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ABSTRACT 

 
This paper considers the downlink resource allocation of a 
coordinated multi-cell cluster in OFDMA systems with 
universal frequency reuse. Multi-cell joint transmission is 
considered via zero-forcing precoding. Furthermore, joint 
optimization of the user selection and power allocation 
across multiple subchannels and multiple cells is studied. 
The objective is to maximize the weighted sum rate under 
per-base-station power constraints. Based on general duality 
theory, two iterative resource allocation algorithms are 
proposed and compared with the optimal solution, which 
requires an exhaustive search of all possible combinations of 
users over all subchannels. Simulation results show that the 
two proposed algorithms achieve a performance very close to 
the optimal, with much lower computational complexity. In 
addition, we show that joint user set selection across multiple 
subchannels significantly improves the system performance 
in terms of the weighted sum rate.     

Index Terms—OFDMA, scheduling, power control, 
multi-cell joint transmission, base-station coordination 
  

1. INTRODUCTION 
  
Recently, multi-cell joint transmission has been considered 
as a promising technique to mitigate inter-cell interference 
(ICI) and improve the spectrum efficiency in wireless 
communication systems [1-2]. In this approach, multiple 
base stations (BSs) are inter-connected via a high-speed 
backhaul, so that both data and channel state information 
(CSI) of all users can be shared among the coordinated BSs. 
The ICI is then reduced by using the signals transmitted from 
other BSs to assist the transmission instead of acting as 
interference.  

Many existing works have addressed the resource 
allocation problem with multi-cell joint transmission by 
assuming a narrow-band channel [3]-[5]. With the objective 
of maximizing the weighted sum rate, two power allocation          
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schemes based on waterfilling distribution are proposed in [3] 
with block-diagonalization (BD) joint transmission subject to 
per-BS or per-antenna transmit power constraints. In [4], a 
closed-form expression for the optimal BD precoding matrix 
is derived, which specifies both the transmit beamforming 
vectors and power allocation for different beams. It has been 
shown in [3]-[4] that maximizing the weighted sum rate of a 
given user set under per-BS or per-antenna power constraints 
is a convex problem, if the total number of receive antennas 
is less than or equal to the total number of transmit antennas. 
In more practical cases, the total number of users in the 
system could be very large such that the above condition 
does not hold. In order to determine the set of users to be 
served simultaneously, different joint user selection and 
power allocation algorithms are proposed in [5]. 

LTE-based systems will adopt OFDMA as the downlink 
access technology. With a frequency-selective fading 
channel, OFDMA adds another dimension in the design of 
the resource allocation scheme, and the optimization problem 
is non-convex in general. Thus, the algorithms proposed in 
[3]-[5] may not be suitable for the multiple subchannels case. 
The optimal resource allocation solution for OFDMA 
systems with multi-cell joint transmission requires an 
exhaustive search over all possible combinations of users for 
each subchannel. In addition, the power allocation needs to 
be optimized over multiple subchannels. Hence, the 
computational complexity for obtaining the optimal solution 
would be prohibitively high. A recent study that considers 
resource allocation with BS coordination for OFDMA 
systems can be found in [6], wherein an iterative resource 
allocation algorithm is proposed by assuming that each user 
is served by only one BS, but the linear beam-vectors across 
a set of coordinated BSs are jointly designed. Note that this 
solution assumes coordinated beamforming, meaning that 
multi-cell joint transmission is not allowed. Other related 
works are [7] and [8], which consider multi-cell linear joint 
transmission under per-BS or per-subchannel power 
constraints. In [7] and [8], different power allocation 
schemes are presented by restricting an identical user set to 
be scheduled for all subchannels. Hence, the scheduling gain 
in the frequency domain cannot be fully utilized. 

In this paper, the downlink resource allocation problem 
is addressed for a cluster of coordinated BSs in an OFDMA 
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system. Joint transmission is provided for the cell-edge users 
via zero-forcing precoding. With the objective of 
maximizing the weighted sum rate under per-BS power 
constraints, jointly optimizing the scheduled users and the 
transmit power across multiple subchannels and multiple 
BSs is studied. Motivated by the general duality theory 
proposed in [9], an iterative algorithm is proposed based on 
dual decomposition, which decomposes the optimization 
problem into several independent per-subchannel opti-
mization subproblems. In order to further reduce the 
complexity of finding the optimal set of scheduled users for 
each subchannel, a low complexity algorithm is then 
proposed based on greedy user selection. Simulation results 
show that the two proposed algorithms achieve a perfor-
mance very close to the optimal, with reduced computational 
complexity. Finally, compared with the algorithms proposed 
in [7] and [8], we show that joint optimization of the user 
scheduling across multiple subchannels provides a large 
weighted sum rate gain. 
     

2. SYSTEM MODEL AND PROBLEM 
FORMULATION 

 
Consider the downlink of a cluster with 𝑁 coordinated BSs 
and 𝑀 users in a multi-cell OFDMA system. The BSs and 
the users are assumed to have one transmit antenna and one 
receive antenna, respectively. The system bandwidth is 𝐵 , 
which is divided into 𝐾  subchannels. The frequency reuse 
factor is one, i.e., each BS uses all the 𝐾 subchannels during 
each time slot. The BSs in the cluster share both data and 
perfect CSI of all users, then they can act as a single antenna 
array and provide joint transmission to a subset of the 𝑀 
users 𝑆(𝑘) ⊆ {1, … ,𝑀}  using the same subchannel 𝑘. 
Assuming that the interference from neighboring cells 
outside the cluster is effectively removed, the discrete-time 
received signal at the scheduled user 𝑚 ∈ 𝑆(𝑘)  on sub-
channel 𝑘 is 

𝑦𝑚𝑘 = 𝐡𝑚𝑘 𝐱𝑘 + 𝑛𝑚 
𝑘 ,                            (1) 

where 𝐡𝑚𝑘 = [ℎ𝑚1𝑘 , … , ℎ𝑚𝑁𝑘 ] denotes the channel vector of the 
user 𝑚  on subchannel 𝑘 . 𝐱𝑘 = [𝑥1𝑘, … , 𝑥𝑁𝑘]𝑇  is the signal 
vector transmitted from all the 𝑁 BSs on subchannel 𝑘, and 
𝑛𝑚𝑘  is the additive white Gaussian noise (AWGN) at user 𝑚  
on subchannel 𝑘  with covariance 𝜎𝑚2 .  By using linear pre-
coding, the transmit signal vector  𝐱𝑘 can be expressed as 

𝐱𝑘 = 𝐖𝑘𝐛𝑘,                              (2) 
where 𝐛𝑘 ∈ ℂ|𝑆(𝑘)|  is the data symbols of the users in set 
 𝑆(𝑘) on subchannel 𝑘. 𝐖𝑘 ∈ ℂ𝑁×|𝑆(𝑘)|  is the beamforming 
matrix used to map the user data symbols to the transmit 
signals. |𝑆(𝑘)|denotes the cardinality of the set 𝑆(𝑘). Assume 
|𝑆(𝑘)| ≤ 𝑁.  Let 𝐰𝑚

𝑘 = [𝑤1𝑚𝑘 , … ,𝑤𝑁𝑚𝑘 ]𝑇 denote the beam-
forming vector for user 𝑚 from the 𝑁 BSs on subchannel 𝑘, 
which is a column vector of  𝐖𝑘. Using zero-forcing beam-
forming among the coordinated 𝑁 BSs, the precoding matrix 
is designed such that 

𝐡𝑚𝑘 𝐰𝑗𝑘 = �0, 𝑗 ≠ 𝑚
1, 𝑗 = 𝑚

� , 𝑚, 𝑗 ∈ 𝑆(𝑘).           (3) 

Then, (1) becomes 𝑦𝑚𝑘 = 𝑏𝑚𝑘 + 𝑛𝑚𝑘 . Thus, the data rate of the 
user 𝑚 on subchannel 𝑘 is given by 

𝑟𝑚𝑘 = 𝐵/𝐾 × log2(1 + 𝑝𝑚𝑘 /𝜎𝑚2 ),              (4) 
where 𝐵/𝐾 is the bandwidth of each subchannel. 𝑝𝑚𝑘 =E[|𝑏𝑚𝑘 |2] 
is the symbol power allocated to the user  𝑚 from all the 𝑁 
BSs on subchannel 𝑘. According to (2), the transmit power 
of BS 𝑛 on subchannel 𝑘 can be derived as 

𝑃nk = ∑ |𝑤𝑛𝑚𝑘 |2𝑚∈𝑆(𝑘) 𝑝𝑚𝑘 .                    (5) 
Assume each BS 𝑛 has a maximum transmit power constraint 
as 𝑃𝑚𝑎𝑥 . Hence, ∑ 𝑃𝑛𝑘𝐾

𝑘=1 ≤ 𝑃𝑚𝑎𝑥  for all 𝑛.  For any given 
time slot, the coordinated 𝑁 BSs need to jointly determine 
the set of selected users for each subchannel, and the symbol 
power allocated to each selected user, i.e., 𝑆(𝑘)  and 𝑝𝑚𝑘  for 
all 𝑘 and 𝑚, so as to maximize the weighted sum rate under 
per-BS power constraints. The resource allocation optimization 
problem can be formulated as     

max ∑ ∑ α𝑚𝑟𝑚𝑘𝑚∈𝑆(𝑘)
𝐾
𝑘=1                                    

𝑠. 𝑡.  1)∑ ∑ |𝑤𝑛𝑚𝑘 |2𝑚∈𝑆(𝑘) 𝑝𝑚𝑘 ≤ 𝑃𝑚𝑎𝑥 , ∀𝑛,𝐾
𝑘=1

2)𝑝𝑚𝑘 ≥ 0,∀𝑚 and ∀𝑘,                       
3)|𝑆(𝑘)| ≤ 𝑁,∀𝑘,                               
4)𝑆(𝑘) ⊆ {1, … ,𝑀},∀𝑘.                    

         (6) 

    
Constraints 3) and 4) guarantee that at most  𝑁  users are 
assigned to each subchannel. Note that there is no constraint 
on the number of subchannels to be allocated to a user set. 
α𝑚 denotes the weight assigned to user 𝑚. The weights can 
be seen as the priorities of different users, which is related to 
the quality of the requested service. If α𝑚=1 for all 𝑚, the 
objective function in (6) becomes maximizing the system 
sum rate, which is measured in bps/Hz. If α𝑚 is updated over 
time as a natural logarithm of the user 𝑚's average data rate 
at the previous time slot, the objective becomes to maintain 
proportional fairness among users [10]. The user weights 
design is outside the scope of this paper. Given a set of channel 
vectors {𝐡𝑚𝑘 }  and user weights {α𝑚} , for 𝑘 = 1, … ,𝐾 and 
𝑚 = 1, … ,𝑀 , the objective is to find the solution of (6). 
Although our analysis is general, the performance   will be 
illustrated for equal user weights, i.e., the case α𝑚 = 1 for all 
𝑚 will be considered in section 5, Simulation Results. 
    

3. JOINT RESOURCE ALLOCATION 
    
Assume that the scheduled user set on each subchannel is 
predetermined and feasible, i.e., for each subchannel 𝑘, 𝑆(𝑘) 
is given and satisfies the constraints 3) and 4). Then, problem 
(6) becomes a joint power allocation problem, which is 
convex since the objective function becomes concave and the 
remaining constraints 1) and 2) are linear. Therefore, it can 
be solved via standard convex optimization techniques. 
However, in general, problem (6) is not a convex 
optimization problem since it needs to find the optimal 
scheduled user set for each subchannel, which is a 
combinatorial problem. Specifically, let 𝕊 denote the set of 



all feasible user sets per subchannel, i.e., 𝕊 = {𝑆(𝑘)|𝑆(𝑘) ⊆
{1, … ,𝑀}, |𝑆(𝑘) | ≤ 𝑁} . Then, the number of user sets to 
consider for each subchannel is |𝕊| = ∑ 𝑀!

(𝑀−𝑖)!𝑖!
𝑁
𝑖=1 = 𝒪(𝑀𝑁). 

With 𝐾 subchannels in total, we need to roughly search over 
𝒪(𝑀𝑁𝐾) user set combinations, and the optimal power 
allocation of problem (6) needs to be solved for each 
combination. The complexity of this exhaustive search for 
the optimal solution is unacceptably high for a cluster with 
large number of BSs 𝑁 and large number of subchannels 𝐾. 
In this section, we firstly introduce a general duality theory 
[9] for non-convex optimization problems in multi- 
subchannel systems. Then, a joint resource allocation algo-
rithm is developed via dual decomposition, which achieves a 
solution close to the optimal with lower complexity. 
    
3.1. General duality theory 
     
In general, with 𝑁 BSs, 𝐾 subchannels and 𝑀 users, the opti-
mization problem in OFDMA systems can be written as 

max∑ 𝑓𝑘𝐾
𝑘=1 (𝐱𝑘)   s. t.∑ 𝐠𝑘𝐾

𝑘=1 (𝐱𝑘) ≼ 𝐏          (7) 
where 𝐱𝑘 ∈ ℝ𝑀  are vectors of optimization variables, 𝑓𝑘(∙)  
are ℝ𝑀 → ℝ functions that are not necessarily concave, 𝐠𝑘(∙) 
are ℝ𝑀 → ℝ𝑁 functions that are not necessarily convex, and 
𝑷 ∈ ℝ𝑁 is a vector of power constraints. The Lagrangian of 
(7) is 𝐿(𝐱𝑘,𝝀) =∑ 𝑓𝑘𝐾

𝑘=1 (𝐱𝑘) + 𝝀𝑇 �𝐏 − ∑ 𝐠𝑘𝐾
𝑘=1 (𝐱𝑘)�, where 𝝀 

is the vector of dual variables. The dual objective of (7) is 
defined as an unconstrained maximization of the Lagrangian, 
denoted by 𝑔(𝝀) = max𝐱𝑘 𝐿(𝐱𝑘,𝝀). Then, the dual optima-
zation problem is 

min 𝑔(𝝀)   s. t.𝝀 ≥ 𝟎.                       (8) 
The solution of the dual problem (8) provides an upper 
bound of the solution of the primal problem (7). The duality 
gap is defined as the difference between the upper bound and 
the optimal value of the primal problem. If (7) is a convex 
optimization problem, zero duality gap is guaranteed. When 
the convexity does not hold, the upper bound is not always 
tight. However, even if the primal problem is non-convex, 
the duality gap is still zero if the optimal ∑ 𝑓𝑘𝐾

𝑘=1  is a 
concave function in 𝐏, and this condition is always satisfied 
when the number of subchannels goes to infinity [9]. 
       
3.2. Joint resource allocation algorithm 
      
Based on general duality theory, dual decomposition is used 
to solve (6) and to derive the joint resource allocation (JRA) 
algorithm. Let 𝐩𝑘 = [𝑝1𝑘, … , 𝑝𝑀𝑘 ]𝑇denote the symbol power 
allocation vector on subchannel 𝑘. Recall that 𝕊  denotes the 
set of all feasible user sets per subchannel satisfying 
constraints 3) and 4) of (6). Consider the feasible domain, 
where 𝑆(𝑘) ∈ 𝕊  for all 𝑘, the Lagrangian of (6) is 
𝐿(𝐩𝑘,𝝀) =∑ ∑ α𝑚𝑟𝑚𝑘𝑚∈𝑆(𝑘)

𝐾
𝑘=1                                            

+∑ 𝜆𝑛𝑁
𝑛=1 �𝑃𝑚𝑎𝑥 − ∑ ∑ |𝑤𝑛𝑚𝑘 |2𝑚∈𝑆(𝑘) 𝑝𝑚𝑘𝐾

𝑘=1 �.
 (9) 

Then, the dual objective function is given by 

  
𝑔(𝝀) = max𝑆(𝑘)∈𝕊 𝐿(𝐩𝑘,𝝀)                 

= ∑ 𝑔𝑘(𝝀)𝐾
𝑘=1 + ∑ 𝜆𝑛𝑃𝑚𝑎𝑥𝑁

𝑛=1 ,
             (10)  

where 

         
𝑔𝑘(𝝀) = max𝑆(𝑘)∈𝕊{∑ α𝑚𝑟𝑚𝑘𝑚∈𝑆(𝑘)      

−  ∑ ∑ 𝜆𝑛|𝑤𝑛𝑚𝑘 |2𝑚∈𝑆(𝑘) 𝑝𝑚𝑘 }.𝑁
𝑛=1

        (11) 

Hence, the dual objective function is decomposed into 𝐾 
independent per-subchannel optimization problems. Assume 
𝝀 is fixed and the user set 𝑆(𝑘)  is selected on subchannel 𝑘. 
Then, 𝑔𝑘(𝝀) is a concave function of 𝑝𝑚𝑘 , and the value of 
𝑝𝑚𝑘  that maximizes 𝑔𝑘(𝝀) can be derived by 

 𝑝𝑚𝑘 = [𝑢𝑚 − 𝜎𝑚2 ]+,𝑚 ∈ 𝑆(𝑘),                     (12) 
where 𝑢𝑚 = α𝑚𝐵/(𝐾 ln 2 ∙ ∑ 𝜆𝑛|𝑤𝑛𝑚𝑘 |2𝑁

𝑛=1 )  and [𝑎]+ =
max(𝑎, 0). Substituting (12) into (11),  𝑔𝑘(𝝀) can be obtained 
by selecting the optimal user set 𝑆(𝑘)∗ from 𝕊. After solving 
(11) for all 𝑘, the dual objective function  𝑔(𝝀) is derived by 
(10). Hence, the complexity for finding the optimal user sets 
for all subchannels is reduced to 𝒪(𝑀𝑁 ∙ 𝐾), which is linear 
in 𝐾. 

Based on the general duality theory, as the number of 
subchannels goes to infinity, the solution of the optimization 
problem (6) is the same as the minimal value of 𝑔(𝝀). In this 
work, the optimal 𝝀∗  that minimizes 𝑔(𝝀) is found via the 
subgradient-based dual update method. Let 𝝀(𝑙)  denote the 
updated dual vector on iteration 𝑙. A subgradient of 𝑔(𝝀(𝑙)), 
denoted by 𝐝 ∈ ℝN, can be found as [9] 

𝑑𝑛 = 𝑃𝑚𝑎𝑥 − ∑ ∑ |𝑤𝑛𝑚𝑘 |2𝑚∈𝑆(𝑘)∗
𝐾
𝑘=1 𝑝𝑚𝑘 ∗,∀𝑛,   (13) 

where 𝑆(𝑘)∗𝑎nd 𝑝𝑚𝑘 ∗ are the optimizing variables obtained in 
the maximization problem (11) with respect to 𝝀(𝑙). Hence, 
an efficient dual-update method can be performed by simul-
taneously updating all dual variables along the subgradient 
direction [9], 

𝝀(𝑙+1) = [𝝀(𝑙) − 𝑡(𝑙)𝐝]+,                 (14) 
where 𝑙 is the iteration number. 𝑡(𝑙) is the step size on 
iteration 𝑙 , which can be chosen as 𝑡(𝑙) = 𝛽/√𝑙  for some 
constant 𝛽 and is guaranteed to converge to the optimal dual 
solution. Finding the optimal dual solution has a polynomial 
complexity in the dimension of 𝝀, which is the number of 
coordinated BSs.  

Zero duality gap can be guaranteed only when the 
number of subchannels in the system goes to infinity. For a 
practical system with finite number of subchannels, the 
derived optimal dual solution may not be globally optimal. 
However, the simulation results show that the achieved dual 
solution is very close to the global solution of the primal 
problem, which requires an exhaustive search over all 
possible combinations of users with complexity of 𝒪(𝑀𝑁𝐾). 

The JRA algorithm is summarized in Algorithm 1. 
Notice that the scheduled user set 𝑆(𝑘)∗  can change when 
updating 𝝀, leading to discontinuity of 𝑝𝑚𝑘 . In this case, the 
subgradient-based search may converge to a solution, where 
the transmit power constraint is not satisfied for each BS. 
However, with the achieved user set selection 𝑆(𝑘)∗ for each 
subchannel 𝑘, the problem (6) becomes convex. Therefore, 
in Step 2, similar to [2], the power allocation to these selected 
user sets can be redesigned based on waterfilling distribution 
so that per-BS power constraints are satisfied. 



Algorithm 1 Joint resource allocation (JRA) 
Step 1 Joint scheduling and power allocation 
1: 𝑙 = 0; Initialize 𝝀𝑙, 𝑃𝑚𝑎𝑥, min_value. 
2: repeat 
3:   for 𝑘 = 1 ∶ 𝐾 
4:   For each feasible user set 𝑆(𝑘) (|𝑆(𝑘)| ≤ 𝑁), obtain 𝑝𝑚𝑘  by (12) 
5:  Compute 𝑔𝑘(𝝀(𝑙)) by (11), obtain the corresponding 𝑆(𝑘)∗, 𝑝𝑚𝑘

∗ 
6:   end for 
7:   Compute 𝑔(𝝀(𝑙)) using (10) 
8:   Compute the subgradient 𝐝 using (13) 
9:   Update dual variables 𝝀 using (14),  𝑙 = 𝑙 +1 
10: until �𝑔(𝝀(𝑙)) − 𝑔(𝝀(𝑙−1))� ≤ min_value or 𝑙 > 𝑙𝑚𝑎𝑥 
After Step 1, subchannel 𝑘 is assigned to user set 𝑆(𝑘)∗. 
Step 2 Power redistribution 
1: Redistribute power to the selected user group 𝑆(𝑘)∗ for all 𝑘 
based on waterfilling power allocation. 

     
4. LOW COMPLEXITY ALGORITHM 

      
As shown in Section 3, for each iteration 𝑙 , solving per-
subchannel optimization subproblem still requires an 
exhaustive search to find the optimal scheduled user set 
𝑆(𝑘)∗  from 𝕊 , i.e., line 4 in Step 1 of Algorithm 1. This 
exhaustive search for each subchannel has a complexity of 
𝒪(𝑀𝑁). For a cluster with a large number of coordinated BSs 
and users, the proposed Algorithm 1, is still prohibitively complex. 

In this section, similar to [5] a low-complexity greedy 
algorithm is proposed to select 𝑆(𝑘)∗ and compute 𝑔𝑘(𝝀(𝑙)), 
𝑝𝑚𝑘 ∗ for each per-subchannel optimization subproblem. The 
low-complexity joint resource allocation (LC-JRA) 
algorithm is successively performed by selecting the best 
user with the largest 𝑔𝑘(𝝀(𝑙))  in (11), and then iteratively 
adds a new user from the remaining users until adding one 
more user reduces the value of 𝑔𝑘(𝝀(𝑙))  or the number of 
selected users equals to the number of BSs. Compared to [5], 
instead of using weighted sum rate, the user selection is 
performed based on 𝑔𝑘(𝝀(𝑙)) , which also takes the power 
consumption of the selected users into account. Algorithm 2 
lists the per-subchannel scheduling and power allocation 
procedure (line 4 and 5 of Step 1 shown in Algorithm 1) for 
the proposed LC-JRA algorithm. Note that 𝑆(𝑘)∗ ∪ {𝑚}  
denotes the union of the user set  𝑆(𝑘)∗ and the user 𝑚. 

Algorithm 2 requires at most 𝑁 iterations, and the opti-
mization problem in line 4 of Algorithm 2 is solved with 
complexity 𝒪(𝑀) in each iteration. Hence, the complexity of 
the per-subchannel optimization subproblem is further 
reduced to 𝒪(𝑀𝑁). The remaining of the LC-JRA algorithm 
is the same as Algorithm 1. 
     

5. SIMULATION RESULTS 
     
As depicted in Figure 1, we consider the downlink of an 
OFDMA cellular system, where a cluster of two coordinated 
BSs simultaneously transmit on multiple subchannels. The 
system bandwidth is 𝐵 =1 MHz. The cell radius 𝑅 is 1km. 
The path loss model is 𝑃𝐿(𝑑) = 128.1 + 37.6 log10(𝑑)  in 
dB, with 𝑑 in km. Shadowing is log-norm distributed with 
zero mean and standard deviation 8. The fast fading for the 

Algorithm 2 Per-subchannel scheduling and power allocation 
1: Initialize 𝑆(𝑘)∗ = 𝜙; 𝑗 =  0; 𝑔𝑘

(𝑗)(𝝀(𝑙)) = 0; 𝑝𝑚
𝑘(𝑗) = 0, ∀𝑚. 

2: while |𝑆(𝑘)∗ < 𝑁| 
3:   𝑗 = 𝑗 + 1 
4:  �𝑔𝑘

(j)�𝝀(𝑙)�,𝑚∗, 𝑝𝑚
𝑘(𝑗)� = max𝑚 �∑ α𝑖𝑟𝑖𝑘 −𝑖∈𝑆(𝑘)∗∪{𝑚}

                                                           ∑ ∑ 𝜆𝑛
(𝑙)�𝑤𝑛𝑖𝑘 �

2
𝑖∈𝑆(𝑘)∗∪{𝑚} 𝑝𝑖𝑘𝑁

𝑛=1 � 
5:   if 𝑔𝑘

(𝑗)�𝝀(𝑙)� ≤ 𝑔𝑘
(𝑗−1)�𝝀(𝑙)� 

6:       𝑔𝑘�𝝀(𝑙)� = 𝑔𝑘
(𝑗−1)�𝝀(𝑙)�, 𝑝𝑚𝑘

∗ = 𝑝𝑚
𝑘(𝑗−1), break 

7:   else 
8:       𝑔𝑘�𝝀(𝑙)� = 𝑔𝑘

(𝑗)�𝝀(𝑙)�, 𝑝𝑚𝑘
∗ = 𝑝𝑚

𝑘(𝑗), 𝑆(𝑘)∗ = 𝑆(𝑘)∗ ∪ {𝑚∗} 
9:   end if 
10:end while 

     
subchannels is independently Rayleigh distributed. The 
AWGN power is -135dBW. Cell-edge SNR, denoted as γ, is 
defined to be the received SNR at the boundary of the cell, 
assuming full power transmission 𝑃𝑚𝑎𝑥  from the BS, 
accounting for only pathloss gain 𝑃𝐿(𝑅) and ignoring 
shadowing and Raleigh fading. The users are randomly 
dropped in the cell-edge area with equal weights, i.e., 
α𝑚 = 1  for all 𝑚.  The sum rate is averaged over 1000 
independent locations of the users. The proposed two 
algorithms are named as joint resource allocation (JRA) and 
low complexity joint resource allocation (LC-JRA), 
respectively. Step 1 of these two algorithms are stopped 
when �𝑔(𝝀(𝑙)) − 𝑔(𝝀(𝑙−1))� ≤ 10−5 or 𝑙𝑚𝑎𝑥 = 100.      

 
Figure 1: A cluster of 2 coordinated BSs. Multiple users are 

randomly dropped in the shadowed cell-edge area. 
     

In Figure 2, the convergence of the Step 1 of the JRA and 
LC-JRA algorithms is analyzed. Two users are randomly 
dropped into the overlapped cell-edge area. The dual 
objective values 𝑔�𝝀(𝑙)� of the JRA and LC-JRA algorithms 
are plotted versus the number of iterations 𝑙  for different 
cell-edge SNR. The Lagrangian dual vector is initialized as 
𝝀0 = [0.5,0.5]𝑇 . The step size sequences chosen for γ = 2, 
10, 18 dB are 𝛽 = 0.7, 0.1, 0.01, respectively. For the sake of 
comparison, we also plot the optimal sum rate value 
provided by exhaustive search over all possible user set 
combinations, and by solving optimal power allocation for 
each combination (referred as Optimal-RA). As can be seen 
from Figure 2, the dual objective values of JRA and LC-JRA 
algorithms monotonically decrease at each iteration and 
converge to a value very close to the optimal solution. The 
duality gap decreases as the cell-edge SNR increases for both 
the two proposed algorithms. Notice that LC-JRA shows the 
same convergence behavior as JRA, however, with much 
lower complexity for user selection in each iteration. 



Figure 3 shows the average sum rate of the JRA, LC-JRA 
and Optimal-RA algorithms. Considering the simulation 
feasibility for the Optimal-RA algorithm, only the cases with 
small number of users and small number of subchannels are 
simulated. It is shown that the proposed algorithms can 
achieve a performance very close to the optimal value. 

  
Figure 2: Dual objective values 𝑔�𝝀(𝑙)� vs. the iteration number 𝑙. 

System parameters: 𝑁 = 2,𝑀 = 2,𝐾 = 2, γ = 2,10,18  dB.     

  
Figure 3: Average sum rate vs. cell-edge SNR γ.       

In Figure 4, the proposed two algorithms are compared 
with two schemes restricting an identical user set to be 
scheduled to all subchannels. Greedy user selection is 
performed for finding the optimal user set. Optimal power 
allocation with multi-cell zero-forcing joint transmission is 
solved via standard convex optimization techniques, subject 
to per-BS power constraints [7] and under per-subchannel 
power constraints [8]. We refer these two identical user set 
resource allocation schemes as IUS&PBSPC and IUS&PSCPC, 
respectively. The average sum rate of the different algorithms 
are plotted versus different number of users for 𝐾 =
10 and γ = 2,10,18 dB respectively. As shown in Figure 4, 
the performance of LC-JRA is very close to the performance 
of JRA. Compared with IUS&PBSPC and IUS&PSCPC, our 
proposed algorithms provide a large gain by jointly 
optimizing the user selection across multiple subchannels, 
especially when the cell-edge SNR is low. The performance 
gain increases as the number of users increases due to multi-
user diversity gain. 
    

 
Figure 4: Average sum rate vs. number of users in the system 𝑀. 

System parameters: 𝑁 = 2,𝐾 = 10, γ = 2,10,18  dB. 
       

6. CONCLUSION 
    
In this paper, two iterative resource allocation algorithms are 
proposed for a cluster of coordinated BSs in an OFDMA 
system with multi-cell joint transmission. Jointly optimizing 
user scheduling and power allocation across multiple sub-
channels and multiple cells is studied. Simulation results 
show that the proposed two algorithms provide a solution 
very close to the optimal, however, with much lower 
complexity. Moreover, compared with the resource allo-
cation algorithms restricting an identical user set to be 
allocated to all subchannels, the sum rate gain provided by 
jointly optimizing the user selection across multiple sub-
channels are roughly 45% and 20% when cell-edge SNR are 
2 and 18 dB, respectively. 
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