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Electron geodesic acoustic modes in electron temperature gradient mode

turbulence

Johan Anderson,'® Hans Nordman,' Raghvendra Singh,? and Predhiman Kaw?
'Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Giteborg, Sweden
2Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428, India

(Received 6 March 2012; accepted 20 July 2012; published online 8 August 2012)

In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM)
driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid
description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs
driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence
through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG
turbulence saturation level compared to the mixing length estimate. © 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4742321]

I. INTRODUCTION

There has been overwhelming evidence that coherent
structures such as vortices, streamers, and zonal flows
(m=n=0, where m and n are the poloidal and toroidal mod-
enumbers, respectively) play a critical role in determining
the overall transport in magnetically confined plasmas.'?
Some of these coherent structures, so called streamers, are
radially elongated structures that cause intermittent, bursty
events, which can mediate significant transport of heat and
particles, for instance, imposing a large heat load on con-
tainer walls. Zonal flows on the other hand may impede
transport by shear decorrelation.'? The geodesic acoustic
mode (GAM)>~'? is the oscillatory counterpart of the zonal
flow (m =n =0 in the potential perturbation, m=1, n=0 in
the perturbations in density, temperature and parallel veloc-
ity) and thus a much weaker effect on turbulence is expected.
Nevertheless, experimental studies suggest that GAMs are
related to the L-H transition and transport barriers. The
GAMs are weakly damped by Landau resonances and more-
over this damping effect is weaker at the edge suggesting
that GAMs are more prominent in the region where transport
barriers are expected.9

The electron-temperature-gradient (ETG) mode driven
by a combination of electron temperature gradients and field
line curvature effects is a likely candidate for driving elec-
tron heat transport.l3_17’22 The ETG driven electron heat
transport is determined by short scale fluctuations that do not
influence ion heat transport and is largely unaffected by the
large scale flows stabilizing ion-temperature-gradient (ITG)
modes.

In this work, the first demonstration of an electron branch
of the geodesic acoustic mode (el-GAM) driven by ETG
modes is presented. The frequency of the el-GAM is higher
compared to the ion GAM by the square root of the ion-to-
electron mass ratio (Q, (electron)/Qq,(ion) =~ /m;/m,, where

with non-adiabatic ions including impurities and finite
B-effects.'®!” A new saturation mechanism for ETG turbu-
lence through the interaction with el-GAMs, balanced by Lan-
dau damping, is found, resulting in a significantly enhanced
ETG turbulence saturation level compared to the mixing
length estimate.

The remainder of the paper is organized as follows: In
Sec. II, the linear ETG mode including the ion impurity dy-
namics is presented. The linear el-GAM is presented and the
non-linear effects are discussed in Sec. III, whereas the satu-
ration mechanism for the ETG turbulence is treated in Sec.
IV. The paper is concluded in Sec. V.

Il. THE LINEAR ELECTRON TEMPERATURE
GRADIENT MODE

In this section, we will describe the preliminaries of the
ETG mode which we consider under the following restric-
tions on real frequency and wave length: Q; < @ ~ wy
L Qo kici>w> kjce. Here, Q; are the respective cyclo-
tron frequencies, p; the Larmor radii, and ¢; = /T;/m; the
thermal velocities. The diamagnetic frequency is wx
~ kop,Ce/Ly, k, and k) are the perpendicular and the parallel
wavevectors. The ETG model consists of a combination of
an ion and electron fluid dynamics coupled through the qua-
sineutrality including finite S-effects.'®!”

A. lon and impurity dynamics

In this section, we will start by describing the ion
fluid dynamics in the ETG mode description. In the limit
® > kjc, the ions are stationary along the mean magnetic
field B (where B = Boe|)) whereas in the limit kjc¢; > o,
ki p; > 1 the ions are unmagnetized. We note that the adia-
batic ion response follows from the perpendicular ion mo-
mentum equation by balancing the linear parts of

Qq(electr{m) and Q,(ion) are the real frequencies .of the elef:- —eniVp = T:Vn;, (1)
tron and ion GAMs, respectively.). We have utilized a fluid

model for the ETG mode based on the Braginskii equations  apd we find

“Electronic mail: anderson.johan@gmail.com. n; = _T¢- (2)
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In this paper, we will use the non-adabatic responses in
the limits w < k,¢; < k¢, ¢ = \/;:’Iand assume that Q; < w
< Q, are fulfilled for the ions and impurities. In the ETG
mode description, we can utilize the ion and impurity conti-
nuity and momentum equations of the form

Oon; S
%“rnjV'vj:Q (3)
and
9y
mj'l’le + enqub + ijnj = 07 (4)

where j =i for ions and j =/ for impurities. Now, we derive
the non-adiabatic ion response with t; = T, /T; and impurity
response with 7; = T, /T, respectively. We have thus for the
ions

Ti ~
=~ (st )6, 5
= (—aa)? ®
and similarly we find for the impurities
- T 1
i =—\—5772 ¢ (6)
(1 - wz/(kicyz))

Here, T; and n; are the mean temperature and density
of species (j=e, i, I), where 7i; = dn/n;, iiy = on;/n;, and
¢ = edp/T, are the normalized ion density, impurity den-
sity, and potential fluctuations. Next, we present the electron
dynamics and the linear dispersion relation.

B. The electron model

The electron dynamics for the toroidal ETG mode are
governed by the continuity, parallel momentum, and energy
equations adapted from the Braginskii’s fluid equations. The
electron equations are analogous to the ion fluid equations
used for the toroidal ITG mode

on, " " " "
C,:; + V- (n,0g + nelse) + V- (neUpe + netze)
+ V- (nel_jHe) =0 7
3 dT. . 5
—Ne—— T.V - -q,=0.
ch 0 +n1.,V-0,+V-q,=0 8)

Here, we used the definitions ¢, = —(5p./2m.Q.)e|| x
VT, as the diamagnetic heat flux, U is the E x B drift, Ux,
is the electron diamagnetic drift velocity, Up, is the polariza-
tion drift velocity, U, is the stress tensor drift velocity, and
the derivative is defined as d/dt = 0/0t + p,c.é X V¢ - V.
A relation between the parallel current density and the paral-
lel component of the vector potential (/) can be found using
Ampere’s law

5 =
Vidp=-—_Jj. ®)

¢
Taking into account the diamagnetic cancellations'* in

the continuity and energy equations, the Eqgs. (7), (8), and (9)
can be simplified and written in normalized form as

Phys. Plasmas 19, 082305 (2012)

On 0 -~ - -
~ Vo d — (14 (14 0)V3 ) Ved - V| V24,
1o . 0\,~ . =
+ €, (cos 0;%—1- sm08r> (p —n.—T,) =0, (10)

(87293 5+ (4 (8290 )

+ V(b —iie = Te) =0, (11)
9% 5 1o . 9\10 .
aTe +§6n<cosgi_ﬁ%+51n05) ;%Te
N1d- 20.
+ (175_§> ;% —gang—o. (12)

Note that similar equations have been used previously
estimating the zonal flow generation in ETG turbulence'® and
have been shown to give good agreement with linear gyroki-
netic calculations.'” Extended fluid models treating the gyro-
viscous cancellations by including the higher order moments
in the Braginskii’s gyroviscous tensor have been presented in
Refs. 19-21. The variables are normalized according to

(&%ﬁje) = (Ln/pe)(eéqS/Tw,5ne/n0,5TF/T€0), (13)
Aj = (2¢eLy/Bcp,)eA) [ Teo, (14)
B, = 8nnT,/Bj. (15)

Using the Poisson equation in combination with Egs. (5)
and (6), we then find

~ Tin;/n, (z2ny /ne); 5 s
- k2 . (16
e <1 —? [k} c? 1o 2] (K22 + ki Ape )¢ (16)

First, we will consider the linear dynamical equations
(10), (11), and (12) and utilizing Eq. (8) in the same manner
as in Refs. 16 and 17 and we find a semi-local dispersion
relation as follows

[w2 (Ag—l—%(l +Ae)) + (1 =€, (14+A,)) 0%
+& pZ (0 —(1 +m)w*)} (w —gﬁnw*>

2 2
+ <E,,a)* —%a}) ((116 —3) D —|—3a)Ae>

(I1+A,) (wf%Enw*) — (116
o(&+1p2) =5 (1+n) o

2 2
—3)ox —j0A

2R 7
)

In the following, we will use the notation A, = t;(n;/n,)/
(1= I3 c2) + Ty(zgym /n) /(1 — 02/} + K iy We
also define z.pr ~ z2n;/n,. Note that in the limit 7; = T,
o < kici, ki Ap. < kip, <1 and in the absence of impurity
ions, A, =~ 1 and the ions follow the Boltzmann relation in the
standard ETG mode dynamics. Here, Ap, = /T./(4nn,e?) is
the Debye length, the Debye shielding effect is important for
Ipe/Pe > 1.'® The dispersion relation Eq. (17) is analogous to
the toroidal ion-temperature-gradient mode dispersion relation
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except that the ion quantities are exchanged to their electron
counterparts. Equation (17) is derived by using the ballooning
mode transform equations for the wave number and the cur-
vature operator

ViTZ—ki~:—kﬁ[lqt(sﬁ—ocsinﬂ)z}f: (18)

F— £ La_f:
Vif = ikf ~ R g (19)
ef =€ [cos 0 + (s0 — osin 0)sin O]f'. (20)

The geometrical quantities will be determined using a
semi-local analysis by assuming an approximate eigenfunction
while averaging the geometry dependent quantities along the
field line. The form of the eigenfunction is assumed to be*?

Y(0) = (1 4+cosf) with |0] <. (21)

1
V3n
In the dispersion relation, we will replace k| = (k|),

ky = (k1), and wp = (wp) by the averages defined through
the integrals

l ys
K)=—=| dovi¥
< J_> N(\P) J—n €L
2
_ 2 S5 0 05
—k9<1+3(n 7.5) 9soc+12a) (22)
(k) —Lr AV — (23)
| TN ), 15 7 342R2°
O 25 5
=—— OYop¥ =e¢, —F-s——0o],
(wp) N(‘P)J_nd ) ew*<3+9s 120()
(24)

1 T
(k) k) = WL dOWk k| ¥

12 ( 2(n2 ) 8§ 3 2)
— 1+ (——05) ——sa+>02), (25)
3(qR) 3 34

N(¥) = Jn dowy>. (26)

Here, we have from the equilibrium o = B¢°R(1 + 7,
+(1 +mn;))/(2L,) and B = 8nn,(T, + T;)/B* is the plasma
., q is the safety factor, and s = r¢q'/q is the magnetic shear.
The a-dependent term above (Eq. (22)) represents the effects
of Shafranov shift. In the limit, low-beta (f — 0), no impu-
rity ions A, ~ 1, while neglecting parallel motion, we find
approximate solutions to the dispersion relation as

Wy 10
Wy X — 557 1— alT+—=7
(1+kj_pe)< ‘ < 3 )

5
kj_pg< +’7e+35n>> 27
w*\/—
Y~ Ve — N, 28
)~ 2(1+kL,DL) Me Netn ( )
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2 1 T 10t T
N-——=+4¢€|-+— —. 2
Neth 3 2+€ <4+ 9>+46n (9)

lll. MODELING ELECTRON GEODESIC ACOUSTIC
MODES

The geodesic acoustic modes are the m=n=0, k, # 0
perturbation of the potential field and the n=0,m=1, k. # 0
perturbation in the density, temperatures, and the magnetic
field perturbations. The el-GAM (g, €Q,) induced by ETG
modes (k, ®) is considered under the conditions when the
ETG mode real frequency satisfies Q, > w > €; at the
scale k; p, < 1 and the real frequency of the GAM fulfills
Q, ~ c./R at the scale ¢, < k,.

A. Linear electron geodesic acoustic modes

We start by deriving the linear electron GAM dispersion
relation, by writing the m = 1 equations for the density, par-
allel component of the vector potential, temperature and the
m =0 of the electrostatic potential

ﬁ(l)
—1; ‘G—i—ensm0 d)G

~(1
= ~VV2Aje =0,  (30)

((6./2- 90 5+ (4 n)(B/DV )AL

— V(g +Teg) =0, 31)
0 ~1) 20 .
9
~v2 8t¢G — e sm95( il +Tg) =0 (33)

First, we will derive the linear GAM frequency assuming
electrostatic GAMs (fi, — 0) this yields a relation between
the parallel component of the vector potential and the density
and electron perturbations using Eq. (31) as

2 85‘(‘2 ~(1) , =)
Vi v, (i +7.0) =o. (34)

The m=1 component of the electron density can be
eliminated by taking a time derivative of Eq. (33) and using
Eq. (30) and we get

82
>
Pe 8I2 J_d)
~(0) (1)
0 0 J
+ €,0x { sinf — e,,v*sin()d)—+VHL =0.
or or eng
(35)
Here, (---) is the average over the poloidal angle 0. In

the simplest case, this leads to the dispersion relation

5¢2 1
2 __
Qq _gR—ez (2+qz). (36)
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Note that the linear electron GAM is purely oscillating
analogous to its ion counterpart c.f. Refs. 6 and 24. In this sec-
tion, we computed the linear dispersion relation for the GAM,
now we will study the non-linear contributions through a
modulational instability analysis.

B. The non-linearly driven geodesic acoustic modes

We will now study the system including the non-linear
terms and derive the electron GAM growth rate. The non-
linear extension to the evolution equations presented previ-
ously in Egs. (10)—(12) is in the electrostatic limit (f, — 0)

on, o0 - N
~ S Vi b - (14 (1 +1)V2)Ved - V924
9 . 0\ /v - =\ _[1 w25
+ €, (cos@;%—i— s1n95> (qb — e — Te> = [¢,v (b},
(37)
, 0 . M
Vi A +v (¢ -i-T.)=[0. V24, 68
0~ 5 0 10 -
3 Tp—i—gen(cosﬂ %—i—smﬁa— ;%Tg
10 20 ~

In order to find the relevant equations for the electron GAM
dynamics, we consider the m = 1 component of Egs. (37)~39),

6ﬁ§l) . .0~ (0
- 8IG+€HSH]05¢G vHVZAHG <[¢kav2¢k]> =0,
(40)
28~ 1) < s \W
VL 8l vH( N+ TeG) = [qskaleHk] =0,
41)
0 5 20 A () (D)
atTe 30t eG - <[¢kaTek]> *Nl ) (42)

where superscript (1) over the fluctuating quantities denotes
the m=1 poloidal mode number and (---) is the average
over the fast time and spatial scale of the ETG turbulence
and that non-linear terms associated with parallel dynamics
are small since q% < 1. We now study the m =0 potential
perturbations

d ~ 0 -
_ o2 09 (1) )
i 8t¢c ensmﬁar ("eG + T(,G)
T2 o (0)
= <[¢k7 \Y ¢k}> =N, (43)

Here, we have defined the non-linear term on the RHS
in Egs. (40)- (43) as N( ) = pic.z x Ve - VV2 (;’) This can
be written T 3 2 ) +N2, where the m = 1 component is
determined by an integral of the convective non-linear term
as N| —jdtpsc zx V¢ VT( This leads to a relation

between the m = 1 component of the density and temperature

Phys. Plasmas 19, 082305 (2012)

fluctuations modified by a non-linear term. Here, the non-
linear terms can be written in the form

1) 2 N7
= k,
; "ol

O =a2> " kekolgy . (45)
k

AN (44)

We continue by considering the Egs. (40) and (43) for
the m = 1 component and m = 0 component, respectively,

(1) - (0)
Vi 9

a~(1)
e _ — eysin 022G = N, (46)

ot eny

0 o (5
z§v2¢G-+q<sn05—(§§2>>::N$X (47)

We keep the N il) non-linear term in order to quantify
the effects of the convective non-linearity. Similar to the
operations performed to find the linear electron GAM fre-
quency, we eliminate the m =1 component of the electron
density by taking a time derivative of Eq. (47) this yields

»* _, 0 0¢s 49N
Er quﬁG +€"<Sm08 (e,,smO +N1 8tN1

=N, (48)

Note that the el-GAM wave equation will be modified by
the effects of the parallel current density (J ) and the m=1
non-linear terms in the general case, however, we see by
inspection that on average the term N, (1) does not contribute
whereas the Né ) non- linearity may dr1ve the GAM unstable.

We will use the wave kinetic equation"***= to describe
the background short scale ETG turbulence for (Qq,q) (w,k),
where the action density Ny = E/|w,|~ €o|¢d,|*/ow,. Here,
0|y |2 is the total energy in the ETG mode with mode number

k, where g =1 Jrk2L +% In describing the large scale plasma
flow dynamics, it is assumed that there is a sufficient spectral
gap between the small scale ETG turbulent fluctuations and the
large scale GAM flow. The electrostatic potential is represented
as a sum of fluctuating and mean quantities

O(X, X, T, 1) = DX, T) + (&,1), (49)
where (I)(f ,T) is the mean flow potential. The coordinates
(X,T), (X,1) are the spatial and time coordinates for the
mean flows and small scale fluctuations, respectively. The
wave kinetic equation can be written as

B LN O -
) g otk Te) = 7 (K B)
< ONED) o Nu(rr) = BN 650)

We will solve Eq. (50) by assuming a small perturbation
(O0Ny) driven by a slow variation for the GAM compared to
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the mean (o) such that Ny
linear terms can be approximated in the following form:

<[@>k7Vi$k]> )
< [ék, Tek} > um; IZ s,

= Ny + ONy. The relevant non-
16

(4,9y), (51)
Q). (52
€0

For all GAMs, we have g, > gy, with the following rela-
tion between 0N, and ONy/ Ok,

1)

= (
ON koq, T N,
Ny = —ig?kop QR S 4 TG T (53
Ok; (e = Newn)
where we have used dw, =k - vgy ~ i(kog, — k; 610)¢G

the wave kinetic equation and the definition R = 97

qrUgr 171
Furthermore, in the present work, we will shortly consider
the effects of the modulation terms of w, and y using the ap-
proximate analytical solutions found in Egs. (27) and (28)
for

5 . .
diry = ko P2 e, T + oV, (54)
3L,
5 .
V.00, = —k() T(,G +kgV; (]5G , (55)
_ kg ~(1)
=10 (v, 7, (56)
T\/ Ne — Newn ( ()G)

The modulation will enter in the perturbation of the ki-
netic invariant

o _ 0 8N0k
5N0k
Ok,

+ 6yNox,

— kgv2¢G

ko ~(1)
— v, TN
T\/ Me = Netn “

aNOk
¢G ko (57)

where the last term can be neglected since the contribution
from V3 vanishes

ONoy n ko

~(1)
T~ )Nok.
Ok, T/Me = Newn (Cb eG) o

(58)

, ~(0
0Ny = —iky (Q§¢(G>)R

In this last expression, the last term comes from the
modulation of the growth rate.

Using the results from the wave-kinetic treatment, we
can compute the non-linear contributions to be of the form

<<25,V > = —lq,Zk k2 |a),| aNk(;’)G

i) (59)

+ ql 1/27eG>

€0 T ~ Nithe
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3 2 NV |CO,| aNO
’ k
Z 0 | r|2 €0 [«)k

(5:7)-

2k , RN, N
Z olleV |60 0 nglc;) (60)
3 |(U | € T 1’] - nthe)

In order to find the non-linear growth rate of the electron

G(A)M we n%ed to find relations between the variables ”ic)’
nd
eG 2 G

€4, Sin 0 ~
(= 4 Z¢G 1)
Q, — ot

fl

=2

(1) ~1 k@ne || RNy _(1)
T — . (62
o Z |w| € 1 7’] _mhe)l/z”ec ©

Using Egs. (61) and (62) in the Fourier representation of
Eq. (48) resulting in

~ (0) o ~(1 o ~
0,208 + eaqsin 0 + T = i(§, V2 $)O,  (63)
and we finally find
Qz Sq _ 1 &2 2Zk977e/|wr| RNy
[ 3 € dy |CO| €0 ‘E nthe)l/Z
2
+ (Q 3q|> 2Zk k2 |w,| aNk

(64)

Equation (64) is the sought dispersion relation for the
electron GAM and we solve it perturbatively by assuming
Q, = Qo + Qy, where Q is the solution to the linear part c.f.
Eq. (36). Now, we find the perturbation Q; = iy, which will
determine the growth rate of the GAM as

6 bl
ce/Ln 69y "¢ ol € 7 (n, —ny,)"?
5 P 3 |(,U,‘ 1 aN()
krkyp
12Q2ql ez €0 ak
1q k()pe 1 < La ?
P Ln 65)
2«/6,, (n,) 1+1/2q d)k Pe

Here, the main contribution to the non-linear generation
of el-GAMs originates from the Reynolds stress term. In the
last expression, we have assumed that the GAM frequency
(Qp) is given by Eq. (36). The non-linearly driven electron
GAM is unstable with a growth rate depending on the satura-
tion level |¢p,|* of the ETG mode turbulence.

IV. SATURATION MECHANISM

In this section, we will estimate a new sgturation level
for the ETG turbulent electrostatic potential (¢;) by balanc-
ing the Landau damping in competition with the non-linear
growth rate of the GAM in a constant background of ETG
mode turbulence. For simplicity, the non-linear transfer from
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;sin 0) to turbulence is neglected. This effect may impact
g P
on the saturation level.>*>> According to the well known
predator-prey models used,>' c.f. Eq. (4) in Ref. 5 and as
well as Ref. 7 we have

ONy

T 7Ny — AoNE — 79,UGN, (66)
ouU
= 1aUc = nUc = v*Ua. (67)

Here, we have represer(lot)ed the ETG mode turbulence as

2
Ny = |¢>k\2% and Ug = (%% sin 0) with the following pa-
rameters: 7y is the ETG mode growth rate, 7, is the coupling

between the ETG mode and the GAM. The Landau damping
rate (7, = %;—;’e is assumed to be balanced by GAM
growth rate Eq. (65) modified by the neoclassical damping in
stationary state %—ﬁ’ — 0 and % — 0. In steady state find the

saturation level for the ETG turbulent intensity as
(yq =7 + V*)’

2L, 1 4\F N
~ 14+— e —4/—
qR( +2q2> wle\z\Vz "

K\ 1\’
qr) \kop,
Here, the saturation level is modified by the neoclassical

damping v* = v, :’—R and the @ factor arises due to the spatial
extension of the GAM and we obtain

edi Ly
T. p,

ey L[’

T. p.

~ 30 — 40. (69)

Note that the result found using a mixing length estimate
with ;—d’f}—’ ~ 1 is significantly smaller. Here, in this estima-
tion, we have used L, = 0.05, ¢=3.0, R=4, ¢, = 0.025,

1/q, ~ (ngT)m, kgp, = 0.3, where kg/q, ~4 and n, ~ 1.

V. CONCLUSION

In this paper, we have presented the first derivation of
an el-GAM. The linear dispersion relation of the el-GAM
showed that the new branch is purely oscillatory with a fre-
quency Q, ~ %. Note that, the frequency of the el-GAM is
higher compared to the ion GAM by the square root of the
ion-to-electron mass ratio (Q,(electron)/Q,(ion)~=+/m;/m,,
where Q(electron) and Q,(ion) are the real frequencies of
the electron and ion GAMs, respectively). To estimate the
GAM growth rate, a non-linear treatment based on the wave-
kinetic approach was applied. The resulting non-linear disper-
sion relation showed that the el-GAM is excited in the presence
of ETG modes with a growth rate depending on the fluctuation
level of the ETG mode turbulence. An analytical expression for
the resulting GAM growth rate was obtained. To estimate the
ETG mode fluctuation level and GAM growth, a predator-prey
model was used to describe the coupling between the GAMs
and small scale ETG turbulence. The stationary point of the
coupled system implies that the ETG turbulent saturation level
¢, can be drastically enhanced by a new saturation mechanism,

Phys. Plasmas 19, 082305 (2012)

stemming from a balance between the Landau damping and the
GAM growth rate. This may result in highly elevated particle
and electron heat transport, relevant for the edge pedestal
region of H-mode plasmas.

The present work was based on a fluid description of
ETG mode turbulence, including finite beta electromagnetic
effects and retaining non-adiabatic ions. A more accurate
treatment based on quasi-linear and non-linear gyrokinetic
simulations is left for future work.
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