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We have embedded an artificial atom, a superconducting transmon qubit, in a 1D open space and

investigated the scattering properties of an incident microwave coherent state. By studying the statistics of

the reflected and transmitted fields, we demonstrate that the scattered states can be nonclassical. In

particular, by measuring the second-order correlation function, gð2Þ, we show photon antibunching in the

reflected field and superbunching in the transmitted field. We also compare the elastically and inelastically

scattered fields using both phase-sensitive and phase-insensitive measurements.
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A single atom interacting with propagating electromag-
netic fields in open space is a fundamental system of
quantum optics. Strong coupling between a single artificial
atom and resonant propagating fields has recently been
achieved in a 1D system [1,2], experimentally demonstrat-
ing nearly perfect extinction of the forward propagating
fields [2]. However, this extinction can be explained by
classical theory: a classical pointlike oscillating dipole
perfectly reflects resonant incident fields [3]. In this
Letter, we demonstrate the quantum nature of the scattered
field generated from our artificial atom in 1D open space
by using a resonant coherent state as the incident field. In
particular, by measuring the statistics of the fields, we show
that the reflected field is antibunched [4,5] while still
maintaining first-order coherence. Moreover, we observe
superbunching statistics in the transmitted fields [4].

To understand how our artificial atom generates anti-
bunched and superbunched states, it is helpful to consider
the incident coherent state in the photon number basis. For
a low power incident field with less than 0.5 average
photons per lifetime of our atom, we can safely approxi-
mate the coherent field using only the first three photon
eigenstates. If we consider a one-photon incident state,
the atom reflects it, leading to antibunching statistics in
the reflected field. Together with the zero-photon state the
reflected field still maintains first-order coherence. For a
two-photon incident state, since the atom is not able to
scatter more than one photon at a time, the pair has a much
higher probability of transmission, leading to superbunch-
ing statistics in transmission [4,6]. In this sense, our single
artificial atom acts as a photon-number filter, which ex-
tracts the one-photon number state from a coherent state.
This represents a novel way to generate photon correlations
and nonclassical states at microwave frequencies com-
pared with other recent work [7–11].

Our system consists of a superconducting transmon
qubit [12], strongly coupled to a 1D coplanar waveguide
transmission line [see Fig. 1(a)]. The ground state j0i and
first excited state j1i have a transition energy @!01. The
relaxation rate of the qubit is dominated by an intentionally

strong coupling to the 50 � transmission line through the
coupling capacitor Cc, as shown in Fig. 1(b).
The electromagnetic field in the transmission line is

described by an incoming voltage wave Vin, a reflected
wave VR, and a transmitted wave VT . In Fig. 1(a), the
transmittance is defined as T ¼ jVT=Vinj2. For a weak
coherent drive on resonance with the atom, we expect to
see full reflection of the incident signal [4,13]. This can be
understood in terms of interference between the incident
wave and the wave scattered from the atom, which destruc-
tively interfere in transmission and constructively interfere
in reflection [4,13]. In the sample measured here, we
achieved extinction of more than 99% in transmittance,
as shown in Fig. 1(c). By measuring the transmission
coefficient as a function of probe frequency and probe
power P, we extract !01=2� ¼ 5:12 GHz, �10=2� ¼
41 MHz, and ��=2� ¼ 1 MHz [2]. The relaxation rate

�10 is dominated by coupling to the transmission line and

FIG. 1 (color online). (A) A micrograph of our artificial atom,
a superconducting transmon qubit embedded in a 1D open
transmission line. (Zoom In) Scanning-electron micrograph of
the SQUID loop of the transmon. (B) Schematic setup for
measurement of the second-order correlation function. This
setup enables us to do Hanbury–Brown–Twiss measurements
between output ports 1 and 2. Depending on the choice of input
port, we can measure gð2Þ of the reflected or transmitted field.
(C) Transmittance on resonance as a function of incident power.
(Inset) A weak, resonant coherent state is reflected by the atom.
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is much greater than the pure dephasing rate �� in our

system. We define an average number of photons per
interaction time 2�=�10 as N � 2�P=ð@!p�10Þ. N ¼ 1

for a power of �128 dBm.
The resonant electromagnetic field reflected from or

transmitted through the atom (depending on the choice of
input port, see Fig 1(b) is fed through two circulators to a
commercial 90� hybrid coupler, with its other input termi-
nated with 50 �. The hybrid coupler effectively acts as a
microwave beam splitter. Ideally, the signal coming into
the other input of the hybrid coupler should be vacuum.
The two outputs of the beam splitter are sent to two
nominally identical microwave HEMT amplifiers at 4.2 K
that have system noise temperatures of 7 K. We make the
assumption in our analysis that the noise added by the two
amplifiers is uncorrelated. After further amplification, the
two outputs are fed into a pair of vector digitizers, which
capture the voltage amplitude. We then can choose to
digitally filter the voltage data to a desired bandwidth
(BW). This setup enables us to perform Hanbury–
Brown–Twiss (HBT) [14–18] measurements using linear
quadrature detectors, i.e., amplifiers.

Second-order correlation measurements provide a
method to characterize microwave states generated in our
system. In particular, they provide a statistical tool to show
that the scattered light is nonclassical. For reference, we first
considered a thermal state and a coherent state. The thermal
state [19] was generated by simply amplifying the noise of a
50 � resistor through room temperature amplifiers before
sending the signal down through the transmission line in our
setup, with the qubit off-resonance. The two digitizers were
set to a sampling frequency of 108 samples= sec and then
the voltages were digitally filtered separately. Finally, we
determine the power-power correlations as a function of
delay time between the two outputs.

The second order correlation function can be expressed
as

gð2Þð�Þ ¼ 1þ h�P1ðtÞ�P2ðtþ �Þi
½hP1ðtÞi � hP1;NðtÞi�½hP2ðtÞi � hP2;NðtÞi� ;

where � is the delay time between the two digitizers, P1, P2

are the output powers in ports 1 and 2, respectively. P1;N ,

P2;N are the amplifier noise in ports 1 and 2, respectively,

when the incident source is off. Therefore, ½hPiðtÞi �
hPi;NðtÞi� represents the net power of the field from output

port i, where i ¼ 1, 2. h�P1�P2i is the covariance of the
output powers in ports 1 and 2, defined as hðP1 � hP1iÞ�
ðP2 � hP2iÞi. The following assumptions were made:
(1) the amplifier noise originating from the two indepen-
dent detection chains is uncorrelated and (2) the 50 �
terminator is in its ground state (5 GHz photons at

�50 mK). In Fig. 2(a), we show gð2Þ as a function of delay
time �, for a thermal state with two different filter band-
widths and also for a coherent state. For thermal states,

gð2Þð0Þ ¼ 2 regardless of the filter bandwidth. The width of

gð2Þð�Þ for the thermal state is determined by the filter

function. For the filter used gð2Þð�Þ ¼ 1þ e�2�BWj�j. The
solid curves of the thermal state in Fig. 2(a) show this
equation with no free-fitting parameters. We had a trigger
jitter of �1 sample between the two digitizers. To mini-
mize the effect of this trigger jitter, we oversample and then

digitally filter (average) the data in all the gð2Þ measure-

ments. For a coherent state, we expect gð2Þð�Þ ¼ 1. This is
indeed what we find if our atom is off-resonance from our
applied coherent source.
After these initial measurements, we measured second-

order correlations of the field transmitted through our
qubit. We applied an on-resonance microwave drive and

measured gð2Þð�Þ in transmission for different incident
powers as shown in Fig. 2(b). Here, the sampling frequency
was again set to 108 samples=s with BW ¼ 55 MHz. At
the lowest power (P ¼ �129 dBm, N ¼ 0:8) that we can
readily measure, we see superbunching of the photons [4],

with gð2Þð� ¼ 0Þ ¼ 2:31� 0:09> 2. We see superbunch-

ing even with our measured gð2Þð0Þ suppressed as a result of
trigger jitter [see Fig. 2(c)]. Superbunching occurs because
the one-photon state of the incident field has been selec-
tively filtered and reflected while the two-photon state is
more likely transmitted (the three-photon components and
higher are negligible). This transmitted state generated
from our qubit is thus bunched even more than a thermal

state. For high powers, where N � 1, we find gð2Þð�Þ ¼ 1,
as most of the coherent signal passes through the trans-
mission line without interacting with the atom owing to
saturation of the atomic response. The correlation mea-
surements once again resemble those of a coherent state.

For all measurements shown here we find, gð2Þð1Þ ¼ 1, as

expected. In the right inset of Fig. 2(b), we plot gð2Þð0Þ as a
function of incident power and clearly see the bunching
behavior decrease as the incident power increases. For

comparison, we also plot gð2Þð0Þ for a coherent state and
thermal state.

In Fig. 2(d), we plot the measured gð2Þð�Þ of the reflected
field from our atom. At low powers, where N 	 1, we
clearly observe antibunching of the field [4]. Each trace
here was collected, computed, and averaged over 17 hours,
corresponding to 2:4� 1011 measured quadrature field
samples (2 Tbyte of data). The antibunching behavior at

the lowest power (P ¼ �132 dBm, N ¼ 0:4), gð2Þð0Þ ¼
0:51� 0:05, reveals the quantum nature of the field [5].

Ideally, we would find gð2Þð0Þ ¼ 0 as the atom can only

absorb and emit one photon at a time. The nonzero gð2Þð0Þ
we measured originates from four effects: (1) a thermal
field at 50 mK, (2) a finite filter bandwidth (here 55 MHz),
(3) trigger jitter between the two digitizers, and (4) stray
fields including background reflections in the line and
leakage through circulator 1 [Fig. 1(b)]. In Fig. 2(e), we

measure gð2Þð�Þ at P ¼ �131 dBm for different filter
bandwidths and clearly see that the antibunching dip
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depends on BW. For a small BW, i.e., long sampling time,
the time dynamics of antibunching cannot be resolved. In
other words, within the sampling time, the atom is able to
absorb and emit multiple photons. If BW 	 �01, �p,

where �p is the Rabi frequency, the antibunching dip we

measure vanishes entirely. This interplay between BWand

�p yields a power dependent gð2Þð0Þ, as shown in the inset

of Fig. 2(d).
In Fig. 2(f), we show how all four factors listed above

combine to produce the theoretical curves for our mea-

sured gð2Þð�Þ. The partial theory curves include finite tem-
perature and filter bandwidth, but not leakage and jitter.
The green (no leakage) curve includes everything but
(4) and the red curve (complete theory) includes all four
effects. The solid lines in Fig. 2(b)–2(f) are theoretical
results based on a master equation formalism. The digital
filter is modeled by a single-mode resonator. A master
equation describing both the transmon and the resonator

is derived using the formalism of cascaded quantum sys-
tems. To model the effect of the trigger jitter, the value of

gð2Þð�Þ at each point is replaced by the average value of

gð2Þð�Þ, gð2Þð�� 10 nsÞ and gð2Þð�þ 10 nsÞ.
Our artifical atom selectively filters out the Fock state

n ¼ 1 from the input coherent state. As a result, the
reflected and transmitted field display antibunched and
superbunched statistics, respectively. Thus, the qubit acts
as a passive photon-number filter, converting a coherent
microwave state to a nonclassical one, with high produc-
tion rate.
While the scattered field requires a purely quantum

description, it can still maintain first-order coherence simi-
lar to a classical field, as shown below. We can define the

first-order correlation function in steady state as gð1Þ ¼
hVi2=hV2i. First-order coherence then refers to gð1Þ ¼ 1.
For a thermal source this function is 0 and for a coherent
state it is 1.

FIG. 2 (color online). Second-order correlation function of a thermal state, a coherent state, and the states generated by the artificial
atom. (A) gð2Þ of a thermal state and a coherent state as a function of delay time �. (B) gð2Þ of the resonant transmitted microwaves as a
function of delay time for four different incident powers. Inset: gð2Þð0Þ as a function of incident power. For comparison, the result for a
thermal state and a coherent state are also plotted. We see that the transmitted field statistics (red curve) approach that of a coherent
field at high incident power, as expected. For a coherent state, gð2Þð0Þ ¼ 1 is independent of incident power (blue). The peculiar feature
of gð2Þ around zero in the solid theory curves is due to the trigger jitter model (see text). (C) Comparison of gð2Þ for the transmitted field
with and without trigger jitter. (D) gð2Þ of a resonant reflected field as a function of delay time for two different incident powers. The
antibunching behavior reveals the quantum nature of the field. The curves shown here had a digital filter with a 55 MHz bandwidth
applied to each detector. Inset: Power dependence of gð2Þð0Þ, resulting from a finite BW and temperature. At 0 mK and with infinite
BW, gð2Þð0Þ ¼ 0, independent of incident power (for the power levels considered here). (E) gð2Þ of a resonant reflected field as a
function of delay time at �131 dBm for different filter bandwidths. As the bandwidth decreases, the antibunching dip vanishes. The
solid curves in (D) and (E) are the theory curves, including the trigger jitter model and stray fields. The stray fields arise from
background reflections in the line (5%) and leakage through circulator 1 [Fig. 1(b)] (the same as in previous work [2]), assuming the
phase between the leakage field and the field reflected by the atom is �=2. We extract a temperature of 50 mK from these fits in (B),
(D) and (E), with no additional free-fitting parameters. The error bar indicated for each data set is the same for all the points. (F) The
progression of gð2Þð�Þ degradation, due to temperature, BW, trigger jitter, and stray fields. Locally around gð2Þð0Þ, the red, green, and
dark blue curves exhibit a tiny bunched feature arising from the 50 mK thermal field.
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The first-order coherence properties of the scattered
resonance field strongly depend on the Rabi frequency
�p and the relaxation rate �10 of the atom. The Rabi

frequency �p is linearly proportional to the amplitude of

the drive, �p / ffiffiffiffi

P
p

[2]. For �p 	 �10, we expect the

scattered fields to be coherent to first order, with a power
spectrum well described by a delta function at !01 [5]. For
�p > �10, the scattered fields contain three additional

inelastic Lorentzians (known as the Mollow Triplet [20])

centered on the frequencies ! ¼ !01, ! ¼ !01 þ�p and

! ¼ !01 ��p, indicated in the theory plot Fig. 3(a).

We send a single tone at!01 and measure these scattered
(reflected) fields from only one of the output ports, as shown
in Fig. 3(b). Note that we see the same behavior from both
outputs. We use a phase-sensitive average hVi2 to capture
the elastic (coherent) component of the scattered field. For
the total scattered field, the sum of the elastically and
inelastically scattered fields, we use a phase-insensitive
average hV2i. The amount of the inelastic field that we
capture depends on the bandwidth of our measurement, as
indicated in Fig. 3(a). The solid curves are the theory fits,
using the model in Fig. 3(a) (integrating the Mollow triplet),
with no free-fitting parameters (using the same parameters
extracted before). As expected, at low incident power, the
total scattered field is roughly equal to the elastically scat-
tered (coherent) field. This indicates that the field is first-

order coherent with gð1Þ ’ 1. We note that this is also the
regime where antibunching is observed. At high incident
fields, where �p > �10, the main contribution to the total

field is from inelastic scattering.
In conclusion, we investigated the scattering properties

of a single artificial atom in a 1D open space by measuring
the first, second, and fourth moments of the voltage field.
We verified the quantum nature of the scattered field using
the second-order correlation function, while also showing
that the field maintained first-order coherence. In fact, the
whole process leads to a redistribution of the photon num-
ber state [6]. We plan to investigate applications of this
phenomenon, such as generating single-photon states on
demand. This system may offer advantages over placing an
artificial atom in a cavity [21–23]. For instance, the gen-
erated single photons can maintain the same envelope as
the incident coherent state with a wide bandwidth limited
only by the atom relaxation rate. For a cavity-based photon
source, the bandwidth is limited by the cavity width and
subject to the problem of stochastic release by the cavity.
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