two distinct signal wavelengths, with a gain spectrum around these wave-
lengths. In this section, we introduce an analytical expression for the small-signal
gain and use this to introduce the transfer-matriz model for the parametric gain,
a usable model to compute e.g. the impact of varying dispersion in HNLFs. Fur-
thermore, we discuss the case of pump depletion, i.e. where the gain saturates, and
the simpler analytical expression no longer are valid, meaning that one has to resort
to a numerical solution of the so-called three-wave model. Neither of these models
include noise (which we will discuss in Chapter 4), nor do they account for higher-
order FWM (i.e. other FWM processes than the best phase-matched one, including
those involving the generated components) and other concurrent nonlinear effects
(e.g. Raman) that occurs simultaneously in the HNLF. For such a complete descrip-
tion, one has to resort to a full numerical solution of the propagation equation (the
so-called Nonlinear Schrédinger Equation) [27,42].

Exponential and quadratic gain

In addition to the phase-matching, the gain value that can be attained is dependent
on the nonlinear phase shift in the fiber, i.e. on the 2yP,L-product. This can be
seen from Eq. 2.17, in which we reached the conclusion that the growth rate of
the signal and idler power along the fiber is directly dependent on 2P, (in the
single-pumped case). We can easily identify that in the ideal case of perfect phase
matching, where the relative phase is 7/2 and does not change during propagation,

24



the growth of the signal power (i.e. the gain) is exponentially dependent on 2vF,L.
In the absence of perfect phase matching, one needs to consider the change of the
relative phase during propagation, but it is nevertheless quite straightforward to
derive an expression for the gain in terms of the phase mismatch parameter s (Eq.
2.25) [19,27,42,52], assuming no pump depletion and a “small” signal, meaning that
we can neglect signal and idler SPM and XPM throughout the propagation, as

G = (1 + [“%DP sinh (gLeH)D , (2.27)

where
7= (B = (x/2)%]. (2:28)

Two special cases can be identified, kK = 0 (perfect phase-matching), and x =
—2vPp (no relative phase-shift due to dispersion, i.e. signal and pump wavelength
are the same). In the first case, Eq. 2.27 can be shown in the case of large nonlinear
phase-shift (and thus gain) to simplify to (using the Taylor expansion of the sinh-
function) [19]

1
Gexp ~ 1 &XP (2P, Leg]. (2.29)

Since the gain is approximately exponentially dependent on the nonlinear phase-
shift, we refer to this case as exponential gain. The other limit case is valid when
the pump and signal are close in wavelength, so that any dispersive contribution to
the phase-mismatch is negligible. Then, Eq. 2.27 can be shown in the case of large
nonlinear phase-shift to simplify to [19]

Gouad = (27P,Leg)? . (2.30)

In this case, the gain is approximately quadratically dependent on the nonlinear
phase-shift, so we call this case quadratic gain. Using Eq. 2.29-2.30, one can with
relatively good accuracy calculate the gain in a real single-pumped FOPA at a given
pump power. Figure 2.5 shows the gain spectrum for an example single-pumped
FOPA with the exponential and quadratic gain regimes indicated.

Transfer matrix-description

While Eqgs. 2.27-2.28 are useful, they will only give the power gain of a uniform
FOPA in the exponential and quadratic gain regimes. Moreover, if one wishes to
consider a phase-sensitive case, i.e. a non-zero idler at the input, a more accommo-
dating model is needed. Also, in that case, the full output field, rather than just the

25



Exponential gain regimes,
G= O.25-exp(2prLeﬁ)

50 ' // ‘ \

40}
. 30/
o
)
<
S 20f

Quadratic gain regime,
10t G= (2VP L )2

. MN M\/\I\

Signal wavelength (nm)

Figure 2.5: Calculated gain for a single-pumped FOPA with the exponential and
quadratic gain regime indicated.

power, might be interesting. In fact, instead of deriving an expression for the power
gain from Eqgs. 2.16-2.18 , one can just as easily derive one for the complex field,
that contains both amplitude and phase information. The input-output relation for
the signal and idler in an unsaturated FOPA can be written in matrix form (in the

lossless case) [53,54]
2] =T o) (231)

where the transfer matrix:

T_ cosh(g.L)P— z% sinh(gL) i% sirllh(g.L) | (2.32)
—ZVTP sinh(gL) cosh(gL) + ig; sinh(gL)

This is a simple relation that enables an analytical analysis of FOPAs in many dif-
ferent cases. It can account for different pump powers and different phase-matching
(dispersion). It will prove very useful in Chapter 4, where we will use it to ana-
lyze phase-sensitive FOPAs, but it can also be applied to cases where one wants
to consider several cascaded FOPAs. There may be no idler at the input of such a
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cascade, but there is of course an idler at the input of every subsequent part. One
application of this is analysis of non-uniform FOPAs, e.g. where the HNLF has a
varying dispersion.

Dispersion-fluctuations

We can observe that if an output signal/idler pair from one FOPA is the input to
another FOPA with another transfer matrix, it follows from matrix algebra that the
two matrices can be multiplied to form the combined transfer matrix. Hence, we
can divide a transfer matrix into many factors, each representing an arbitrarily short
section of the propagation through the FOPA. The transfer matrix-method can thus
be used to analyze FOPAs with varying dispersion, and thus phase-matching, by
dividing it into many short segments of constant dispersion. Not only is this useful
because real FOPAs implemented with HNLF always will suffer from some amount
of dispersion-fluctuations due to manufacturing tolerances [55-57], in section 3.2 and
Papers [I, J]|, we use the transfer-matrix method to analyze SBS-suppressed HNLF's
that intentionally has a large non-uniformity.

Three-wave model and gain saturation

However, one aspect that the transfer-matrix model does not account for is when the
signal and idler grows large enough to be comparable with the pump. This will affect
the parametric interaction in two ways. First, the pump will be depleted and lose
power. Second, the assumption that signal and idler SPM/XPM can be neglected
no longer holds. Both of these effects will affect the relative phase, and therefore
the strength, and eventually also direction of the power flow. Simply put, as the
signal and idler grow and the pump is depleted, the gain per unit length decreases
until some point where the direction of power flow reverses and the pump starts
growing again. Note that this usually does not mean that the pump is completely
depleted. If the FOPA is long enough, this oscillation of power between pump and
signal/idler can continue over several periods. This phenomenon is illustrated in
Fig. 2.6, showing the pump and signal power evolution along the fiber propagation
in an example FOPA. In this example, the maximal small-signal gain if calculated
with Eq. 2.29 would be 168 dB, which clearly is not possible in practice. Hence, the
amplifier will be saturated.

Gain saturation also means that if the input signal power is increased to levels
beyond the small-signal regime, the FOPA gain starts decreasing from the value
found from e.g. Eq. 2.27 (i.e. saturating) and eventually become negative (“signal”
is pumping the “pump”). Fig. 2.7 plots output pump and signal powers as input
signal power is increased. Initially, the amplifier operates linearly, but as the pump
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Figure 2.6: Pump and signal power evolution along the propagation for a FOPA
where input pump and signal power is 2 W and 10 mW, respectively. The phase
matching differs between the two cases, leading to different maximal pump depletion
as well as different periodicity.

depletes, the output signal power saturates and reaches a regime where output signal
power does not depend greatly on input signal power.

To account for these effects, a full solution of Eqs. 2.11-2.14 is necessary. It
is usually most straightforward to solve them numerically, but analytical solutions
in terms of elliptical functions are possible [43], though quite involved. This is
often called the three-wave model, since, in the single-pumped case, we have three
waves coupled through parametric interaction (and hence three coupled differential
equations). Of course, those solutions are fully consistent with the transfer matrix-
model in the small-signal case.

It should be noted that in practice, large pump depletion and/or large sig-
nal/idler powers usually also means much larger higher-order FWM (the generation
of additional frequency components). This is not accounted for in the three-wave
model and may affect experimental results if the higher-order components are non-
negligible. In such a case, one can either resort to a more involved multi-wave model
with a larger system of coupled differential equations, or a full numerical solution of
the NLSE. Fig. 2.8 shows an example optical output spectrum of a saturated FOPA
with higher-order FWM products, and a power imbalance between signal and idler
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Figure 2.7: Output pump and signal powers vs. input signal powers for an example
FOPA. The small-signal regime, where output signal power grows linearly with input
signal power, and the saturation regime, where output signal power has minimal
dependence on input signal power, are highlighted.

mainly due to the Raman effect (see next section), but also to different levels of
higher-order FWM (the signal is pumping the higher-order FWM more efficiently
than the idler).

2.6 Scattering effects

We have already established that the inelastic scattering processes can be described
as the exchange of energy between the lightwave and vibrational modes of the
medium. Unlike parametric nonlinearities, e.g. FWM, they do not require phase-
matching, but rather can be considered to be automatically phase-matched thanks
to the active participation of the medium, similar to amplification through stimu-
lated emission in a medium with population inversion. In this section we elaborate
further on how Raman and Brillouin scattering manifest in an optical fiber, and how
these processes can be made to be stimulated.
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Figure 2.8: Experimentally measured optical output spectrum of a FOPA experi-
encing large gain saturation. The tilt in power is attributed to Raman gain and
different relative strengths of the higher-order FWM-processes. (Figure from Paper
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Raman scattering

Spontaneous Raman scattering was first observed by Raman in 1928 [58]. Sim-
ply put, the Raman effect is the emittance by an excited molecule of a photon of
lower-frequency (Stokes-shifted) or higher-frequency (anti-Stokes-shifted) than the
absorbed photon. The difference in energy is a phonon, i.e. a vibration of the
molecule, and thus the energy difference is a characteristic of the material. In an
optical fiber, the Raman effect becomes important if it is stimulated. Stimulated
Raman scattering (SRS) was first discovered in 1962 [59] and is the process in which
power from an optical wave (the pump wave) is transferred through the Raman effect
to another optical wave with a lower frequency, known as the Stokes wave. If two
such waves are present at the input of the fiber, and their frequency shift matches
that of the material in the fiber, a chain reaction starts in which pump photons are
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annihilated and Stokes photons as well as phonons are created. Since more phonons
are created, the vibrational energy increases thereby stimulating the process further.
Hence, the Stokes wave will be amplified. The opposite is also possible, wherein the
so-called anti-Stokes wave is attenuated by a strong pump.

In a silica-based fiber, the peak frequency downshift is about 13 THz, though
Raman scattering occurs over a broad spectrum. It occurs in both the forward and
backward direction and can be used for signal amplification [27,60,61]. Similar to
FWM, SRS has a very fast response time, on the order of femtoseconds, and is pola-
rization dependent, though only in the forward direction; if the pump and signal
have opposite propagation directions, the Raman process is polarization indepen-
dent. Moreover, the Raman gain grows exponentially with pump power, the fiber
length and the inverse of the effective area.

Brillouin scattering

Much like Raman scattering, Brillouin scattering involves the generation of a Stokes
wave from a pump wave, with the difference in energy being in the form of a phonon
and can occur spontaneously but also be stimulated. Stimulated Brillouin scattering
(SBS) was first observed in 1964 [62] and occur in a similar fashion to SRS. SBS can
become the dominant process if the pump wave exceeds a power threshold. However,
unlike Raman scattering, Brillouin scattering only generates a Stokes wave in the
backwards direction, relative to the pump. The frequency downshift is dictated by
the speed of sound in the material, and in a silica fiber, the downshift is typically
around 10 GHz with a frequency bandwidth of only tens of MHz [27,63].

Spontaneous Brillouin scattering can also occur in the forward direction, some-
thing that is known as guided acoustic wave Brillouin scattering (GAWBS) [64]. This
phenomenon is normally very weak, but e.g. in fiber Sagnac loop interferometers it
can play an important role.

Since SBS limits the input power it often becomes a large limiting factor for
nonlinear fiber devices that are dependent on large pump powers to drive other
nonlinearities, such as the parametric devices discussed in this thesis. Fortunately,
there are ways to suppress SBS. We devote Chapter 3 to SBS in nonlinear fibers,
how to suppress it, and the resulting performance trade-offs.
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Chapter 3

Stimulated Brillouin Scattering

threshold power, above which any increase in the input power (e.g. of the pump

in a parametric amplifier) will be backscattered, limiting the available usable
power. In this chapter, we discuss the Brillouin gain in fibers, specifically conven-
tional HNLFs, how it can be suppressed, and what the performance penalties for
parametric devices arise from these suppression methods.

SBS in an optical fiber [63] can be understood in the classical picture as follows:
through the electrostriction effect an intense pump field will generate an acoustic
wave in the fiber, co-propagating with the pump, but at the speed of sound vg4.
This acoustic wave modulates the refractive index, forming a moving index grating.
The scattering of a lightwave against a grating into a counter-propagating wave is
described by the Bragg condition [27, p. 330]:

IN optical fibers, stimulated Brillouin scattering (SBS) typically manifests as a

_ M
o

A (3.1)

Here, A is the period of the grating, i.e. the wavenumber of the acoustic wave,
Ap the wavelength of the pump wave and n the refractive index of the fiber. Since
the grating is moving at the speed of sound, typically around 6 km/s in silica,
the scattered wave will be downshifted through the Doppler effect. The frequency

downshift is given by
2uan
vp =
B )\p )

(3.2)
and using 6 km/s and 1.5 for v4 and n, respectively, we find a downshift of 11.6

GHz at a pump wavelength of 1550 nm. The backscattered wave will also inter-
fere with the pump, which strengthens the grating even further, resulting in even
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stronger scattering. The backscattering process occurs over a spectrum of downshift
frequencies around the peak downshift, the so-called Brillouin spectrum, Avg, which
typically is Lorentzian with a bandwidth of around 50-100 MHz and is related to
the lifetime of the acoustic phonons.

If the input wave exceeds a certain threshold power, known as the SBS threshold
of the fiber, all or almost all of the additional pump power above this threshold is
transferred to the Stokes wave. The Stokes wave is seeded from noise and subse-
quently stimulates the process. Moreover, a wave that exceeds the SBS threshold
and is backscattered to a significant degree will have substantial amplitude noise.
For this reason it is crucial to avoid SBS on data signals.

3.1 The Brillouin gain

When an input pump wave is backscattered through SBS, the backscattered wave is
downshifted in frequency by the SBS downshift vz, which is in the 9-12 GHz range
in typical silica fibers. Since the backscattered wave is seeded from noise (vacuum
fluctuations), it will have a spectral width that corresponds to that of the Brillouin
gain. Normally, this spectrum has a Lorentzian shape, with a bandwidth Avg of
tens of MHz [27, pp. 330-333]. Since the Brillouin gain bandwidth is so narrow, in
most cases two separate optical input waves will undergo SBS independently of each
other!, as the frequency separation of two optical waves is often much larger than
AVB.

For a wave that has a spectral width below that of Avg, the SBS threshold,
Pihreshold can be shown to be approximated by [27,65]

Nk Ay
gBLef

Pihreshold ~ (33)
Here, k is a polarization factor varying between 1 and 2 and gp the Brillouin gain
coefficient. The gain coefficient is dependent on, among other parameters, the speed
of sound, the material density and the phonon lifetime [27, p. 331], some of which
can be affected by the doping levels in the fiber. Of course, it also varies with the
downshift frequency and has its maximum at v = vp, which is the value we consider
here. Neglecting loss in the fiber, the power of the backscattered wave P,; will grow
with (backwards) distance at a rate given by

d Py
dz'

= gBPprsa (34)

LOf course SBS of one wave will affect the other if they are otherwise coupled, e.g. by
parametric interaction.
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where 2z’ = —z is the negative coordinate along the fiber. This means exponential
growth, as long as the pump is undepleted, i.e. before reaching the SBS threshold.

Eq. 3.3 shows that the SBS threshold scales inversely with effective fiber length,
meaning that the relevant measure for parametric amplification, and most other
nonlinearities, the nonlinear phase shift, given by the v P, Leg-product, will be limited
to the same value regardless of fiber length when the pump power P, is SBS-limited,
since an increase in fiber length will lower the SBS threshold and thus the usable
pump power. The same holds true for the effective area; increasing the nonlinearity
by decreasing it will lower the SBS threshold by the same amount. However, if the
nonlinear index n9 increase, the strength of the Kerr nonlinearity relative to SBS will
increase. The larger nonlinear index is one of the main reasons for using fibers made
from non-silica glasses. There are thus not so many options available to improve the
Kerr-to-SBS ratio in conventional silica fibers.
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Figure 3.1: Measured backscattered and transmitted power through an 150 m HNLF
as function of input power. For low input powers, the backscattered power is domi-
nated by Rayleigh scattered light, typically about 40 dB lower than the input power.

Fig. 3.1 shows the measured backscattered and transmitted power as a function
of the input power in a typical HNLF of 150 m length. From a measurement such
as the one in Fig. 3.1, different definitions of the threshold exist, e.g. where the
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backscattered power has increased a certain amount (3 dB, 10 dB, etc.) above the
Rayleigh-only case, or alternatively where the transmitted power has saturated by
a certain amount.

For a standard HNLF of 1 km, the threshold is on the order of only about 20-40
mW. Since the SBS threshold in a typical HNLF will limit the pump to powers much
below what is needed for e.g. efficient FWM, there is a need to suppress SBS.

3.2 Suppression techniques and performance
trade-offs

One can consider manufacturing fibers with improved Kerr-to-SBS ratio by reduced
9B, and /or increased nonlinear index ny. This is typically accomplished by increasing
the GeOs doping level of the core and/or by introducing another dopant such as
Al,O3 [66-68]. Increased GeOs doping increases ng, thereby increasing the Kerr-
to-SBS ratio, but unfortunately also significantly increases the fiber attenuation.
Introducing Al,O3 doping modifies the strength of the coupling between the acoustic
and optical field, lowering gp. Again, the main drawback is most notably severely
increased fiber attenuation.

To increase the SBS threshold in HNLFs, one needs to reduce the exponential
growth of the backscattered wave found from Eq. 3.4. Assuming a given gp in the
fiber, an increase in threshold can in principle be achieved by either:

1. Broaden the spectral width Ay, of the pump to cover a bandwidth larger than
Avpg, by means of e.g. phase modulation.

2. Modify the fiber to be non-uniform, so that downshift frequency vp changes
along the fiber, leading to a broadening of the average Brillouin gain spectrum

AVB.

3. Simply block the propagation of the backscattered wave at some point in the
fiber, by e.g. an in-line isolator or a narrow band-stop filter, thereby forcing
the backscattered wave to start building up from zero again.

The first corresponds to dividing the pump into several spectral components that
undergo SBS independently. The latter two effectively amounts to reducing the
length of fiber in which a seeded backscattered wave participates in stimulating SBS
further. All three methods essentially means dividing a single SBS process into
many, either in the frequency or spatial domain.

36



Pump sp