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Theory of polar corrections to donor binding
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We calculate the optical-phonon correction to the binding energy of electrons to donors in cubic materials.
Previous theories calculated the Rydberg energy reduced by the effective mass and the static dielectric function.
They omitted an important energy term from the long-range polarization of the ionized donor, which vanishes
for the neutral donor. They also omitted the donor-phonon interaction. The inclusion of these terms yields a new

formula for the donor binding energy.
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I. INTRODUCTION

We present a calculation of the polaron correction to the
binding energy Ep of electrons to donors. This topic was
treated originally by Larsen.'"® We adopt a similar approach,
but include more terms in the theory.

Prior theories are called the scaled hydrogen model (SHM).
In the SHM, one takes the binding energy of hydrogen, i.e., the
Rydberg energy, and scales it with the effective band mass m*
of the electron, and the dielectric function ¢ of the material. In
SI units,

etm*

P Dmeyn? M
For weakly bound donors, the dielectric function is usually
taken to be the zero-frequency value ¢(0), which includes
the polar contribution from optical phonons. When the donor
binding energy is larger than the optical-phonon energy,
some researchers advocate using the high-frequency dielectric
constant £(00). Neither our theory nor that of Larsen is able to
derive these expressions for the SHM. We show below that our
theory gives the formula for the effective dielectric constant,
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The fractional factors are unexpected and are the main result
of our calculation. The SHM is still in regular use today.’'°

In doing this calculation, we became aware that prior
theories omitted an important energy term: the polarization
energy of the ionized donor. An ionized donor is viewed as a
point charge in a polarizable medium. There is a polarization
energy associated with this long-range potential. We calculate
below the exact expression for this energy. When the electron
becomes bound to the donor, the donor becomes neutral, and
the long-range polarization energy vanishes. It is replaced by
short-range polarization on the scale of the Bohr radius of the
donor. This difference in polarization energy contributes to the
binding energy of the donor. It is one reason for the fractions
in Eq. (2).

We present calculations of donor binding energies for
materials with the fcc (face-centered-cubic) lattice. This
includes most III-V and II-VI semiconductors, and some
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oxides. For semiconductors with small donor binding energies,
we get similar accuracy compared to the SHM. For the oxides,
in particular, our theory gives much larger binding energies
than does the SHM, but neither agree with experiment. Our
theory may also apply to the binding of holes to acceptors.
However, the degeneracy of most valence bands makes this
case more complicated, and we do not consider the acceptor
case.

Landau and Pekar developed the first theory of po-
larons for a free electron. They did a variational calculation on
an electron eigenfunction, ¢(r). They calculated the phonon
displacement 6 Q in response to the charge density of this
eigenfunction, and then calculated the polaron energy o
(8Q)%. This phonon excess energy then became part of the
variational energy determining the electron eigenfunction.
The Landau-Pekar theory later became recognized as the
strong-coupling theory of polarons.'* Here we adopt the same
procedure to calculate the response of the phonons to the
electron bound to the donor. Instead of the Gaussian eigen-
function used by Landau and Pekar, we use the exponential
eigenfunction typical of a donor. Otherwise our calculation
follows the same procedures. Obviously, our theory is also a
strong-coupling theory, which applies when ¢(co) and £(0) are
very different.

11-13

II. THEORY

We employ an approach based on our earlier work.!>!® The
Hamiltonian includes optical phonons, donors at R; of charge
g > 0, and an electron of charge e < 0, with effective mass
m*, which may be bound to a donor. The optical phonons have
a displacement Q;, with a Szigeti charge e*, which creates a
dipole ¢*Q);.

2 2 1
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where
(i) the interaction between the phonons and the donors is

e*q Z Q;-(R; —R)

V= —
pd 47(00) IR; —R,]?
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(ii) the interaction between the electrons and the optical
phonons is

_ ee* 3 QJ‘ . (R] — Rl — I')
Y = ire(o0) ;/d TOCR R - O

where n(r) is the charge density of an electron bound to the
donor, and which reduces to the usual Frohlich interaction for
electrons in a free-energy band,'” and
(iii) the dipole-dipole interaction between the phonons is
()’
Vop = — ZQ:"@;"Q;, (6)
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The lattice transform of this interaction is'>

Tk =Y e*Rig,(R)), ®)
J#0
, 4 [kuky, 8,
klalgll T/w(k) - _Q_O |: k2 3 :| ) (9)

where € is the volume of the unit cell. We will usually take
the limit of the small wave vector in these expressions.

III. CHARGED DONOR

First, we evaluate the energy of an isolated donor without
an electron nearby. We transform the vibrations to collective
coordinates,

1 R..
Q= N Xk:elR’ Q. (10)

The potential-energy terms for longitudinal-optical (LO)
phonons are

K; . ~
V= ; [TL(k QU+ ik - Qk} : (1)
K, =k 12 ) 12
L=t 3 Qe (12)

The second term in K; comes from the dipole-dipole interac-
tion. The lattice transform of V4 is

Vyg = Q- W SRR (13)
rd 47‘[8(00)«/_2 © kZ
R; 47nk
k-R;
Wk—Ze’ R3 o (14)
Jj#0

where the latter limit is for long wavelength. In this case, the
expression for S is

q ik-R,
- " E 1, 15
P s(oo)kSZO\/N 7 ¢ (15)

The phonon displacements enter as (k - Qx), where the
notation emphasizes that only longitudinal-optical phonons
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are involved. The transverse- (wro) and longitudinal- (@)
optical-phonon frequencies are defined as

, Kr K 1,

=— =—— -, 16
o=y T M 3" (16
K K 2 *)?
wo="E=T 2 =y
M M 3 M Qpe(o0)
The static dielectric function is
a)2
e(0) = e(c0)| 1 + —5— (18)
@70
We complete the square on the interaction in Eq. (11),
v=2rsig Qk+— ——Z|ﬁk|2 (19)
2 5

The last term is the effective interaction between the optical
phonons and the donor due to the phonon polarization,

/__L 2
Vi=-x ; 18| (20)
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For R; # Ry, the wave-vector integral gives the effective
interaction between the two donors,

, q2 “)12 1

Vir = —

. 22
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We combine this term with the direct interaction in Eq. (3) to
find

q° w? 1

Vir = - (23)
471 £(00) wio [IRI =Ry’
2
q 1

Vp=—t 24
"7 4ne(0) IR — Ry @9
L__L |- (25)

e(0)  &(c0) wio |

The latter identity follows directly from Eq. (18). The effective
Coulomb interaction between ionized donors is screened by
the static dielectric function.

The case of [ = I’ gives the energy of a single donor from
the phonon polarization. It has the approximate value of

&k 1 dr 1

ke T anva -~ ma (20
20 ,%\2
VAR, b @7
4ra K e(00)?Q

where a is approximately a lattice constant. An exact expres-
sion for a is given below. This energy term comes from the
polarization induced by a single charged donor, which reduces
its energy.
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IV. ELECTRON BOUND TO DONOR

We repeat the above calculation but include an electron
bound to a donor at R;. We do this calculation of the donor
binding energy using a variational parameter « defined as

3
V() = |~ expl—ar/ag), (28)
wag

n(r) = [y, 29)
where the Bohr radius is given by
2

ag = 4me(oc0) (30)

em*’
and m™* is the band effective mass of the conduction electron.
Larsen' did a similar calculation but omitted the interaction
Vya, which is the term that polarizes the lattice in the absence
of an electron. The inclusion of this important term is crucial
for including all essential interactions. Again, we transform
the vibrations to collective coordinates,

1 R
Q= N zk:elR’ Q. 3D

The potential-energy terms in the limit of long wavelength are

K . A
IEEDY [TL(k- 00 + yik - Qk] : (32)

k

ie* .
= Akag/2 kR 33
Vi 8(oo)mm/ﬁ[cﬁe (kao/ a)];e (33)
1

The first term in y; comes from the donor-phonon interac-
tion, and the second term comes from the electron-phonon
interaction. The donor-phonon interaction is evaluated in
the long-wavelength limit. We complete the square on the

interaction, and also set g = —e,
K. . w1 5
V=— k- + — - — . 35
2 L [ Qx KLi| 3K, Ek 7l (35)

The last term is part of the effective interaction between the
electron and the donor due to the phonon polarization,

1
Vi —— 2, 36
2KL;|yk| (36)
P G k1
T 2K1e(00)2 | ) k2

< [1 = Akag/2e)? Y _ ™ ®i=R0), (37)
174

We evaluate this expression below in several limits. There are
two types of terms. If [ # [/, then it is the phonon-induced
interaction between two neutral donors. If / = [/, then it is the
polaron correction to the binding energy of a single donor.
Note that A(x = 0) = 1 so the integrand vanishes at k = 0.
There is no long-range Coulomb interaction between neutral
donors.
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A. Interactions between donors

First, consider the case of [ # [’ so the expression gives
the phonon-induced interaction energy between two neutral
donors. For the effective mass limit, where the orbit radius
ay covers many lattice constants, we can extend the limit of
integration to infinity. We change to dimensionless variables
x =kay/QRw), y = 2a Ry /ag, and we get

2 2
V// _ € w;
.

L ) 38
Ine(oo)a 2, ) G

x3(2 4 x2)?

(1 +x2)*
The above integral can be evaluated by contour integration. It
gives the term

I1(y) = Jtiy /000 dx sin(xy) 39)

3
eV O
10) =~ > any". (40)

m=0

The interaction decays exponentially, which is typical of
the interaction between neutral-charge distributions when
neglecting correlations.

B. Neutral donor number 1

We evaluate Eq. (37) for the case of [ = I’. We expand the
factor as

(1—-A)P =1-2A+ A" (41)

We evaluate the first term (“1”’) as Eq. (27), so the polarization
energy of the donor is unchanged. The other two terms
contribute to the donor binding energy. In the effective mass
limit, the last two terms are evaluated assuming that the k
integral goes to infinity,

47 *° o 5 1o
— dk[—2A + A% =— 1——|=- .
(2m)3 /(; [ A 2w ag [ 16] 32mayg

(42)

The variational energy for the donor binding is

2 11 a)l2
E(a) = Egyla”™ —2a(l = 1)], A .43

16 w%o
Minimizing with respect to o gives
5 11
w=1—2= >y e (44)
16 16 £(0)
E@) = —Eg,(1 = 2)%. 45)

For weakly bound donors, the dielectric screening is not given
by either €., or £(0). Instead, it is 5/16 of o, and 11/16 of
£(0).

An interesting result is obtained if we neglect A2. In that
case, the total variational energy for the electron bound to the
donor is

h2a? o w?
g(a):2m 5 (1_ ‘ ) (46)

5 4me(oo)ag w7 o
22 ela

(@) = _ .
(@) 2m*al  4mwe(0)ag

(47)
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Varying « gives the minimum,

_ £(00)
w0 [ 8(0)] )
2
E(a) = —Eny [%] . (49)

The donor binding energy is screened by the zero-frequency
dielectric function, which includes the contribution from the
optical phonons. This is the usual form of the SHM, which is
obtained only by neglecting A2. Since neglecting A? is a poor
approximation, the SHM is not accurate.

C. Neutral donor number 2

Here we evaluate the screening corrections to the neutral
donor by a different method, which calculates all energy terms
in real space. This has the advantage of not having to make a
long-wavelength approximation. The final expression should
be more accurate.

The interaction V), is rewritten as

_ e kR
= oo/ o (Z )

x Y e RiQy - Vi, f(R)). (50)
Jj#0
n(r) 1 1 oR
R) = d3 N7 - —2aR/ay 1 ).
FR) / "R=r "R R® *
(51)
When g = —e, the 1/R term cancels V4. The combined terms
give, for yx,
- ee” ik-R; ikR; O
= ——— e e Vg
i (2% 2
e—ZotR/ao
X { 1+ OlR/ao)}
R R=R;
* —2aR;/ay
ee ikR, ikR; p €
= e e IR; ——0
4 e(c0)v/N (Xl: ) ; TR

x (1+2aR;/ag + 20° R /ag).

The next step is to take D [ |?. There is a double sum over
(7,j)). When [ = I’, the summation over k forces R; =R;.
The final answer for [ = [’ is

ez(e*)z 4R, /ay

4
R;

V// - _
pp 2

2K [4me(00)P o

x (1+2aR;/ag+22°R2[a2)’.  (52)

This answer is only slightly different than case number 1. The
summation over R; converges to a finite value. There is no
ionized donor energy as in Eq. (27). That is sensible, since
the neutral donor should not attract long-range polarization.
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We rewrite the above expression using the nearest-neighbor
distance d as a unit of length,

2

w: Ay
v/ = _ER),—’—F(ad/ao), (53)
r wio d
Q d —4(1R//a0
F(ad/ag) = % 6—4
Tia &

x (14 2aR;/ag +2¢°R2Jad)’.  (54)
An important result is the screening energy of the ionized
donor, which is found by setting ag = oo,
V/ _ 62 (e*)2
8me(oo)d | e(00)K Q2
This formula is exact and is an improvement to Eq. (27). For the
fcc lattice, F(0) = 1.425780 using Ewald methods, which are

described in the Appendix. By comparing the two expressions,
we determine that

} F(0). (55)

V2
a
F(0)

The energy of the ionized donor must be subtracted from the
result of Eq. (53), which gives the final donor binding energy,

=0.992a. (56)

a =

E(a) = Epyle® — 2a — n[F(ad/ag) — F(O)l},  (57)
(e*)*ao ap w}

1= fc0)KidQe  dwly,

For a given crystal structure, F(x) is a function of x = ad/ay.

The self-consistent variational equation for the coupling
constant g at minimum energy is

(58)

w?
ap =1+ iTlF/(x)x:agd/aov (59)
)
where F'(x) =dF/dx < 0.
For many semiconductors, the value of x is small, and it is
adequate to take the limit of small x,

F(x) — F(0) = xF'(0) + O(x°). (60)

Using Ewald methods, we show for the fcc lattice that
F’(0) = —11/8, which makes Eq. (57) identical to Eq. (43).
The derivation in the Appendix suggests that this result
[F'(0) = —11/8] is valid for all lattices. For weakly bound
donors, our two derivations give the same result. Equations
(57) and (59) are useful for materials with larger values of x.

D. Atomic limit for donor

One case is when the donor is tightly bound, so that
d/ay > 1. Even then, the term F(x) is not small and cannot be
neglected. For example, F'(1) = 0.35.

E. Ferroelectrics

Many ferroelectrics have the feature in which as one
nears the transition temperature 7., £(0) diverges, while £(c0)
remains constant. This is the result of wr o going to zero, while
wro remains constant. In our first model, as wro — 0, then
wro — ;. The donor binding energy does not vanish, but is
given by Egy(5/16)* ~ 0.1E,.
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V. FCC LATTICE

We present some calculations for the fcc lattice, where d =
a//2 and Qo = a’ /4 = d°/~/2. We discuss the evaluation of
the function F(x), in Eq. (54), and its derivative F'(x),

Qod —4xR;/d
F)y=-223"5 " [142xR;/d + 24%(R; /)P
4 4 R
J#0 j
(61)

We define the summation variable as y; = R;/d, which starts
out as one for the 12 nearest neighbors,

Fa) = — i?(1+2xy,-+2x2y§)2. (62)
4”\6#0 j

One way to evaluate Eq. (62) is to sum all neighbors out to a
distance y,. However, the expression converges very slowly for
small values of x. We performed the computer summations out
to a distance y, and noticed that they seem to scale as —1/y;.
We did a least-squares fit to the expression F'(0) = C — B/yy,
which gave C = 1.425781, which is very close to the Ewald
result. Using Ewald methods in the Appendix, we obtain the
same value.
A similar process determines F’(x):

8x e~

2
471«/5; Yj

F'(x)= — (14 2xy; +2x%y7).  (63)

Using Ewald methods, we found the exact expression F’(0) =
—11/8. In the Appendix, we derive the next terms in the power
series in x,

F(x) = F(0) — %x + §x3 + 0@xh), (64)
where B = 1.4595. With these values, we constructed the
graph of F(x) shown in Fig. 1.

The eigenvalue equation (59) involves the function F’(x),
which we have evaluated from Eq. (63). For fitting purposes,
it is useful to have an analytic function that approximates

| | | | | | | |
. : I RO ]
o

'F'(o)'—?(n/'iS) 373‘:—&—(31/3) :53 N}

1.4

’
’ e -

1.2

1.0
20.8
3
0.6
0.4F

0.2

N i i i ]
0.0 0 12 14 16 18 20

x

FIG. 1. (Color online) F(x) for the fcc lattice. The lower dashed
curve shows the two first terms of the expansion in x, while the upper
curve shows the results of the first four terms in x.
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TABLE 1. Donor binding energies in meV. Only cubic crystals
are included. Data from Ref. 18.

Ep Ep Ep
Crystal — m* e(o0) €(0) Eg, (SHM) (Theory) (Expt.)
GaAs 0.0665 10.9 12.5 7.6 5.8 63 5859
GaSb  0.0396 144 15.7 2.6 2.3 2.4

InP 0.079 96 126 117 6.8 8.2 7.1
InAs  0.023 1225 15.15 2.1 1.4 1.6

InSb  0.0145 15.68 17.5 0.80  0.60 0.69 0.7
ZnS 0.27 52 89 136 46 69 30
ZnSe 0.16 6.0 88 604 281 36.9 25-29
ZnTe 0.12 7.3 10.0 30.6 16.3 20.3 18.3
CdTe 0.09 74 106 223 10.9 14.0 22.0
MgO 035 30 99 313 48.6 113

CaO  0.50 3.1 121 708 69 248 3100
SrO 0.54 3.5 162 600 191 401 2600
BaO  0.59 3.56 374 633 147 394 2000

these numerical values. The following expression is accurate
to 0(0.3%):

Foo) ~ _24x2 [e_4x(1 +2x +2x2) . e—1.3$x] + Bxle &
n\/z
11 —tx 1 2
— 35 1+$x+§($x) , (65)

where B is defined above, and the fitting parameter is & =
5.09490. The first term on the right is the asymptotic limit
from the nearest-neighbor contribution in Eq. (63).

We have used our theory to calculate the donor binding
energies in several crystals, as shown in Table I. The data are
from Landolt-Bérnstein.'® Only cubic crystals are included,
and only those whose conduction-band minimum is at the
center of the Brillouin zone, so the effective mass is isotropic.
For the oxides, the binding is sufficiently large that we solved
Eq. (59) self-consistently. This gives a much larger binding
energy compared to the SHM. Both our theory and the SHM
are poor for the oxides, since electrons are too tightly bound
for effective mass theory to be valid. We show these results
only to demonstrate that for large values of x, our theory is
different than the SHM.

As stated in Sec. I, we regard our theory as a strong-coupling
result, which is valid when the two dielectric functions [&(c0)
and £(0)] are very different. This is not the case for most I1I-V
semiconductors, and our theory does not do well for these
materials. However, we expect our theory to apply quite well
to the II-VI semiconductors, which are generally more polar
than the III-V semiconductors. Table I shows our theory does
relatively well for these materials.

VI. DISCUSSION

We have evaluated the polaron corrections to the binding
energy of electrons to donors. We include the following
interactions: electron-phonon, donor-phonon, and phonon-
phonon. Two variational calculations gave identical results
in the limit of a small binding energy. For the case of a large
binding energy, one method is exact but gives an equation for
the variational parameter that must be solved self-consistently.
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Most textbooks give the donor binding energy as

e4m

2[4 e(0)2R2
where m is the band effective mass of the electron and £(0) is

the static dielectric function. We get a different expression,
4

(66)

E e'm
P dlamern @7
! = > + - (68)
g 16g(c0)  16¢(0)

which includes both dielectric constants [£(oo) £(0)]. The
effective Bohr radius is @y = 47& h?/me*. We expect our
theory applies in the strong-coupling limit, when e(co) and
£(0) are very different.

There is also the question of whether the effective mass
m* includes polaron corrections or is just the bare band mass.
In our theory, it is the bare band mass. The above equation
applies only to the case of Ep < hwpo. For materials with
larger binding energies, one must solve a nonlinear equation
to determine the parameters of the binding energy. We used
our theory to calculate the donor binding energy of several
materials with the fcc crystal structure.

One might consider a similar calculation for the electronic
polaron effects: the terms that make e(oco) differ from &.
Here one would start with a bare interaction, screened by the
vacuum dielectric constant &y, and consider how the electronic
screening changes the donor binding energy. That is a different
calculation than we have done here, since the electronic
screening is in different places in the crystal. For the oxides,
and other ionic crystals, the electronic polarization resides
mostly with the anions.!® However, for covalent materials, it
resides in the bonds between ions.
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APPENDIX: EWALD SUMMATION

The functions F(x),F’(x) are evaluated using an Ewald
method.”’ We start with an evaluation of F(0) since it is easy:

Qod 1 Qod
F(0) = ‘;T ZR4: 0 Z/ dirde "R (AD)
J#0
= Fp + Fg, (A2)
Qod o0
Fp = 2%2/}1 ditde K]
J#0
Qod 1
= = URY 1+ (R, (A3)
TR
Qod
Fr =2—°Z/ dit3e % (A4)

where n = C/d. The term F; we leave as is, since it converges
rapidly in real space. The term Ff is changed to a summation
over reciprocal lattice vectors by creating a periodic function
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TABLE II. Ewald summation for F(0).

C Fy Fr F

0.7 0.812176 0.613604 1.425780
0.9 0.646635 0.779145 1.425780
1.1 0.492121 0.933659 1.425780
1.3 0.353968 1.071812 1.425780

of position r,

Vr(r) = 22 f ditde ' ®R;—r? Zv(G)eiG'f, (A5)

/ 3dt/d3r€_lGr —1%r2

v(G) =

3/2 3/2 2n/G
v(G) = 2 f dte= G4 — ﬂ f ! dse™ 115,
Qo Jo o Jo
(A7)
Qod [273/2
Fp = 4; [ T3 w6 - —] (A8)

G0

The first term in Fp is the v(0), and the last term is from the
subtraction of the R; = 0 term from V(0). Table II shows the
separate contributions as a function of C. The final result is
independent of C, which is a good way to check the computer
code.

Next, we determine F’(0) starting from Eq. (63). Since the
prefactor is proportional to x2, we must take the limit of x — 0
with some care. We use Ewald’s method with an exponential,

1 o " 0
— :/ dte i :/ dte™"i —i—/ dte i, (A9)
Yj 0 0 n

e Vi)
Fi(x) = Z (1+2xy; + 2x2y12-),
17&0 Vi
(A10)
Fpx)=— «/_/ dtZe_y/(4x+’) 1+ 2xy; +2x%y )
Jj#0
(A11)

The lattice sum vanishes at x = 0 : F; (0) = 0. We evaluate
Fy(x) by constructing a periodic function of r and then
determining its Fourier coefficient,

V() = ) e WIS 4 0xly; — x| + 207y, — 1)’
— ZeiG-rv(G)’
G
1
v(G) = Q—/d3rexp[—iG T —r(dx +1)]
y
x [1 4+ 2xr + 2x%r2), (A12)
372 — G?
2 - G?
+ 24x T(-L-2_|_—GZ)4:|’ (A13)
T =4x +1. (A14)
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The result for F'(0) comes from the term with G = 0. This integral is easy to evaluate:

1 6 24x2
v(0) = 872 [—3 o+ T } , (ALS)
T T T
fﬂdt (0) = 872 Lt ! +2 ! ! + 6x2 ! ! (A16)
v(0) = 8x = - — — .
A 2\16x2  @x+n2) " T \@xp T @) 0 NGt T @x )
The terms in the above equation, which are proportional to O(x~2), give the limit as x — 0,
FOy=-%@1+1+3)=-4 (A17)
One can also use the Ewald sum to find the first nonzero term in x, which is
/ 11 2 3
Fi(x) = Y + Bx" + O(x”), (A18)
V2 e Vil 8 8n n?
B=—— + =4+ —F-=-28 —_ (A19)
™ 2 yi m 4nv2 2 G*(G* + %)

J#0
which gives B = 1.4595 + 0.0001.
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