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The theory of the Feynman-alpha method, which is used to determine the subcritical reactivity of systems driven by an external
source such as an ADS, is extended to two energy groups with the inclusion of delayed neutrons. This paper presents a full
derivation of the variance to mean formula with the inclusion of two energy groups and delayed neutrons. The results are illustrated
quantitatively and discussed in physical terms.

1. Introduction

Methods of online measurement of subcritical reactivity, in
connection with ADS, have been studied over a decade by
now. Both deterministic methods, such as the area ratio or
Sjöstrand method [1] (pulsed measurements), and stochastic
or fluctuation-based methods (Feynman- and Rossi-alpha
methods) have been investigated. What regards the latter
class of methods, the theory of classical systems, based
on a stationary source with Poisson statistics, had to be
extended to the case of nonstationary (pulsed) source with
compound Poisson statistics (spallation source, generating
several neutrons simultaneously in one source emission
event). Regarding the pulsed sources, both narrow (instan-
taneous) as well as finite width pulses with various pulse
shapes were considered, both with “deterministic” (synchro-
nised between source emission and counting interval) and
stochastic (nonsynchronised) pulse injection. An overview of
the field can be found in [2]. The most general treatment of
all the above mentioned cases is found in Degweker and Rana
[3] and Rana and Degweker [4, 5].

In this paper, we will discuss another aspect of stochastic
reactivity measurement methods, which is related more to
the system properties than those of the source. The new
aspect is to take into account the energy dependence of the
neutrons by the use of a two-group approach. All work so

far in which compact analytical results could be obtained
in this area (calculation of the Feynman- and Rossi-alpha
formulae) was made by the use of one-group theory. This
is justified by the fact that the methods were used in
thermal systems, where the neutron population and hence
its dynamics is dominated by thermal neutrons. However,
many of the planned ADS concepts will use a core with a fast
spectrum, in which the dominance of thermal neutrons will
be significantly reduced. In terms of a two-group approach,
unlike in a thermal system where there is one time or
decay constant in a pulsed experiment, there will be two
components in the temporal response with two different time
constants and with comparable amplitudes. One indication
for this possibility comes from the area of nuclear safeguards,
where such effects have already been investigated, as it will be
described below.

Actually there have been experiments, such as in the
EU-supported project MUSE [6] and the Yalina experiment
[7–9], where the fitting of Feynman- and Rossi-alpha mea-
surements required more than one exponentials. Although
the appearance of more than one decay constant may have
also other reasons (e.g., the presence of a reflector, i.e.,
a multiregion system), the energy aspect is clearly one
possibility to lead to the occurrence of two different decay
constants. In the theoretical work so far on the explanation
of the multiple exponentials or multiple alpha modes, the
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emphasis was on the spatial effects as being the reason for the
appearance of the multiple alpha modes [10–12]. In [10, 11]
a general energy dependent framework was used which, in
order to arrive to explicit expressions, requires the possession
of the fundamental and higher order alpha-eigenfunctions
of the space-energy dependent transport equation. However,
due to the continuous energy treatment, no discrete modes
can be attributed to the energy dependence.

The purpose of the present paper is the elaboration of
the two-group theory of the Feynman-alpha method, based
on the backward master equation approach. Such an energy-
dependent extension of the existing theory might have a
relevance also to on-going and future ADS experiments, such
as the European FP7 project FREYA. This work has actually
been started already by the present authors, although in
a different setting. In nuclear safeguards, identification of
fissile material can be achieved by detecting the temporal
decay of fast neutrons from an unknown sample, following
irradiation by a pulse of fast neutrons. Appearance of a
second decay constant is an indication of the presence of
fissile material. This is the so-called differential die-away
analysis (DDAA) method. A stochastic generalisation of this
method, to the use of a stationary (intrinsic) source and
the measurement of the time correlations, the so-called
DDSI (differential die-away self interrogation) method, was
recently suggested by Menlove et al. [13]. The theory of the
DDSI method, by way of the extension of the Rossi-alpha
method to two energy groups, without delayed neutrons,
was recently given by the present authors based on both the
backward [14] and the forward master equation approach
[15].

In the present paper, we extend the treatment by the
inclusion of delayed neutrons in the formalism. Understand-
ably, the calculations get quite involved. Although a full
analytical treatment is possible, many expressions in the final
results become too extensive to be quoted explicitly. Hence
these will not be given and analysed in this paper. Likewise,
the question of how to extract the subcritical reactivity
from the measurement of the two time constants will not
be discussed here, rather it will be given in a subsequent
communication. Instead, here we focus on the formulation
of the problem and the full derivation sequence until arriving
to the final result. The intermediate and final results will be
discussed in physical terms.

2. General Principles

As usual in the context, we shall assume a homogeneous
infinite medium with properties constant in space. We shall
use a two-group theory model, that is, describe the neutron
population with two type of neutrons: fast and thermal.
One group of delayed neutron precursors will be assumed.
The possible neutron reactions are absorption of both the
fast and thermal neutrons, downscattering (“removal”) of
neutrons from the fast group to the thermal, and thermal
fission, which produces a random number of fast neutrons
according to a probability distribution function. At such a
thermal fission also at most one delayed neutron precursor
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Figure 1: The possible reactions which the three different particles
can undergo. Fast neutrons (red circle) can be detected (yellow),
absorbed (white), and thermalized (green). Thermal neutrons
(green) can be absorbed, and through fission lead to a random
number of delayed neutron precursors (grey) and fast neutrons
(red). Delayed neutron precursors decay into a fast neutron.

can be generated with a certain probability. The decay of this
precursor will lead to the appearance of one fast neutron.
For simplicity, fast fission will be neglected. It can be easily
incorporated into the model, at the expense of some further
complication of the calculations, but without any essential
problem. Figure 1 illustrates the possible reactions induced
by the fast and thermal neutrons and the delayed neutron
precursors, respectively.

A word on the notations used is in order here. In a
two-group model of reactor physics, the indices 1 and 2 are
used to denote the fast and the thermal group, respectively.
This notation will be used also in this paper, whenever it
will not lead to confusion. For practical reasons, the delayed
neutron precursors will be taken as group 3. However,
often it will be simpler and more practical to refer to
the fast and thermal neutrons and the precursors with the
notations F, T, and C, as it is seen also in Figure 1. In
traditional reactor physics texts, short-hand notations are
used for denoting the first factorial moments of the neutron
population and that of the fission neutron distribution, such
as ν and the Diven factor Dν for the latter. In the literature
on neutron fluctuations, the transition probabilities (more
correctly, transition intensities) are usually denoted by λi,
where the subscript i stands for the type of reaction (capture,
absorption, removal, and fission) (see, e.g., [2, Part II]).
These transition intensities are related to the corresponding
macroscopic cross sections of the particular reactions and the
neutron speed.

However, in this paper we will keep a more general
mathematical system of notations for the factorial moments
and transition intensities. This is partly because the purpose
of this paper is to describe the formalism used in a general
setting, and partly in order to relate the work reported here
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to our preceding paper, where the two-group generalisation
of the Feynman- and Rossi-alpha methods was introduced
[14]. Accordingly, the transition probabilities will be denoted
in a way similar to that in [14], that is, for the fast neutrons
one has

QF = QFA + QFT , (1)

where QFA and QFT are the intensities of the absorption and
thermalization of fast neutrons, respectively. Similar, self-
obvious notations are used for the thermal neutrons. In the
numerical work, there will be no attempt to relate these
reaction intensities to cross-sections of a real reactor in this
paper; such a coupling to realistic systems will be made in a
subsequent work.

The final quantity we need in order to formulate a
probability balance equation is the number distribution of
fast neutrons and delayed neutron precursors in a thermal
fission event. Denote by f (k, �) the probability that a thermal
neutron produces k ≥ 0 fast neutrons and � ≥ 0 delayed
neutron precursors, that is, particles of type C. Suppose that

f (k, �) = fp(k) fd(�), (2)

that is, the numbers fast neutrons and delayed neutron
precursors created in one reaction are independent. Further,
let fd(�) be given by

fd(�) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− q(d)
1 , if � = 0,

q(d)
1 , if � = 1,

0, if � > 1,

(3)

where q(d)
1 ≤ 1. The probability that a delayed neutron

precursor produced at time t = 0 decays to a fast neutron
during the time interval not larger than t ≥ 0 is given by

Td = 1− e−λt, λ ≥ 0. (4)

With this all quantities that are needed to formulate the
problem are defined.

3. Description of the Basic Process with
One Starting Particle

Since we are going to use the backward master equation
approach, first we will need the neutron and precursor
distributions, generated by one single starting particle (a fast
or thermal neutron or a delayed neutron precursor). First the
number distribution of generated particles will be studied
and explicit results derived for the first two moments. In
the next section the detection process will also be accounted
for, and in the last section the variance and the mean of the
number of neutrons detected in a time interval, induced by a
stationary external source of fast neutrons, will be calculated
from the results of the preceding two sections.

Let us introduce the random functions nF(t), nT(t), and
nC(t), giving the numbers of particles of types F, T, and

C, respectively, at the time moment t ≥ 0. Define the
probabilities:

P
{

nF(t) = n1, nT(t) = n2, nC(t) = n3 | Sj
}

= p
(

n1,n2,n3, t | Sj
)

,
(5)

where the conditions Sj , j = {1, 2, 3}, {Sj} = {F,T ,C},
indicating the type of particle starting the process, are
defined as

S1 ≡ F = {nF(0) = 1, nT(0) = 0, nC(0) = 0},
S2 ≡ T = {nF(0) = 0, nT(0) = 1, nC(0) = 0},
S3 ≡ C = {nF(0) = 0, nT(0) = 0, nC(0) = 1},

(6)

respectively. Introduce also the corresponding generating
functions:

g
(

z1, z2, z3, t | Sj
)

=
∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

p
(

n1,n2,n3, t | Sj
)

zn1
1 zn2

2 zn3
3 .

(7)

With these notations, based on the probabilities of the
mutually exclusive events of the starting particle not having
or having a reaction within the time interval (0, t), and the
summing up of the probabilities of the mutually exclusive
events generated by the respective reactions, one can write
that

g(z1, z2, z3, t | F) = e−QFtz1 + QFA

∫ t

0
e−QF (t−t′)dt′

+ QFT

∫ t

0
e−QF (t−t′)g(z1, z2, z3, t′ | T)dt′,

(8)

g(z1, z2, z3, t | T) = e−QTtz2 + QTA

∫ t

0
e−QT (t−t′)dt′

+ QTF

∫ t

0
e−QT (t−t′)qp

[
g(z1, z2, z3, t′ | F)

]

× qd
[
g(z1, z2, z3, t′ | C)

]
dt′,

(9)

as well as

g(z1, z2, z3, t | C)

= e−λtz3 + λ
∫ t

0
e−λ(t−t′)g(z1, z2, z3, t′ | F)dt′,

(10)

where

qp(z) =
∞∑

k=0

fp(k)zk, qd(z) =
∞∑

�=0

fd(�) = 1− q(d)
1 + q(d)

1 z.

(11)

For later use, we note that
[
d jqp(z)

dz j

]

z=1

= q
(p)
j ,

[
d jqd(z)
dz j

]

z=1

= q(d)
j = δj1q

(d)
1

(12)
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are the factorial moments of the number of prompt and
delayed neutrons in a fission event. The relationship with the
traditional notations is given by

q
(p)
1 = νp =

(
1− β

)
ν, q(d)

1 = νd = βν, (13)

with ν = νp + νd, and β = νd/(νp + νd).

3.1. Expectations of the Numbers of Particles of Different
Types. By using (8)–(10), one can derive equations for the
expectations of the numbers of fast and thermal neutrons
and the delayed neutron precursors, that is, particles of types
F, T, and C, respectively. With obvious notations, for the

expectation (first moment) m(F)
1 (t | Sj) of the number of

fast neutrons, induced by one starting fast neutron, thermal
neutron and delayed neutron precursor, respectively, one
obtains the equations:

m(F)
1 (t | F) =

[
∂g(z1, z2, z3, t | F)

∂z1

]

z1=z2=z3=1

= e−QFt + QFT

∫ t

0
e−QF (t−t′) m(F)

1 (t′ | T)dt′,

m(F)
1 (t | T) =

[
∂g(z1, z2, z3, t | T)

∂z1

]

z1=z2=z3=1

= QTF

∫ t

0
e−QT (t−t′)

×
[

q
(p)
1 m(F)

1 (t′ | F) + q(d)
1 m(F)

1 (t′ | C)
]

dt′,

m(F)
1 (t | C) =

[
∂g(z1, z2, z3, t | C)

∂z1

]

z1=z2=z3=1

= λ
∫ t

0
e−λ(t−t′)m(F)

1 (t′ | F)dt′.

(14)

Equations for the quantities m(T)
1 (t | Sj) and m(C)

1 (t | Sj) can
be derived in a completely similar manner; these will not be
given here, for brevity.

The arising integral equation system can be readily
solved by Laplace transform methods. Introduce the Laplace
transforms:

m̃
(Sj )
1 (s | Si) =

∫∞

0
e−stm

(Sj )
1 (t | Si)dt, (15)

then, from (14) one obtains

m̃(F)
1 (s | F) = 1

s + QF
+

QFT

s + QF
m̃(F)

1 (s | T),

m̃(F)
1 (s | T) = QTF

s + QT

[

q
(p)
1 m̃(F)

1 (s | F) + q(d)
1 m̃(F)

1 (s | C)
]

,

m̃(F)
1 (s | C) = λ

s + λ
m̃(F)

1 (s | F).

(16)

After elementary algebra one obtains

m̃(F)
1 (s | F) = (s + QT)(s + λ)

N (s)
, (17)

where

N (s) = (s + QF)(s + QT)(s + λ)

−QFTQTF

[

q
(p)
1 (s + λ) + q(d)

1 λ
] (18)

is a third-order polynomial of s. It can be proven that the
roots of the equation:

N (s) = s3 + (QF + QT + λ)s2

+
[

QFQT + λ(QF + QT)− q
(p)
1 QFTQTF

]

s

+ λ
[

QFQT −QFTQTF

(

q
(p)
1 + q(d)

1

)]

= 0

(19)

are all real. Hence, introducing the notation si = −ωi, i =
1, 2, 3, one can write that

N (s) = (s + ω1)(s + ω2)(s + ω3). (20)

Clearly, the system is subcritical, if none of the ω1, ω2,
and ω3 is zero or negative. For the sake of illustration in
Figure 2 the dependence of the characteristic function N (s)
on s is shown (for the calculations, the following parameter
values were used: QFA = 1/3, QFT = 2/3, QF = 1, QTA =
14/10, QTF = 3/5, QT = 2, q

(p)
1 = 3, q(d)

1 = 0.02, and
λ = 0.1). The right hand side figure is an enlargement of the
N (s) in the interval (−0.4, 0).

The algebraic solutions for the Laplace transforms

m̃(T)
1 (s | Sj) and m̃(C)

1 (s | Sj) can be obtained in a similar

manner. Here we only list these solutions, which for m̃(T)
1 (s |

Sj) are given by

m̃(T)
1 (s | F) = QFT(s + λ)

N (s)
,

m̃(T)
1 (s | T) = (s + QF)(s + λ)

N (s)
,

m̃(T)
1 (s | C) = QFTλ

N (s)
.

(21)

and for m̃(C)
1 (s | Sj) as

m̃(C)
1 (s | F) = q(d)

1
QFTQTF

N (s)
,

m̃(C)
1 (s | T) = q(d)

1
QTF(s + QF)

N (s)
,

m̃(C)
1 (s | C) = q(d)

1
(s + QF)(s + QT)− q

(p)
1 QFTQTF

N (s)
.

(22)

The expectations can be obtained in a rather simple
way by inversion of these Laplace transforms. All solutions
consist of the sum of three exponential functions, namely,
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Figure 2: Characteristic function N (s). The right-hand figure shows the two largest roots of the equation.

of e−ω1t, e−ω2t and e−ω3t. As an illustration, we give the

expectation m(F)
1 (t | F) of the number of fast neutrons,

generated by one initial fast neutron injected into the system.
One obtains

m(F)
1 (t | F) = ω2

1 − (QT + λ)ω1 + QTλ
(ω1 − ω2)(ω1 − ω3)

e−ω1t

− ω2
2 − (QT + λ)ω2 + QTλ
(ω1 − ω2)(ω2 − ω3)

e−ω2t

+
ω2

3 − (QT + λ)ω3 + QTλ
(ω1 − ω3)(ω2 − ω3)

e−ω3t .

(23)

The other expectations are obtained in a similar form, that
is, as a sum of three exponentials, and they will not be
given here. Some quantitative examples of the expectations
are shown in Figure 3. The figure shows the expectations of
the numbers of fast and thermal neutrons and the delayed
neutron precursors versus time, assuming that the starting
particle was either a fast or a thermal neutron (for the
calculations the following parameter values were used:
QFA = 1/3, QFT = 2/3, QF = 1, QTA = 14/10, QTF = 3/5,

QT = 2, q
(p)
1 = 3, q(d)

1 = 0.02, and λ = 0.1).
It is to be mentioned that the above results could also

be obtained directly from deterministic equations, namely,
from the two-group point kinetic equations with one group
of delayed neutrons.

3.2. Variances of the Numbers of Particles of Different Types.
As it follows from the definitions and formulae in the
previous section, the variance of the numbers of, say, fast
neutrons at the time t ≥ 0, induced by an initial fast neutron,
is given by the formula:

D2{n1(t) | F} = m(F)
2 (t | F) + m(F)

1 (t | F)
[

1−m(F)
1 (t | F)

]

.

(24)

Similar expressions can be derived for the other 8 variances.

3.2.1. Second Factorial Moments. It is seen that for the
determination of variances, one needs the second factorial

moments which can be obtained from the generating
function (8)–(10). Introducing the notations:

m(F)
2 (t | F) =

[
∂2g(z1, z2, z3, t | F)

∂z2
1

]

z1=z2=z3=1

,

m(F)
2 (t | T) =

[
∂2g(z1, z2, z3, t | T)

∂z2
1

]

z1=z2=z3=1

,

m(F)
2 (t | C) =

[
∂2g(z1, z2, z3, t | C)

∂z2
1

]

z1=z2=z3=1

,

(25)

one can derive the following equations:

m(F)
2 (t | F) = QFT

∫ t

0
e−QF (t−t′)m(F)

2 (t′ | T)dt′, (26)

m(F)
2 (t | T) =

QTF

∫ t

0
e−QT (t−t′) ×

{

q
(p)
1 m(F)

2 (t′ | F)

+ q2

[

m(F)
1 (t′ | F)

]2
+ 2 q

(p)
1 q(d)

1 m(F)
1 (t′ | F)

×m(F)
1 (t′ | C) + q(d)

1 m(F)
2 (t′ | C)

}

dt′,

(27)

m(F)
2 (t | C) = λ

∫ t

0
e−λ(t−t′)m(F)

2 (t | F)dt′. (28)

Analogous definitions can be introduced for m(T)
2 (t | Sj),

and m(C)
2 (t | Sj) and similar equations can be readily derived

for these.
For the solution of the arising system of integral equa-

tions, again the method of the Laplace transform is used.
Before performing the transforms, it is practical to introduce
short-hand notations for the functions appearing in (27)
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Figure 3: Dependence of the expectations of the numbers of particles of types F, T, and C on the time, assuming that the starting particle
was either F or T.

and in the corresponding equations for m(T)
2 (t | Sj) and

m(C)
2 (t | Sj) as

AF(t′) = q2

[

m(F)
1 (t′ | F)

]2

+ 2q
(p)
1 q(d)

1 m(F)
1 (t′ | F)m(F)

1 (t′ | C),

AT(t′) = q2

[

m(T)
1 (t′ | F)

]2

+ 2q
(p)
1 q(d)

1 m(T)
1 (t′ | F)m(T)

1 (t′ | C),

AC(t′) = q2

[

m(C)
1 (t′ | F)

]2

+ 2q
(p)
1 q(d)

1 m(C)
1 (t′ | F)m(C)

1 (t′ | C).

(29)

These functions are known at this stage, since they contain
only the expectations of the numbers of the particles.
Applying the notation for the Laplace transforms defined
already, one obtains

m̃(F)
2 (s | F) = QFT

s + QF
m̃(F)

2 (s | T),

m̃(F)
2 (s | T) = QTF

s + QT
,

×
[

q
(p)
1 m̃(F)

2 (s | F) + q(d)
1 m̃(F)

2 (s | C) + ÃF(s)
]

,

m̃(F)
2 (s | C) = λ

s + λ
m̃(F)

2 (s | F),

(30)
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and similar equations for m̃(T)
2 (s | Sj) and m̃(C)

2 (s | Sj). After
simple algebra the solutions can be written in the following
form:

m̃(F)
2 (s | F) = QTF

QFT (s + λ)
N (s)

ÃF(s) = QTFm̃
(T)
1 (s | F)ÃF(s),

m̃(F)
2 (s | T) = QTF

(s + QT)(s + λ)
N (s)

ÃF(s) = QTFm̃
(T)
1 (s | T)ÃF(s),

m̃(F)
2 (s | C) = QTF

QFTλ

N (s)

ÃF(s) = QTFm̃
(T)
1 (s | C)ÃF(s).

(31)

Similar solutions are found for the other two groups of
factorial moments.

Based on the form of the solutions in the Laplace domain,
one notices that the solutions in the time domain can be
written in the form a convolution as follows:

m(F)
2 (t | F) = QTF

∫ t

0
m(T)

1 (t − t′ | F)AF(t′)dt′,

m(F)
2 (t | T) = QTF

∫ t

0
m(T)

1 (t − t′ | T)AF(t′)dt′,

m(F)
2 (t | C) = QTF

∫ t

0
m(T)

1 (t − t′ | C)AF(t′)dt′,

(32)

and similarly for the second factorial moments of the thermal
neutrons and the delayed neutron precursors. Equations
(32) express the fact, known from the backward theory of
branching processes [2], that the first moments of the single-
particle generated distributions play the role of the Green’s
function for the higher-order moments (and also for all order
moments of the distributions of the detected neutrons). This
is because the higher-order moment equations have the same
form as those for the first moment, except that the Dirac
delta function in the first moment equations, representing
the starting particle, is replaced by some products of
known first moments quantities, which play the role of
the inhomogeneous r.h.s. of the second- and higher-order
moments. These inhomogeneous right hand sides, or “source
functions” depend on the problem at hand and the type of
the moment to be calculated. In the present case they are
given by the functions AF(t), and so forth of (29).

The convolution integrals over these known functions
can be performed analytically and closed form analytical
solutions can be obtained for the second factorial moments.
However, in the present case these explicit forms are
extremely long and complicated expressions containing the
exponential functions e−ω1t, e−ω2t, and e−ω3t in various
combinations. These will not be given here since there is very
little insight one could gain from the analytical form of the
coefficients multiplying the exponentials.

3.3. Covariances of the Numbers of Particles of Different Types.
Although not needed explicitly for the calculation of the two-
group version of the Feynman-alpha formula, it might give
some insight to calculate the covariances of the numbers of
particles of different types at a given time moment, provided
that at the time instant t = 0, only one particle was in the
system. This will be done in this subsection. If the starting
particle was a fast neutron, then the following covariances
have to be calculated:

Cov{n1(t), n2(t) | SF} = m(FT)
2 (t | F)

−m(F)
1 (t | F)m(T)

1 (t | F),

Cov{n1(t), n3(t) | SF} = m(FC)
2 (t | F)

−m(F)
1 (t | F)m(C)

1 (t | F),

Cov{n2(t), n3(t) | SF} = m(TC)
2 (t | F)

−m(T)
1 (t | F)m(C)

1 (t | F).

(33)

Along the same lines, the other 6 covariances can also readily
be written down. However, for the sake of the simplicity only
the above covariances will be calculated.

3.3.1. Mixed Second Moments. In order to determine the
covariance between two different random functions at a
given time moment, one should calculate first the mixed
second moments. In the present case, one needs the following
moments:

m(FT)
2 (t | F) =

[
∂2g(z1, z2, z3, t | F)

∂z1∂z2

]

z1=z2=z3=1

,

m(FC)
2 (t | F) =

[
∂2g(z1, z2, z3, t | F)

∂z1z3

]

z1=z2=z3=1

,

m(TC)
2 (t | F) =

[
∂2g(z1, z2, z3, t | F)

∂z2z3

]

z1=z2=z3=1

.

(34)

The calculations are straightforward and similar to the
calculation of the second factorial moments of the previous
section, but rather involved and lengthy. Hence the details
of the calculations will not be given here. We only note that
similar to the case of the second factorial moments, it is
practical to introduce a shorthand notation for the functions

AFT(t′) = q2m
(F)
1 (t′ | F)m(T)

1 (t′ | F)

+ q
(p)
1 q(d)

1

[

m(F)
1 (t′ | F)m(T)

1 (t′ | C)

+m(T)
1 (t′ | F)m(F)

1 (t′ | C)
]

,

(35)

and similarly for AFC(t′) and ATC(t′) which play the
role of the inhomogeneous part of the mixed moment
equations and hence appear in the convolution expressions
for the solutions. Without going into details, by using the
convolution theorem, the formal solutions for the three
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mixed moments of the distributions of particles induced by
one starting fast neutron are quoted as follows:

m(FT)
2 (t | F) = QTF

∫ t

0
m(T)

1 (t − t′ | F)AFT(t′)dt′,

m(FC)
2 (t | F) = QTF

∫ t

0
m(T)

1 (t − t′ | F)AFC(t′)dt′,

m(TC)
2 (t | F) = QTF

∫ t

0
m(T)

1 (t − t′ | F)ATC(t′)dt′.

(36)

By using the formulae (36), one can immediately calcu-
late the covariances (33).

Figure 4 shows the time dependence of the covariances
between the numbers of fast and thermal neutrons, as well
as between fast neutrons and delayed neutron precursors
and also between the thermal neutrons and the precursors,
assuming that the starting particle was a fast neutron. It is
remarkable that each of them changes sign, but the absolute
values of the covariances are very small. One can also show
that the variation of the mean decay time λ−1 influences only
slightly the values of covariances.

The reason for the initially negative value of the covari-
ances can be explained in the same way as for the covariance
between the fast and thermal neutrons without the presence
of delayed neutrons, as was discussed in [14]. Namely,
the process is started by one single fast neutron, which
is the only particle in the system at t = 0, hence the
joint expectation of having any two particles is zero at the
beginning. The expectation of having a thermal neutron or
a delayed neutron precursor is also zero at the beginning,
but with the thermalization of the initial fast neutron the
expectation of having a thermal neutron starts to deviate
from zero, whereas the joint expectation of finding both a
fast and a thermal neutron is negligible until the thermal
neutron induces fission. Before the branching starts with first
thermalisation and then a thermal fission, the covariance is
negative. When the branching starts, the joint expectation of
any two particles starts to increase, so the covariance starts to
increase after having reached a local minimum and thereafter
becomes positive.

4. Moments of the Detection of Neutrons

In order to calculate the variance to mean of detected
particles, induced by a stationary extraneous source, two
steps remain. One is the introduction of the detection
process, which is treated in this section. The second is the
introduction of a stationary source, which will be treated in
the next section.

For brevity, in the forthcoming only the detection of the
fast neutrons will be discussed. For the application of the
Feynman-alpha method, even in a fast system, presumably
the detection of the thermal neutrons will be more practical.
However, the calculation goes exactly along the same lines,
hence for illustration it is sufficient to discuss the detection
of fast neutrons.

Denote by QFD dt + o(dt) the probability that a fast
neutron is detected in the time interval (t, t + dt). Obviously,

the detected neutron is also absorbed, that is, removed from
the branching process. Let N(t,u) denote the number of fast
neutrons detected in the time interval [t− u, t]. If t < u, then
N(t) stands for the number of fast neutron detections in the
time interval [0, t].

4.1. Detection in Time Interval [0, t]. Define the probabilities:

P {N(t) = n | F} = pF(n, t),

P {N(t) = n | T} = pT(n, t),

P {N(t) = n | C} = pC(n, t),

(37)

and introduce the generating functions:

E
{

zN(t) | F
}

=
∞∑

n=0

pF(n, t)zn = gF(z, t),

E
{

zN(t) | T
}

=
∞∑

n=0

pT(n, t)zn = gT(z, t),

E
{

zN(t) | C
}

=
∞∑

n=0

pC(n, t)zn = gC(z, t).

(38)

The equations determining the generating function can be
easily written down. One obtains

gF(z, t) = e−QFt + QFA

∫ t

0
e−QF (t−t′)dt′ + zQFD

∫ t

0
e−QF (t−t′)dt′

+ QFT

∫ t

0
e−QF (t−t′)gT(z, t′)dt′,

gT(z, t) = e−QTt + QTA

∫ t

0
e−QF (t−t′)dt′

+ QFT

∫ t

0
e−QF (t−t′)qp

[
gF(z, t′)

]
qd
[
gC(z, t′)

]
dt′,

(39)

gC(z, t) = e−λt + λ
∫ t

0
e−λ(t−t′)gF(z, t′)dt′. (40)

Taking into account the second formula in (11), one has

qd
[
gC(z, t′)

] = 1− q(d)
1 + q(d)

1 gC(z, t′). (41)

The notation applied does not show that the delayed
neutrons also participate in the process.

4.1.1. Expectations. The expectations of detected number
of F type particles can be easily calculated by using the
formulae:

E{N(t) | F} =
[
∂gF(z, t)

∂z

]

z=1

= n(F)
1 (t),

E{N(t) | T} =
[
∂gT(z, t)

∂z

]

z=1

= n(T)
1 (t),

E{N(t) | C} =
[
∂gC(z, t)

∂z

]

z=1

= n(C)
1 (t).

(42)
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Figure 4: Dependence of the covariances between the numbers of particles of types F and T, as well as F and C, and also between the
numbers of particles of types T and C on the time, assuming that the starting particle was F type.

After simple considerations one obtains the Laplace
transforms of the expectations given by

ñ(F)
1 (s) = QFD

(s + QT)(s + λ)
sN (s)

,

ñ(T)
1 (s) = QFD

QFT

[

q
(p)
1 (s + λ) + q(d)

1 λ
]

sN (s)
,

ñ(C)
1 (s) = QFD

λ(s + QT)
sN (s)

,

(43)

where N (s) is defined by (20). Clearly, these expressions are
the Laplace transforms of the following integrals:

n(F)
1 (t) = QFD

∫ t

0
m(F)

1 (t′ | F)dt′,

n(T)
1 (t) = QFD

∫ t

0
m(F)

1 (t′ | T)dt′,

n(C)
1 (t) = QFD

∫ t

0
m(F)

1 (t′ | C)dt′.

(44)

By using the well-known Tauberian theorem [16], from (43)
one obtains immediately the expectations of the number of F

type particles detected in time interval [0,∞]. They are given
by

n(F)
1 (∞) = QFD

QTλ

ω1ω2ω3
,

n(T)
1 (∞) = QFDλ

q
(p)
1 + q(d)

1

ω1ω2ω3

n(C)
1 (∞) = QFD

QTλ

ω1ω2ω3
,

, (45)

where

ω1ω2ω3 = λ
[

QFQT −QFTQTF

(

q
(p)
1 + q(d)

1

)]

. (46)

It is worth to note that the total number or detected fast
neutrons is the same whether the starting particle is a fast
neutron or a delayed neutron precursor. However, if the
starting particle is a thermal neutron, then, as expected, one
obtains a different expectation for the number of detected
fast neutrons.

4.1.2. Second Factorial Moments and the Variances. For the
characterization of the detecting process, one needs the
variances of the number of the fast neutrons, counted in the
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time interval [0, t], for the three different types of starting
particles. In order to determine the variances, one has to
calculate the second factorial moments. From equations (9)
and (40), it follows that

n(F)
2 (t) = QFT

∫ t

0
e−QF (t−t′)n(T)

2 (t′)dt′,

n(T)
2 (t) = QTF

∫ t

0
e−QF (t−t′)

[

q
(p)
1 n(F)

2 (t′) + q(d)
1 n(C)

2 (t′)
]

dt′

+ QTF

∫ t

0
e−QF (t−t′)

×
{

q2

[

n(F)
1 (t′)

]2
+ 2 q

(p)
1 q(d)

1 n(F)
1 (t′)n(C)

1 (t′)
}

dt′,

n(C)
2 (t) = λ

∫ t

0
e−λ(t−t′)n(F)

2 (t′)dt′.

(47)

Introducing the notation

BFC(t′) = q2

[

n(F)
1 (t′)

]2
+ 2q

(p)
1 q(d)

1 n(F)
1 (t′)n(C)

1 (t′), (48)

and performing a Laplace transformation on (47), after the
usual algebraic manipulations including the application of
the convolution theorem, one obtains the solutions as

n(F)
2 (t) = QTF

∫ t

0
m(T)

1 (t − t′ | F)BFC(t′)dt′, (49)

n(T)
2 (t) = QTF

∫ t

0
m(T)

1 (t − t′ | T)BFC(t′)dt′, (50)

n(C)
2 (t) = QFT

∫ t

0
m(T)

1 (t − t′ | C)BFC(t′)dt′, (51)

With the help of these expressions, the variances of the
number of fast neutron detections for the three starting
particle types are given by

D2{N(t) | F} = n(F)
2 (t) + n(F)

1 (t, | F)
[

1− n(F)
1 (t, | F)

]

,

D2{N(t) | T} = n(T)
2 (t) + n(F)

1 (t, | T)
[

1− n(F)
1 (t, | T)

]

,

D2{N(t) | C} = n(C)
2 (t) + n(F)

1 (t, | C)
[

1− n(F)
1 (t, | C)

]

.

(52)

4.2. Detection in the Time Interval [t − u, t], t > u. Since the
detection in the time interval [0, t − u) is excluded and only
in the time interval [t − u, t] is permitted, one can write that

P {N(t,u) = n | SF}
= pF(n, t,u)

=
∑

j+k+�=n

∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

p(n1,n2,n3, t − u | F)

× Z(1)( j,u | n1
)
Z(2)(k,u | n2)Z(3)(�,u | n3),

(53)

provided that at the time moment t = 0 one fast neutron
was in the system. It is easy to prove that the probabilities
Z(1)( j,un1), Z(2)(k,un2), and Z(3)(�,u | n3) are given by the
following formulae:

Z(1)( j,u | n1
) =

∑

j1+···+ jn1= j

n1∏

i=1

pF
(
ji,u

)
,

Z(2)(k,u | n2) =
∑

k1+···+kn2=k

n2∏

i=1

pT(ki,u),

Z(3)(�,u | n3) =
∑

�1+···+�n3=�

n3∏

i=1

pC(�i,u),

(54)

where pF( ji,u), pT(ki,u), and pC(�i,u) are defined by (37).
From (54) one can immediately see that

∞∑

j=0

Z(1)( j,u | n1
)
z j = [gF(z,u)

]n1 ,

∞∑

k=0

Z(2)(k,u | n2)zk = [gT(z,u)
]n2 ,

∞∑

�=0

Z(3)(�,u | n3)z� = [gC(z,u)
]n3 .

(55)

Thus, the generating function

gF(z, t,u) =
∞∑

n=0

pF(n, t,u) zn, t > u (56)

can be written in the form:

gF(z, t,u) = g
[
gF(z,u), gT(z,u), gC(z,u), t − u | SF

]
. (57)

Since, as it is seen from(8)

g(z1, z2, z3, 0 | F) = z1, (58)

from (57), one obtains

gF(z,u,u) = g
[
gF(z,u), gT(z,u), gC(z,u), 0 | SF

] = gF(z,u),
(59)

which corresponds to the condition

lim
t↓u

gF(z, t,u) = gF(z,u). (60)

Expressions similar to (57) can be obtained for the cases
when the starting particle is a fast neutron or a delayed
neutron precursor.

4.2.1. Expectation and Second Factorial Moment. For later
use, let us determine the expectation:

n(F)
1 (t,u) =

[
∂gF(z, t,u)

∂z

]

z=1
(61)
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of the number of fast neutron detections in the time interval
[t − u, t], where t > u, provided that the starting particle was
also a fast neutron. By using (57) one obtains

n(F)
1 (t,u)= m(F)

1 (t − u | F)n(F)
1 (u) + m(T)

1 (t − u | F)n(T)
1 (u)

+ m(C)
1 (t − u | F)n(C)

1 (u),
(62)

where n(F)
1 (u), n(T)

1 (u), and n(C)
1 (u) are defined by (44).

The calculation of the second factorial moment:

n(F)
2 (t,u) =

[
∂2gF(z, t,u)

∂z2

]

z=1

(63)

is straightforward, but rather tedious. One finds

n(F)
2 (t,u)

= m(F)
1 (t − u | F)n(F)

2 (u) + m(T)
1 (t − u | F)

× n(T)
2 (u) + m(C)

1 (t − u | F)n(C)
2 (u) + m(F)

2

× (t − u | F)
[

n(F)
1 (u)

]2
+ m(T)

2 (t − u | F)

×
[

n(T)
1 (u)

]2
+ m(C)

2 (t − u | F)
[

n(C)
1 (u)

]2

+ 2m(FT)
2 (t − u | F)n(F)

1 (u)n(T)
1 (u) + 2m(FC)

2

×n(F)
1 (u)n(C)

1 (u) + 2m(TC)
2 (t − u | F)n(T)

1 (u)n(C)
1 (u).

(64)

In this expression, the second factorial moments n(F)
2 (u),

n(T)
2 (u), and n(C)

2 (u) have been determined already by (49),
(50), and (51) respectively hence they are already known.
With the substitution of all the known functions, an
explicit expression can be obtained which will contain three
exponentials with the known exponents. The coefficients
multiplying the exponents would take to much space to
display and hence will not be shown here.

5. Process with Randomly Injected Particles

The last step in the derivation of the variance to mean or
Feynman-alpha formula is to calculate the first two factorial
moments of the detected fast neutrons, induced in a subcrit-
ical reactor by a stationary source of fast neutrons. Suppose
that at the time instant t = 0 there are no particles present in
the system, but as time passes fast neutrons appear randomly
with a given intensity and initiate branching processes
independently of one another. The theory of injection of
particles is expounded in the book by Pázsit and Pál [2] for
particles of one type. The generalization for particles of three
types is straightforward.

5.1. Joint Distribution of the Numbers of Particles. In this
work we assume that the source events constitute a Pois-
son point process, that is, that the random time interval

between two consecutive injections of fast neutrons follows
an exponential distribution with parameter sF . This cor-
responds to the case of an ADS driven by a DD or DT
neutron generator in continuous mode. Neutron sources of
future ADS will operate with spallation sources and/or in
pulsed mode, which have a non-Poisson character. However,
the generalisation of the treatment below to non-Poisson
processes has been already done in other context (see, e.g.,
[2, 4, 5]), and the treatment presented in this paper can
also be extended to the case of non-Poisson sources in a
straightforward way.

For the case of a Poisson source, it can be easily shown
that the generating function of the probability P(n1,n2,n3,
t;F) of the event:

{n1(t) = n1, n2(t) = n2, n3(t) = n3}, (65)

provided that at time t = 0 there were no particles present in
the system, is given by

G(z1, z2, z3, t;F) = exp

{

sF

∫ t

0

[
g(z1, z2, z3, t′ | F)− 1

]
}

.

(66)

In general, if the injected particles are of type i, and if the
intensity of the injection of particle type i is si, then one has

G(z1, z2, z3, t; Si) = exp

{

si

∫ t

0

[
g(z1, z2, z3, t′ | Si)− 1

]
}

.

(67)

5.1.1. Calculation of the Expectations and the Variances. By
using the logarithm of the generating function, one can write
the formulae:

M(F)
1 (t;F) =

[
∂ lnG(z1, z2, z3, t;F)

∂z1

]

z1=z2=z3=1

= sF

∫ t

0
m(F)

1 (t′ | F)dt′,

M(T)
1 (t;F) =

[
∂ lnG(z1, z2, z3, t;F)

∂z2

]

z1=z2=z3=1

= sF

∫ t

0
m(T)

1 (t′ | F)dt′,

M(C)
1 (t;F) =

[
∂ lnG(z1, z2, z3, t;F)

∂z3

]

z1=z2=z3=1

= sF

∫ t

0
m(C)

1 (t′ | F)dt′,

(68)

giving the expectations of the numbers of fast and thermal
neutrons and delayed neutron precursors, respectively, at the
time moment t ≥ 0, provided that the type of the particles
injected into the system was fast neutrons. Similar formulae
can be derived for the other six expectations.
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In the subcritical state, that is, if ω1, ω2 and ω3, are posi-
tive real numbers, then the process is asymptotically station-
ary, consequently one has

M(F)
1 (∞;F) = sF

QTλ

Nst
,

M(T)
1 (∞;F) = sF

QFTλ

Nst
,

M(C)
1 (∞;F) = sFq

(d)
1

QFTQTF

Nst
,

(69)

where

Nst = ω1ω2ω3 = λ
[

QFQT −
(

q
(p)
1 + q(d)

1

)

QFTQTF

]

. (70)

The rest of the stationary expectations are given by the
following formulae:

M(F)
1 (∞;T) = sT

(

q
(p)
1 + q(d)

1

)QTFλ

Nst
,

M(T)
1 (∞;T) = sT

QFλ

Nst
,

M(C)
1 (∞;T) = sTq

(d)
1

QFQTF

Nst
,

M(F)
1 (∞;C) = sC

QTλ

Nst
,

M(T)
1 (∞;C) = sC

QFTλ

Nst
,

M(C)
1 (∞;C) = sCq

(d)
1

QFQT − q
(p)
1 QFTQTF

Nst
.

(71)

For the determination of variances of the number of fast
neutrons, generated by the three different possible starting
particles, one obtains the expressions:

VF(t; Si) =
[
∂2 lnG(z1, z2, z3, t; Si)

∂z2
1

]

z1=z2=z3=1

+
[
∂ lnG(z1, z2, z3, t; Si)

∂z1

]

z1=z2=z3=1

= si

∫ t

0

[

m(F)
2 (t′ | Si) + m(F)

1 (t′ | Si)
]

dt′.

(72)

5.2. Distribution of the Number of Fast Neutrons Detected
in a Given Time Interval. If the injection of fast neutrons
into the medium is performed by a stationary source
emitting particles according to a Poisson process defined
by the intensity parameter sF , then applying the procedure
described in [2], one can prove that generating function of
the probability mass function:

P {N(t,u) = n | n1 = n2 = n3 = 0} = PF(n, t) (73)

is given by

GF(z, t,u)

= GF(z,u) exp

{

sF

∫ t

u

[

gF(z, t′,u)− 1
]

dt′
}

if t > u,

GF(z, t)

= exp

{

sF

∫ t

0

[
gF(z, t′)− 1

]
dt′
}

if t ≤ u,

(74)

where

gF(z, t′,u) = g
[
gF(z,u), gT(z,u), gC(z,u), t′ − u | F]. (75)

By using the method described in [2, pages 85-86], one
can prove that the improper integral:

lim
t→∞

∫ t

u

[
gF(z, t′,u)− 1

]
dt′ (76)

exists, consequently the stationary generating function:

lim
t→∞GF(z, t,u) = G(st)

F (z,u) (77)

also exists, if the three roots of the characteristic function
(18) are nonnegative. In this case the random function
N(t,u) converges in distribution to a random function

N(st)(u), if t → ∞. Hence, G(st)
F (z,u) is the generating

function of N(st)(u), that is,

G(st)
F (z,u) = E

{

zN(st)(u)
}

. (78)

It is useful to rewrite the stationary generating function in
the following form:

lnG(st)
F (z,u) = sF

∫ u

0

[
gF(z, t)− 1

]
dt

+ sF

∫∞

u

[

gF(z, t,u)− 1
]

dt.

(79)

Thus one finds

lnG(st)
F (z,u)

= sF

∫ u

0

[
gF(z, t)− 1

]
dt

+ sF

∫∞

0

{
g
[
gF(z,u), gT(z,u), gC(z,u), t | SF

]− 1
}
dt.

(80)

If the injected particles are thermal neutrons, then the
corresponding formula reads as

lnG(st)
T (z,u)

= sT

∫ u

0

[
gT(z, t)− 1

]
dt

+ sT

∫∞

0

{
g
[
gF(z,u), gT(z,u), gC(z,u), t | ST

]− 1
}
dt.

(81)

In the continuation, we will only deal with the case of fast
neutron injection.



Science and Technology of Nuclear Installations 13

0 20 40 60 80 100

Detection time (a.u.)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
V

ar
ia

n
ce

-t
o-

m
ea

n
 r

at
io

λ = 0.1

V(∞)/N(∞) ≈ 1.653

q
(p)
1 = 3, q(d)

1 = 0.02

(a)

0.01 0.1 1 10 100 1000 10000

Detection time (a.u.)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

V
ar

ia
n

ce
-t

o-
m

ea
n

 r
at

io

λ = 0.1

V(∞)/N(∞) ≈ 1.653

q
(p)
1 = 3, q(d)

1 = 0.02

(b)

Figure 5: Dependence of the ratio of the variance to mean of the number of F types particle detections on the detection time u. The left-hand
side figure shows the linear-linear, while the right-hand side one the log-linear plot.

5.2.1. Calculation of the Expectation and the Variance to Mean
in Stationary Case. In the stationary case the expectation of
the number of the detection of fast neutrons in the time
interval u is given by

N(st)
F (u) =

[
∂ lnG(st)

F (z,u)
∂z

]

z=1

= sF

∫ u

0
n(F)

1 (t′)dt′ + sF

∫∞

u
n(F)

1 (t′,u)dt′.
(82)

By using (79), one can write

∫∞

u
n(F)

1 (t′,u)dt′ = n(F)
1 (u)

∫∞

0
m(F)

1 (t | F)dt

+ n(T)
1 (u)

∫∞

0
m(T)

1 (t | F)dt

+ n(C)
1 (u)

∫∞

0
m(C)

1 (t | F)dt,

(83)

where
∫∞

0
m(F)

1 (t | F)dt = λQT

Nst
,

∫∞

0
m(T)

1 (t | F)dt = λQFT

Nst
,

∫∞

0
m(C)

1 (t | F)dt = q(d)
1

QFTQTF

Nst
.

(84)

After a lenghty algebra, one obtains

N(st)
F (u) = sF

QFDQT

QFQT −QFTQTF

(

q
(p)
1 + q(d)

1

)u, (85)

which does not contain the delayed neutron precursor decay
constant λ.

By using the logarithmic generation function ln

G(st)
F (z,u), one can write down the ratio of the variance to

mean of the number of F types particles detected in the time
interval u in the form:

D2
{

N(st)(u)
}

E
{

N(st)(u)
} = V(st)

F (u)

N(st)
F (u)

= 1 +
1

N(st)
F (u)

[
∂2 lnG(st)

F (z,u)
∂z2

]

z=1

= 1 + Y(u),

(86)

where

[
∂2 lnG(st)

F (z,u)
∂z2

]

z=1

= sF

∫ u

0
n(F)

2 (t′)dt′

+ sF

∫∞

u
n(F)

2 (t′,u)dt′,

(87)

and n(F)
2 (t′,u) is given by (64). The Feynman Y(u) function

can be written in the traditional form as

Y(u) =
3∑

i=1

Yi

(

1− 1− e−ωiu

ωiu

)

. (88)

The coefficients Yi are rather involved functions of the roots
ωi as well as the various reaction intensities and the first and
second factorial moments of the number of fast neutrons and
the delayed neutron precursors per fission. Due to their very
extensive character, they are not given here.

Figure 5 shows a quantitative illustration of the depen-
dence of the variance to mean of the number of fast neutron
detections on the detection time u. The left-hand side figure
shows the linear-linear, while the right-had side one shows a
log-linear plot (for the calculations the following parameter
values were used: QFD = 1/10, QFA = 7/30, QFT = 2/3,
QTA = 14/10, QTF = 3/5, q

(p)
1 = 3, q(d)

1 = 0.02, λ = 0.1).
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In view of the fact that there are three decay constants
ωi, i = 1, 2, 3 one could expect a more complicated structure
for the variance to mean than what is seen in the left-hand
side figure, with for example, two or three different plateaus.
Such is the case with the traditional (one-group) Feynman-
alpha formula with delayed neutrons, which displays two
different plateaus.

However, the Feynman-alpha formula will show the dif-
ferent plateaus if the decay constants are sufficiently different
and differ by orders of magnitude from each other. Even
the traditional (one-group) Feynman formula demonstrates
this, since even if six different delayed neutron precursor
types are accounted for, there are only two plateaus dis-
tinguishable: one corresponding to the prompt neutrons
and only one more for all the six delayed neutron groups
[17]. In the present two-group treatment, there will be two
decay constants associated with the prompt neutrons, and
one with the delayed neutrons. As discussed already in [14],
quantitatively these two prompt neutron decay constants
are not separated sufficiently from each other to make the
two decay constants easily observable in the lin-lin plot,
for example, by displaying two plateaus. The decay constant
corresponding to the delayed neutrons, on the other hand,
deviates sufficiently from the prompt decay constants. The
plateau corresponding to the delayed neutrons is visible on
the plot with logarithmic scale on the time axis (right-hand
side figure).

6. Conclusions

The variance to mean formula was derived in a two-group
treatment with one group of delayed neutrons with the use
of the backward master equation technique. The temporal
behaviour of both the first and second factorial moment of
the detected particles is determined by three exponentials.
The various factorial moments can be fully determined
analytically; however, the expressions in most cases are too
lengthy to write them out. Qualitatively, the form of the
solutions is the same as in the traditional case, but the two
decay constants associated with the prompt response of the
system, are not distinguishable in the plots. The relationship
between the decay constants and the subcritical reactivity of
the system will be investigated in future communications.
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