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Abstract—This paper presents a new radio frequency power
amplifier behavioral model that is capable of modeling long term
memory effects. The proposed model is derived by assuming
linear dependence of the parameters of a conventional model
to a long term memory parameter, which enables the model to
better track the signal-induced changes of the power amplifier
electrical behavior. The model is experimentally tested on a 100 W
Doherty power amplifier, with a signal that has a step-like change
in power, representative of a realistic communication system with
bursty behavior. Results show that the proposed model is able
to improve the normalized mean squared error performance by
around 2–3 dB.

I. INTRODUCTION

The main propelling factor in the relatively short history

of radio frequency power amplifier (PA) behavioral modeling

has been the need for efficient low complex algorithms that are

able to properly describe PAs for given input signal character-

istics. Communication signals in early generation mobile sys-

tems had relatively constant amplitude, which allowed system

designers to utilize memoryless models. These systems were

mainly designed for voice calls, and power amplifiers would

routinely operate under steady-state temperature conditions.

As users demand for more services and higher data–rates

increases, efficient spectral utilization became necessary and

envelope varying communication signals have been employed.

For these type of wideband and high peak to average signals, it

is noticed that memory effects in the power amplifier become

more pronounced. The output of a power amplifier not only

depends on the current input sample, but on previous samples

as well [1].

In [2] it was noted that there are mainly two categories of

memory effects that degrade communication signals, electrical

memory effects and electrothermal. The former is attributed to

matching effects at the terminal impedances over the input

signal, and the latter to temperature drifts, biasing effects

and self heating which causes undesired effects on gain

variations and PA behavior [3]. In [4], it was shown that

for communication signals with wide modulation bandwidth,

the electrical short term memory dominated the behavioral

modeling performance.

As new communications signals and usage pattern emerge,

modeling longer term memory effects are once again gaining

in importance. In [4] and [5], thermal networks are developed

to compensate for thermal gain variations. In [6] two tone

measurements are used to identify long term memory effects

and a new modeling equation is proposed. In [7], a circuit-

based approach was used to construct a new model structure to

include long-term memory effects with regards to the thermal

filter of the PA.

In all these works, the focus has been on identifying and

developing model structures that can model long term memory

effects. In this work, we instead focus on deriving a model with

parameters that depend on the long term memory effect. This

enables us to extend most of the commonly derived behavioral

models for PAs to include long term memory estimates with

relatively low complexity.

II. MODEL DESCRIPTION

A. Model formulation

Traditional PA behavioral models - which are linear in terms

of parameters - can be written as

y = Hxθ, (1)

where y is a vector of the baseband output samples of the

PA, Hx is a matrix consisting of column vectors of different

nonlinear and memory of the baseband input signal x, and θ

are the model parameters vector. Different behavioral models

solely differ in the proposed Hx. Volterra based models

like the memory polynomial model [8], generalized memory

polynomial model [9] and others [1] belong to this group.

In the model we propose here, instead of developing a

new Hx we focus on including the long term effects in the

parameters of the behavioral model θ. The new behavioral

model can thus be written as

y = Hxθ(s), (2)

where θ(s) are the parameters of the behavioral model that

depend on the long term memory estimate s. Intuitively, this

corresponds to an amplifier whose physical parameters may

vary with the input signal, due to e.g. self-heating, biasing

effects and etc. Assuming a simple first order dependence

of the parameters with the long term behavior s, the new

proposed model can be written as

yLT[n] = Hx[n] (θ0 + s[n]θ1) , (3)

where θ0 are the commonly modeled static parameters of

the behavioral model (static with respect to the long term

memory term), and θ1 are the dynamic parameters. Hx[n] are

the columns of any RF behavioral model structure linear with

parameters, for example the MP or Volterra models.
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Fig. 1. Block diagram of the proposed model, with an MP model structure.

In order to be able to include long term memory effects

without going to very high model order – which is to be

avoided for both identification and run-time complexity rea-

sons – or by pruning – which may not be an ideal solution –

an estimate of the long term state variable has to be created.

Since in this work it is assumed that changes in these long

term effects are relatively slow (the power does not switch

between high and low quickly), the average input power over

a finite window is used as a metric for modeling the long term

memory changes.

s[n] =
1

N

n
∑

k=n−N+1

|x[k]|2 (4)

N is the size of the window of the finite impulse response

estimate. The larger the window size, the more the instan-

taneous power will be averaged. The block diagram for this

model with an MP model structure is shown in Fig. 1.

B. Model Identification

In order to identify the parameters of this model, it can

be noticed that once s[n] is calculated from (4), with some

re-writing of terms, equation (3) can be rewritten as

yLT = [Hx SHx][θ0 θ1]
T , (5)

where Hx is any of the commonly proposed behavioral models

in the literature, and S is the diagonal matrix of the column

vector s.

It can be noticed that with a known s[n], the model is linear

with respect to the parameters θ. Therefore the unknown pa-

rameters [θ0 θ1]
T can be calculated with normal least squares

technique and written as

[θ̂0 θ̂1]
T =

(

[Hx SHx]
T [Hx SHx]

)

−1
[Hx SHx]

Ty. (6)

From equation (4), for the identification of s[n], it can be

noticed that the only unknown coefficient is N , the size of

the window used to calculate the average power. The optimal

value for N can be found with a full search.

III. RESULTS AND ANALYSIS

A 2.65 GHz 100 W LDMOS Doherty PA is used to test

the performance of the proposed behavioral model. In order

to mimic bursty usage patterns in future generation systems,

the communications signal is a WiMAX-like signal consisting
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Fig. 2. Identification of window size, N , for the proposed behavioral model.

of two low power high power segments, each around 2

ms, repeated. The high power segment has 10 dB higher

average power than the low power segment. In this work,

two commonly used behavioral model structures are used for

comparison, the memory polynomial model proposed in [8],

and the generalized memory polynomial model [9].

The first step is to identify the length of the window that

estimates the long term memory effect, N , from equation

(4). In this work, 50000 samples are used in the offline

identification stage and a full search is done which is then

used for all further analysis. The result of this full search

with M = 2 and P = 5 for the MP model can be seen in

Fig. 2. A window size of around N = 11000 samples, which

corresponds to around 0.35 ms, was found to be the optimal

setting. This value relates to the thermal time constants as well

as the parameters of the active bias circuit in the PA used.

In the first experiment, different model orders are used

to evaluate the in-band performance – with the normalized

mean square error (NMSE) – and the out-of-band performance

– with the adjacent channel error power ratio (ACEPR) as

defined in [10]. The data is captured at a 6 dB backoff

from peak operating power. It is noticed that the proposed

model has around 2.5 dB better in-band performance and

around 3–4 dB better out-of-band performance for the different

configurations. This can be explained by the capability of

the proposed model to track the long term state (the change

in input amplitude level and corresponding PA self-heating),

while the normal memory polynomial model has to average

the effect of the low and high power input segments, although

mainly dominated by the higher power segments errors.

In Fig. 3, the instantaneous NMSE computed over blocks

of 2000 samples for the models is shown. This experiment

is done by first identifying the parameters of the models

using the entire data set and then evaluating them blockwise

on a separately measured set of data. The proposed model

shows a consistent 2-4 dB better modeling performance than

conventional models. The NMSE improvement is especially

higher in the transitions between low and high power segments

of the data, where PA behavior drifts are normally highest, and

the proposed model has around 5 dB better NMSE. This can be

explained because for identification of conventional models, all

the different characteristic changes in the PA are averaged. It



TABLE I
COMPARISON OF THE PROPOSED MODEL AND MP AND GMP FOR

DIFFERENT MODEL ORDERS. M IS THE MEMORY DEPTH.

(a) MP (values in dB)

Nonlinear MP Proposed model
order NMSE ACEPR NMSE ACEPR

M = 4 M = 2
P = 5 -46.8 -59.9 -49.4 -64.2

M = 8 M = 4
P = 5 -46.9 -59.9 -49.6 -64.4

M = 4 M = 2
P = 7 -47.9 -61.5 -49.7 -64.5

(b) GMP (values in dB). G in all models is 1

Nonlinear GMP Proposed model
order NMSE ACEPR NMSE ACEPR

M = 4 M = 2
P = 5 -48.4 -62.4 -50.1 -65.6

M = 8 M = 4
P = 5 -48.5 -62.7 -50.2 -65.6

M = 4 M = 2
P = 7 -48.8 -62.7 -50.5 -65.9
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Fig. 3. Amplitude of input signal used (left axis), and comparison of model
performance vs time (right axis). Model orders are chosen for relatively similar
complexity of each model.

is also interesting to note that the performance of the proposed

model for the beginning of the cycle is slightly worse. This

is because the long term memory estimate is initialized at

zero, and takes some time to ramp up to the correct values.

This effect is not noticed in the second cycle as the long term

memory estimate is consistent now.

Fig. 4 shows the NMSE vs number of parameters tradeoff

for the models as proposed in [10]. It is noticed that except for

the low parameter region, the proposed model has better mod-

eling accuracy by around 2 dB compared to their traditional

counterparts.

IV. CONCLUSIONS

In this work a new power amplifier behavioral model

capable of modeling long term memory effects was presented.

In particular, we demonstrated that it is well suited to handle

bursty data which result as communication traffic shifts from

voice to packet based data. The results show that by linearizing

the parameters with respect to a long term memory term like
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Fig. 4. The accuracy/complexity tradeoff for both models.

average power, it is possible to accurately track abrupt changes

in input signals, and the modeling accuracy is improved by

around 2.5 dB. The ability of the proposed model to track

signal characteristic changes can be important for linearizing

algorithms and digital predistortion, and can help lessen the

load on parameter adaptation algorithms.
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