
Thesis for the Degree of Licentiate of Philosophy

Testing an Optimising
Compiler by Generating
Random Lambda Terms

Michał H. Pałka

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Göteborg, Sweden 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70594393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Testing an Optimising Compiler by Generating
Random Lambda Terms
Michał H. Pałka

c© 2012 Michał H. Pałka

Technical Report 94L
ISSN 1652-876X
Department of Computer Science and Engineering
Functional Programming Research Group

Chalmers University of Technology and
Göteborg University

SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 10 00

Printed at Chalmers
Göteborg, Sweden 2012

iii

Testing an Optimising Compiler by Generating
Random Lambda Terms

Michał H. Pałka

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

This thesis tries to improve on the relatively uncommon practice
of random testing of compilers.

Random testing of compilers is difficult and not widespread for
two reasons. First, it is hard to come up with a generator of valid test
data for compilers, that is a generator of programs. And secondly, it
is difficult to provide a specification, or test oracle, that decides what
should be the correct behaviour of a compiler. This work addresses
both of these problems.

Existing random compiler test tools do not use a structured way
of generating well-typed programs, which is a often a requirement to
perform comprehensive testing of a compiler. This thesis proposes
such a method based on a formal calculus.

To address the second problem, this thesis proposes using two
variants of differential testing, which allows for detecting bugs even
when a very limited partial specification of the tested compiler is
available. This setup is evaluated practically by performing effective
testing of a real compiler.

Contents

1 Introduction 1
1 Related work . 3

2 Structure . 5

3 Property-based testing 6

2 Generation method 9
1 Alternative rules . 12

2 Polymorphic constants 13

3 Generation algorithm . 17

4 Distribution . 21

3 Shrinking 23
1 Shrinking simply-typed lambda terms 24

2 Shrinking using QuickCheck 26

3 Specific shrinking method 27

4 Properties of shrinking 28

5 Design choices of shrinking 29

6 Shrinking with batch test cases 29

7 Weaknesses and possible improvements 30

8 Shrinking parameters . 32

4 Applications 41
1 Strictness changed by optimisation 41

2 Evaluation order . 53

3 Equivalence of inlined expressions 56

4 Equivalence of different error expressions 58

5 Summary . 60

v

vi CONTENTS

5 Related Work 63
1 Compiler test tools . 63

2 Shrinking . 65

3 Library test tools . 66

4 Testing of formal models 67

5 Typed term generators 67

6 Untyped term generators 68

6 Future work 69

7 Conclusions 71

References 73

CONTENTS vii

Acknowledgements

I would like to thank my supervisors, Koen Claessen and John
Hughes, for their guidance and support. Both of them were a con-
tinuous source of ideas and contagious enthusiasm. I also wish to
thank my examiner, Mary Sheeran for providing valuable feedback
throughout my studies.

I would like to thank Robby Findler for accepting the role of
discussion leader.

I would like to thank all of my colleagues at the department for
making it such an open and friendly environment. I was lucky to have
a chance to interact with many extraordinary individuals, many of
whom contributed suggestions that helped me in writing this thesis.

I wish to thank Olga for her company and cheering up during this
time. I also want to thank all my friends for their encouragement and
friendship. Finally, I would like to thank my parents for all the love
and support throughout my life.

viii CONTENTS

Chapter 1

Introduction

Correctness of compilers is crucial to most software projects, yet
comparatively little stress is put on their quality assurance compared
to other software. While there exist examples of formally-verified
compilers, such as the CompCert optimising compiler [19] and the
Racket compiler and virtual machine [17], such compilers are not
common. Instead of using modern testing and verification techniques,
writers of production compilers prefer to have them tested ‘in the
field’ by the users. But off-loading the quality assurance to the users
has the disadvantage that many serious bugs are discovered only
when they cause disruption.

Formal verification is an attractive approach to reliable software,
but its cost and complexity are still sky-high, which makes it applica-
ble only to very specialised compilers. For instance, over 3/4 of the
code of CompCert is devoted to verification [19]. Software testing,
on the other hand, is the most prevalent and economical way of as-
suring quality, which, if done right, may result in quicker software
development [32].

Relying on the users to find bugs may not sound a bad idea if we
ignore the inconvenience caused to them. However, even though the
cost of finding bugs is outsourced, the cost of fixing them might be
dramatically higher when bugs are found late [32].

Thus, compiler writers resort to test suites1, which are run contin-
uously during development. But these test suites consist largely of
test cases that were taken from bug reports submitted by the users,

1For example, the GCC compiler test suite: http://gcc.gnu.org/onlinedocs/gccint/
Testsuites.html; or the GHC test suite: http://hackage.haskell.org/trac/ghc/wiki/

Building/RunningTests/Adding.

1

http://gcc.gnu.org/onlinedocs/gccint/Testsuites.html
http://gcc.gnu.org/onlinedocs/gccint/Testsuites.html
http://hackage.haskell.org/trac/ghc/wiki/Building/RunningTests/Adding
http://hackage.haskell.org/trac/ghc/wiki/Building/RunningTests/Adding

2 CHAPTER 1. INTRODUCTION

which means that they tend to find few new bugs.
Having an automatic testing tool for a compiler, on the other hand,

would give the advantage of finding bugs early. One possibility is to
use random property-based testing. However, this requires having a
generator of random programs.

Generating good test programs is not an easy task, since these
programs should have a structure that is accepted by the compiler.
As compilers often employ multi-stage processing before producing
compiled code, in order to test later stages, earlier ones must be
completed without error. The requirements for passing a compilation
stage can be as basic as a program having the correct syntax, or more
complex such as a program being type-correct in a statically-typed
programming language.

In this thesis, we investigate generation of random type-correct
Haskell programs for the purpose of testing the GHC Haskell com-
piler, and in particular, its optimising middle-end [29].

We chose the simply-typed lambda-calculus [30] as the underlying
model of well-typed programs as it is the simplest calculus that has
the notion of variable binding and type-correctness, as well as first-
class functions, which makes it adequate for representing simple
Haskell programs. On top of that, we support polymorphic constants,
which makes it possible to generate simple Haskell programs that
use polymorphic library functions as well as to encode in them some
programming language constructs.

The presented generator of random simply-typed lambda-terms
has been successfully applied to testing the GHC Haskell compiler.
This compiler contains a particularly sophisticated optimising middle-
end, which performs many stages of intermediate-language transfor-
mations, such as inlining, let-floating, lambda lifting, specialisation
and common subexpression elimination [29]. Such elaborate process-
ing could easily be a source of intricate bugs, making it especially
interesting to test.

The GHC compiler has been tested with randomly generated
Haskell programs using differential testing [23], which involved com-
piling the same program with different optimisation settings and
comparing its observed behaviour. Figure 1.1 shows a diagram of
the testing process. Testing uncovered four interesting bugs, three
of which were fixed based on our bug reports2. We also learned
interesting facts about valid optimisations performed by the GHC.

Reported failing test cases were often reasonably small due to the

2The remaining one has been fixed as a result of another bug report.

1. RELATED WORK 3

term

module

generate

code

result

run

code

result

run

compile compile opt.

?
=

Figure 1.1: Differential testing

process of shrinking, which automatically reduces the failing test case
as much as possible. Below is one of the found terms that provoked a
failure.

(\a -> seq a (seq (a []) id)) (\a -> seq undefined (+1))

This term can be manually rewritten as follows, to obtain a program
that provokes a bug:

a = \x -> seq undefined (+1)

main = do

print $ (a [] ‘seq‘ id) [0]

This short program turned out to be miscompiled by the tested version
of GHC when optimisation was turned off. The failure has been
reported as ticket 5625 and the bug causing it was fixed. More
information about this failure can be found in Section 1 of Chapter 4.

1 Related work

Even though random testing is not commonplace in compiler devel-
opment, there are accounts of its successful application. The work
of McKeeman [23] and the CSmith tool [35] are both such exam-
ples. Both tools employ Differential testing where results of programs

4 CHAPTER 1. INTRODUCTION

compiled with different C compilers are compared to spot bugs. Gen-
erating random programs was a central part of both of these efforts,
and in both cases the problem was solved using an elaborate, but
ad-hoc generator.

McKeeman focuses on testing all stages of a C compiler by gen-
erating programs of different level of conformity to the C language:
lexically-correct, syntax-correct, etc., and much effort is put into creat-
ing program generators for each of these levels. CSmith, on the other
hand, focuses on testing optimising middle-ends of the compilers
and most effort was put into generating C programs that do not de-
pend on undefined or unspecified behaviour. Assuring this semantic
property is, of course, difficult, which is why CSmith uses an array of
heuristics and checks for assuring it.

Notwithstanding the effort put into creating these program gener-
ators, both test tools found a big collection of previously unreported
bugs in the tested compilers. The test cases reported by these tools
are usually large and hard to analyse. Only McKeeman discusses
automated reduction of size of counterexamples—in case of CSmith
they have to be reduced by hand, which can be very labour-intensive.

Lindig [20] created a random testing tool to test whether the C
function calling convention is followed by compilers. The generation
of programs is much simpler in this case, as only types of functions to
be test-called need to be randomly generated. The rest of the program
is skeleton code that is generated algorithmically. Despite its sim-
plicity, the tool managed to find a number of discrepancies between
compilers that manifested when a function was called from code
compiled with another compiler. Automated testing of unexpected
cases was important.

Random program generators have also been successfully applied
to testing Java libraries [18]. This work defines a formal calculus,
whose random terms are then transformed into programs and is able
to generate programs containing higher-order features.

Verified compilers The CompCert optimising compiler [19] and the
Racket compiler and virtual machine [17] are notable for their quality
assurance. The former is a full-fledged optimising compiler that
was constructed with formal verification in mind. However, it only
supports a subset of C and the catalogue of optimisations performed
by it is limited. Furthermore, even though the most important of its
parts are formally-verified, which was a costly task, testing was able
to find in it previously unknown bugs [35].

2. STRUCTURE 5

The Racket compiler is verified using lightweight formal verifi-
cation, which is realised by testing the compiler against a formal
model. While the compiler supports unrestricted version of the
Scheme programming language, it is only capable of performing
basic optimisations.

Term generators Generation of random lambda-terms has attracted
moderate attention. There were attempts at generating random un-
typed lambda terms [3, 34], where it is already difficult to obtain a
reasonable distribution. Two notable attempts at generating simply-
typed lambda terms are based on bit-encoding schemes [33] and
enumeration [31], but it is unclear whether it is possible to adapt the
latter for random generation.

Unfortunately, none of these works considers any practical appli-
cations for randomly generated lambda-terms—the only application
considered is examining statistical properties of random lambda
terms [3, 34]. Also, none of the typed generators handles parametric
polymorphism.

2 Structure

The rest of this chapter introduces property-based testing, which is
the way of structuring test data generators and test oracles used
throughout the paper. In the next chapter we explain our approach
to random generation of simply-typed lambda terms. Chapter 3

describes the method of structurally shrinking the generated terms
aimed at reducing the sizes of reported counterexamples. We identify
two interesting design decisions that we can make in the shrinking
method and evaluate their performance based on experimental bench-
marks. Chapter 4 presents the failing test cases found for GHC and
properties used to find them. We also analyse the consequences of
the noticed discrepancies for the programmers using GHC. Chapter
5 describes related work, and Chapters 6 and 7 present future work
and conclusions.

Contributions We claim the following contributions:

• We present a generator of random simply-typed lambda terms
based on performing random local choice and backtracking. The
generator makes use of tailored generation rules and heuristics
to avoid excessive backtracking and skewing the distribution

6 CHAPTER 1. INTRODUCTION

of generated terms too much. The generator also supports
generating terms with polymorphic constants. (Chapter 2)

• The generator is applied successfully for finding bugs in GHC
optimising compiler using differential testing. (Chapter 4)

• We perform differential testing using two expressions that
should give equivalent results and find discrepancies that are
independent of optimisation options. (Chapter 4)

• We present a method for shrinking simply-typed lambda terms,
which is used for reducing counterexamples found by us during
testing. The method proposed by us reduces the terms struc-
turally, but is very effective in reducing the test cases despite
the complexity of the processing performed by GHC. Shrinking
makes finding the root cause of a bug based on a counterexam-
ple dramatically easier. (Chapters 3 and 4)

The presented dissertation is an extended version of existing
work [25].

3 Property-based testing

To obtain test oracles for random testing we employ property-based
testing, which allows us to derive test oracles naturally from logical
properties. For example, consider the commutativity law for integers.

∀n m. n + m = m + n

We may turn it into a testable property by writing a Haskell function
that checks this equality for two given numbers.

prop_comm :: Integer -> Integer -> Bool

prop_comm n m = n + m == m + n

This function is an executable version of the above logical property
and may be used as an oracle in random testing. We use the word
‘property’ to denote such executable properties throughout this paper.

A single test on the above property is performed by generating
two random numbers n and m, evaluating the function and checking
if its result is true.

Testing this property involves running the function on a finite
number of inputs when the number of all inputs is infinite, so testing

3. PROPERTY-BASED TESTING 7

can only result in disproving the property, by finding a counterexample,
or leaving its validity undecided.

The function prop_comm implements both the tested code (the +

operator) and the test oracle (the == operator), while the random test
case generator is separated.

The properties used by us to test the GHC compiler employed
differential testing, described in Chapter 4, and an example diagram
illustrating the process is shown in Figure 4.1 in that chapter.

QuickCheck [4] is a Haskell library that provides comprehensive
support for property-based testing. QuickCheck contains a combi-
nator library for building composable properties as well as random
generators for basic Haskell data types. We implemented our random
simply-typed term generator in QuickCheck using these basic gener-
ators and performed testing of the GHC compiler using properties
also written in QuickCheck.

QuickCheck also provides generic support for shrinking [4]3 that
tries to reduce the size and complexity of the reported counterex-
amples. We implemented a shrinking method for the simply-typed
lambda terms for use in our testing.

The method for generation of random simply-typed lambda terms
is independent from QuickCheck, however many other aspects of the
testing are heavily influenced by property-based testing, for example
the properties and shrinking.

3Shrinking is not referred to by name in this paper, but is realised by the function
‘smaller’.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Generation method

To generate random programs for use in testing we consider simply-
typed lambda terms [30] that can contain constants in addition to
variables. Their syntax is shown in Figure 2.1. Typing rules, shown in
Figure 2.2, are standard and constants are typed in the same way as
variables. We require that all variables and constants in environments
have distinct names.

The aim of the generator is to produce a well-typed term of a
certain type, which can contain free variables and constants from a
given environment. Of course there are combinations of target type
and environment for which no term can be constructed.

Simple generator One possible generation method can be obtained
by reading the typing rules shown in Figure 2.2 backwards. To gener-
ate a term that is in the consequence of a rule it is firstly necessary to
generate terms that are in its premises, if they exist, and then combine
them. In other words, the goal of generating a term might involve
generating the subgoals recursively, leading to a procedure that works
top-down and produces a term together with its typing derivation.
Of course, the derivation must be finite. The rules ensure that the

Variables x, y, . . .
Constants c, d, . . . ::= head, tail, (+), 0, 1, . . .
Types σ, τ, . . . ::= Int | Bool | ListInt | · · · | σ→ τ
Terms M, N, . . . ::= x | c | λx : σ. M | MN

Figure 2.1: Syntax for simply-typed λ-calculus

9

10 CHAPTER 2. GENERATION METHOD

Typing judgements Γ ` M : σ
Environment Γ ::= {x1 : σ1, x2 : σ2, c1 : σ3, . . .}

(Var)
x : σ ∈ Γ
Γ ` x : σ

(Cnst)
c : σ ∈ Γ
Γ ` c : σ

(Lam)
x : σ, Γ ` M : τ

Γ ` λx : σ.M : σ→ τ

(App)
Γ ` M : σ→ τ Γ ` N : σ

Γ ` MN : τ

Figure 2.2: Typing rules

resulting terms are well-typed.
Suppose that we want to generate a simply-typed λ-term of type

Int while having access to the following constants: z : Int and s :
Int→ Int.

The simplest term that can be generated is just z, as this con-
stant has the right type. This term is generated by applying the
Cnst rule with c instantiated with the constant z. This rule does
not have any recursive premises, only a side condition that z must
be in the environment, so no subgoals must be generated to finish
the generation. Successful generation yields a type derivation tree
for the generated term, shown below. We define Γ to be the initial
environment {z :Int, s :Int→ Int}.

(Cnst)
z :Int ∈ Γ

Γ ` z :Int

We can generate another term if we apply s to z and obtain the
term s z, which also has the right type. To do that by following the
typing rules, we must first apply an instance of the App rule where
both σ and τ are instantiated with Int. Applying this rule requires
two subgoals to be generated recursively with their own generation
contexts, that is their target types together with their environments.
Below we show the part of the derivation tree that is determined after
selecting the App rule.

(App)
Γ ` ?1 :Int→ Int Γ ` ?2 :Int

Γ ` ?1 ?2 :Int

The question marks (?1 and ?2) represent the subterms that will be
generated as subgoals.

11

The first subgoal has the same environment as the original term,
but a different target type, which is Int → Int. This subgoal is
generated using the Cnst rule instantiated with the constant s.

The second subgoal receives the same generation context as the
original term and is generated using the Cnst rule.

Solving the subgoals yields the missing parts of the term and its
derivation tree.

(App)

(Cnst)
s :Int→ Int ∈ Γ

Γ ` s :Int→ Int
(Cnst)

z :Int ∈ Γ

Γ ` z :Int

Γ ` s z :Int

In the same way it is possible to generate more complex terms,
for example s (s (s z)). The terms can also contain locally-defined
functions in the form of λ-expressions. In this way, we can create
more type-correct λ-terms, for example (λx : Int.x) (s z), or (λx :
Int.s (s x)) z. The Lam typing rule, which is needed for generating a
locally-defined function, adds one variable to the environment of its
subgoal, which makes it possible to refer to that variable in the body
of the function.

Thus, interpreting the typing rules as generation rules allows us
to generate well-typed terms in a top-down fashion. The four rules
are capable of generating every well-typed term—after all a term is
well-typed only if there exists a typing derivation for it.

Using a generation rule to generate a part of a term involves
choosing its specific instance. Choosing a suitable instance of the Var

and Cnst rules is straightforward, as the type of the chosen variable
or constant must be the same as the target type. If such variable or
constant is not available, then the rules cannot be applied.

Similarly, the Lam rule can only be applied if the target type is
functional and type σ from the rule must be equal to the argument of
the target type.

This is not the case, however, when the App rule is applied, as the
type of the argument is not determined by the generation context and
can be chosen freely.

Often a specific instance of the App rule is required to occur in
a derivation tree of a term. For example, suppose that a derivation
tree might only be constructed by using constant c that has type
σ1 → σ2 → σ3 → τ to solve a goal of type τ. The App rule must be
then instantiated with σ3. Furthermore, two more applications of the
App rule are required, also with specific types.

12 CHAPTER 2. GENERATION METHOD

In addition, some instances of the App rule cannot occur in a valid
derivation tree. Notably, if it is instantiated with an argument type,
for which a term cannot be constructed, then no valid derivation
containing it exists.

Thus, the derivation is sensitive to the way the App rule is instanti-
ated.

Concrete realisation The generation rules give us a non-deterministic
generation procedure as in a given generation context it might be,
and frequently is, possible to use more than one instance of the rules.
Unfortunately, we can not have the luxury of allowing the generator
to select an arbitrary viable instance, as bad choices may lead the
generator to a dead end or non-termination, even if making another
choice would result in successful generation.

These problems can be solved by using a procedure that performs
backtracking. Whenever a bad choice is made, the procedure will
fail and backtrack to another choice. Given that it is possible to run
into an infinite loop, a limit on the number of recursive invocations is
imposed.

Unfortunately, since the success or failure of the generation de-
pends so much on the way the App rule is instantiated, such genera-
tion procedure suffers from excessive backtracking, which is why we
propose a different set of generation rules.

1 Alternative rules

We chose to use an alternative set of generation rules instead of adopt-
ing the typing rules for that purpose. Consider following method
where a term can be generated in two ways:

• We may introduce a lambda expression if the target type is
functional. The body of the lambda expression must then be
generated to complete the term.

• We may use a symbol from the environment, constant or vari-
able, that possibly needs some arguments to be applied to it to
match the target type. The needed arguments become new goals
that have to be generated. If the type of the symbol is the same
as the target type, no arguments are needed and generation is
finished.

2. POLYMORPHIC CONSTANTS 13

The first tactic is captured by the Lam rule in Figure 2.2 and the
formal rule for the second one is given below:

(IndirV)
f : σ1 → . . .→ σn → τ ∈ Γ Γ ` M1 : σ1 · · · Γ ` Mn : σn

Γ ` f M1 . . . Mn : τ

There is also a sister rule for constants, which we omit here. Please
note that τ can be any type, also functional, and that the Indir rules
supersede Var and Cnst if n = 0.

This choice of generation rules gives us a generation method with
interesting properties. First, it is not possible to generate all terms
with it, as it never generates any β-redexes. Secondly, it is nevertheless
complete, as it will be able to generate a term if a well-typed term
exists for a given combination of the target type and environment.
And finally, the problem of generation being very sensitive to the
way rules are instantiated is reduced. The reason for this is that
applying the Indir rule does not involve choosing any types, and
while choosing the wrong variable or constant might result in failed
generation there is a finite number of choices to make.

In a way, the Indir rule is a ‘guided’ App rule, which chooses
the argument types to suit a specific variable or constant from the
environment.

Keeping the App rule For the purpose of practical generation, we
nevertheless keep the App rule in addition to the Indir rule to be
able to generate β-expanded terms. While the Indir rule gives higher
chances of successfully generating a term without excessive backtrack-
ing, the App rule is capable of generating β-expanded terms.

2 Polymorphic constants

So far we discussed the simply-typed lambda calculus with monomor-
phic constants, which means that constants have specific types. How-
ever, typical Haskell programs make use of parametric polymorphism,
which requires a richer term representation.

The type system of Haskell is quite complex, but a large part of
code in Haskell uses only one aspect of parametric polymorphism,
notably polymorphic constants1. Other variations of polymorphism

1In particular, Haskell 98 programs are restricted to Hindley-Milner polymorphism
with monomorphic let bindings if no explicit type signatures are provided [26].

14 CHAPTER 2. GENERATION METHOD

Variables x, y, . . .
Constants c, d, . . . ::= head, tail, +, 0, 1, . . .
Type variables α, β, . . .
Types σ, τ, . . . ::= Int | Bool | σ→ τ | α

| List σ | · · ·
Polymorphic types Σ, Υ, . . . ::= ∀αβγ · · · .σ
Terms M, N, . . . ::= x | c | λx : σ. M | MN

Figure 2.3: A simple λ-calculus with polymorphism

in Haskell, such as higher-rank types or polymorphic let definitions
require a more complicated type system, which is why we decided to
support only polymorphic constants.

Polymorphic constants can be used to represent functions oper-
ating on polymorphic data structures, such as lists. They are also
needed to build expressions that use advanced Haskell libraries, in-
cluding ones involving monads, applicative functors and arrows.

Polymorphic constants can also be used to encode some program-
ming language constructs, such as if-then-else, which means that
support for them does not have to be hard-coded into the generator.

Instead of supporting polymorphic constants, we could replace
them with a number of their instances, for example:

headInt : List Int→ Int

headInt→Int : List (Int→ Int)→ Int→ Int

· · ·

However, this would lead to an explosion of constants and, given
that there are infinitely many instances of each (non-trivial) polymor-
phic type, it is not clear which and how many instances should be
included.

To accommodate polymorphic constants we must extend our core
calculus, as shown in Figure 2.3. Polymorphic types are written as
∀αβγ · · · .σ, where α, β, . . . are type variables, which are allowed to
occur in σ and are replaced by types during instantiation. It is illegal
for a type variable to occur in a non-polymorphic type even though
the syntax allows this.

The typing rules, shown in Figure 2.4, are only slightly different to
previous typing rules. All terms have monomorphic types. Lambda-
bindings and, in consequence, variables are monomorphic. Also,
the occurrences of constants are fully instantiated, and thus all have

2. POLYMORPHIC CONSTANTS 15

Typing judgements Γ ` M : σ
Environment Γ ::= {x1 : σ1, x2 : σ2, c1 : Σ1, . . .}
Type substitution [α 7→ τ1, β 7→ τ2, . . .]

(Var)
x : σ ∈ Γ
Γ ` x : σ

(Cnst)
c :∀αβ · · · .σ ∈ Γ

Γ ` c :∀αβ · · · .σ[α 7→ τ1, β 7→ τ2, . . .]

(Lam)
x : σ, Γ ` M : τ

Γ ` λx : σ.M : σ→ τ
(App)

Γ ` M : σ→ τ Γ ` N : σ

Γ ` MN : τ

Figure 2.4: Typing rules for simple λ-calculus with polymorphism

concrete types. The only rule that has changed is Cnst, which now
performs instantiation of the constant’s polymorphic type.

Generation rules for terms with polymorphic constants also need
only small changes compared to previous ones. The rule that changes
is IndirC, which introduces constants:

(IndirC)

Σ[α 7→ ρ1, . . .] = σ1 → . . .→ σn → τ
··· f : Σ ∈ Γ Γ ` M1 : σ1 · · · Γ ` Mn : σn

Γ ` fM1 . . . Mn : τ

Constant f can be used if its polymorphic type Σ can be instantiated
so that its result is the same as the target type τ, which is realised by
the side condition marked with vertical dots.

2.1 Instantiation

Of course, in order to use the IndirC rule, both f and an instantiation
of its type must be chosen. Depending on the circumstances, this
might be easy or difficult. The following examples examine different
cases.

Example 1 Consider that the following constant is present in the
environment:

tail :∀α.List α→ List α ∈ Γ

and that the target type is List Int. If we want to use tail to generate
this term we have to find an instance of the IndirC rule. But the only
instantiation that can possibly be used here is [α 7→ Int], and thus the

16 CHAPTER 2. GENERATION METHOD

generation step might look as follows:

(IndirC)

Σ[α 7→ Int] = List α→ List α
··· tail : Σ ∈ Γ

· · ·
Γ ` ? :List α

Γ ` tail ? :List α

Therefore, in this case the instantiation is completely guided by the
environment and target type.

Example 2 A slightly more complicated situation occurs when the
identity function is to be instantiated. The identity function has
following type:

id :∀α.α→ α

Suppose that, for example, the type of the expression that is to be
generated is Int. Then, the most obvious choice is to instantiate α
with Int and generate id applied to an Int argument. However, it is
not the only choice. We may as well instantiate α with Bool → Int

in which case applying id to an argument yields a function of type
Bool→ Int. Thus, id effectively becomes a two-argument function that
can be applied to arguments Bool → Int and Bool. Continuing this
way, we may instantiate α with Bool → Bool → Int and obtain an
instance of id that takes three arguments. We may carry on adding
arguments to id like this forever, even if the resulting terms would
look uncommon.

This demonstrates that whenever a constant has type that looks
like ∀α · · · . · · · → α, there will be infinitely many possible ways of
instantiating it. Fortunately, it is not likely that constants applied to
many ‘extra arguments’ are relevant for generating interesting terms.

Example 3 Consider the function map and that we want to use it
to generate a list of integers. Map is represented with the following
constant:

map :∀αβ.(α→ β)→ List α→ List β

Since the resulting term has the List type, the constant must be ap-
plied to two arguments. Furthermore, the target type of List Int dic-
tates that β in the type of map must be instantiated with Int. However,
nothing constrains how α must be instantiated, making it possible to
use any instantiation of it.

Therefore, many instantiations of map are possible, and the same
problem occurs with several important constants that we might want

3. GENERATION ALGORITHM 17

to use for generating terms, such as:

ap : ∀αβ.A (α→ β)→ A α→ A β
bind : ∀αβ.M α→ (α→ M β)→ M β

The problem is important as specific instances of map and similar
constants are likely to be required to generate some interesting terms.
For example, bind has to be used (and instantiated) in order to build
complex monadic expressions.

Also, not surprisingly, if we include a constant that represents
function application, exactly the same problem would occur as we
would have to select α in the following type:

($) :∀αβ.(α→ β)→ α→ β

Therefore, the problem of instantiating such constants is more general
then the problem of instantiating the App rule.

These three examples show that the problem of instantiating poly-
morphic types in the Indir rule is (a) easily solvable in some cases and
(b) choosing arbitrary types might be needed in other cases, which
is not crucial for generation, but (c) there are also important cases
where instantiation is critical.

We were not able to solve this problem completely, but we present
a partial solution of it, which is based on heuristics, in our generation
algorithm.

3 Generation algorithm

The algorithm generates terms recursively top-down by applying
generation rules. To avoid non-terminating generation each recursive
invocation of the algorithm uses a size parameter, which is decreased
in subsequent invocations.

The first step of each recursive invocation is to create a list of
admissible instances of the generation rules, that is the instances that
can be used in the current context.

When the size parameter is 0 the list is restricted only to non-
recursive rule instances, and thus the generation is forced to succeed
or fail without further recursion.

The list is then permuted at random and the first rule instance
from it is applied. If the rule instance requires subterms to be gener-
ated, these get turned into subgoals and the generation procedure is

18 CHAPTER 2. GENERATION METHOD

invoked recursively with new generation contexts.
When the recursive invocations succeed, their results are combined

into the resulting term according to the generation rule and the
current invocation of the generator concludes. When they fail, the
generator performs backtracking by selecting the next admissible
instance of some generation rule from the list. If there are no more
instances left, the original recursive invocation fails.

The size parameter used to generate the subgoals of a goal is
decreased using the following equation, where p is the number of
immediate subterms that need to be generated and sg is the size
parameter of the goal.

ssg =

⌊
(sg − 1)

p

⌋
(2.1)

Example Consider that the environment contains constants tail :
∀α.List α → List α and x : List Int. Note that we omit writing ∀
when a polymorphic type does not have type parameters. If the type
of the term to be generated is List Int, the admissible rule instances
are the following:

• The Indir rule may be instantiated with tail and n = 1, which
requires generating a subterm of type List Int. The instanti-
ation involves a substitution [α 7→ Int] and both τ and σ1 are
instantiated with List Int. The instance is presented below in
full:

(IndirC)

∀α.List α→ List α[α 7→ Int] = List Int→ List Int
··· tail :∀α.List α→ List α ∈ Γ Γ ` M1 :List Int

Γ ` tail M1 :List Int

• The Indir rule may similarly be instantiated with x and n = 0.

• The App rule may be instantiated with τ mapped to List Int

and with σ mapped to any type.

• There is no admissible instantiation of the Lam rule.

If the size parameter is 0, then Indir instantiated with x becomes the
only admissible instance, as it is the only one that is non-recursive.

The algorithm described above is an ordinary randomised search
algorithm with backtracking and size limit. The important part of it is

3. GENERATION ALGORITHM 19

how the set of admissible rule instances in a given context is selected.
Ideally, we should select all the admissible rule instances, but because
of the possible many instantiations of some constants, this set might
be infinite and therefore we must approximate it by selecting the
subset of all possible instantiations. The following procedure is used:

• Admissible instances of Indirv and Lam are selected completely
as there is a finite number of them. Variables are monomorphic
and the type of the λ-bound variable is uniquely determined by
the generation context.

• Applying the App rule involves choosing the argument type.
Napp_tries types are chosen at random and instances of App

based on these types are included in the set.

• There are three cases involving the Indirc rule, inspired by the
examples that we discussed previously:

1. When the instantiation of a given constant is unique, that
instantiation is chosen.

2. When the constant’s type looks like ∀α · · · . · · · → α, the
constant can be applied to a number of extra arguments.
Up to Nextra_arg extra arguments can be applied, and any
types that are not determined are chosen at random.

3. When the constant’s type is not fully instantiated based on
the target type, the remaining types are chosen at random.

Limiting the number of instances of App and Indirc is done
by selecting arbitrary types at random in places where any type is
allowed. The procedure for random selection of types chooses them
based on the set of types available in the environment. First, a set of
base types is created by considering different combinations of symbols
from the environment and then a ‘small’ random type is generated
from it.

Parameter Napp_tries is arbitrarily fixed to 5 and this number of
instances of the App rule are created, as the rule has a high chance of
failing if the wrong type is chosen. Higher values of Napp_tries did
not seem to be more effective in triggering bugs in our testing, but
led to excessive backtracking, which slowed down the generator.

Parameter Nextra_arg is set to 3. Values higher than 1 already
did not give any advantage in testing. We decided to conservatively
increase Nextra_arg to 3, as the there is no performance hit associated
with that. Choosing an arbitrary value for this parameter prevents

20 CHAPTER 2. GENERATION METHOD

some terms from being present in the distribution of the generator.
However, we believe that these terms should occur very rarely in any
reasonable distribution and omitting them is acceptable. Note that
generation is not sensitive to this parameter as using extra arguments
is never required for it to succeed.

Weights The random backtracking algorithm tries the rule in-
stances in a random order in a given recursive invocation. In order
to increase the variety of the generated terms, the rules have weights
assigned to them. Instances of rules with higher weights have higher
chances of being tried first. Weights assigned to rules are respectively
2 for rules that use locally-bound variables, 1 for rules that introduce
constants and 4 for the rules for introducing an application or a λ-
expression. We tried different combinations of weights and found
that increasing the weights on the App and Lam rules increases the
chances of triggering bugs during our testing. On the other hand,
increasing the weight of the App rule beyond 4 (if other weights are
low) causes excessive backtracking. We also chose to prefer local
variables to constants as using them should lead to expressions with
more ‘interesting’ semantics.

Instance selection Selecting viable instances of rules involving
variables Lam and Indirv, is relatively easy and involves checking for
equality between monomorphic types. Choosing instances of Indirc

is done by performing unification of the target type with possibly
modified types of constants.

Generating terms containing seq Some of our applications re-
quire generating terms that contain occurrences of the following
constant.

seq :∀αβ.α→ β→ β

The purpose of the Haskell function seq is to change strictness
of an expression without changing its semantics in any other way.
The meaning of expression seq a b is the same as that of b, with
the difference that the former is strict in a (however, b might be also
strict in a by itself). The function seq is often used to eliminate space
leaks in Haskell programs by making forcing some expressions to
be evaluated. More discussion about function seq can be found in
Section 2 of Chapter 4.

4. DISTRIBUTION 21

Using this constant expands the generation space greatly, as match-
ing β against the target type leaves the choice of α completely uncon-
strained. Given that seq is most useful in our applications when its
first argument contains locally-bound variables, instead of treating it
as ordinary constant, the generator allows it to have only variables as
first arguments.

4 Distribution

The generator described above works by performing random local
choice, influenced by rule weights, and is restricted by the size param-
eter. The distribution of the generated terms is similar to that for a
size-limited generator based on stochastic grammars.

Due to the fact that the size parameter is always distributed evenly
between subterms (Equation 2.1), the distribution of the generated
terms is biased towards full trees, compared to the uniform distribu-
tion of terms with ‘n’ nodes.

The current design of the generator results in that some terms
whose generation involves guessing of types, as described in Sec-
tion 2.1, might be underrepresented in the distribution if successful
generation of subgoals of a rule depends on specific types being
chosen in that instantiating that rule.

22 CHAPTER 2. GENERATION METHOD

Chapter 3

Shrinking

Counterexamples found by random generation of lambda terms often
look strange and convoluted. However, in order to come up with
a useful bug report the counterexample must be convincing to the
developers working on the project.

The following term was found to violate a property, described in
Section 4, that optimisation should not increase strictness.

(λa.seq a ((λb.seq a (λc.seq b tail)) (a (head undefined))

(case1 (λb.length) (seq a 2) (seq a undefined))))

(λa.seq a ((λb.seq a (seq a (seq a (λc.seq c (seq b undefined)))))

(seq a (λb.seq b (λc.a)))))

The term is a tangible proof that there is something wrong with the
tested compiler, however to say what goes wrong exactly is more
difficult. In particular, tracing the execution of the compiler on it
is likely to be very labour-intensive because of the size of the term,
which would make identifying the root cause of the bug difficult.

Fortunately, it is quite likely that only part of the test case is rele-
vant for triggering the problem and there probably exists a smaller
term that triggers the same bug. We use a technique called shrink-
ing [4] to search for a simpler counterexample that also triggers a bug.
Shrinking was able to reduce the above counterexample to a simpler
term that violates the same property:

(λa.seq a (seq (a undefined) tail)) (λa.seq undefined (+1))

23

24 CHAPTER 3. SHRINKING

The shrunk term is much smaller than the original one, which
makes its analysis much easier. It is also minimal in the sense that
it cannot be further reduced, which suggests that the term contains
only parts that are required for triggering the bug. Furthermore,
shrinking reduces the variation of terms reported as counterexamples,
as different terms originally found during testing often shrink to
the same or very similar terms. This makes differentiation between
different bugs easier as one bug is typically represented by a set of
similar shrunk terms.

Moreover, looking at different shrunk terms that violate one prop-
erty can give even stronger hints about the problem that is triggered.
For example, most terms found by this property contained subterms
that look like λa.seq undefined ..., which define a function that is a
defined value itself, but returns ⊥ given any argument.

Given their size and understandability, shrunk terms are good
candidates for including in bug reports as they are more likely to
convince the developers that the reported bug is worth fixing.

1 Shrinking simply-typed lambda terms

Shrinking is done by searching for a smaller term similar to the
original one that also causes the given property to fail. Smaller
shrinking candidates are created by reducing the term structurally.
When one of the shrinking candidates triggers a failure shrinking will
try to reduce it further. The example term shown earlier has been
shrunk in 17 steps.

To illustrate a shrinking step, suppose that the term below pro-
vokes some failure.

(λx.id (tail x)) (b ++ b)

Constants that appear in it represent common Haskell functions and
have the following types:

id : ∀α.α→ α
tail : ∀α.List α→ List α
(++) : ∀α.List α→ List α→ List α

Constant b is a list of integers and has type List Int.
In search of a smaller term that also provokes a failure, we may

turn to looking at subterms of the original term. For example, sub-

1. SHRINKING SIMPLY-TYPED LAMBDA TERMS 25

term b ++ b, which has the same type as the original term, could be
considered. Term λx.id (tail x) cannot be used as it has a different
type. Terms id (tail x), and tail x, although having the right type,
contain an unbound variable1 so we cannot use them as either.

However, it also makes sense to perform simplifications inside of
the term. For example, b ++ b may be replaced with b, since they have
the same type, which gives:

(λx.id (tail x)) b

Similarly, we may make a replacement inside of the lambda expres-
sion:

(λx.tail x) (b ++ b)

Also, the whole lambda expression, which has type Int→ Int, may
be replaced with its subterm:

tail (b ++ b)

Another way in which we could simplify a term is by replacing its
part with a constant of the right type. For example, if the environment
contained constant [] (empty list), we could replace one of the list
subterms with it:

(λx.id []) (b ++ b)

Finally, we can simplify a simply-typed lambda term by perform-
ing β-reduction on it, that is inline the function’s argument into its
body.

The formal properties of the simply-typed lambda calculus ensure
that we can do this reliably as two important guarantees are made—
that (a) the resulting term is well-typed and that (b) β-reductions
always terminate. The second property is non-trivial as the size of a
term might increase after a β-reduction.

The considered term contains one function applied to an argument,
so it may be β-reduced in one way:

id (tail (b ++ b))

1Terms with unbound variables are not well-typed and thus technically have no
type.

26 CHAPTER 3. SHRINKING

a

b

e

c

f g

d · · ·

Figure 3.1: Shrinking process. Test cases that fail are marked in grey.
Dotted test cases are not considered.

2 Shrinking using QuickCheck

The example above illustrates all ways of shrinking a term. This
section presents a semi-formal description of the generic shrinking
process performed by QuickCheck.

In each step of the shrinking process a number of shrinking can-
didates are tested, which are reduced versions of the original test
case. When one of them fails, the shrinking step is concluded and the
newly found counterexample becomes the starting point for the next
shrinking step.

Figure 3.1 contains an illustration the shrinking process. Test
case a is the original counterexample found during testing, which is
subsequently shrunk. The first shrinking step considers a’s shrinking
candidates b, c, d, and so on, which are tested in turn. Test case
b, which is considered first, succeeds and is discarded. Test case c
fails and becomes the ‘current’ shrunk test case, whose shrinking
candidates are tested in the next step. In this step g is found to falsify
the property and the process continues with its shrinking candidates.
Shrinking terminates when all current shrinking candidates succeed,
or when a test case does not have any, and the last failing test case is
reported.

Note that the failing test case e from Figure 3.1 is never considered,
because shrinking looks only at immediate shrinking candidates of a
failing test case. Also, test case d is not considered, because it occurs
after the failing c in a sequence of shrinking candidates. Shrinking is
a greedy algorithm that performs local choice, which is not guaranteed
to be optimal. The resulting shrunk test case is only a local minimum.

3. SPECIFIC SHRINKING METHOD 27

However, good choice of a specific shrinking method tends to give
results that are not far away from optimal.

A shrinking method for a particular data type is defined as a
function that maps each element of that data type to a list of shrinking
candidates defined as the following Haskell function:

class Arbitrary a where

...

shrink :: a -> [a]

The shrinking candidates should be smaller than the original element,
but the measure by which they are smaller can be freely chosen by
the developer of the shrinking method. The only formal requirements
on the function are that (a) it is total, (b) that lists of candidates are
finite and (c) there are no infinite chains of shrinking steps. These
requirements ensure that the shrinking process will always terminate,
either when all shrinking candidates succeed, or when the current
term has an empty list of shrinking candidates.

3 Specific shrinking method

The particular shrinking method for the simply-typed lambda terms
that works as described in the beginning of the chapter can be defined
by performing 3 kinds of steps:

Rule 1. replace with subterms A subterm may be replaced with its
proper subterm, if their types are equal. Care must be taken to
avoid referring to variables bound by removed λ-bindings.

Rule 2. β-reduce A term may be β-reduced.

Rule 3. replace with constant Any subterm that is not a constant
may be replaced with a constant if the types agree.

There is a possible optimisation that we could introduce in Rule 1—
we may restrict it to only consider replacing subterms with their
immediate proper subterms of the right type. For example, term
0 + (1 + 2) may be replaced by 1 using the unrestricted Rule 1, but not
using the restricted one, because 1 is a proper subterm of 1 + 2 that
can also be used.

The idea behind this restriction is that 1 will be tried anyway
in a later shrinking step and that omitting unnecessary shrinking
candidates prevents the list from being excessively long. This is

28 CHAPTER 3. SHRINKING

important, for example, when shrinking the data type of binary trees
where the total number of all subtrees might be rather large. Since
shrinking has to respect types, we expect this optimisation to have a
smaller effect in the case of simply-typed lambda terms, however we
decided to take it into consideration. The effects of this restriction are
investigated later in Section 8.

4 Properties of shrinking

There are two important properties that must be established for our
shrinking method: that (a) shrunk terms are well-formed and that (b)
there can be no infinite sequence of shrinking steps.

Shrinking produces well-typed terms It is easy to see that rules 1

and 3 turn well-typed terms into well-typed terms as their construc-
tion explicitly ensures that. For rule 2, which performs β-reduction, it
is not trivial. However, a known result for the simply-typed lambda
calculus called subject reduction[30] states exactly that β-reduction is
type-safe. Even though we allow polymorphic constants, our terms
can still be modelled in the simply-typed lambda calculus as the
constants are always fully instantiated. Thus, all three kinds of steps
preserve well-typedness.

Shrinking terminates Again, it is easy to see that rules 1 and 3 are
constructed in such way that they always make terms smaller, so they
can never result in non-termination. Rule 2 is more tricky, as it may
increase the size of the term due to duplication when the argument
term is inlined into the function body. However, another standard
result, strong normalisation, states that β-reduction terminates for the
simply-typed lambda calculus[30].

Unfortunately, even though no rule can cause non-termination
by itself, it is not possible to extend this easily into proof that any
combination of steps will always terminate. We expect that the proof
can be extended, however the extra steps are non-trivial, and thus we
leave it for future work.

Unfortunately, even though no rule can cause non-termination if
used in isolation, it is not possible to extend this easily into proof that
any combination of steps will always terminate. We expect that the
proof can be extended, however the extra steps are non-trivial, and
thus we leave it for future work.

5. DESIGN CHOICES OF SHRINKING 29

5 Design choices of shrinking

The three ways of simplifying a term were chosen because they com-
prise generic ways of simplifying a term. Parts of a counterexample
that are not relevant for triggering a failure might be removed by
rules 1 and 3.

It is debatable whether rule 2 that inlines a function argument into
its body is a simplification. In some cases the opposite, β-expansion,
might lead to a simplified term. However, unrestricted β-expansion
is non-terminating, whereas β-reduction terminates even when rules
1 and 3 are present, as we showed previously.

On top of that, the shrinking process turned out to be effective
in practice as the shrunk counterexamples were not possible to be
reduced further by hand in most cases.

6 Shrinking with batch test cases

In order to speed up testing, a single test case contains a list of terms
that are tested together in one run, as described in Section 4. Usually
1000 terms are tested in one batch. Generating test cases that contain
a list of terms is straightforward in QuickCheck, where it is enough
to compose a generic generator of lists with a generator of terms.
Similarly, a shrinking method can be derived from the generic one for
lists. However, this solution has some shortcomings.

The generic shrinking method first tries to reduce the length of
the list to one element using binary search, and then tries to shrink
that element using its own shrinking function.

This method is inefficient in two ways. First, it does not use the
information about which term in the list has failed and has to resort
to binary search, adding about 10 unnecessary shrinking steps. And
secondly, each shrinking candidate is compiled separately without
taking advantage of compiling and running them in batches.

An optimised shrinking method would receive the index of the
term that has failed the property, and generate a list of shrinking
candidates of that term that could be compiled in a batch. Thus, it
would avoid the initial search for the failing term and make shrinking
that involves many failed attempts much faster.

It turned out that this can be implemented without changing the
implementation of QuickCheck, although at a price of making the
properties less composable. In order to create a property that uses
batch test cases we propose using the following combinator.

30 CHAPTER 3. SHRINKING

forAllParShrink

:: Int -- Number of test cases in one batch

-> Int -- Number of shrinking candidates in one batch

-> Gen a -- Test case generator

-> (a -> [a]) -- Shrinking function

-> (a -> String) -- Printing

-> ([a] -> Maybe Int) -- Batch property

-> Gen Prop

The batch property is passed as a function taking a list of test cases
and returning a Maybe Int where Nothing indicates that all test cases
succeeded, whereas Just n means that test case n was the lowest one
that failed.

For each run of the property, the function creates a list of test cases
whose length is specified by its first argument. When a failure occurs,
the offending test case, which is pointed to by the index returned by
the property, is passed to the shrinking function, which generates a
list of shrinking candidates. A number of these test cases, limited
by the function’s second argument, is passed again as a batch to the
property.

The fact that the batch property is defined as a function of type
[a] -> Maybe Int gives it a disadvantage when it comes to compos-
ability. Contrast it to the ordinary forAll combinator, which takes
properties of type Testable t => a -> t. The property defined inside
of forAll may itself use any of the QuickCheck property combinators,
such as collect, printTestCase or within, whereas the one defined
using forAllParShrink cannot, and must be defined monolithically.

On the other hand, the property inside of a forAll cannot give
any extra information about the failure to the combinator, such as
which test case failed in the batch, which is precisely why we have to
use the type [a] -> Maybe Int for batch properties.

Shrinking using batch test cases implemented like this was sped
up by factor of around 10–20 in typical cases, using batches that were
limited to having 40 terms.

7 Weaknesses and possible improvements

Reducing the variety of constants The shrinking process is not able
to replace a constant in a term with another one because of risk of
non-termination. This leads to many similar terms being reported if a
particular one is not required to trigger a failure. For example, one

7. WEAKNESSES AND POSSIBLE IMPROVEMENTS 31

property generated the following terms:

(-) a ((-) b 0)

(-) a ((-) b 1)

(-) a ((-) b 2)

(-) a ((+) b 0)

. . .

The counter-examples were shrunk to 12 variations, all using a differ-
ent combination of constants. Given that shrinking should reduce, if
possible, the number of reported counterexamples for a given bug, it
would be beneficial if all these terms were normalised to a common
representative. One way of doing that would be to establish an order-
ing on all constants and allow a ‘larger’ constant to be replaced by a
‘smaller’ one.

A slightly related idea would be to expand constants into their
definitions. The expansion, obviously, has to be restricted as recursive
definitions could be expanded forever. Such a rule might solve, for
instance, the problem of transforming 1 into 0, as 1 expanded to
(+1) 0 can be reduced to 0. However, even this simple expansion is
problematic because the whole (+1) 0 can be transformed back to 1

using Rule 3 introducing the risk of non-termination. Also, expanding
all non-recursive definitions might make the terms much larger. Thus,
it is not clear how to restrict expansion of definitions so that it is
useful for shrinking.

Retyping subterms Some cases would benefit from being able to
replace a subterm with its proper subterm if it can be retyped to match
the type of the term that it replaces. For example, if subterm λx.[] has
type Bool→ List Int it could also be retyped with Int→ List Bool

and used to replace a larger term of this type.

Small improvements Two potential improvements can be experi-
mented with that would introduce only small changes to the method.
Firstly, subterms could be replaced with variables that are in scope
with the right type. And secondly, the shrinking candidates could be
ordered in a more complicated way involving, for instance, interleav-
ing of candidates generated by different rules.

32 CHAPTER 3. SHRINKING

8 Shrinking parameters

There are two possible choices in the shrinking method. The first one
is the order in which the shrinking candidates generated by different
rules should be considered, which in some cases might influence the
result of shrinking.

The second choice is whether to optimise shrinking by restricting
Rule 1 to only consider replacing subterms with their immediate
proper subterms of the right type, as described in Section 3.

To assess the effects that these choices have on shrinking, we
parametrised our shrinking method over these choices and conducted
an experiment to measure its performance with different parame-
ters. The experiment was performed by collecting pools of randomly
generated unshrunk counterexamples for two properties, shrinking
them with different combinations of parameters and examining their
performance based on the results of shrinking and its speed. The
two properties were the ones discussed in Sections 1 and 2 of the
next chapter and each of the pools contained 200 terms. While it is
certainly worth extending the experiment to cover more properties,
or even other applications than just testing GHC, the data that we
obtained should give us some idea about the influence of parameters.

The results of the experiment suggest that restricting Rule 1 yields
no negative effects on the quality of shrunk terms while improving
the speed of shrinking by a small margin. The outcomes are less
conclusive about which order of shrinking rules should be used. All
orderings deliver comparable quality of shrunk terms, but differ in
the numbers of shrinking steps and failed shrink attempts performed
during shrinking. Although we can spot orderings that are clearly
better than others, it is not possible to nominate the best one, if we
assume that batch shrinking (described in Section 6) is used.

In this chapter we present the data that we gathered together with
our analysis. We also propose recommendations based on that, but
some of our conclusions are not definitive and for that reason we
present our analysis in detail to allow drawing alternative conclusions
from it.

8.1 Immediate subterms

First, the parameter defining whether to consider only largest applica-
ble subterms was evaluated. Due to the fact that shrinking is a greedy
process, it is impossible to predict the outcome of restricting the lists

8. SHRINKING PARAMETERS 33

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Fa
ile

d
sh

ri
nk

s

Shrinking steps

Figure 3.2: Number of shrinking steps and failed shrink attempts for
different terms from a pool

of shrinking candidates, but we expected that doing it might reduce
the numbers of failed shrinking attempts. At the same time, it might
reduce the effectiveness of shrinking.

The experiment showed that using this restriction has no effect on
the results of shrinking whatsoever, as all the terms were shrunk in
the same way regardless of it. The number of successful shrinking
steps was also the same in all cases.

However, the number of unsuccessful shrinking attempts for some
terms was higher when all proper subterms were considered during
shrinking. The differences were not large on average, with up to 2%
more failed attempts in the first property when a specific ordering of
shrinking rules was used (the other parameter of shrinking) and up
to 7% more in the second one. The biggest discrepancy for any given
term was 22% more failed attempts in the first property and 64% in
the second one, however these were isolated cases.

34 CHAPTER 3. SHRINKING

There are typically 5–15 more failed shrinking attempts than suc-
cessful steps for a given term. For example, Figure 3.2 shows a
scatter-plot for respective numbers for the first of the considered prop-
erties where shrinking was performed with all subterms considered
and the with the default ordering of shrinking rules.

It seems to be very beneficial to limit the number of failed shrink
attempts since their number is often much larger than the number
of successful steps. However, the benefit seems less profound when
we consider that using batch shrinking, described in Section 6, makes
failed shrink attempts much cheaper, as in our case up to 40 shrinking
candidates are tested in one batch.

This optimisation has little effect with testing the properties that
we used in our experiment, but we can imagine a situation where
terms contain many subterms of the same type (for example involving
a binary tree data type), in which case the reduction in failed shrink
attempts might be substantial.

8.2 Ordering of shrinking rules

The second parameter of the shrinking method is the order in which
the three shrinking rules, mentioned in Section 3, are tried on a term.

We investigated the influence of the ordering of rules on the
quality of shrunk terms. For any given two orderings of rules, the
shrunk terms were the same in at least 61% of cases for Property 1

and in at least 76% of cases for Property 2. This makes us think that
when we change the ordering of rules the results of shrinking remain
quite consistent.

To compare different shrunk terms that come from the same
original counterexample we decided to use the size of the final shrunk
terms as the measure of their quality, and to naturally prefer smaller
terms. Figure 3.3 shows a scatter-plot of sizes of shrunk terms that
were generated by Property 1 and shrunk using two different rule
orderings. The area of each circle in the plot is proportional to the
number of data points that occurred in the same place.

We can infer by looking at the plot that no ordering of rules is
better than the other when it comes to sizes of shrunk term. Plots for
other pairs of orderings and for Property 2 look very similar to the
one in Figure 3.3, which makes us conclude that the ordering of rules
does not influence the quality of shrunk terms in a measurable way.

The other factor that we considered was the speed of shrinking.
Instead of using wall clock time for benchmarking we used two

8. SHRINKING PARAMETERS 35

10

15

20

25

30

35

40

10 15 20 25 30 35 40

Si
ze

of
sh

ru
nk

te
rm

s,
ru

le
or

de
r

3
,2

,1

Size of shrunk terms, rule order 1, 2, 3

Figure 3.3: Sizes of shrunk terms for different terms from a pool; the
diagrams are similar for all other pairs of rule orderings.

numbers: (a) the number of shrinking steps performed during a single
shrinking and (b) the number of failed shrink attempts. Table 3.1
shows the mean values of these numbers for different orderings of
rules. In all cases we consider shrinking that uses the optimisation
presented in Section 8.1.

Looking at Table 3.1 lets us isolate two groups of orderings. The
first three generally result in more successful shrinking steps, but
fewer failed attempts, whereas for the latter three it is the other way
around.

For a possible explanation of this phenomenon notice that in the
first group Rule 1 (replacing a subterm with its proper subterm)
always precedes Rule 3 (replacing a subterm with a constant), while
in the second group the opposite is the case. We suspect that Rule 3

generates very many shrinking candidates and many of them fail

36 CHAPTER 3. SHRINKING

Property 1 Property 2

rule order. shrinks failed shr. shrinks failed shr.

1, 2, 3 10.95 108.43 7.89 61.61

1, 3, 2 10.92 137.92 8.41 119.13

2, 1, 3 12.64 107.93 11.35 52.02

2, 3, 1 7.33 194.85 5.88 155.09

3, 1, 2 6.92 267.45 5.90 310.94

3, 2, 1 6.90 257.39 5.94 290.38

Table 3.1: Shrinking steps and failed shrink attempts

before a successful one is tested. Rule 1, on the other hand, if placed
before Rule 3, might successfully reduce a term before shrinking
candidates of Rule 3 are considered. Nevertheless, the lower numbers
of shrinking steps in the second group might indicate that shrinking
candidates generated by Rule 3 are more effective in quickly reducing
the term’s size.

Looking more closely at the rule orderings in the first group, we
can see that ordering 1, 2, 3 seems to be better than 1, 3, 2, because the
mean number of shrinks is either very similar (Property 1), or smaller
in 1, 2, 3 (Property 2), and the mean number of failed attempts is
always lower in 1, 2, 3. Orderings 1, 2, 3 and 2, 1, 3 are closely tied as
the mean number of shrinks is lower in 1, 2, 3, but the mean number
of failed attempts is better in 2, 1, 3 in Property 2 by a considerable
margin.

In the second group 2, 3, 1 seems to be the winner thanks to lower
numbers of failed attempts, even though its numbers of shrinking
steps are a little higher.

Having a choice between an ordering from the first group and one
from the second one, which one should we choose? The numbers of
failed shrinking attempts are usually much higher than the numbers
of successful shrinks, which hints at the first group. However, given
that when testing the GHC compiler we use batch shrinking, failed
attempts are much cheaper than shrinking steps as up to 40 shrinking
candidates are tested at the same time. With this assumption, all the
orderings get much closer to each other in terms of performance. In
contrast, when batch shrinking is not used, then the orderings from
the first group are clearly better.

Figures 3.4 and 3.5 show scatter-plots of numbers of successful

8. SHRINKING PARAMETERS 37

0

5

10

15

20

25

0 5 10 15 20 25

Si
ze

of
sh

ru
nk

te
rm

s,
ru

le
or

de
r

2
,3

,1

Shrinking steps, rule order 1, 2, 3

Figure 3.4: Numbers of shrinks for different terms from a pool

shrinks and failed shrink attempts for terms generated by Property 1,
when using orderings 1, 2, 3 (first group) and 2, 3, 1 (second group).
The scatter-plot of the numbers of failed shrink attempts is plotted
using the logarithmic scale.

As we can see in Figure 3.4, ordering 2, 3, 1 generally results in
fewer shrinking steps, the difference being more than 10 in some
cases. On the other hand, ordering 1, 2, 3 brings about fewer failed
shrink attempts, as shown in Figure 3.5. The discrepancies for some
terms are as large as over 1000 failed shrink attempts for ordering
2, 3, 1 and less than 200 for the other ordering. Given that ordering
2, 3, 1 generates over 800 more failed shrink attempts for these terms,
this corresponds to about 20 more batches used in shrinking.

Comparisons of other orderings from the two groups yield similar
scatter-plots to the ones presented here, which prompts us to conclude
that the first group results in fewer pathological cases when shrinking

38 CHAPTER 3. SHRINKING

10

100

1000

10 100 1000

Fa
ile

d
sh

ri
nk

at
te

m
pt

s,
ru

le
or

de
r

2
,3

,1

Failed shrink attempts, rule order 1, 2, 3

Figure 3.5: Numbers of failed shrink attempts for different terms from
a pool

takes a long time.

8.3 Conclusions about shrinking parameters

We conclude that restricting the shrinking candidates to terms where
only largest applicable subterm can replace its superterm does not
yield a sizeable speed-up. However, we also found that it has no
detrimental effect on the quality of shrunk counterexamples, which is
why we recommend that it is enabled by default.

The conclusions about which ordering of rules gives the best
performance depends on whether we assume that batch shrinking is
used. There is no measurable difference in the quality of the shrunk
counterexamples when different orderings are used. What differed
was the mean numbers of shrinking steps and failed shrink attempts.

The first three orderings shown in Table 3.1 performed fewer failed

8. SHRINKING PARAMETERS 39

shrink attempts during shrinking, which made them appropriate for
situations when batch shrinking is not used. Out of this group,
orderings 1, 2, 3 and 2, 1, 3 performed particularly well.

When batch shrinking is used, with a maximum of 40 terms in
one batch, as in our case, the differences in the average performance
between the orderings is much smaller. In this case orderings 1, 2, 3

and 2, 1, 3 from the first group, and 2, 3, 1 from the second one could
be considered. Based on the scatter-plot in Figure 3.5 we would still
recommend the orderings from the first group to limit the amount of
pathological cases. Choosing one of 1, 2, 3 and 2, 1, 3 over the other
may impose a hit of 20% in the worst case, which is why we could
arbitrarily choose the first one as a safe default.

Clearly, some of these recommendations are conditional and weak,
but should serve well as the default values, whereas it should be
possible to use alternative parameters whenever the user chooses to
do so.

40 CHAPTER 3. SHRINKING

Chapter 4

Applications

We used the generator to test the GHC compiler using differential
testing [23] directed towards testing the compiler’s middle-end. Even
though the generator was was capable of generating only a very lim-
ited subset of all Haskell programs, it was able to uncover interesting
bugs in the compiler.

The testing resulted in finding eight interesting failures and four
bugs were reported for GHC and subsequently fixed. The counterex-
amples obtained were concise enough to be understandable thanks to
automatic shrinking.

Apart from bugs detected in the GHC compiler, the testing allowed
us to understand better the effects of optimisation performed by it.

1 Strictness changed by optimisation

We investigate whether optimisation performed by GHC influences
strictness of the compiled programs. Optimisation is performed on a
program in order to turn it into a more ‘optimal’ one without changing
its observable behaviour, where more ‘optimal’ might mean, for
example, one that runs quicker. However, erroneous transformations
might change the semantics of a program. In particular, changes
in strictness, while subtle, can influence the program’s observable
behaviour—for example, the program may crash or consume more
memory than it should.

To detect whether the GHC’s optimiser modifies strictness of some
expressions we used differential testing where observed output of an
optimised program is compared with observed output of the same

41

42 CHAPTER 4. APPLICATIONS

term

module

generate

code

result

run

code

result

run

compile compile opt.

?
=

Figure 4.1: Differential testing

program compiled with no optimisation, as shown in Figure 4.1.
Changes in strictness of expressions might result in less or more
output to be printed by tested functions before crashing.

A generated term whose strictness is to be analysed is compiled
as part of a module whose skeleton is shown in Figure 4.2. The
generated term is bound to the code variable and is a function of type
[Int] -> [Int].

The main function of the module is devised to print the results
of the code function applied to a small number of partially-defined
lists of integers defined by the constant inputs, which we elide here.
Expression print $ code x prints the result of the function, and thus
forces its evaluation.

When an error is encountered during the evaluation, it is caught
as an exception by E.catch. The exception handler prints a message
indicating an exception, but disregards its exact kind as we do not
consider changing the exception kind as a change in program’s seman-
tics following the Haskell Report [21]. The program is then allowed
to continue to evaluate the function for all remaining inputs.

To provide accurate information on partial values potentially re-
turned by the observed function, it is necessary to turn off output
buffering, which is done by calling hSetBuffering in the main function.
Had buffering been active, the printing code would try to print a
whole line of characters at once and if an exception were triggered be-
fore the buffer is flushed, the output that had already been generated

1. STRICTNESS CHANGED BY OPTIMISATION 43

module Main where

import Control.Monad (forM_)

import qualified Control.Exception as E

import System.IO (hSetBuffering, stdout,

BufferMode (NoBuffering))

handler (E.ErrorCall s) = putStrLn $ "*** Exception: "

inputs :: [[Int]]

inputs = ...

code :: [Int] -> [Int]

code = ...

main = do

hSetBuffering stdout NoBuffering

forM_ inputs $ \x -> do

E.catch (print $ code x) handler

Figure 4.2: Module skeleton

would be discarded. Therefore, we would not be able to distinguish
between different partially-defined results. On the other hand, when
buffering is turned off, characters are printed one by one and the
exception handler will trigger only after the last defined character
is printed. Even though a more accurate technique is available for
discovering the semantics of partial values [7], we chose this method
as fast and accurate enough.

Each module created from the skeleton is compiled in two vari-
ants. The unoptimised variant is compiled without any optimisation
options, which results in the default -O0 ‘zero’ optimisation level. The
optimised variant is compiled with -O -fno-full-laziness, which
turns on typical optimisation options, but turns off the full laziness
optimisation, which is also known as let-floating. The reason for leav-
ing out full laziness is that it is known to change the strictness of
compiled code and that examples involving it are less interesting.

The initial environment for terms contains simple integer constants
and functions, like 0 and +, as well as common functions operating on
lists from the Haskell prelude. The initial environment that is used in
this section is presented in Figure 4.3.

Given that we want to test the strictness of compiled functions, we

44 CHAPTER 4. APPLICATIONS

seq :: a -> b -> b

id :: a -> a

[] :: [a]

0 :: Int

1 :: Int

2 :: Int

(+) :: Int -> Int -> Int

(+1) :: Int -> Int

(-) :: Int -> Int -> Int

(:) :: a -> [a] -> [a]

enumFromTo :: Int -> Int -> [Int]

enumFromTo’ :: Int -> Int -> [Int]

head :: [a] -> a

tail :: [a] -> [a]

take :: Int -> [a] -> [a]

(!!) :: [a] -> Int -> a

length :: [a] -> Int

filter :: (a -> Bool) -> [a] -> [a]

map :: (a -> b) -> [a] -> [b]

null :: [a] -> Bool

(++) :: [a] -> [a] -> [a]

odd :: Int -> Bool

even :: Int -> Bool

(&&) :: Bool -> Bool -> Bool

(||) :: Bool -> Bool -> Bool

not :: Bool -> Bool

True :: Bool

False :: Bool

foldr :: (a -> b -> b) -> b -> [a] -> b

(==) :: Int -> Int -> Bool

(==) :: Bool -> Bool -> Bool

(==) :: [Int] -> [Int] -> Bool

case1 :: (a -> [a] -> b) -> b -> [a] -> b

undefined :: a

Figure 4.3: Initial environment. Many instances of (==) are needed
because our generator does not support Haskell type classes. The
constant enumFromTo’ is our own definition where the second argu-
ment is the length of the enumeration. The constant case1 is another
definition that performs case analysis on lists.

1. STRICTNESS CHANGED BY OPTIMISATION 45

must make sure that their arguments are not inlined, otherwise each
function would be compiled and optimised many times together with
each of its arguments. Fortunately, iterating through inputs using the
forM_ function is enough to stop GHC from inlining the arguments.

Due to high fixed cost associated with compilation and linking a
module, 1000 terms are included in a single ‘batch’ module during
testing, which requires a slightly different module skeleton and a
suitable output comparison procedure.

Testing the property for a given generated term is done by (1)
creating a module using the skeleton from Figure 4.2, (2) compiling it
twice with different optimisation settings, (3) running the compiled
modules and (4) comparing their output for equality. If the outputs
are different then we have found a counterexample that has a different
observable behaviour depending on the optimisation options. We can
define the property in a more formal way as follows, where t is the
term, module is a function that creates a module out of a term, and c∗
and run are functions that, respectively, compile and run the module
yielding its output:

∀t.run(copt(module(t))) = run(cnoopt(module(t)))

1.1 Results

The property described above led to observing a discrepancy between
optimised and unoptimised code for about one in 10000 terms, which
takes about 3 minutes of CPU time when terms are tested in batches.

One failure for each 10000 tests is an unusually low number for a
QuickCheck property, and we might speculate why this number is
so low. One likely reason is the very high number of all expressions
even among terms of small size. It is possible that failing test cases
comprise a small number of all expressions. Another possible reason
is an imperfect distribution of our generator, which may increase the
probability of generating the same terms many times.

All counterexamples that we present here have been shrunk by
the shrinking process, which means that any further shrinking results
in a test case that does not trigger a failure.

Failure 1 The following snippet is an example expression that vio-
lated the property.

foldr (\a -> seq) id ((:) 0 (undefined::[Int]))

46 CHAPTER 4. APPLICATIONS

For clarity, it can be rewritten as follows by η-expanding one of the
subexpressions, while keeping the same behaviour:

foldr (\a b c -> seq b c) id (0 : undefined :: [Int])

The expression exhibits different observable behaviour depending on
compilation options, which indicates that at least one of the versions
is compiled wrongly. However, to find out which one we must
determine by hand what is its correct semantics.

The intended semantics of the higher-order function foldr is to
return its first argument applied to the first element of the list (variable
a gets bound to 0) and to the result of foldr’s recursive call (b gets
bound to the result of the recursive call). Function foldr is defined
as a two-argument function, but is applied to three arguments in its
context.

The whole expression should reduce to \c -> seq (foldr ...) c,
which acts as the identity function except when expression foldr ...

crashes, in which case the whole expression should also crash when
applied to an argument. The expression should in fact crash as the
recursive foldr is applied to the undefined list.

We were able to construct a simple program that demonstrates
the incorrect compilation, shown below, which is simpler than the
original module and more suitable for submitting a bug report.

main = print $

wrap

(foldr (\a b c -> seq b c) id (0 : undefined::[Int]))

[0]

The tested expression is passed as argument to wrap, which acts as the
identity function and an example list [0] is applied to the resulting
expression. The purpose of wrap is to prevent the expression from
being simplified together with its argument, which is achieved by
implementing wrap in such way that GHC cannot reduce it1.

wrap :: a -> a

wrap x = [x]!!0

When the program is compiled using GHC without optimisation,
it prints

program: Prelude.undefined

1Using the builtin function of GHC named GHC.Exts.lazy has the same effect.

1. STRICTNESS CHANGED BY OPTIMISATION 47

which indicates that the expected exception has been raised. However,
with optimisation turned on, the expression gets incorrectly compiled
into the identity function and [0] is printed instead. A likely expla-
nation for this is that seq is somehow omitted from the generated
code.

The demonstrated change in observable behaviour caused by
optimisation violates the semantics defined by the Haskell Report.
To assess the seriousness of this bug we will analyse its possible
consequences.

The bug might cause a crashing function to successfully return a
result. This does not seem dangerous, but can have two implications.
First, it is a surprise factor for the programmer, which may hinder
the understanding of the code. And furthermore it may invalidate a
partial correctness arguments about a program, which state that Pro-
gram has property P if it terminates. If the program’s overall correctness
relies on such partial correctness argument, the programmer might
be mistakenly convinced about its correctness.

A more common manifestation of the bug might be, however, a
space leak caused by an omitted seq application. Common wisdom
about Haskell programs compiled using GHC is that optimisation
occasionally reduces their performance, which often happens by
introducing space leaks. This and similar bugs might have a role in
causing the performance regressions.

Failure 2 Another counterexample yielded by the same property is
this expression.

seq (seq (head []) (\a -> undefined))

Identifying incorrect compilation again requires analysing the ex-
pression’s semantics. The nested expression containing seq should
evaluate to an exception, since its first argument is head of an empty
list. Therefore the whole expression should also be a function that
crashes. To demonstrate the error we can use the same skeleton
program as with the previous term.

main = print $

wrap (seq (seq (head []) (\a -> undefined))) [0]

Compiling the program with no optimisation yields the correct result.

program: Prelude.head: empty list

48 CHAPTER 4. APPLICATIONS

However, when compiled with optimisation, the expression behaves
as the identity function and yields [0]. Thus, the semantics in the
optimised version is changed to more lazy, which is a similar to the
problem triggered by the expression in Failure 1.

The fact that the counterexample that we are considering has been
shrunk allows us to draw some conclusions about the bug that has
been triggered. From the way the shrinking is performed, we know
that neither of the shrinking candidates generated from the reported
term failed the property. This means that if we simplify the coun-
terexample in a structural way it will no longer be a counterexample.

For example, if we replace the expression head [] with undefined

the term will be compiled correctly, or at least testing will not detect
any error. Note that these two terms ought to have the same semantics,
nevertheless using head [] is required to trigger a bug. We might
speculate that undefined is correctly identified by the compiler as a
crashing expression, while head [] is not, which makes the compiler
perform different transformations each time.

Another term that would look like a good candidate for replace-
ment is \a -> undefined and again replacing it with undefined makes
the failure go away. If treated as functions, both terms behave as
undefined functions, but it is possible to differentiate between them
by executing seq on them. One hypothesis might be that the compiler
at some point assumes that \a -> undefined is equal to undefined ‘for
all practical purposes’, but the distinction between them turns out to
be relevant in this context.

This speculation might be further reinforced by looking at some
other counterexamples for the same property, presented below.

seq (seq ((!!) ([]::[] Bool) 0) (\a -> (undefined::Int)))

seq (seq ((!!) ([]::[] Bool) 0) (\a -> (undefined::Int)))

seq (seq ((+1) (undefined::Int)) (\a -> (undefined::Int)))

seq (seq (even (undefined::Int)) (\a -> (undefined::Int)))

seq (seq ((+) (undefined::Int) 0) (\a -> (undefined::Bool)))

All of them are structured similarly to the original one, having a
crashing expression (but not error ... or undefined) as the argument
of the nested seq, and \a -> undefined as the second argument of the
other seq. This may suggest which combination of features is needed
to trigger a failure and which details are not relevant in an expression.

Apart from the expressions shown above, several other groups
of expressions could be distinguished among the ones reported by
the property. It is impossible to say, based on testing, if each of the

1. STRICTNESS CHANGED BY OPTIMISATION 49

groups is caused by a distinct bug, or whether there is one bug that
causes all the failures. By looking at bug fixes that were added to the
GHC we deduced that, for example, this failure was probably caused
by a different bug than Failure 1.

Failure 3 Counterexamples presented in previous examples were
terms whose behaviour was always more lazy in the optimised version
of the program, and indeed all found terms that were scrutinised by
us during testing had this characteristic. We decided to check if it is
possible to find a term that is more strict when it is compiled with
optimisation.

For this we modified the function that compares outputs of two
variants of a program compiled with different optimisation levels
to signal failure only when the optimised version prints less output,
indicating that it is more strict. As expected, terms like this were
much harder to come across, but still possible to find at a rate about
100 times lower than the previous kind.

The following term was found by the modified property.

(\a -> seq a (seq (a []) id)) (\a -> seq undefined (+1))

For clarity we might rewrite it as follows:

let a = \x -> seq undefined (+1) in a ‘seq‘ a [] ‘seq‘ id

If we consider its semantics: variable a is bound to a function whose
semantics is equivalent to that of \x -> undefined, which means that
seq a x is defined, but seq (a y) x is undefined for any defined x and
y.

Given that the considered expression performs seq both on a and
on a [] its result should be undefined and the correct outcome of a
program that evaluates this expression should be a raised exception.
Strangely enough, compiling the expression with no optimisation
gives a program that prints [0] (when the expression is applied to
[0]) instead of crashing and with optimisation turned on the result is
correct.

It seems, thus, that our working hypothesis that unoptimised
programs are correct and should be treated as reference for testing is
not always true as we have just found a program that gets fixed by
compiling with optimisation.

This very unexpected bug was reported as ticket 5625
2 in the GHC

bug tracker and was subsequently fixed.
2Available at http://hackage.haskell.org/trac/ghc/ticket/5625. All GHC tickets

can be accessed in this manner by altering the ticket number.

http://hackage.haskell.org/trac/ghc/ticket/5625

50 CHAPTER 4. APPLICATIONS

As previously, we may look at other reported counterexamples
to determine what features of the expression are relevant to causing
failures. The counterexamples are shown below, each spanning two
lines.

(\a -> seq (a (seq a (undefined::[] Int))) id)

(\a -> seq (undefined::[] Int) (+1))

(\a -> seq a (seq (a (undefined::[] Int)) tail))

(\a -> seq (undefined::[] Int) (+1))

(\a -> seq a (seq (a ([]::[] (Int -> Int))) (:)))

(\a -> seq (undefined::[] Bool) (+1)) 0

(\a -> seq (a (seq a (undefined::[] Int))) id)

(\a -> seq (undefined::Bool) (\b -> head))

(\a -> seq (a ([]::[] Int) (undefined::Int)) (seq a))

(\a -> \b -> seq (undefined::Int) (+1)

The common features visible in these expressions are (a) subex-
pression \x -> seq undefined e (slightly modified in the last example)
that is bound to the variable a of the first function, and (b) that vari-
able a is used twice in the function. Given the expected semantics of
the subexpression, it may also be important that a is applied to an
argument at least once in each counterexample.

It is worth noting that it is actually possible to reduce this coun-
terexample further by hand. It appears that the bug is triggered only
if a is not inlined and the reported term contains two occurrences
of a, which prevent it from being inlined. But if we move out a to
become a top-level definition and export it from the module then only
one occurrence of a is needed. The module demonstrating the bug
becomes then:

module Main (a, main) where

a = \x -> seq undefined (+1)

main = do

print $ (a [] ‘seq‘ id) [0]

1.2 Were the bugs fixed?

In the three examples presented above, we demonstrated that GHC
may subtly change the semantics of expressions by changing their
strictness. The compiled expressions were too lazy, which in two

1. STRICTNESS CHANGED BY OPTIMISATION 51

cases was caused by optimisation, while in one case optimisation
unexpectedly fixed the error.

The counterexamples reduced by the shrinking process were con-
cise enough for us to initially analyse and understand the failures.
Even though we have no expertise about the internals of the GHC
compiler, we were able to make educated guesses about the failures
based on the counterexamples. Furthermore, the found test cases
were of high enough quality that they could be used in bug reports.
Out of the three presented expressions, one was used to submit a bug
report for GHC.

The bugs causing all three failures have been fixed. The term in
Failure 1 is no longer miscompiled by GHC 7.3.20111127 when option
-fpedantic-bottoms is used. The option was introduced as a fix for
another bug that we reported (ticket 5587). Therefore, we conclude
that the fix affects also this failure.

Failure 2 has been fixed before GHC version 7.3.20111022. How-
ever, we cannot identify a specific bug that is relevant. The bug
concerning Failure 3 has been fixed before GHC version 7.3.20111127

through ticket 5625.

Failure 4 Out of the hundreds of reported counterexamples, those
that were scrutinised by us always contained seqs. This is not sur-
prising as seq is a construction that is a difficult case for the compiler.
However, grepping through the counterexamples revealed that there
are several that do not involve seq, all rather similar.

Here is the simplest of such terms that has been found:

\a -> foldr (\b -> \c -> c) (undefined ()) (a ++ a) 0

The correct semantics of this function applied to a defined list is to
concatenate the list with itself and then execute a fold on it. The fold
ignores the elements of the list, but threads through the initial value
of the fold. The initial value, which is undefined (), is returned as the
result of the fold and is applied to 0, so the whole expression should
crash with an exception.

Compiling the code with no optimisation yields correct results,
but the following program was found to demonstrate incorrect com-
pilation:

f :: [Int] -> [Int]

f a = foldr (\b -> \c -> c) (undefined ()) (a ++ a) 0

main = print $ f []

52 CHAPTER 4. APPLICATIONS

When compiled with no optimisation it correctly prints

program: Prelude.undefined

However, when optimisation is turned on, the program does not
crash, and does not print any output. This is surprising, as we would
expect that the program would either crash or print a list of integers,
which is the type of values returned by f.

To investigate how this happens, we looked at the intermediate
Core representation of the program, which revealed that the code that
is supposed to print the resulting list is missing. The only sensible
reason why a compiler would omit this code is that it expects the
function to crash before returning the value. This seems a likely guess,
as GHC strictness analysis marks f as a function returning bottom. To
confirm our findings, we decided to fool the GHC’s strictness analyser
using the wrap function.

f :: [Int] -> [Int]

f a = foldr (\b -> \c -> c) (undefined ()) (a ++ a) 0

main = print $ wrap $ f []

When the result of f is passed through wrap, the printing code is
included and a (somewhat less) incorrect result gets printed.

[]

But unlike previous examples, where expressions were lazier as a
result of some seqs not being executed, here they do not occur and
the returned value seems arbitrary. Indeed, it turned out that the
body of f is polymorphic in the result type and we can make it return
an integer, as follows:

f :: [Int] -> Int

f a = foldr (\b -> \c -> c) (undefined ()) (a ++ a) 0

main = print $ wrap $ f []

This program, when optimised, prints:

1099511628032

What is more, when we choose (Int, Int) as the result type, the
program dies with a segmentation fault.

Earlier in this chapter, we discussed the situation where a partial
correctness argument might be invalidated if some expression in a

2. EVALUATION ORDER 53

program is evaluated successfully by mistake instead of crashing.
This example suggests that GHC itself can fall into this trap. If GHC’s
analysis concludes that f [] will crash, then the compiler is ‘careless’
about handling its result, because it believes that the result will never
be returned. Due to an error in optimisation, the result is nevertheless
returned, which may lead to the effects that we demonstrated. Thus,
failure to throw an exception may lead to worse consequences than
space leaks or too lazy expressions.

The bug was reported as ticket 5626 and fixed as a result of another
bug report.

2 Evaluation order

We decided to investigate whether optimisation changes the order of
evaluation of expressions, which is interesting for two reasons. First,
it is interesting to see which changes actually take place to get an
understanding of optimisations performed by GHC; and secondly,
to relate that to the changes that GHC is allowed to make, as it is
possible that the evaluation order is changed in an invalid way.

The Haskell programming language is designed with the intention
that the evaluation order should not matter for programs. Specifi-
cally, the evaluation order is not observable, unless the program uses
unsafe programming constructs, and the compiler is free to use any
evaluation order as long as the non-strict semantics is preserved [21].

Still, the evaluation order is important for reasons of efficiency,
which is why GHC gives certain guarantees about it to make it
possible to write efficient programs. Essentially, the evaluation order
used by GHC is determined by the call-by-need evaluation strategy,
with the exception that in some cases the order might be chosen freely
by the compiler [27].

A Haskell program may exhibit different levels of space usage
depending on what is the exact order of evaluation [12], but efficient
programs rely on the additional guarantees provided by GHC for
predictable space behaviour.

Determining the evaluation order is impossible in general, since it
is not observable as far as pure computations are concerned, but we
can use a trick to observe it. To detect which of two subexpressions
of an expression is evaluated first, we can make use of catching
exceptions. Not unexpectedly, catching exceptions is an impure
operation, which is why it lets us observe the evaluation order.

54 CHAPTER 4. APPLICATIONS

Consider expression e that contains two subexpressions a and b.

e = . . . a . . . b . . .

We can replace the two subexpressions with error terms as follows:

e′ = . . . error "aaa" . . . error "bbb" . . .

If evaluation of the term requires both subterms to be evaluated, one
of the exceptions will be thrown and precisely which one gets thrown
depends on their relative evaluation order. It is reasonable to expect
that the error term that is evaluated first will yield an exception.

Replacing a subexpression with the error x expressions carries the
risk that the presence of undefined subterms will affect the optimisa-
tions performed by the compiler on the expression. Thus, instead of
placing the error x terms inside of the expression it is better to create
a function that is later applied to suitable error terms and make sure
its arguments are not inlined.

e′′ = λab. . . . a . . . b . . .

e′′ (error "aa") (error "bb")

Testing was performed using the same approach as with the
previous property, that is by comparing outputs of the same module
compiled with different optimisation options. The module skeleton
was slightly different as this time we were interested in discriminating
between different exception kinds. Therefore, the exception handler
also prints the exception string:

handler (E.ErrorCall s) = putStrLn $ "*** Exception: " ++ s

The modules were again compiled with no optimisation and with
-O -fno-full-laziness options. The criterion for selecting offending
terms was that a different exception from the two passed as arguments
is thrown by each variant of the module.

2.1 Results

Failure 5 Terms that exhibit the above behaviour turned out to be
quite common. One of the simplest terms found is the following:

\aa bb -> seq aa (seq bb aa)

We can rewrite it using the infix notation for seq for clarity.

2. EVALUATION ORDER 55

\aa bb -> aa ‘seq‘ bb ‘seq‘ aa

The term represents a function that forces the evaluation of both of its
arguments and returns the first one. When applied to two error terms
the unoptimised and optimised versions produced different results.
The unoptimised one printed the exception thrown by the first error
term:

*** Exception: aa

The optimised threw the other exception, indicating that bb is evalu-
ated first.

*** Exception: bb

Inspecting the GHC’s internal Core representation of the optimised
program reveals that the code of the function was transformed into
\aa bb -> bb ‘seq‘ aa, omitting the seq operation on aa altogether.

This result surprised us at first, as seq is often used to eliminate
space leaks by making sure that its first argument is evaluated before
the second one. For example, the definition of the standard library
function foldl’ relies on performing seq to avoid a space leak.

To answer whether omitting this seq is acceptable, we consulted
the Haskell Report [21], which provides the following definition of
seq:

seq bot b = bot

seq a b = b if a /= bot

This definition is a semantic one and ensures that seq is strict in its first
argument, however it says nothing about the evaluation order. A naïve
implementation of seq would simply force the first argument before
returning the second one, and this would result in the behaviour
which programmers seem to rely on. However, if evaluating the
second argument of seq forces the evaluation of the first one by
itself, the compiler might omit the seq operation without violating
the semantics. This is indeed the case in the discussed example, as
returning aa means that it will be forced by the caller of the function,
so forcing it beforehand is not necessary.

The lesson from this example is that seq, which is implemented
correctly by the compiler, might still not guarantee that its first argument
will be evaluated before the second! Unfortunately, many of the Haskell
programs and libraries rely on this guarantee to avoid space leaks,
such as the above mentioned foldl’ function.

56 CHAPTER 4. APPLICATIONS

This fact, while neglected by many, has been known before. For
example, as outlined in [22], it is apparent that an operation that
forces a specific evaluation order is needed for implementing efficient
parallel computations in Haskell. However, restricting seq to allow
only a specific evaluation order might eliminate some optimisation
opportunities, which is why another variant of it called pseq was
introduced. The new construction has the same semantics as seq, but
is guaranteed to evaluate its first argument before its second.

Thus, consistently with [22] and the Haskell Report, we would
make the following recommendation.

• Whenever strict ordering of evaluation of expressions is needed,
pseq should be used.

• The seq operator should be used to change the strictness of
expressions, but not to enforce the order of evaluation.

Failure 6 Here is another term reported using the property.

\aa bb -> (+) (length (take bb ([]::[] Bool))) aa

The term performs integer addition of an expression that depends
on arguments bb and aa. At first it seems that bb should always be
evaluated first, since + should evaluate its first argument before the
second one. However, the + operation is one of the cases where GHC
is allowed to alter the evaluation order for reasons of efficiency [27].
Thus, the change of evaluation order in this case is also legitimate.

Many more terms involving seq, + and functions involving + were
reported by the property. Unfortunately, only manual inspection
of them was able to establish whether the changes in the order of
evaluation were allowed, which means that we checked only a small
number.

To perform more effective testing of this issue, a more accurate
property would have to be constructed. However, it would require
precise modelling of the Haskell semantics, which is an ambitious
task by itself. It is not clear if a truly ‘differential’ technique that does
not rely on a complex oracle could be applied here.

3 Equivalence of inlined expressions

Another property that we constructed compares the observable be-
haviour of a let expression and its reduced form, which we can

3. EQUIVALENCE OF INLINED EXPRESSIONS 57

portray with the following equation.

let x = e in C[x] ≈obs C[e]

Notation C[t] denotes an expression with zero or more gaps that are
filled with occurrences of expression t. The two expressions should
behave in the same way if no impure language constructs are used by
them.

The initial goal of this effort was to reveal impure behaviour of
some library functions. We failed to reach it. However, an interesting
compiler bug was found in the process.

The property is implemented in a similar way as previous ones.
However, only one module is created that contains both variants of
expressions that are compared. For each test case two terms are
generated, one representing the expression e and one representing
the context C[•]. The second term is then used to create expressions
C[x] and C[e].

To disregard the effects of possibly changed evaluation order the
property treats all thrown exception types as equal, as was the case in
our first property.

Failure 7 The following expression was found to behave differently
than its reduced form when compiled with GHC:

let x = error "aaa" in seq (seq (tail ([]::[Int])) (\a -> x))

When we run this expression as part of the program below, it yields
the correct result, that is it crashes and prints the following exception:
Prelude.tail: empty list.

print $

wrap

(let x = error "aaa" in

seq (seq (tail ([]::[Int])) (\a -> x)))

[0]

However, if we replace the generated expression in this program with
its second variant, shown below, the program prints 0 instead.

seq (seq (tail ([]::[Int])) (\a -> error "aaa"))

It is interesting that the program gets miscompiled regardless of the
optimisation level used and even unoptimised compilation yields the
same erroneous results. Thus, this failure could not be detected using

58 CHAPTER 4. APPLICATIONS

our previous approach of using differential testing with different
optimisation levels.

The approach of differential testing using pairs of expressions
like the one in this example is inspired by traditional property-based
testing where simple logical properties, such as equality laws, are
tested. This gives us additional bug-finding power, which is not
possible with traditional differential testing when only one compiler,
the one under test, is available.

And as in any programming language, in Haskell there are many
possible schemes of generating equivalent expressions. The failure
that we found suggests one more such scheme, apart from a let

expression and its reduced form. As it turns out, if we replace
error "aaa" with undefined in the offending expression, as shown
below, it is again compiled correctly.

seq (seq (tail ([]::[Int])) (\a -> undefined))

Thus, one possible scheme is pairs of expressions where occurrences
of error "aaa" are replaced with undefined.

The failure has been reported as GHC ticket 5557 and fixed before
version 7.3.20111022.

4 Equivalence of different error expressions

The bug that we found using the property described above led us to
investigate the following property.

C[error ”aaa”] ≈obs C[undefined]

This property is implemented similarly to the previous one, but
requires generating only one term that represents C[•].

As expected, testing this property yielded the same, and similar,
failures as the previous one, and unfortunately no fresh failures.

Thus, we decided to modify the property and tested the following
one instead.

C[hiddenError] ≈obs C[undefined]

Here hiddenError is an expression that crashes, but is defined in such
a way that makes it impossible for GHC to determine its semantics at
compile time. We hoped that using an expression with a concealed

4. EQUIVALENCE OF DIFFERENT ERROR EXPRESSIONS 59

crash might make GHC assume that it will not crash and use a
transformation that is only valid for non-crashing expressions on it.

Failure 8 Indeed, testing found interesting terms that were miscom-
piled, one of which is presented below.

hiddenError = error "hidden error"

main = do

print $ seq

(head (map (\a -> \b -> hiddenError)

(hiddenError::[] Bool)))

id

[1]

When this program is compiled with optimisation using the -O

-fno-full-laziness options, it prints [1] instead of crashing. As
visible in the program, it is actually enough that hiddenError is just a
plain definition using error ..., without further obfuscation. How-
ever, using error ... directly does not trigger the bug.

The failure has been reported as GHC ticket 5587, which now
contains a comprehensive explanation of its causes. The offending
expression, which contains a head function applied to map, under-
goes complex transformations using rewrite rules [28] thanks to list
fusion [10]. This process leads to a subexpression that is a case ex-
pression whose one branch crashes, while the other one is a function
that expects one more argument. For reasons of performance, this
subexpression gets η-expanded, so that it crashes only when the extra
argument is applied, changing its behaviour in some contexts.

This particular counterexample has an interesting feature, in that
the code that triggered the bug was created indirectly by GHC by
transforming the original expression using inlining and rewrite rules.
The resulting expression had elements that were not possible to
generate using our generator, but were needed to cause the failure,
such as case-expressions. Thus, given the multi-pass operation of the
GHC optimiser, it is possible to subject the compiler to a wider variety
of expressions than the ones that are possible to generate directly.

It is also worth noting that even though the shrinking process only
tries to reduce terms structurally, it shrank this counterexample very
well. The sequence of rewrite steps performed during the optimisation
process reveals that the counterexample is in fact minimal.

The bug has been fixed by introducing a new compiler option
-fpedantic-bottoms. Using this option causes the compiler to omit the

60 CHAPTER 4. APPLICATIONS

erroneous transformation. However, the default is still to perform
it. The motivation for this is that increased performance might be at-
tained at a price of changes in the semantics. However, it is not known
at this point what is the performance penalty of -fpedantic-bottoms.

5 Summary

Testing the GHC compiler using randomly generated simply-typed
lambda terms and differential testing proved to be effective, even
when only a small fragment of the Haskell language is covered. We
found many interesting failures, eight of which we presented here.
Four of these counterexamples resulted in high-quality bug reports,
which were acknowledged by the GHC developers as relevant.

We managed to obtain succinct counterexamples without under-
standing the inner workings of GHC, only by using shrinking, which
automatically reduces a failing test case to a smaller one. Shrinking
usually resulted in test cases that were not possible to be shrunk fur-
ther by hand. Shrunk counterexamples for a single property are often
similar and looking at their similarities allows for making educated
guesses about the cause of the failures.

The fact that the test cases have been reduced by shrinking proved
to be of enormous help. In one case it was possible to find a well-
hidden error in one of the GHC’s phases of compilation in a matter
of minutes, something that would not be possible if the reported test
case was large.

All the reported bugs concerned strictness of expressions being
incorrectly changed in the process of optimisation. We also investi-
gated whether optimisation might result in changes in the evaluation
order of expressions. However, we were not able to detect any bugs
there. What we discovered, instead, was that in many cases the order
of evaluation is unspecified, such as when the operator seq is used,
which is permitted by the Haskell Report. On the other hand, pro-
grammers often rely on seq having a determined evaluation order,
which may cause their programs to exhibit space leaks if an alterna-
tive order is used. Thus, in addition to finding bugs in the compiler,
our testing method can be used to support or disprove hypotheses
about the compiled programs, which may help in understanding of
the compiler.

We used differential testing using one compiler implementation,
but comparing behaviour of programs compiled using different opti-

5. SUMMARY 61

misation levels. In addition to that, we used another form of differen-
tial testing where two programs are compared, which are different but
have equivalent semantics. The second approach led to discovering
failures that were not possible to discover using the first one.

62 CHAPTER 4. APPLICATIONS

Chapter 5

Related Work

1 Compiler test tools

CSmith [35] is a random C program generator aimed at testing com-
pilers. It attempts to generate C programs that avoid undefined or
unspecified behaviour [15] without compromising the expressiveness
of the generated programs. To achieve this goal CSmith employs a rel-
atively complex program generator that uses different techniques for
producing safe programs. Firstly, it avoids some unsafe behaviours
simply by introducing structural constraints. And secondly, for cases
where this would be too restrictive, the generator resorts to perform-
ing static analysis on already generated code fragments to determine
whether a given operation is safe, or by inserting runtime safety
checks in the generated code.

Evaluation of test results is done using differential testing with
different compilers, or different options to the same compiler. The
comparison of effects of two executions is performed by comparing
checksums of non-pointer global variables sampled at the end of
each execution. A variety of compilers were tested, including GCC,
LLVM, CompCert and commercial C compilers. CSmith was able to
uncover as many as 325 previously unreported bugs in all compilers
altogether, most of them in GCC and LLVM. Even CompCert, which
has a formally verified core, exhibited a number of bugs.

CSmith has no means of reducing the size of a failing test case, as
it would be difficult to ensure that a shrunk test case is also free from
undefined or unspecified behaviour. Programs containing 8k–16k
tokens gave the highest rate of triggering bugs, and reducing them by

63

64 CHAPTER 5. RELATED WORK

hand was employed to obtain understandable test cases.
Lindig [20] created a simple tool called Quest for testing the

C function calling convention of C compilers. This tool randomly
generates programs containing C functions that execute consistency
checks to verify that their arguments have been passed correctly.
Program generation is type-driven, that is the type of a function is first
picked at random and a suitable body is generated algorithmically.
Although Lindig claims that his method does not require a language
specification, he relies on a partial specification stipulating that the
consistency checks should succeed. The scheme was able to detect
bugs related to passing function arguments in 5 different compilers.
Bugs found by Quest were triggered by surprisingly simple code,
which is explained by the fact that the static test suites used to by
compiler writers contain very few kinds of argument and result types
of functions.

McKeeman [23] presents a case of differential testing of C compil-
ers using inputs of various quality levels. Starting with sequences of
any ASCII characters, which have the lowest quality level, the inputs
range through valid sequences of tokens and syntactically correct
programs to reach programs with well-defined semantics. This led to
successful finding of errors in different stages of the compilers tested.
Additionally, starting with a test case from any level, ‘nearby’ test
cases are created by introducing small changes to the original test
case, which often causes a tested compiler to crash, uncovering a bug.

The test case generator was implemented as a Tcl script, which
is based on a context-free-grammar-based generator enhanced to
support context-sensitive features, like tracking defined variables.
Grammar rules are weighted and termination is ensured by assigning
small enough weights to recursive rules.

If a failing test case is found, a shrinking process is applied to
reduce its size. Failing test cases can be as big as 600 lines of code
and can often be shrunk to just several lines of code. However, this
might require about 10000 compilations.

Instead of avoiding illegal operations at higher quality levels,
whenever there is a discrepancy in the behaviour of two compiled
versions, the program is rerun with all potentially problematic opera-
tions replaced by their error-checking variants. If an error is detected,
the test case is discarded.

The highest level of quality that can be generated comprises of
programs with meaningful semantics. Programs of this level are
generated from specific templates that define their high-level structure,

2. SHRINKING 65

which guarantees certain semantic properties. Of course the diversity
of the generated programs is traded here for semantic correctness, as
the programs are much more specific than those from lower quality
levels.

Our work does not have the breadth of CSmith or the McKee-
man’s tool, as we cover a much smaller part of the language that
we generate. However, in that part we are able to generate very
interesting programs, thanks to using a formal calculus that ensures
well-typedness. We also had to solve problems that are absent while
generating C programs, such as generating higher-order and curried
functions and parametric polymorphism. Like McKeeman’s work,
our testing tool shrinks counterexamples, but does it in a type-safe
way that guarantees to preserve typing and makes it much more
efficient by using batch testing.

Hanford [13] presented an early example of a recursive, grammar-
based random program generator used for testing compilers. The
generator is based on context-free grammars, which are dynamically
modified during generation to accommodate some context-sensitive
behaviour, for example when a new variable is introduced. The
generator has a limited support for backtracking, which occurs when
it is not possible to rewrite some non-terminal. The tool has been
used to test compilers for simple properties, such as using programs
that are syntactically-correct, or containing syntax errors, for example
integer expressions in place of boolean ones.

2 Shrinking

Shrinking proved to be a very effective technique in property-based
testing and is now standard in Haskell QuickCheck [4] and Erlang
QuickCheck [14]. Shrinking allows for defining generic shrinking
methods for polymorphic data types, which can be composed with
shrinking methods for their element types. For instance, the default
shrinking method for lists of integers uses the shrinking method for
lists and also that for integers to reduce individual elements.

A similar technique has been invented concurrently, called delta
debugging [36], which is broader, but when applied to test input it
bears resemblance to shrinking. For example, the standard method
for reducing strings using delta debugging is very similar to the
default shrinking method for lists. Delta debugging has been applied
successfully to obtain small failing test cases for large and complex

66 CHAPTER 5. RELATED WORK

software.
Like shrinking, delta debugging finds a failing test case that is

locally minimal. However, delta debugging assumes a different model
for reducing test cases. A test case is first decomposed into a number
of independent changes that represent transformation of an empty
test case into the original test case. Then, a locally-minimal set of
changes is determined, that results in a failing test case. Shrinking in
QuickCheck, on the other hand, places very loose requirements on
each specific shrinking method.

3 Library test tools

Klein et al. [18] created a testing tool that generates random programs
to test an object-oriented library. Their generator is capable of produc-
ing higher-order object-oriented programs (which override methods)
and supports monitoring of pre- and post-conditions, which are used
to establish the validity and result of the test. Their generation method
uses generation rules similar to ours, with random rule selection, size
bound, and backtracking. Rather than our Indir rule, which gener-
ates calls of functions in the environment only when their result type
matches the target type, they use a rule that can generate a call of any
function in the environment at any time, binding its result to a fresh
local variable, which can then in turn be used in another attempt to
generate a term of the target type. The advantage of their approach is
that it is easier to generate calls of functions in the environment; the
disadvantage is that many of the local variables they create are never
used, because their types do not match the target type. Klein et al. do
not consider polymorphic types, nor do they shrink failing test cases
to minimal examples as we do.

Wrangler, a refactoring tool for Erlang has also been tested using
random program generation [8]. A rich program generator has been
created, which is capable of generating full modules. Even though
Erlang is an untyped language, the generator takes types into consid-
eration in order to avoid argument mismatches when calling functions.
Similarly, Daniel et al. [6] exhaustively generate Java programs (up
a to certain size) in order to test the refactoring engines in Eclipse
and NetBeans. Different from our approach, some of the generated
programs are not valid inputs for the Java compiler.

Generating random sequential programs is practised in testing
monadic code with QuickCheck [5] and in testing stateful programs

4. TESTING OF FORMAL MODELS 67

with Erlang QuickCheck [14]. Such a program is usually a sequence
of actions, which might contain variables, but all variable handling
is outsourced to the programmer using QuickCheck. Often such
generated programs are not parametrised, which makes it possible to
ensure that preconditions of all actions are satisfied.

4 Testing of formal models

Redex [16] is a tool for lightweight verification of programming lan-
guage formal models. Formal models are randomly tested whether
they satisfy the stated properties using randomly generated expres-
sions of the ‘object’ language. Generation of size-bounded terms is
based on grammars (syntax of the object language is defined using
a context-free grammar), and malformed expressions, for example
containing free variables, are filtered out. Naïve generation and fil-
tering is, of course, not enough to test more complex models, as
many reduction rules are never exercised. To raise the likelihood of
generating expressions that could be reduced with these reduction
rules, their left-hand sides are used to guide the generation. Redex
has been successfully used to formalise and test a nine existing formal
models and find mistakes in all of them.

5 Typed term generators

Djinn [2] solves the type inhabitation problem for simply-typed λ-
calculus, that is, it returns any term instead of a random one for a
given type. It is based on a terminating proof procedure for intuition-
istic propositional logic [9], which makes it find a term of a given type
reliably when one exists. It is limited, however, in that it does not
perform polymorphic instantiation, which means that it cannot generate
some terms involving polymorphic constants.

Vytiniotis and Kennedy [33] present encoding of data types into
streams of bits, which can be used for their random generation. In
their approach to generating simply-typed λ-terms, the target type is
never fixed, and thus the generation never fails, eliminating the need
for backtracking. This way of generating well-typed terms can also
be extended to simply-typed lambda calculus with polymorphic con-
stants. Reducing the problem of random data generation to encoding
in bit-streams has the consequence that improving the distribution

68 CHAPTER 5. RELATED WORK

of generated data corresponds to inventing efficient compression
schemes, such as Huffman coding.

The λ-term enumerator developed by Yakushev and Jeuring [31]
creates function applications in the same way as our method, by
generating a candidate type for the argument, and trying to generate
the argument afterwards.

6 Untyped term generators

Statistical properties of random untyped λ-terms have been explored
in [3], which also explores a method of generating them using Boltz-
mann sampling. Generation of random untyped λ-terms is tackled
in [34], which employs counting of possible subterms to achieve
uniform generation distribution. Correspondingly, the work in [24]
examines the proportion of simple types that are inhabited, that is,
for which it is possible to create a term of that type.

TGGS [11] is a random test data generation system based on
context-free grammars enhanced with context-sensitive constructs,
like imperative actions conditional clauses and stacks, which serve a
similar rôle to attributes in attribute grammars. The system generates
data by expanding non-terminal symbols by choosing grammar rules
at random and backtracks whenever that is not possible, rolling back
all relevant imperative actions. It is possible to affect the distribution
of the generated data using weights, which influence how often
different grammar rules are chosen.

Chapter 6

Future work

The potential for finding bugs in GHC using the presented method
has not at all been exhausted during the testing that we performed.
Although most of the presented bugs have been fixed, and our prop-
erties find counterexamples at a much lower rate, we are still able to
find new interesting error cases using them. Many more new proper-
ties and variations of existing ones are likely to yield even more new
counterexamples.

The same method can be applied to other Haskell compilers.
However, it might be less effective for compilers that do not perform as
sophisticated optimisation as GHC. When more Haskell compilers are
available, it would be interesting to perform the standard variant of
differential testing i.e. cross-testing of two different implementations.

Given that the subset of Haskell that is randomly generated is
very limited, there is room for improvement by adding support for
more language constructions that can occur in the generated terms.
For example, let and where clauses could be generated in a similar
way to function applications and case expressions could be generated
by having polymorphic constants that are required to be fully-applied.
Polymorphic let bindings could also be supported by means of
introducing polymorphic constants in their bodies and dummy type
constants (simulating ‘rigid’ type variables) in the type of bound
expressions.

The biggest technical challenge to solve in the current generator
is to improve on the generation of terms involving polymorphic
constants like map or monadic bind, which suffers from problems
described in Section 2.1. The problem can be alleviated, for example,
by allowing the generator to generate terms with partially-specified

69

70 CHAPTER 6. FUTURE WORK

types. One argument of map would be generated with a partially-
specified type while the other argument would be generated with a
type that agrees with that of the already generated subterm.

More drastic redesign is also possible in order to solve this prob-
lem. Theorem proving techniques might be used to track unresolved
type variables and propagate the changes whenever they are refined
in one of the subterms. However, we have been trying to avoid using
theorem proving techniques as this approach would change the scope
of this project too radically. We nevertheless think that using such an
approach would be legitimate in well-typed term generation.

Even more radical would be creating a generator that approxi-
mates the uniform distribution of terms (of a given size) by counting
all possible terms that can be generated, as it is done in AGATA [1].
However, it is not clear whether this approach is feasible computa-
tionally as the data type of well-typed terms is very complex, and
quite large terms are needed to perform useful testing.

Another approach that could possibly be used is to adapt the
technique proposed by Vytiniotis and Kennedy [33]. The advantage
of this approach is its simplicity and elegance, but a naïve generator
seems to be very skewed towards creating terms with partially-applied
constants, which suggests that much effort might be required to
correct the distribution.

Chapter 7

Conclusions

We applied property-based testing and random program generation
for testing a sophisticated optimising Haskell compiler. Even though
we generated a limited subset of Haskell, we were able to find inter-
esting bugs in the compiler. Found counterexamples were reduced
structurally using shrinking, which made them understandable and
well-suited for bug reports.

The properties used for finding the bugs employed differential
testing by comparing the behaviour of the same program compiled
with different optimisation levels. Also, we used an alternative form
of differential testing where the behaviour of two equivalent programs
is compared, which was used to find more bugs. In addition to bug
reports, we learned about valid interesting behaviour of GHC, and
in particular about changes to the default order of evaluation that it
performs.

We have two positive observations about structural shrinking
of counterexamples. First, even though the process is oblivious to
the complex internal workings of the tested compiler the shrunk
counterexamples could not be reduced by us further by hand in
most cases, which suggests that the results were close to optimal.
And secondly, looking at shrunk counterexamples allowed us to
make educated guesses about the cause of the failures, even without
referring to or understanding the compiler’s code.

Unfortunately, testing a compiler using a random program gen-
erator is hardly a fully automatic technique, which we hoped it to be
in the beginning. In contrast, we found that effective testing requires
spending effort on creatively devising properties. In particular, some
unexpected bugs were found by properties that were created for an-

71

72 CHAPTER 7. CONCLUSIONS

other purpose. However, the technique brings some automation to
finding compiler bugs.

We were satisfied with the relevance and quality of counterexam-
ples that we found for GHC with reasonable effort. Based on this
experience we think that random compiler testing is an attractive
technique for finding compiler bugs, which could be scaled up to
perform much more comprehensive testing than we performed.

References

[1] J. Almström Duregård. AGATA: Random generation of test data.
Master’s thesis, Chalmers University of Technology, Dec. 2009.

[2] L. Augustsson. Announcing Djinn, version 2004-12-11, a coding
wizard. http://permalink.gmane.org/gmane.comp.lang.haskell.

general/12747, 2005.

[3] O. Bodini, D. Gardy, and B. Gittenberger. Lambda terms of
bounded unary height. In Proceedings of the 8th Workshop on
Analytic Algorithmics and Combinatorics, 2011.

[4] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the fifth
ACM SIGPLAN International Conference on Functional Programming.
ACM, 2000.

[5] K. Claessen and J. Hughes. Testing monadic code with
QuickCheck. In Proceedings of the 2002 ACM SIGPLAN work-
shop on Haskell, Haskell ’02, pages 65–77, New York, NY, USA,
2002. ACM.

[6] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing
of refactoring engines. In Proceedings of the 6th meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering. ACM, 2007.

[7] N. A. Danielsson and P. Jansson. Chasing bottoms: A case study
in program verification in the presence of partial and infinite
values. In Mathematics of Program Construction, pages 85–109.
Springer, 2004.

[8] D. Drienyovszky, D. Horpácsi, and S. Thompson. QuickChecking
refactoring tools. In Proceedings of the 9th ACM SIGPLAN workshop
on Erlang. ACM, 2010.

73

http://permalink.gmane.org/gmane.comp.lang.haskell.general/12747
http://permalink.gmane.org/gmane.comp.lang.haskell.general/12747

74 REFERENCES

[9] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic
logic. Journal of Symbolic Logic, 57(3), 1992.

[10] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut
to deforestation. In Proceedings of the conference on Functional
programming languages and computer architecture, FPCA ’93, pages
223–232, New York, NY, USA, 1993. ACM.

[11] R. F. Guilmette. TGGS: a flexible system for generating efficient
test case generators. Technical report, RG Consulting, 1995.

[12] J. Gustavsson and D. Sands. Possibilities and limitations of call-
by-need space improvement. In Proceedings of the sixth ACM
SIGPLAN international conference on Functional programming, ICFP
’01, pages 265–276, New York, NY, USA, 2001. ACM.

[13] K. V. Hanford. Automatic generation of test cases. IBM Syst. J.,
9(4):242–257, Dec. 1970.

[14] J. Hughes. QuickCheck testing for fun and profit. In M. Hanus,
editor, Practical Aspects of Declarative Languages, volume 4354 of
Lecture Notes in Computer Science, pages 1–32. Springer Berlin /
Heidelberg, 2007. 10.1007/978-3-540-69611-7_1.

[15] ISO. ISO C Standard 1999. Technical report, 1999. ISO/IEC
9899:1999 draft.

[16] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen,
M. Flatt, J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B.
Findler. Run your research: on the effectiveness of lightweight
mechanization. In Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’12, pages 285–296, New York, NY, USA, 2012. ACM.

[17] C. Klein, M. Flatt, and R. B. Findler. The racket virtual ma-
chine and randomized testing. Available from http://plt.eecs.

northwestern.edu/racket-machine/, 2010.

[18] C. Klein, M. Flatt, and R. B. Findler. Random testing for higher-
order, stateful programs. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and
Applications. ACM, 2010.

[19] X. Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107–115, 2009.

http://plt.eecs.northwestern.edu/racket-machine/
http://plt.eecs.northwestern.edu/racket-machine/

REFERENCES 75

[20] C. Lindig. Random testing of C calling conventions. In Pro-
ceedings of the 6th International Symposium on Automated Analysis-
Driven Debugging. ACM, 2005.

[21] S. Marlow. Haskell 2010 language report. http://www.haskell.

org/definition/haskell2010.pdf.

[22] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support
for multicore haskell. In Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming, ICFP ’09, pages
65–78, New York, NY, USA, 2009. ACM.

[23] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100–107, 1998.

[24] M. Moczurad, J. Tyszkiewicz, and M. Zaionc. Statistical proper-
ties of simple types. Mathematical. Structures in Computer Science,
10, Oct. 2000.

[25] M. H. Pałka, K. Claessen, A. Russo, and J. Hughes. Testing
an optimising compiler by generating random lambda terms.
In Proceedings of the 6th International Workshop on Automation of
Software Test, AST ’11, pages 91–97, New York, NY, USA, 2011.
ACM.

[26] S. Peyton Jones. Haskell 98 Language and Libraries: the Revised
Report. Cambridge University Press, 2003.

[27] S. Peyton Jones, A. Reid, F. Henderson, T. Hoare, and S. Marlow.
A semantics for imprecise exceptions. In Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design and
implementation, PLDI ’99, pages 25–36, New York, NY, USA, 1999.
ACM.

[28] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules:
Rewriting as a practical optimization technique in GHC. In
Proceedings of the 2001 Haskell Workshop, pages 203–233, Sept.
2001.

[29] S. L. Peyton Jones. Compiling Haskell by program transfor-
mation: a report from the trenches. In Proceedings of European
Symposium on Programming. Springer-Verlag, 1996.

[30] B. C. Pierce. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

http://www.haskell.org/definition/haskell2010.pdf
http://www.haskell.org/definition/haskell2010.pdf

76 REFERENCES

[31] A. Rodriguez Yakushev and J. Jeuring. Enumerating well-typed
terms generically. In Approaches and Applications of Inductive
Programming, volume 5812 of LNCS. Springer Berlin / Heidelberg,
2010.

[32] G. Tassey. The economic impacts of inadequate infrastructure for
software testing. Technical report, National Institute of Standards
and Technology, 2002.

[33] D. Vytiniotis and A. J. Kennedy. Functional pearl: every bit
counts. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming. ACM, 2010.

[34] J. Wang. Generating random lambda calculus terms. Technical
report, Boston University, 2005.

[35] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’11, pages 283–294, New York, NY, USA, 2011.
ACM.

[36] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28(2):183–200, Feb. 2002.

	1 Introduction
	1 Related work
	2 Structure
	3 Property-based testing

	2 Generation method
	1 Alternative rules
	2 Polymorphic constants
	3 Generation algorithm
	4 Distribution

	3 Shrinking
	1 Shrinking simply-typed lambda terms
	2 Shrinking using QuickCheck
	3 Specific shrinking method
	4 Properties of shrinking
	5 Design choices of shrinking
	6 Shrinking with batch test cases
	7 Weaknesses and possible improvements
	8 Shrinking parameters

	4 Applications
	1 Strictness changed by optimisation
	2 Evaluation order
	3 Equivalence of inlined expressions
	4 Equivalence of different error expressions
	5 Summary

	5 Related Work
	1 Compiler test tools
	2 Shrinking
	3 Library test tools
	4 Testing of formal models
	5 Typed term generators
	6 Untyped term generators

	6 Future work
	7 Conclusions
	References

