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1 Introduction and summary

To date, the hypermultiplet (HM) moduli space M in type II string theories compactified

on a Calabi-Yau (CY) threefold X has remained poorly understood. Yet, its importance

can hardly be overstated: quantum corrections to the moduli space metric encode impor-

tant geometric invariants of X , which are closely related to the degeneracies of BPS black

holes [2]. Moreover, this encoding naturally incorporates chamber dependence and duality

invariance. Obtaining the exact moduli space metric on M would have far-reaching im-

plications for mirror symmetry, and provide incisive tests of string dualities. It may also

be relevant for model building, as many N = 1 string vacua can be obtained by gauging

isometries on the hypermultiplet branch.

Quantum corrections to the tree-level metric on M fall in three categories: pertur-

bative, D-brane instantons and NS5-brane instantons [3]. Each of these corrections must

preserve the quaternion-Kähler property of the metric, as required for supersymmetry [4].

While the perturbative and D-instanton corrections are by now fairly well understood, NS5-

brane instantons have remained elusive. One technical reason is that fivebrane instantons

break all continuous isometries, and their implementation consistently with supersymme-

try necessitates the full machinery of twistor techniques for quaternion-Kähler manifolds.

Another deeper reason is that the type IIA fivebrane supports a chiral worldvolume the-

ory [5], the partition function of which is notoriously subtle to define. On the type IIB

side, the world-volume theory of the NS5-brane is non-chiral [5] and follows in principle
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by S-duality from that of the D5-brane, but S-duality is also notoriously subtle in vacua

with N = 2 supersymmetry. In this paper, we take steps towards constructing fivebrane

instanton corrections on both sides, using insights from topological strings, mirror sym-

metry and S-duality. The remainder of the introduction is devoted to an account of the

relevant background for the paper, while concurrently providing a concise summary of our

main results.

1.1 The hypermultiplet moduli space

At tree level, the quaternion-Kähler metric on the HM moduli space M in type IIA (re-

spectively, type IIB) string theory compactified on X is obtained by the so-called c-map

procedure from the special Kähler metric on the vector multiplet (VM) moduli space of type

IIB (respectively, type IIA) string theory compactified on the same CY threefold X [6, 7].

It describes the vacuum expectation values and couplings of the dilaton eφ ∼ 1/g2
(4), the

complex structure (respectively, complexified Kähler) moduli za, the periods (ζΛ, ζ̃Λ) of the

Ramond-Ramond (RR) fields on X , and notably the Neveu-Schwarz (NS) axion σ, dual to

the Kalb-Ramond field B in four dimensions (the range and meaning of the indices a and

Λ will be specified below). At fixed, vanishingly small string coupling gs and ignoring the

NS-axion (i.e., modding out by translations along σ, which are symmetries of the pertur-

bative theory), the “reduced” HM moduli space in type IIA string theory is known to be

topologically the intermediate Jacobian1 Jc(X ) of the CY family X , which is a torus bun-

dle over the complex structure moduli space Mc(X ) with fiber T ≡ H3(X ,R)/H3(X ,Z),

which parametrizes the space of harmonic RR three-form fields C over X modulo large

gauge transformations [8]. In type IIB, the “reduced” HM moduli space is similarly a

torus bundle over the complexified Kähler moduli space MK(X ), the fiber of which is the

quotient T = Heven(X )/Γ where Γ is the lattice of D-brane charges. As in type IIA, T
parametrizes the space of harmonic RR fields over X , modulo large gauge transformations.

We shall refer to the total space of this torus bundle as the symplectic Jacobian JK(X ).

In type IIA (respectively, IIB), the NS-axion σ parametrizes a circle bundle C over Jc(X )

(respectively, JK(X )), the topology of which has remained hitherto obscure. One of our

goals will be to clarify the topology of the circle bundle C, by analyzing the breaking of

translational isometries along σ due to fivebrane instantons.

The quantum corrected quaternion-Kähler metric on M is most conveniently described

in terms of the twistor space ZM associated to M, a complex contact manifold locally of

the form CP 1 × M (see e.g. [9–12]). By the LeBrun-Salamon theorem, the quaternion-

Kähler metric on M can be recovered from the complex contact structure on Z, and linear

perturbations of M respecting the quaternion-Kähler property are encoded in holomorphic

sections of the Čech cohomology group H1(ZM,O(2)). The one-loop correction to the tree-

level metric was computed and further studied in [13–17]. It is believed to exhaust the series

of perturbative corrections, in the sense that higher loop corrections are expected to be

removable by field redefinitions. The twistorial description of the one-loop correction was

1The intermediate Jacobian usually refers to the torus T itself, rather than the total space of the fiber

bundle over Mc(X ). However, since X is really a family of CY manifolds with varying complex structure,

we find this language convenient.
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found in [12], as a logarithmic singularity of a certain canonical Darboux coordinate at the

north and south poles of CP 1.

The D-instanton corrections to the complex contact structure of ZM (and, there-

fore, to the quaternion-Kähler metric on M) were derived in [18–20], building on earlier

work [17, 21–23]. Key ingredients in this derivation were S-duality, electric-magnetic du-

ality (i.e. monodromy invariance) and mirror symmetry. In the type IIA language, these

D-instanton corrections are parametrized by a chamber-dependent “instanton measure”

nγ(z), which counts the number of stable special Lagrangian (sLag) submanifolds of X in

the homology class γ ∈ H3(X ,Z), on which Euclidean D2-branes can be wrapped. The re-

sulting complex contact structure is closely analogous to the complex symplectic structure

found on the twistor space of the (hyperkähler) HM moduli space in N = 2 super-Yang

Mills theories on R3 × S1 [24]. Indeed, upon compactifying the type IIA string theory

further on a circle and applying T-duality, M is mapped to the VM moduli space of the

dual type IIB string theory in 3 dimensions, thus providing a string theory analog of the

set-up studied in [24].

Similarly as in N = 2 field theories [24], the global consistency of the complex contact

structure on ZM requires that the instanton measure nγ(z) satisfies certain wall-crossing

constraints, identical to the constraints for the generalized Donaldson-Thomas (DT) in-

variants established in [25, 26]. This supports the expectation that the instanton measure

nγ(z) is in fact equal to the generalized DT invariant Ω(γ, z) defined in [25, 26], and also to

the indexed degeneracy of 4D black holes in type IIB string theory on X in a vacuum with

asymptotic values of the VM moduli determined by za. In the following we shall therefore

identify these objects and denote them by the common symbol Ω(γ, z), sometimes omitting

the dependence on the moduli za. Note however that due to the exponential growth of the

degeneracies of BPS black holes, D-instanton corrections only make sense as an asymptotic

series. The ambiguity of this asymptotic series can be argued to be of the order of the cor-

rections expected from Kaluza-Klein monopoles in type IIB on X × S1, or after T-duality,

NS5-branes in type IIA on X [27].

1.2 Sum over H-flux and Gaussian theta series

In contrast to D-instantons, fivebrane instantons have remained largely mysterious. The

contribution of one Euclidean type IIA NS5-brane wrapped on X (or one M5-brane in the

M-theory picture) is expected to involve a sum over harmonic configurations H ∈ Γ =

H3(X ,Z) of the 3-form flux H supported on the fivebrane worldvolume. Equivalently, one

expects contributions from all D2-NS5 (or M2-M5) bound states, where the D2/M2-brane

can wrap any sLag submanifold2 γ ∈ Γ of X . However, the self-duality constraint on H

implies that fluxes on three-cycles γ, γ′ with non-zero intersection product 〈γ, γ′〉 cannot

be measured (nor defined) simultaneously, and so the sum should run over a Lagrangian

sublattice Γe ⊂ Γ only [28] (see also [29–36]). As we review in section 2, the partition

function Z(1)
G for a Gaussian self-dual three-form on X is then a holomorphic section of a

2Up to torsion, the lattices Γ = H3(X , Z) and Γ∗ = H3(X ,Z) are isomorphic by Poincaré duality. In

this work we shall ignore torsion and identify Γ = Γ∗.
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certain line bundle LΘ over the intermediate Jacobian torus, which we shall call the “theta

line bundle”. The first Chern class of LΘ is known to be equal to the Kähler class of T [28]:

c1(LΘ)|T = ωT . (1.1)

To specify the line bundle LΘ uniquely, one must choose a set of characteristics3 Θ

(more precisely, a quadratic refinement σΘ of the intersection form on H3(X ,Z)) which

determine the periodicity properties of the sections of LΘ under translations by Γ, i.e. under

large gauge transformations [28, 34, 35]. By the Kodaira vanishing theorem, LΘ admits a

unique holomorphic section ϑΘ(N̄ , C), which is proportional to the level 1/2 Siegel theta

series ϑSiegel

[

θ
φ

]

(N̄ , ωΛ) of rank b3(X )/2 with characteristics Θ = (θΛ, φΛ), where N is

the (Weil) period matrix of X and ωΛ are complex coordinates on the torus T . Thus,

the Gaussian flux partition function Z(1)
G for k = 1 is given, up to a metric-dependent

normalization factor, by the Siegel theta series ϑΘ(N̄ , C).

In general, for k > 1 fivebranes wrapped on X , the partition sum Z(k)
G over fluxes

for the “diagonal” Gaussian self-dual three-form (related by supersymmetry to the scalar

fields describing overall transverse fluctuations of the stack of fivebranes) is expected to be

a holomorphic section of Lk
Θ. By the same vanishing theorem, Lk

Θ admits kb3(X )/2 linearly

independent holomorphic sections, given by level k/2 generalizations of the Siegel theta

series, and thus Z(k)
G is expected to be a linear combination of these theta series with

coefficients depending on the metric on X .

1.3 NS5-brane partition function and non-Gaussian theta series

Although it is a closely related object, the partition sum Z(k)
G of a Gaussian self-dual three-

form reviewed above is not yet the fivebrane partition function Z(k)
NS5 relevant for instanton

corrections to the hypermultiplet moduli space. There are several reasons for this:

i) Firstly, Z(1)
G only captures the topological degrees of freedom in the three-form H.

However, for the purpose of computing NS5-instanton corrections to the HM moduli

space metric, we require the partition function of the full (2,0) supermultiplet on the

brane world-volume. While the other fields in the multiplets do not couple to the

C-field, they do contribute to the metric-dependent normalization factor.

ii) Secondly, one should include an insertion of (−1)2J3(2J3)
2, where J3 is a angular

momentum operator on the fivebrane, in order to absorb fermionic zero-modes. Since

the H-flux contributes to angular momentum, this may result in additional insertions

in the Siegel theta series.

iii) Thirdly, the action for H is Gaussian only in the limit where the flux H is much

smaller than the inverse string coupling 1/gs. Thus, the Gaussian partition function

Z
(1)
G is only valid at gs = 0, after factoring out a vanishingly small factor e−SNS5

corresponding to the classical action SNS5 = 4πeφ +iπσ of the fivebrane. To compute

3The characteristics may in general depend on the metric on X . They can in principle be computed in

M-theory, see [33].
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the partition function at non-zero gs, we require the full non-linear, kappa-symmetric

action for the (2,0) multiplet on X , topologically twisted as a result of the insertion

of (−1)2J3(2J3)
2.

To address this last point in more detail, recall that two distinct kappa-symmetric

descriptions of the (2,0) multiplet have been developed in the literature: (a) The

action constructed in [37–40], of Born-Infeld type, contains an auxiliary one-form

(the gradient of a scalar field), whose equation of motion implies the self-duality

condition; this action is well suited when X allows for globally well-defined one-

forms, but seems inadequate for our purposes since for CY-threefolds b1(X ) = 0. (b)

In the second approach [41, 42], the action is polynomial and contains an auxiliary

5-form, the elimination of which again leads to a Born-Infeld type action; the self-

duality condition must however be imposed by hand (the action of [41, 42] is then

more properly a pseudo-action). Using this approach, it may be possible to separate

the self-dual and anti-self-dual parts of H after a suitable Poisson resummation,

generalizing the procedure in [28, 29, 32, 35], and then perform the topological twist.

iv) Finally, for k > 1 fivebranes , the degrees of freedom on the fivebrane worldvolume

are presumably no-longer field-theoretical, but should involve the full little string

theory in 6 dimensions [43, 44]. With our current understanding of this theory, there

seems to be no way of fixing the linear combinations of level k/2 theta series entering

in Z(k)
G from first principles.

While all the reasons above show that the Gaussian theta series Z(k)
G and the fivebrane

partition function Z(k)
NS5 governing instanton corrections to the HM moduli space are dis-

tinct functions of the metric and of the C-field, we nevertheless expect that both should

transform in the same way under large gauge transformations of the C-field. Indeed, the

latter depends only on the Wess-Zumino-type coupling between the C-field and the H-flux,

which is independent of the detailed dynamics on the fivebrane world-volume. Thus we

expect that Z(k)
G and Z(k)

NS5 are both sections of the same circle bundle CΘ = L◦
Θ over the

intermediate Jacobian torus T , where L◦
Θ denotes the unit circle inside the line bundle

LΘ. In particular, Z(k)
NS5 should be given by a theta series with the same characteristics

Θ, albeit of non-Gaussian type. Unlike Z(k)
G however, Z(k)

NS5 does not need to extend to a

holomorphic section of LΘ, and may have different metric dependence.

Supersymmetry further requires that Z(k)
NS5 should be independent of the Kähler moduli

(since the latter are part of the VM moduli space in type IIA), and that corrections induced

from Z(k)
NS5 should preserve the quaternion-Kähler property of the HM metric. Thus, Z(k)

NS5

should (in a sense which we shall make precise below) lift to a holomorphic section on the

twistor space ZM over M. Using twistorial techniques as well as insights from S-duality

and mirror symmetry, we shall construct the non-Gaussian theta series Z(k)
NS5, and show

that its zero-coupling limit is a Gaussian theta series Z(k)
NS5-G. The latter is almost identical

to the usual Gaussian flux partition function Z(k)
G , but differs in its normalization factor,

and in having an insertion of a power of H in the sum over H-fluxes, cf. eq. (5.59) below.

In particular, for k = 1 the normalization factor of Z(1)
G can be expressed as a certain

– 5 –
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product of holomorphic Ray-Singer torsions, the same product which appears in the one-

loop amplitude of the topological B-model [45].4 This meshes nicely with the topology of

the one-loop corrected HM moduli space, as we now discuss.

1.4 Topology of the hypermultiplet moduli space and quantum corrections

Irrespective of their microscopic origin, instanton corrections from k fivebranes wrapped on

X are characterized by their non-trivial dependence on the Neveu-Schwarz (NS) axion σ

through an overall phase factor e−ikπσ. Large gauge transformations of the B-field require

that σ is a compact coordinate with periodicity σ 7→ σ+ 2 (in our conventions), consistent

with the above exponential dependence of fivebrane instantons. Thus, eiπσ, 0 ≤ σ < 2

parametrizes the fiber of a circle bundle C over the intermediate Jacobian Jc(X ). On the

other hand, fivebrane instanton corrections to the HM metric are expected to be of the

form

δds2|NS5 ∼ e−4π|k|eφ−πikσZ(k)
NS5-G . (1.2)

Indeed, as we show in section 3.2.1, such a coupling reproduces the classical fivebrane action

computed from the 4D effective supergravity description in [49]. For the coupling (1.2) to

be globally well-defined, the circle bundle C should be isomorphic to the circle bundle CNS5

where the fivebrane partition function Z(1)
NS5 is valued.

On the other hand, the perturbative moduli space metric (3.1) exhibits a one-loop

correction to the kinetic term (3.2) of the NS-axion proportional to the Euler number χ(X )

of the threefold X . As we explain in section 3, the origin of this correction can be traced to

the familiar B∧ I8 topological coupling in 10 dimensions. This fact provides an alternative

derivation of the one-loop correction to the HM metric, related by supersymmetry to the

computation in [13, 15]. In particular, the form of the axion kinetic term implies that the

curvature of the connection on the circle bundle C is given by

d

(

Dσ

2

)

= ωT +
χ(X )

24
ωSK , (1.3)

where ωT and ωSK are the Kähler forms on T and Mc. The first term in (1.3) has support

on the intermediate Jacobian torus T . It reflects the fact that translations along the torus

fiber T of Jc(X ) (i.e. large gauge transformations of the C-field) commute only up to a

translation along the circle fiber of C (i.e. a large gauge transformation of the B-field).

As a result, large gauge transformations obey a Heisenberg group law, see eq. (3.11).

Comparing (1.1) and (1.3), we see that c1(C) − c1(CNS5) has no support on T . Thus,

the coupling (1.2) is indeed invariant under large gauge transformations, provided eiπσ

transforms in the same way as Z(1)
NS5-G, i.e. as a section of LΘ.

The second term in (1.3), on the other hand, has support on the complex structure

moduli space Mc(X ), and implies that the NS-axion picks up anomalous variations under

monodromies in Mc. At this point it is worth pointing out that the B ∧ I8 topological

4This connection to the topological B-model is not surprising in view of the fact that the BPS sector

of the world-volume dynamics of a single M5-brane is governed by a deformation of Kodaira-Spencer

theory [46–48]. It is also generally expected from mirror symmetry and S-duality, as we discuss in section 1.5.
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coupling, which is responsible for the second term in (1.3), is also responsible for an anomaly

in the phase of the fivebrane partition function [28]. Indeed, the two effects are related

by the anomaly inflow mechanism [50, 51], which ultimately ensures that the fivebrane

instanton coupling (1.2) is well-defined.

Now, the second term in (1.3), is equal to χ(X )/24 times the curvature of the Hodge

line bundle L over Mc(X ), in which the holomorphic three-form Ω3,0 on X is valued. This

indicates that the restriction of the circle bundle C to Mc(X ) is Lχ(X )/24. Unless χ(X )

is a multiple of 24 however, the definition of Lχ(X )/24 requires additional data, namely a

homomorphism M 7→ e2πiκ(M) from the monodromy group to the group of 24:th roots of

unity — put differently, eiπσ is valued in a twisted circle bundle.5 As a result, σ transforms

under monodromies according to

σ 7→ σ +
χ(X )

24π
Im fM + 2κ(M) , (1.4)

where fM is a local holomorphic function on Mc(X ) which determines the rescaling of the

holomorphic three-form under monodromy, Ω3,0 7→ efM Ω3,0. (Here one must make a choice

of branch of the logarithm in defining fM , correlated with the choice of branch in defining

κ(M).) In order for the product (1.2) to be well-defined, the fivebrane partition function

Z(1)
NS5-G should transform in the opposite fashion. Since, as mentioned at the end of the

previous subsection, Z(k)
NS5-G is proportional to the holomorphic part ef1 of the B-model

one-loop amplitude, this entails that e2πiκ(M) also governs the modular properties of ef1

under monodromies in Mc.

1.5 Quantum mirror symmetry, S-duality and (p, k) fivebranes

The NS5-brane instanton corrections to the HM metric may also be obtained using mirror

symmetry6 and S-duality. Indeed, according to the quantum mirror symmetry conjec-

ture [3] (see [22, 23, 54] for recent discussions), the same moduli space M must arise

as the HM moduli space of type IIB string theory compactified on the mirror threefold

X̂ . At the perturbative level, this amounts to the classical mirror symmetry statement

Mc(X ) = MK(X̂ ) between the complex structure moduli space of X and the complexified

Kähler moduli space of X̂ , the one-loop correction being controlled by the same invari-

ant χ(X ) = −χ(X̂ ) on both sides. At the non-perturbative level, the identity between

the two HM moduli spaces requires a matching between the D-instanton effects on the

type IIA side, corresponding to D2-branes wrapped on special Lagrangian submanifolds of

X , and D5-D3-D1-D(-1)-instantons on the type IIB side, corresponding to stable coher-

ent sheaves on X̂ . In section 4.1, we explain how the fractional charges predicted by the

K-theory description of D5-D3-D1-D(-1)-instantons are consistent with the fact that D2-

brane charges are classified7 by H3(X ,Z). The resolution of this apparent paradox hinges

5We are grateful to G. Moore, A. Neitzke and D. Zagier for discussions which have helped shaping this

point of view.
6For rigid Calabi-Yau threefolds, mirror symmetry is not available. NS5-instanton effects in this case

have been recently addressed in [52, 53] by postulating automorphic symmetries.
7It would be interesting to formulate mirror symmetry directly at the level of the K-theory groups K(X̂ )

and K1(X ), but we shall not attempt to do so here.
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on the quadratic ambiguity AΛΣ of the prepotential (4.4) in the large volume limit, and in

fact allows to derive constraints on the fractional part of the matrix AΛΣ, some of which

had been observed in the early days of classical mirror symmetry [55–58]. Incorporating

these effects leads to novel corrections to the “Ramond-Ramond mirror map” and S-duality

action derived in [14, 18, 20], which we exhibit in eqs. (4.18) and (4.31).

Assuming that these D-instanton corrections do match on both sides of the mirror map,

quantum mirror symmetry further requires that fivebrane corrections on the type IIA (or

M-theory) side match NS5-brane corrections, or more generally (p, k)5-brane corrections,

on the type IIB side. The latter are related by type IIB S-duality8 to D5-brane instantons,

governed by the generalized DT invariants Ω(γ). Thus, by combining S-duality and mirror

symmetry, one expects that the type IIA NS5-instanton contributions are expressible in

terms of the topological B-model amplitude on X [32, 59] for k = 1, and more generally in

terms of the generalized DT invariants of X .

To implement these ideas, we start from holomorphic sections of H1(ZM,O(2)) de-

scribing D5-D3-D1-D(-1) instanton configurations, with charges γ = (p0, pa, qa, q0), and

sum over their images under S-duality. This twistor construction ensures that all instanton

corrections respect the quaternion-Kähler property of the metric, as required by super-

symmetry. The resulting (local) holomorphic functions encode corrections to the contact

structure from (p, k)5-brane instantons with gcd(p, k) = p0, bound to D3-D1-D(-1) instan-

tons, and take the following schematic form

H
(k)
NS5(ξ, ξ̃, α̃) ∼ e−iπkα̃H

(k)
NS5(ξ, ξ̃), (1.5)

where the variables (ξ, ξ̃, α̃) are complex Darboux coordinates on ZM. These functions

form an invariant set under the Heisenberg action (3.15) and under monodromies around

the point of infinite volume in MK(X̂ ), up to subtle phases which we compute in appendix

A. These phases indicate some tension between S-duality, Heisenberg and monodromy

invariance, and suggest that it may be necessary to relax some of our assumptions about the

way these symmetries are realized. In the absence of a satisfactory resolution and since, by

and large, our results seem to support our general assumptions, we dauntlessly forge ahead.

Ignoring these subtle phases then, the holomorphic functions (1.5) can be combined

into a formal Poincaré series, and rewritten as a non-Gaussian theta series with kernel given

in (5.37). For k = 1, the summand of the theta series can be recognized, using the DT/GW

relation between (ordinary, rank one) Donaldson-Thomas invariants and Gromov-Witten

invariants [60, 61], as the topological amplitude of the A-model on X̂ (see eq. (5.42) below).

Thus, the partition function of a single type IIB NS5-brane is given by a theta series built on

the A-model topological string amplitude. Using mirror symmetry, the partition function

of a single type IIA NS5-brane is then also a theta series whose wave function coincides

with that of the B-model on X . By similar arguments, the partition function of type IIB

(p, k)5-branes is governed by rank r = gcd(p, k) Donaldson-Thomas invariants on X̂ .

8As in earlier investigations [18, 20, 21], we shall work under the assumption that the full SL(2, Z)

S-duality of ten-dimensional type IIB string theory stays valid in vacua with N = 2 supersymmetry.
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1.6 Fivebrane partition function and twistors

The object H
(k)
NS5(ξ, ξ̃) in (1.5) is formally a holomorphic section of H1(ZM,O(2)), and pro-

vides, by a standard (though cumbersome) procedure described e.g. in [12], an infinitesimal

deformation of the metric tensor on M consistent with the quaternion-Kähler property.

By construction, H
(k)
NS5(ξ, ξ̃) and the phase e−iπkα̃ are separately invariant under rescaling

of the holomorphic three-form Ω3,0 (up to subtleties in the definition of Lχ(X )/24 mentioned

at the end of section 1.4). Moreover, similarly as in (1.2), the two factors in (1.5) transform

oppositely under translations along the torus T . Hence the fivebrane correction (1.5) to

the complex contact structure on Z is well-defined under both large gauge transformations

and monodromies (up to subtle phases that we ignore).

While this gives a (partial) answer to the question of main interest in this paper,

namely to compute fivebrane instanton corrections to the metric on M, one may ask

a different though related question: is it possible to construct a scalar-valued function

on M which would generalize the Gaussian fivebrane partition function Z(k)
G at finite

coupling? A possible answer to this question is obtained by viewing (1.5) instead as a

formal holomorphic section of H1(ZM,O(−2)) (barring global issues) and applying the

standard Penrose transform, which relates sections of H1(ZM,O(−2)) to functions on M
satisfying a certain set of second-order partial differential equations (see e.g. [10]). While

this procedure is not rigorous in general, it has been made rigorous in the case of four-

dimensional quaternion-Kähler manifolds (see [62]), and can also serve as a warm-up for

the more intensive computations involved in extracting the explicit metric on M. In either

case, the answer involves contour integrals over the CP 1 fiber of the twistor space Z, and

reduces to the same saddle points in certain classical limits.

Performing this computation in the large volume limit, we indeed find that the Pen-

rose transform of (1.5) reduces to a non-Gaussian theta series, whose summand displays

the expected non-linear action for (p, k)5-branes. Moreover, in the zero coupling limit,

this reduces to a Gaussian partition function of the type discussed in section 1.2, with a

normalization factor given by the same product of holomorphic Ray-Singer torsions which

appears in the one-loop amplitude of the topological B-model on X , and an additional flux-

dependent insertion in the sum. As a side-product, we also find a twistorial interpretation

for the “auxiliary parameter” t introduced by [32] to relate the Griffiths and Weil complex

structures on the intermediate Jacobian of X .

1.7 Outline

The remainder of this article is organized as follows. • In section 2, we review the construc-

tion of the partition function of a Gaussian self-dual 3-form by holomorphic factorization,

and we recall some useful facts about topological strings. • In section 3, we discuss the

topology of the hypermultiplet moduli space, using the qualitative form of D-instanton and

NS5-instanton corrections to identify the periodicities of the RR and NS axions. • Then,

in section 4, we describe the corresponding type IIB picture and, using mirror symmetry

and S-duality, we find the classical action for general fivebrane instantons, and show that

it reduces to the Gaussian flux action in the weak coupling limit. • In section 5, we review
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the twistorial description of the perturbative and D-instanton corrected HM moduli space,

and obtain a candidate section of H1(ZM,O(2)) which should govern deformations of the

complex contact structure on twistor space ZM induced by (p, k)-fivebranes. The partition

function Z(k)
NS5 of k NS5-branes, including non-linear effects, follows by Penrose transform

from this holomorphic section. • We conclude in section 6 with a summary and discussion.

• The transformation properties of the candidate fivebrane transition functions Hk,p,γ̂ un-

der various actions are discussed in appendix A, and a directory of notations is provided

in appendix B. Note in particular the pervasive use of the notation E(z) = exp [2πiz].

2 Flux partition functions and topological wave functions

In this section we begin by revisiting previous constructions of the fivebrane partition

function, originally spelled out in [28] and further discussed in [30, 32–35]. We also review

some relevant background material on topological strings, which will play an important

role in section 5.

• In section 2.1, we set up the problem and introduce our conventions for the moduli

space of metrics and RR C-fields on X . • In section 2.2, we obtain, up to an overall

metric-dependent factor, the partition function Z(k)
G for a self-dual 3-form, by holomorphic

factorization of the partition function of a non-chiral Gaussian harmonic three-form. •
In this construction, a key role is played by a certain Z2-valued function σΘ (a quadratic

refinement of the intersection form on H3(X ,Z) modulo 2). As we discuss in section 2.3,

the quadratic refinement σΘ ensures that Z(k)
G is valued in a single line bundle Lk

Θ with

characteristics Θ ∈ (Z/2Z)b3 . • In section 2.4 we discuss non-Gaussian generalizations

of this partition function and their interpretation in terms of certain wave functions. •
Section 2.5 is then devoted to a discussion of various aspects of the topological A- and

B-model, with particular emphasis on the wave function properties of their respective

partition functions. In particular, we recall some useful relations between topological wave

functions and the partition functions of Donaldson-Thomas and Gromov-Witten invariants.

Our exposition in sections 2.2 and 2.3 follows closely [28, 35] but is specifically geared

towards the partition function of the NS5-brane on a Calabi-Yau threefold. As was already

stressed in section 1, Z(k)
G is not the partition function of the NS5-brane, but only an

approximation thereof. In order to construct Z(k)
G through holomorphic factorization, one

is forced to make some simplifying assumptions, which we find in section 5 are in fact not

valid to accurately describe the NS5-brane. Nevertheless, we find it useful and illuminating

to go through the derivation of Z(k)
G in some detail in our conventions in order to facilitate

the comparison with the correct NS5-partition function constructed in section 5 using

twistor techniques. Moreover, Z(k)
G does capture many of the key topological features

which are expected of the NS5-brane partition function.

2.1 Setting the stage

Let us consider type IIA string theory compactified on a Calabi-Yau threefold X , with a

stack of k Euclidean NS5-branes whose world-volume W consists of X itself. For k = 1,

the world-volume W supports 5 scalar fields (describing transverse fluctuations of W in

– 10 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
1

R10 ×S1, where S1 is the M-theory circle), two symplectic Majorana-Weyl fermions and a

2-form potential B, whose 3-form field strength H = dB must be imaginary self-dual [5],

⋆W H = iH . (2.1)

The world-volume W is a magnetic source for the NS 2-form potential B propagating in

the 10-dimensional bulk of space-time, while the flux H is an electric source for the RR

3-form potential C, mimicking D2-branes bound to the NS5-brane.

For k > 1 fivebranes wrapping X , the world-volume dynamics is poorly understood,

but presumably splits into “twisted sectors” labeled by pairs of integers (p, q) such that

pq = k [35], where the k fivebranes on X recombine into q fivebranes wrapping p copies of

X . The dynamics in the (p, q) twisted sector should be described by q3 interacting self-dual

two-forms Bijk, i, j, k = 1 . . . q, such that the q two-forms Biii stay massless on the Coulomb

branch. We shall focus on the Abelian 2-form B =
∑

i=1...q Biii describing the center of

mass degrees of freedom. Moreover, we restrict to a regime where gs|H| ≪ 1, such that

the flux H contributes quadratically to the fivebrane action.

Our goal in this section is to revisit the construction of the Gaussian topological par-

tition sum Z(k)
G for the field H together with its supersymmetric partners, as a function

of the moduli of the CY threefold X and the periods of the background C-field on X . By

topological partition sum, we mean the partition sum weighted by (−1)2J3(2J3)
2, which is

relevant for two-derivative couplings in the low energy effective action. As already men-

tioned in section 1.3, the assumption that gs|H| ≪ 1 eventually breaks down for large values

of the flux, and the Gaussian action should be replaced by its non-linear, Born-Infeld type

completion [37–41] in order to obtain the physical NS5-brane partition function. We shall

return to this issue in section 5.5.

As will become apparent shortly, Z(k)
G is independent of the Kähler structure of X , and

depends only on its complex structure. The moduli space Mc(X ) of complex structures

can be parametrized as usual by the complex periods

XΛ =

∫

AΛ

Ω3,0 , FΛ =

∫

BΛ

Ω3,0 (2.2)

of the holomorphic 3-form9 Ω along a symplectic basis (AΛ,BΛ), Λ = 0, . . . , h2,1(X ), of

H3(X ,Z) modulo holomorphic rescalings Ω3,0 7→ efΩ3,0. We shall denote Ω ≡ (XΛ, FΛ)T .

The vector Ω thus takes values in an homogeneous complex Lagrangian cone CX , generated

locally by a prepotential F (XΛ) such that FΛ = ∂XΛF (X). The complex structure moduli

space Mc(X ) is the quotient CX/C
× by homogeneous rescalings, which we parametrize by

complex coordinates za. Conversely, the cone CX provides a canonical complex line bundle

over Mc(X ), known as the Hodge line bundle, which we denote by L. Recall that Mc(X )

carries a special Kähler metric, with Kähler potential

K = − log[i(X̄ΛFΛ −XΛF̄Λ)] (2.3)

9We trust that the reader will not confuse the holomorphic 3-form Ω with the generalized Donaldson-

Thomas invariant Ω(γ). The latter will always come with an argument.
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and Kähler class ωSK = − 1
2πdAK , where

AK =
i

2
(Kadz

a −Kādz̄
ā) (2.4)

is the Kähler connection.10 Under a monodromy M in Mc(X ), the symplectic ba-

sis (AΛ,BΛ) transforms by an integer-valued symplectic rotation ρ(M) =
(

D C
B A

)

∈
Sp(b3(X ),Z) with b3(X ) = 2h2,1 + 2. At the same time Ω3,0 7→ efM Ω3,0 is generically

rescaled, so the period vector Ω transforms into efM ρ(M)Ω. In the process, K and A
change respectively by Kähler transformations and gauge transformations of the form

K 7−→ K − fM − f̄M , AK 7−→ AK + d Im (fM). (2.5)

A topologically trivial real C-field on X can be parametrized by its real periods

ζΛ =

∫

AΛ

C, ζ̃Λ =

∫

BΛ

C . (2.6)

Again, we shall abuse notation and write C for the vector (ζΛ, ζ̃Λ)T . By charge quanti-

zation, the entries of C are periodic with unit periods, and parametrize a point on the

b3(X )-dimensional real torus

T = H3(X ,R)/H3(X ,Z) , (2.7)

equipped with the canonical symplectic form11

ωT = −
∫

X
dC ∧ dC = dζ̃Λ ∧ dζΛ . (2.8)

The torus T is fibered over the complex structure moduli space Mc(X ), such that (ζΛ, ζ̃Λ)

transforms by the symplectic rotation ρ(M) under a monodromy M . We shall refer to the

total space of this fibration,

H3(X ,R)/H3(X ,Z) → Jc(X )

↓
Mc(X ),

(2.9)

as the intermediate Jacobian Jc(X ). The Hodge star ⋆X on H3(X ,R) endows the fiber T
with a complex structure and a positive-definite Kähler metric

ds2T =
1

2

∫

X
dC ∧ ⋆XdC = −1

2
dωΛ ImNΛΣ dω̄Σ , (2.10)

where the complex coordinates ωΛ are given by

ωΛ = ζ̃Λ − N̄ΛΣζ
Σ , ω̄Λ = ζ̃Λ −NΛΣζ

Σ . (2.11)

10Note that our definition of AK differs by a factor of 2 from that used in [12, 17, 18].
11In this equation and (2.10) below, dC denotes the variation of C, not its exterior derivative on X .
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The Kähler class of the metric on T is the symplectic form ωT in (2.8) above. Equipped

with the complex structure just defined, which we refer to as the Weil complex structure,

T is a principally polarized Abelian variety.

The Weil period matrix NΛΣ is related to the Griffiths period matrix τΛΣ = ∂Λ∂ΣF (X)

via the usual special geometry relation

NΛΛ′ = τ̄ΛΛ′ + 2i
[ Im τ ·X]Λ[ Im τ ·X]Λ′

XΣ Im τΣΣ′XΣ′ . (2.12)

Recall that ImNΛΣ and its inverse ImNΛΣ are negative definite symmetric matrices,

while Im τΛΣ and its inverse Im τΛΣ have signature (1, b3(X )− 1). Under monodromies in

Mc(X ), both NΛΛ′ and τΛΛ′ transform by fractional linear transformations

N 7→ (AN + B) (CN + D)−1 , τ 7→ (Aτ + B) (Cτ + D)−1 . (2.13)

However, unlike the Griffiths period matrix τΛΣ, the Weil period matrix NΛΣ does not vary

holomorphically over Mc(X ).

As is well-known, the self-duality constraint on H leads to several complications in

defining its partition function. A self-dual flux H can only couple to the anti-self-dual

part of the background 3-form C, so one would naively expect Z(k)
G to be a holomorphic

function on T , independent of ω̄Λ. Instead, as emphasized in [28] and reviewed in detail

below, Z(k)
G is more properly viewed as a holomorphic section of a certain line bundle over

the torus T . As in the case of two-dimensional chiral bosons [63, 64], it is convenient to

obtain the partition function of a chiral 2-form by factorizing the partition function of a

non-chiral two-form.

2.2 Factorizing the non-chiral partition function

To construct the partition function we first ignore the self-duality condition on the self-dual

3-form, and restrict to the limit of small string coupling. Then the action for the 3-form

flux on the world-volume pX of q fivebranes is given by [28, 35]

S(H,C) = p

[

π

q

∫

X
(H − qC) ∧ ⋆(H − qC) − iπ

∫

X
C ∧H

]

. (2.14)

The overall factor of p reflects the wrapping number of each fivebrane on X , while the 1/q

factor is the familiar fractionization effect, coming from expanding
√

q2/g4
s +H2/g2

s−|q|/g2
s

at small coupling. The factor of q in H − qC arises by summing Hiii −C over i = 1 . . . q.

Flux quantization requires that H ∈ H3(X ,Z), i.e. that the periods

nΛ =

∫

AΛ

H, mΛ =

∫

BΛ

H (2.15)

be integer valued. Using (2.10), the classical action (2.14) then reads

S(N ,H,C) = −πp
2q

(

m̃Λ −NΛΛ′ñΛ′
)

ImNΛΣ
(

m̃Σ − N̄ΣΣ′ñΣ′
)

− iπp (mΛζ
Λ − nΛζ̃Λ),

(2.16)
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where we defined m̃Λ = mΛ − qζ̃Λ, ñ
Λ = nΛ − qζΛ. We also indicated the dependence on

the period matrix N . As advertised above, (2.16) is independent of the Kähler moduli of

X . In terms of the self-dual and anti-self-dual components of the flux H,

RΛ = mΛ − N̄ΛΣn
Σ , R̄Λ = mΛ −NΛΣn

Σ , (2.17)

and of the C-field, eq. (2.11), this is equivalently rewritten (in agreement with [35], eq.

2.4) as

S(N ,H,C) = − ImNΛΣ

[

πp

2q
RΛR̄Σ − πp ω̄ΛRΣ +

πpq

2
ωΛω̄Σ

]

. (2.18)

Thus, the self-dual part ωΛ of C decouples, save for the last term in (2.18) which originates

from the quadratic term C ∧ ⋆XC in (2.14).

The partition function for a Gaussian 3-form flux in the twisted sector (p, q), with

k = pq, is now obtained as

Z(p,q)
G (N , C) =

∑

H∈H3(X ,Z)

r(N ,H,C) e−S(N ,H,C) , (2.19)

where the prefactor r(N ,H,C) corresponds to the fluctuation determinant around the

harmonic flux configuration H = nΛαΛ −mΛβ
Λ, where (αΛ, β

Λ) is the symplectic basis on

the lattice Γ = H3(X ,Z) dual12 to (AΛ,BΛ). In view of our ignorance of the non-Abelian

dynamics of q fivebranes, we do not know how to evaluate r(N ,H,C) from first principles.

Nevertheless, it was argued in [34, 35] on topological grounds that r(N ,H,C) must take

the form

r(N ,H,C) = |F|2 [σ(H)]k , (2.20)

where the normalization factor |F|2 depends only on the metric on X (and possibly, on

the string coupling), but not on H-flux nor on the background C-field. We shall see in

section 5.5 that this assumption does not hold for the fivebrane instanton partition Z(k)
NS5-G

derived from twistor techniques, where the factor |F|2 appears to depend on H and C,

see (5.60) below. This dependence however is unessential for the topological properties

that we wish to emphasize here, and we proceed in the remainder of this section under the

assumption that |F|2 is independent of the flux H and the background field C.

The second (essential) factor σ(H) in (2.20) is a “quadratic refinement of the intersec-

tion form” on the lattice Γ. This is defined as a homomorphism σ : Γ → U(1), i.e. a phase

assignment such that

σ(H +H ′) = (−1)〈H,H′〉 σ(H)σ(H ′) , (2.21)

where

〈H,H ′〉 = mΛn
′Λ −m′

Λn
Λ. (2.22)

The most general solution of (2.21) is given by [35]

σΘ(H) = E

(

−1

2
mΛn

Λ +mΛθ
Λ − nΛφΛ

)

, (2.23)

12Namely,
R

AΛ αΣ = δΛ
Σ,

R

BΛ
βΣ = −δΣ

Λ ,
R

AΛ βΣ =
R

BΛ αΣ = 0.
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where Θ = (θΛ, φΛ)T are independent of H and defined modulo Γ. As we shall see below, Θ

determines the characteristics of the theta series governing the chiral partition function. By

analogy with the standard Jacobi theta series, Θ is sometimes referred to as a “generalized

spin structure” on X . Θ in general depends on the metric on X : under monodromies in

Mc(X ), Θ transforms as

(

θΛ

φΛ

)

7→ ρ(M) ·
[(

θΛ

φΛ

)

− 1

2

(

(ATC)d
(DTB)d

)]

, (2.24)

where (A)d denotes the diagonal of a matrix A [65]. Since the H-flux transforms as H 7→
ρ(M) · H, the quadratic refinement σΘ(H) is invariant. Moreover, while it is consistent

to assume that σ2
Θ(H) = 1, 2Θ ∈ Γ for the partition of a self-dual three-form [28, 35],

in general, this is not so for the full fivebrane partition function, where σΘ(H) may be

U(1)-valued. In this subsection, we nevertheless assume that σ2
Θ(H) = 1, which simplifies

the holomorphic factorization procedure. We shall relax this assumption in section 2.3

onwards.

In order to decouple the self-dual and anti-self dual parts of H, we now split the lattice

Γ = H3(X ,Z) into the sum of two Lagrangian lattices Γe ⊕ Γm (where ’e’ and ’m’ stand

for ’electric’ and ’magnetic’), given by

Γe =
∑

Λ

ZβΛ , Γm =
∑

Λ

ZαΛ , (2.25)

and perform a Poisson resummation on the integers mΛ ∈ Γe. Denoting by rΛ ∈ Γ∗
e = Γm

the dual summation variable, we find

Z(p,q)
G (N , C) = D1/2 |F|2

∑

(nΛ,rΛ)∈Γm

e−S̃ , (2.26)

where D ≡ det (−2q
p ImN ). The dual action separates into

S̃ =iπk
(

pΛ
R NΛΣ p

Σ
R − pΛ

L N̄ΛΣ p
Σ
L

)

+ 2πik ω̄Λp
Λ
R + 2πikq φΛ(pΛ

L + pΛ
R)

− πk

2
ω̄Λ ImNΛΣ(ωΣ − ω̄Σ),

(2.27)

where the vectors pL, pR ∈ Γm/(2|k|) are the following linear combinations of nΛ and rΛ,

pΛ
R =

1

2
(q−1 + q)nΛ − (p−1rΛ + q θΛ) , (2.28)

pΛ
L =

1

2
(q−1 − q)nΛ + (p−1rΛ + q θΛ) . (2.29)

For later reference, we note that the last term in (2.27) may be rewritten in terms of the

real periods (2.6) of the C-field as

πk

2
ω̄Λ ImNΛΣ(ωΣ − ω̄Σ) = iπk ζΛ

(

ζ̃Λ −NΛΣζ
Σ
)

. (2.30)
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Expressing the sum over (nΛ, rΛ) as a sum over pL, pR in suitably shifted lattices, the

total partition function then decomposes as ([35], Thm. E.1)13

Z(p,q)
G (N , C) = D1/2

∑

µp∈(Γm/p)/Γm

µq∈(Γm/q)/Γm

Z(k)
Θ,µp+µq

(N , 0)Z(k)
Θ,µp−µq

(N , C) , (2.31)

analogous to the sum of products of holomorphic and anti-holomorphic conformal blocks

appearing in the partition function of a compact scalar field on a two-torus. The “holo-

morphic conformal block” Z(k)
Θ,µ appearing in (2.31) is given by14

Z(k)
Θ,µ(N , C)=F

∑

n∈Γm+µ+θ

E

(

k

2

(

nΛN̄ΛΣn
Σ+ θΛφΛ

)

+k (ωΛ− φΛ)nΛ+
ik

4
ωΛ ImNΛΣ(ωΣ−ω̄Σ)

)

.

(2.32)

In this expression, both the modulus and phase of the prefactor F are unspecified at this

point, but depend only on the complex structure of X and string coupling. Up to this

normalization ambiguity, Z(k)
G ≡ Z(k)

Θ,µ is then the sought-for partition function of a self-

dual three-form on the worldvolume X , in the weak coupling limit, and in the topological

sector with quadratic refinement Θ = (θ, φ). The shift vector µ runs over the |k|b3(X )

elements in (Γm/|k|)/Γm, so for |k| ≥ 1 the partition function is vector-valued. While

the derivation of (2.32) from holomorphic factorization has assumed that 2Θ ∈ Γ, the

result (2.32) is well-defined for any Θ, allowing us the relax the assumption that Θ was

half-integer. We reiterate that Z(k)
G differs from the fivebrane instanton partition function

in the weak coupling limit Z(k)
NS5-G to be computed in section 5, although the difference is

inessential at the level of the present discussion.

2.3 Chiral partition function and Gaussian theta series

For k = 1, the partition function of a Gaussian self-dual three-form (2.32) is recognized

as a Siegel theta series of rank b3(X )/2 with in general, real characteristics Θ = (θΛ, φΛ),

evaluated at the period matrix N̄ on the Siegel upper-half plane. More precisely, defining

the standard holomorphic Siegel theta series as

ϑSiegel

[

θ
φ

]

(N̄ , ωΛ) =
∑

n∈Γm+θ

E

(

1

2
nΛN̄ΛΣn

Σ + (ωΛ − φΛ)nΛ

)

, (2.33)

we have, independently of µ,

Z(1)
Θ,µ(N , C) = F E

(

1

2
θΛφΛ +

i

4
ωΛ ImNΛΣ(ωΣ − ω̄Σ)

)

ϑSiegel

[

θ
φ

]

(N̄ , ωΛ) . (2.34)

13Eq. (2.31) holds under the assumptions that Θ is half-integer, pq = p (mod 2) and gcd(p, q) = 1, in

particular q is odd. More generally, the partition function can always be decomposed into a sum of products

of level pq/2m2 theta series, where m = gcd(p, q). The quadratic refinement σ(H) in (2.20) is crucial in

ensuring that a single characteristics Θ appears in the sum [64].
14This matches eq. E.9 in [35] upon identifying (T, a1, a2, γ, nI , wI) there with (N̄ , ζ, ζ̃, µ, nΛ, rΛ + pqnΛ)

here.
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More generally, for |k| > 1 eq. (2.32) is a level k/2 generalization of the Siegel theta series.

Using (2.30), it may be usefully rewritten as

Z(k)
Θ,µ(N , C) = F

∑

n∈Γm+µ+θ

E

(

k

2
(ζΛ− nΛ)N̄ΛΣ(ζΣ− nΣ)+ k(ζ̃Λ− φΛ)nΛ+

k

2
(θΛφΛ− ζΛζ̃Λ)

)

.

(2.35)

Under translations by a vector H = (ηΛ, η̃Λ) ∈ Γ on the torus T , i.e. large gauge

transformations of the C-field, the partition function (2.35) satisfies the twisted periodicity

property15

Z(k)
Θ,µ(N , C +H) = (σΘ(H))k E

(

k

2
(ηΛζ̃Λ − η̃Λζ

Λ)

)

Z(k)
Θ,µ(N , C). (2.36)

Thus, Z(k)
Θ,µ is not a function on T , but rather a section of (CΘ)k, where CΘ is the circle

bundle over T with first Chern class equal to the Kähler class ωT in (2.8), and whose

sections satisfy the twisted periodicity property (2.36) for k = 1 [28]. It is important to

stress that CΘ and CΘ′ are non-isomorphic bundles unless Θ−Θ′ ∈ Γ. Yet, the theta series

for different values of the characteristics are related by a translation along the torus,

Z(k)
Θ,µ(N , C) = E

(

k

2

(

〈Θ,Θ′〉 + 〈C,Θ − Θ′〉
)

)

Z(k)
Θ′,µ(N , C + Θ′ − Θ). (2.37)

Moreover, thanks to its Gaussian character, the flux partition function is actually a

holomorphic section of (LΘ)k, where LΘ is the line bundle with circle bundle L◦
Θ = CΘ.

Indeed, Z(k)
Θ,µ is annihilated by the covariant anti-holomorphic derivative

(

∂

∂ω̄Λ
− πk

2
ImNΛΣωΣ

)

Z(k)
Θ,µ(N , ωΛ, ω̄Λ) = 0. (2.38)

By the usual index theorem and Kodaira vanishing argument [28], the line bundle Lk
Θ

admits exactly |k|b3(X )/2 holomorphic sections, corresponding to the possible values of

µ ∈ (Γm/|k|)/Γm. Physically, this is the familiar degeneracy of the Landau levels for a

particle moving on a b3(X )-dimensional torus with k units of magnetic flux.

Having described the behavior of the flux partition function (2.35) under large gauge

transformations, we now turn to its behavior under monodromies in complex structure

moduli space Mc(X ). Under a monodromy M , the period matrix transforms by fractional

linear transformations (2.13), the C field transforms as C 7→ ρ(M) · C and the charac-

teristics Θ transform as (2.24), leaving the non-chiral partition function Z(p,q)
G invariant.

In contrast, the modular properties of the Siegel theta series imply that the chiral five-

brane partition function Z(k)
Θ,µ is mapped to a linear superposition of Z(k)

Θ′,µ′ with µ′ ranging

over (Γm/|k|)/Γm, and fixed characteristics Θ′. Thus, the bundle where Z(k)
Θ,µ takes values

is also non-trivially fibered over Mc(X ), as will be further elaborated upon in section 3.

Specifically, under symplectic transformations the level k/2 theta series ϑ
(k)
(θ,φ),µ ≡ F−1Z(k)

Θ,µ

transforms as [35]:

15Note that the defining property (2.21) of the quadratic refinement is crucial in ensuring the consistency

of this periodicity condition.
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1. for ρ(M) =
(

A−T 0

0 A

)

:

ϑ
(k)
(θ,φ),µ(ANAT , ζ, ζ̃) = ϑ

(k)

(AT θ,A−1φ),AT µ
(N ,AT ζ,A−1ζ̃) , (2.39)

2. for ρ(M) =
(

1 0

B 1

)

, where B is a symmetric integer matrix,

ϑ
(k)
(θ,φ),µ(N + B, ζ, ζ̃) = E

(

−k
4
BΛΛ(θΛ + 2µΛ) +

k

2
BΛΣµ

ΛµΣ

)

×ϑ(k)

(θΛ,φΛ−BΛΣθΣ− 1
2
BΛΛ),µ

(N , ζ, ζ̃ − Bζ) , (2.40)

3. for ρ(M) =
(

0 −1

1 0

)

,

ϑ
(k)
(θ,φ),µ(−N−1, ζ, ζ̃) =

√

det (−iN̄ )

kb3(X )/2

∑

µ′∈(Γe/|k|)/Γe

E
(

−kµ′µ
)

ϑ
(k)
(−φ,θ),µ′(N ,−ζ̃ , ζ) .

(2.41)

2.4 Non-Gaussian theta series and wave-functions

Our discussion of the topological nature of the chiral partition function thus far was based

on the weak coupling result (2.35). However, as explained in section 1.3, we expect that

upon including the effects of non-Abelian dynamics and non-linearities on the fivebrane

world-volume, the exact NS5-brane partition function Z(k)
NS5 will continue to take values

in the same bundle. With this in mind, we note that the most general solution to the

periodicity conditions (2.36) can be written as a non-Gaussian theta series

Z(k),NG
Θ,µ (N , ζΛ, ζ̃Λ)=

∑

n∈Γm+µ+θ

Ψk,µ
R

(

ζΛ − nΛ
)

E

(

k(̃ζΛ − φΛ)nΛ+
k

2
(θΛφΛ − ζΛζ̃Λ)

)

, (2.42)

where Ψk,µ
R

(ζΛ) will also depend on the complex structure moduli and the string coupling.

In general, unlike its Gaussian counterpart, eq. (2.42) is a section of the circle bundle

Ck
Θ = (L◦

Θ)k but not a holomorphic section of the line bundle Lk
Θ.

In order to satisfy the same transformation law as (2.35) under monodromies in Mc(X ),

Ψk,µ
R

(

ζΛ
)

should be invariant under the combined action of fractional linear transforma-

tions (2.13) on the period matrix N and under monodromies acting in the metaplectic

representation ρm(M). This implies that Ψk,µ
R

(

ζΛ
)

should be viewed as the wave function

of a certain state |Ψk,µ〉 in the Hilbert space H of square-integrable functions on H3(X ,R).

To spell this out, consider first a specific state |ΨΓm,k,µ〉 ∈ H, conveniently represented as

follows in terms of its wave function ΨΓm,k,µ
R

(ζΛ) in the ζ-representation (corresponding

to the real polarization for the topological wave function as further explained in the next

subsection):

ΨΓm,k,µ
R

(ζΛ) = e−iπkθΛφΛ
∑

n∈Γm+µ+θ

δ
(

ζΛ − nΛ
)

e2πik φΛnΛ
. (2.43)
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We further introduce two sets of operators, TΛ and T̃Λ, acting on H. Their action on an

arbitrary wave function in the real polarization reads

TΛ · ΨR(ζΛ) = 2πkζΛΨR(ζΛ), T̃Λ · ΨR(ζΛ) = −i∂ζΛΨR(ζΛ), (2.44)

so that they satisfy the Heisenberg algebra

[TΛ, T̃Σ] = 2πikδΛΣ. (2.45)

Our main observation is then that the non-Gaussian theta series (2.42) can be rewritten

as a matrix element involving the two states introduced above:

Z(k),NG
Θ,µ (N , C) = 〈ΨΓm,k,µ| e−i(ζΛT̃Λ−ζ̃ΛTΛ) |Ψk,µ〉 . (2.46)

In particular, the Gaussian chiral partition function (2.35) is recovered by choosing the

state |Ψk,µ〉 as follows:

Ψk,µ
R

(ζΛ) = F eπik ζΛN̄ΛΣζΣ
, (2.47)

where F is the normalization factor in (2.35).

In section 5 we will find that the relation (2.46) indeed captures the correct partition

function Z(k)
NS5 of the NS5-brane, provided we identify |Ψk,µ〉 with a particular state associ-

ated with the B-model topological string, for which the Gaussian wave function (2.47) cor-

responds to the weak coupling approximation. To pave the way for these developments, we

will in the next section introduce some relevant background material on topological strings.

2.5 Topological wave functions in different polarizations

In this section we review in some detail various important properties of topological string

wave functions that will play an important role in section 5. We begin the analysis from

the point of view of the topological B-model, while towards the end discussing the map to

the A-model. A novel observation of this section is that the chiral partition function Z(k)
Θ,µ

in (2.35), restricted to k = 1, can be represented as the state (2.43) in the so called “Weil

polarization” as shown in (2.73).

2.5.1 Griffiths polarization

Recall that in the topological B-model on X , the partition function is defined as the gen-

erating function of the genus g correlation functions C
(g)
a1···an of n chiral fields [45]:

ΨBCOV(z, z̄;λ, x) = λ
χ(X)
24

−1 exp





∞
∑

g=0

∞
∑

n=0

1

n!
λ2g−2 C

(g)
a1···an(z, z̄)xa1 · · · xan



 . (2.48)

The correlation functions C
(g)
a1···an , which are taken to vanish for 2g − 2 + n ≤ 0, are

global sections of the vector bundle (T ∗)n⊗L2−2g over the complex structure moduli space

Mc(X ). Here, T ∗ is the holomorphic cotangent bundle of Mc(X ) and L is the line bundle

over Mc(X ) in which the holomorphic three-form Ω3,0 is valued. In particular, under

rescalings Ω3,0 7→ efΩ3,0, the correlation functions transform as C
(g)
a1···an 7→ e(2−2g)fC

(g)
a1···an .
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As a result, ΨBCOV is a section of the line bundle16 Lχ(X)
24

−1, provided λ transforms as a

section of L.

Moreover, ΨBCOV satisfies the holomorphic anomaly conditions obtained in [45], eq.

3.17-18. As explained in [66], it is illuminating to rescale xa and ΨBCOV as17

ΨG(z, z̄;λ−1, x) = ef1(z)ΨBCOV(z, z̄;λ, λx) , (2.49)

where f1 is (locally) a holomorphic function determined from the factorization of the one-

loop vacuum amplitude F1 by

F1 = log
[

ef1(z)+f̄1(z̄)/
√

M(z, z̄)
]

, (2.50)

where

M(z, z̄) = |g| e−2
“

b3
4
−χ(X)

24
+1

”

K
, |g| = det (gab̄). (2.51)

More accurately, ef1(z) is a section of L1−χ(X)
24

+
b3
4 ⊗K1/2

c , whereKc is the canonical bundle of

Mc, locally trivialized by the section dz1∧· · ·∧dzh2,1 . Thus, f1 transforms under holomor-

phic change of coordinates z 7→ z′(z) and rescaling (λ−1, xa) 7→ e−f (λ−1, xa) according to

f1 7→ f1 +

(

b3
4

− χ(X )

24
+ 1

)

f +
1

2
log det (∂z/∂z′) . (2.52)

This implies that the rescaled amplitude ΨG and its covariant derivative ∇aΨG transform

as Lb3/4-valued holomorphic half-densities on Mc(X ), namely

ΨG 7→
√

det (∂z/∂z′) eb3f/4 ΨG . (2.53)

In terms of ΨG, the holomorphic anomaly equations of [45] take the more appealing

form [66, 67]
[

∂

∂z̄a
− 1

2
e2KC̄āb̄c̄g

bb̄gcc̄ ∂2

∂xb∂xc
− gābx

j ∂

∂λ−1

]

ΨG = 0,

[

∇a − Γc
abx

b ∂

∂xc
− 1

2
∂a log |g| − λ−1 ∂

∂xi
+

1

2
Cabcx

bxc

]

ΨG = 0,

(2.54)

where ∇a is the covariant derivative

∇a =
∂

∂za
+ ∂aK

(

xb ∂

∂xb
+ λ−1 ∂

∂λ−1
+
b3
4

)

. (2.55)

The holomorphic anomaly equations (2.54) then guarantee that the inner product

〈Ψ|Ψ〉 =

∫

dxa dx̄ā dλ−1 dλ̄−1
√

|g| e−
b3
4
K

exp
(

−e−Kxagab̄x̄
b̄ + e−Kλ−1λ̄−1

)

Ψ∗
G(z̄, z; λ̄−1, x̄) ΨG(z, z̄;λ−1, x)

(2.56)

is well defined, and (at least formally) independent of the complex structure moduli.

16As mentioned at the end of section 1.4, the definition of fractional power Lχ/24 requires a homomorphism

M 7→ E(κ(M)) from the monodromy group to the group of 24:th roots of unity. In the present case, this

homomorphism is just the multiplier system of the one-loop amplitude e−f1/
√

JG, where f1 and JG are

defined in (2.50) and below (2.68).
17The index G refers to the Griffiths complex structure, as will become clear momentarily.
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As explained in [66–69], the above equations may be interpreted as the fact that ΨG is

the wave-function for a particular state |Ψ〉 ≡ |Ψtop〉 in the Hilbert space H quantizing the

symplectic space H3(X ,R) in a complex polarization determined by the Griffiths complex

structure. Indeed, for a given choice of the holomorphic Ω3,0 on X , any 3-form C ∈
H3(X ,R) admits the Hodge decomposition

√
2π C = λ−1Ω3,0 + xaDaΩ3,0 + x̄āDāΩ̄3,0 + λ̄−1Ω̄3,0 , (2.57)

where λ−1, xa are complex coordinates for the Griffiths complex structure on H3(X ,C)

and the normalization factor
√

2π is inserted for later convenience. The solutions of (2.54)

may be written as the overlap

ΨG(z, z̄;λ−1, x) = (z,z̄)〈λ−1, x|Ψ〉, (2.58)

where (z,z̄)〈λ−1, x| is a basis of coherent states diagonalizing the action of the operators

quantizing the components λ−1 and xa in (2.57). The holomorphic equations (2.54) then

reflect the unitary transformation undergone by the coherent states under changes of com-

plex structure.

2.5.2 Weil polarization

Alternatively, one may choose to diagonalize the operators quantizing λ̄−1 and xa, which

are complex coordinates for the Weil complex structure on H3(X ,C). The new topological

wave function in the “Weil complex polarization”

ΨW(z, z̄; λ̄−1, x) = (z,z̄)〈λ̄−1, x|Ψ〉 (2.59)

is obtained from the topological wave function in the “Griffiths complex polarization” (2.58)

by Fourier transforming over λ−1,

ΨW(z, z̄; λ̄−1, x) =

∫

dλ−1 exp
(

ie−K(λλ̄)−1
)

ΨG(z, z̄;λ−1, x) , (2.60)

such that the inner product is now given by a positive definite Gaussian kernel,

〈Ψ|Ψ〉 =

∫

dxa dx̄ā dλ−1 dλ̄−1
√

|g| e−
b3
4
K

exp
(

−e−Kxagab̄x̄
b̄ − e−Kλ−1λ̄−1

)

Ψ∗
W (z̄, z;λ−1, x̄) ΨW (z, z̄; λ̄−1, x).

(2.61)

It is in principle straightforward to work out the analog of (2.54) for this new polarization.

Since ΨG transformed as (2.53) under holomorphic change of coordinates and rescalings,

ΨW must now transform as a Lb3/4−1-valued holomorphic half-density,

ΨW 7→
√

det (∂z/∂z′) e(
b3
4
−1)f ΨW . (2.62)

Importantly, the relations (2.53), (2.62) are properties of the coherent state bases

(z,z̄)〈λ−1, x| and (z,z̄)〈λ̄−1, x|, and hold for an arbitrary state |Ψ〉 ∈ H, not only |Ψtop〉 ∈ H.

Moreover, both ΨG and ΨW depend on the complex structure of X , but are independent

of any choice of symplectic basis on H3(X ,R).
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2.5.3 Real polarization and intertwiners

However, at the expense of fixing a symplectic basis αΛ, β
Λ ofH3(X ,R), it becomes possible

to express the state |Ψ〉 in a “background independent” way, i.e. independent of the complex

structure on X . Indeed, one may expand C ∈ H3(X ,R) as in (2.6),

C = ζΛαΛ − ζ̃Λβ
Λ , (2.63)

where ζΛ and ζ̃Λ are real Darboux coordinates on H3(X ,R), and express |Ψ〉 on a basis

of wave functions diagonalizing the operators associated to ζΛ, say. The resulting wave

function

ΨR(ζΛ) = 〈ζΛ|Ψ〉 , (2.64)

in the so called “real polarization”, is locally independent of the complex structure of X ,

but transforms according to the metaplectic representation ρm under changes of symplectic

basis, in particular under monodromies in Mc(X ). On square-integrable functions ΨR(ζΛ),

the metaplectic representation acts according to

[

ρm

((

A−T 0

0 A

))

· ΨR

]

(ζΛ) = ΨR(AT ζΛ) ,

[

ρm

((

1 0

B 1

))

· ΨR

]

(ζΛ) = E

(

1

2
BΛΣ ζ

ΛζΣ

)

ΨR(ζΛ) ,

[

ρm

((

0 −1

1 0

))

· ΨR

]

(ζΛ) =

∫

E
(

−k ζΛζ̃Λ

)

ΨR(ζ̃Λ) dζ̃Λ .

(2.65)

We further note that the metaplectic representation is unitary with respect to the inner

product

〈Ψ|Ψ〉 =

∫

Ψ∗
R(ζΛ)ΨR(ζΛ) dζΛ . (2.66)

The intertwiner between the real polarization and the Griffiths complex polarization

was discussed in [66, 67, 69, 70]. Since the Griffiths complex coordinates λ−1, xa and the

real coordinates ζΛ, ζ̃Λ are related classically by

xΛ ≡ ζ̃Λ − τ̄ΛΣζ
Σ = 2i Im τΛΣ

(

λ−1XΣ + xaDaX
Σ
)

/
√

2π , (2.67)

the intertwiner from the real polarization to the Griffiths complex polarization is given by

the Gaussian kernel

ΨG(z, z̄;λ−1, x) =

√
det Im τ√
JG

∫

e
π
2

xΛ Im τΛΣxΣ−2πixΛζΛ−iπ ζΛτ̄ΛΣζΣ
ΨR(ζΛ) dζΛ , (2.68)

where JG = ∂(λ−1, xa)/∂xΛ is the Jacobian from the “large phase space” variables xΛ =

Im τΛΣxΣ to the “small phase space” variables λ−1, xa. A simple computation shows that

|JG|2 = e
b3
2
K det ( Im τ) / |g|, (2.69)

therefore JG transforms as a section of L−b3/2 ⊗ K−1
c ⊗ det−1

G , where det G denotes the

line bundle whose sections transform as w 7→ det (Cτ + D)w under monodromies. On

the other hand, as ΨR(ζΛ) transforms according to the metaplectic representation under
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monodromies, the integral on the r.h.s. of (2.68) is valued in det G
1/2

. As a result, (2.68)

indeed transforms as Lb3/4 ⊗ K
1/2
c under monodromies. In the special gauge X0 = 1,

Xa = za, JG evaluates to one, thereby identifying the bundles L−b3/2 ⊗ K−1
c and det G.

Since the quadratic form Im τ has indefinite signature, the intertwiner (2.68) is however

only valid formally.

In contrast, the Weil complex coordinates (λ̄−1, xa) are related to the real coordinates

(ζΛ, ζ̃Λ) by

ωΛ ≡ ζ̃Λ − N̄ΛΣζ
Σ = 2i ImNΛΣ

(

λ−1XΣ + x̄āDāX̄
Σ
)

/
√

2π . (2.70)

The intertwiner between the real polarization and the Weil complex polarization is given

by the Gaussian kernel [67]

ΨW(z, z̄; λ̄−1, x) =
eK/2

√

det (− ImN )√
JW

∫

e−
π
2

ω̄Λ ImNΛΣω̄Σ−2πiω̄ΛζΛ−iπ ζΛNΛΣζΣ
ΨR(ζΛ) dζΛ ,

(2.71)

where JW = ∂(λ̄−1, xa)/∂w̄Λ is the Jacobian from w̄Λ = ImNΛΣw̄Σ to λ̄−1, xa, and the

quadratic term in the exponential is now negative definite. Using the relations

|JW|2 = e
b3
2
K det (− ImN )/|g| , JW

JG
=

e−K

(X̄Λ Im τΛΣX̄Σ)
, (2.72)

it is apparent that JW is a section of L1− b3
2 ⊗ L̄−1 ⊗K−1

c ⊗ det W
−1

, where det W denotes

the line bundle whose sections transform as w 7→ det (CN + D)w under monodromies.

Since the integral on the r.h.s. of (2.71) is valued in det
1/2
W , (2.71) indeed transforms as a

section of L
b3
4
−1 ⊗K

1/2
c . For convenience, we summarize the transformation properties of

the various topological wave functions in table 2 on page 64.

We are now in a position to connect the present discussion to the Gaussian chiral

partition function. Let us choose ΨR(ζΛ) in (2.71) to be the real-polarized wave function

associated to the particular state |ΨΓm,k,µ〉 ∈ H in (2.43). Then (the complex conjugate

of) the chiral partition function (2.32) for k = 1 can be written up to a Gaussian prefactor

as the wave function of this state in the Weil polarization

Z(1)
Θ,µ(N , C) = F̄ e−K/2

√

JW

det (− ImN )
e

π
2
ωΛ ImNΛΣω̄Σ ΨΓm,1,µ

W

(

ω̄Λ

)

, (2.73)

which is independent of µ when k = 1.

2.5.4 Holomorphic topological partition function

Let us now discuss the relation between the topological wave function ΨBCOV and the

so-called holomorphic topological partition function Fhol. For this purpose, we first take

the holomorphic limit z̄ā → ∞, while keeping za fixed. We further assume that in this

limit, the Griffiths period matrix τ̄ΛΣ → ∞. In this case, the intertwiner (2.68) reduces to

a delta function with support on ζΛ = −τ̄ΛΣxΣ, so that

ΨG(xΛ) ∼ J
−1/2
G ΨR(ζΛ) . (2.74)
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Let us consider the restriction of the left-hand side to the locus xa = 0, λ fixed, where

xa, λ−1 are related to xΛ by (2.67). On this locus, ζΛ becomes complexified and equal to

XΛ/(λ
√

2π), which we denote by ξΛ. The BCOV amplitude therefore becomes proportional

to the topological string wave function in the real polarization Ψtop
R

, analytically continued

to the complex domain:

ΨBCOV

(

z, z̄ → ∞;λ, x = 0
)

∼ e−f1(z) Ψtop
R

(ξΛ) . (2.75)

Thus, defining the holomorphic topological partition function as

exp [Fhol(z, λ)] = ef1(z) lim
z̄→∞

[

λ1−χ(X)
24 ΨBCOV(z, z̄, λ)

]

, (2.76)

(where the prefactor restores the one-loop vacuum amplitude which was absent

from (2.48)), we have, in the Kähler gauge X0 = 1, the relation [70]

exp [Fhol(z, λ)] =
(

ξ0
)

χ(X)
24

−1
Ψtop

R
(ξΛ) , λ =

1

ξ0
√

2π
, za =

ξa

ξ0
. (2.77)

This relation will play an important role in section 5.4, where the coordinates ξΛ will be

interpreted as Darboux coordinates on twistor space ZM.

2.5.5 Topological A-model and Donaldson-Thomas invariants

So far we have been discussing topological wave functions in the context of the B-model.

However, the properties of the topological wave functions discussed in this section hold

both for the topological B-model on a CY threefold X and for the topological A-model

on a CY threefold X̂ , provided one replaces the Euler number χ(X ) by −χ(X̂ ). Indeed,

mirror symmetry X 7→ X̂ exchanges the two topological wave functions [45, 71]. We shall

now proceed to discuss some key features of the A-model, which will play an important

role in section 5.

In contrast to the B-model, the A-model topological string encodes deformations of the

(complexified) Kähler structure of the mirror Calabi-Yau threefold X̂ . The holomorphic

wave function Fhol(z
a, λ) of the topological A-model on X̂ therefore depends on the Kähler

moduli za ∈ MK(X̂ ) together with the topological string coupling λ. The A-model wave

function Fhol(z
a, λ) is moreover related to the partition function of Gromov-Witten (GW)

invariants via

exp [Fhol(z
a, λ) − Fpol(z

a, λ)] = ZGW , (2.78)

where

Fpol(z
a, λ) = −(2πi)3

λ2

(

1

6
κabcz

azbzc − 1

2
AΛΣz

ΛzΣ

)

− 2πi

24
c2,az

a (2.79)

is the “polar part” of Fhol(z
a, λ), and κabc is the intersection product on H3(X̂ ,Z). Here we

included the “quadratic ambiguity” AΛΣz
ΛzΣ in the prepotential, where AΛΣ is a constant

real symmetric matrix and zΛ = (1, za). This quadratic term does not affect the metric on

the Kähler moduli space but plays a crucial role for charge quantization, as we demonstrate
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in section 4. The right hand side of (2.78) involves the partition function ZGW = Z0
GW Z ′

GW,

where Z ′
GW encodes the non-degenerate GW-invariants, while

Z0
GW = λ−

χ(X̂)
24

ǫGW [M(e−λ)]χ(X̂ )/2 (2.80)

contains the contribution from degenerate GW-invariants. This follows from the weak

coupling expansion of the Mac-Mahon function M(q) =
∏

(1− qn)−n (see e.g. appendix E

in [72]),

M(e−λ) ∼ K λ
1
12 exp

(

ζ(3)

λ2
+

∞
∑

n=0

(−1)nλ2n+2 |B2n+4|
(2n + 4)!

(2n+ 3)

(2n+ 2)
B2n+2

)

, (2.81)

where Bn are the Bernoulli numbers and K is a numerical constant. Upon choosing the

parameter ǫGW in (2.80) equal to one, the power of λ in (2.80) cancels the similar power

in (2.81), as usually assumed in the topological string theory literature. In [72, 73], it

was however noticed that the choice ǫGW = 0 was necessary in order to match the OSV

conjecture. We do not take sides at this point and leave the parameter ǫGW arbitrary.

We further note that Z ′
GW is related to the partition function of the (ordinary, rank

one) Donaldson-Thomas invariants NDT (Qa, 2J) via the “GW/DT relation” [60, 61]

Z ′
GW = [M(e−λ)]−χ(X̂ )ǫDT ZDT , (2.82)

where the DT partition function is defined as

ZDT ≡
∑

Qa,J

(−1)2J NDT(Qa, 2J) e−2λJ+2πiQaza
. (2.83)

In the relation (2.82) we have also allowed for an arbitrary parameter ǫDT, which is usually

taken to be equal to one in the literature. We shall nevertheless leave it unspecified for

now. Physically, the DT invariants count bound states of one D6-brane with 2J D0-branes

and Qa D2-branes wrapped along γa ∈ H2(X̂ ,Z). They are also expected to provide the

instanton measure for D5-D1-D(-1) Euclidean configurations.

We may now combine the above relations and express the holomorphic wave function

eFhol(z,λ) in terms of the DT partition function:

eFhol(z,λ) = λ−
χ(X̂ )
24

ǫGW[M(e−λ)](
1
2
−ǫDT)χ(X̂ )eFpol

∑

Qa,J

(−1)2JNDT(Qa, 2J)e−2λJ+2πiQaza
.

(2.84)

This relation will play an important role in section 5.4.

3 Topology of the type IIA hypermultiplet moduli space

We shall now discuss quantum corrections to the hypermultiplet (HM) moduli space M =

Qc(X ) in type IIA string theory compactified on a CY 3-fold X . By the usual T-duality

and mirror symmetry arguments reviewed e.g. in [18, 54], the same space M also appears as

the HM moduli space in M-theory on X , as the HM moduli space in type IIB on the mirror
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IIA/X × S1
R IIB/X̂ × S1

R′

HM VM VM HM

M Qc(X ) QK(X ) Qc(X̂ ) QK(X̂ )

r 1/g2
(4) (R/l(4))

2 (R/l(4))
2 1/g2

(4)

O(e−
√

r) D2 D0-D2-D4-D6 D3 D(-1)-D1-D3-D5

O(e−r) NS5 KKM KKM NS5

Table 1. Dictionary between various realizations of Qc(X ) = QK(X̂ ).

3-fold X̂ , as the VM moduli space in type IIA on X̂ × S1 or as the VM moduli space in

type IIB theories on X ×S1 (see table 1). Here using insights from the previous section, we

clarify the qualitative structure of NS5-instanton corrections to the hypermultiplet metric,

a result which allows us to specify the topology of the perturbative moduli space in the

weak coupling limit. Some of the results in this section were already announced in [1].

3.1 Perturbative HM moduli space

The HM moduli space in type IIA string theory compactified on a CY 3-fold X is a

quaternion-Kähler manifold M = Qc(X ) of real dimension 2b3(X ) = 4(h2,1 + 1). Here the

subscript c refers to the fact that Qc(X ) encodes the moduli space of complex structures

Mc(X ), as well as the four-dimensional dilaton r ≡ eφ ∼ 1/g2
(4), RR-field C and NS axion

σ. In the weak coupling limit r → ∞, the quaternion-Kähler metric on M is given, to all

orders in 1/r, by [14, 16, 17]

ds2M =
r + 2c

r2(r + c)
dr2 +

4(r + c)

r
ds2SK+

ds2T
r

+
2 c

r2
eK |zΛdζ̃Λ−FΛdζΛ|2 +

r + c

16r2(r + 2c)
Dσ2 .

(3.1)

Here, (ζΛ, ζ̃Λ) are the real periods (2.6) of the C-field on a symplectic basis ofH3(X ,R), ds2T
is the metric (2.10) on the (torus fiber of the) intermediate Jacobian, ds2SK = Kab̄ dzadz̄b̄

is the special Kähler metric on SK ≡ Mc(X ), with Kähler connection (2.4), Dσ is the

one-form

Dσ = dσ + ζ̃ΛdζΛ − ζΛdζ̃Λ + 8cAK , (3.2)

and c is a deformation parameter which encodes the one-loop correction,

c = −χ(X )/(192π) . (3.3)

In the special case where χ(X ) = 0 (or to leading, tree-level approximation in the weak

coupling limit r → ∞), the metric (3.1) follows from the special Kähler metric on SK by the

c-map construction [6, 7]. All higher loop corrections are presumed to vanish, for reasons

that will be recalled shortly. On the other hand, non-perturbative corrections from D2-

brane and NS5-brane instantons will correct (3.1) at order e−
√

r and e−r, respectively [3].

In particular, such corrections should resolve the curvature singularity of the perturbative

metric (3.1) which is present at r = −2c when χ(X ) > 0.
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3.1.1 Ten-dimensional origin of the one-loop correction

It is interesting to note that the connection term in (3.2) amounts, after dualizing the

NS-axion σ and the RR-axions ζ̃Λ into two-form potentials B and BΛ, to a topological

coupling
∫

(

ReNΛΣ(dBΛ + ζΛdB) ∧ dζΣ − 8cB ∧ ωSK
)

(3.4)

in the 4D effective action.18 This in turn follows by dimensional reduction of the topological

coupling in 10-dimensional type IIA supergravity
∫

Y

(

1

6
B ∧ dC ∧ dC −B ∧ I8(R)

)

, (3.5)

where I8(R) = (p2 − 1
4p

2
1)/48 on X (or from the similar coupling in 11D supergravity on

X ×S1). Indeed, using the standard relations between Pontryagin classes p1 = c21−2c2 and

p2 = c22 − 2c1c3 + 2c4 (see e.g. [74], section 6.4), the second term in (3.5) can be rewritten,

on an arbitrary complex manifold Y, as

B ∧ I8 =
1

24
B ∧

[

c4 − c1

(

c3 +
1

8
c31 −

1

2
c1c2

)]

. (3.6)

Taking19 Y = R4 × X , where the complex structure of X varies as a function of the

position in R4, and integrating the term in parenthesis on the CY threefold X produces

a coupling −χ(X )
24 B ∧ c1 on R4, which by the arguments in [45] is equal to χ(X )

24 B ∧ ωSK.

This derivation of the one-loop correction to the metric can be viewed as a supersymmetric

counterpart of the derivation in [13, 15],20 where corrections to the scale factors in the

metric (3.1) were obtained by reduction of the CP-even R4-type couplings in 10 dimensional

type IIA supergravity.

3.2 Topology and instanton corrections

While (3.1) describes the local, Riemannian geometry of M, it is of prime importance to

understand its topology. Since the metric (3.1) is only valid in the weak coupling regime,

we shall restrict our discussion to the topology of the hypersurfaces C(r), corresponding

to fixed values of the dilaton r ∈ R+, which foliate the full moduli space M. The global

structure of C(r) (which, evidently, must be independent of r) can be specified by providing

a group of discrete identifications of the coordinates za, ζΛ, ζ̃Λ, σ, acting isometrically on

C(r). The precise subgroup can be identified by studying the allowed instanton corrections

to the metric. In the rest of this section, we shall discuss instanton corrections to (3.1) at a

qualitative, semi-classical level, ignoring the tensorial nature of the metric. A more precise

discussion will be given in section 5 using twistor techniques.

18To dualize the NS-axion, we add a term −dB ∧ dσ
2

to the Lagrangian ds2
M and integrate out the

one-form dσ, leading to − 1
6
r2dB ∧ ∗dB + B ∧ (ωT + χ(X)

24
ωSK), where ωSK = − 1

2π
dAK .

19Taking instead Y = R2 × G, where G is a CY four-fold, eq. (3.6) reproduces the 1
24

χGB one-point

function found in [75]. When G is a CY threefold fibered over CP 1, (3.6) should instead reduce to Eq (19)

in [76].
20Note that the analysis of [15] was restricted to the “universal sector”, where the B ∧ ωSK coupling

vanishes. In particular, for rigid CY threefolds, the last term in (3.2) is absent. We are grateful to R.

Minasian and P. Vanhove for discussions on these issues.
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3.2.1 Instanton contributions to the HM moduli space

In type IIA string theory on X , these correspond to D2-brane instantons wrapping a sLag

submanifold of X (more precisely, to stable objects in the Fukaya category of X ). Such

instantons produce corrections to the metric on Qc(X ) of the form [18]

δds2|D2 ∼ exp
(

−8πeφ/2|Zγ | − 2πi(qΛζ
Λ − pΛζ̃Λ)

)

, (3.7)

where (pΛ, qΛ) are integers which label the homology class γ = qΛAΛ−pΛBΛ ∈ H3(X ,Z) of

the sLag, while the central charge Zγ ≡ eK/2(qΛX
Λ−pΛFΛ) (or, in mathematical parlance,

the stability data) is the volume of the sLag, induced from the CY metric. The expres-

sion (3.7) is only valid in the classical, weak coupling limit r → ∞, up to a one-loop deter-

minant prefactor which we discuss in section 3.2.3. There are also multi-D-instanton cor-

rections to the metric, but the dependence on the axions (ζ, ζ̃, σ) is always of the form (3.7),

where (pΛ, qΛ) is the total charge carried by the multi-instanton configuration.

At subleading order e−r, there are in addition corrections from NS5-brane instantons

in the homology class kX [3]. For k > 0, these corrections are expected to be of the form

δds2|NS5 ∼ e−4πkeφ−iπkσ Z(k)
NS5-G(N , ζΛ, ζ̃Λ) , (3.8)

where Z(k)
NS5-G is the NS5-partition function in the Gaussian, weak coupling approximation,

while the prefactor in (3.8) incorporates the Euclidean action for k NS5-branes. For the

purposes of reading off from (3.8) the classical NS5-brane action, one can replace Z(k)
NS5-G

with the self-dual flux partition function Z(k)
Θ,µ obtained in (2.35). Then retaining one of

the terms in the sum (2.35) and disregarding normalization factors, the classical action for

the non-perturbative corrections in (3.8) is found to be

SNS5/D2 =πk
[

4 eφ − i(nΛ − ζΛ)N̄ΛΣ(nΣ − ζΣ)
]

+ iπk(σ + ζΛζ̃Λ) − 2πik (ζ̃Λ − φΛ)nΛ − iπkθΛφΛ .
(3.9)

The first line matches precisely the instanton action obtained in [49], eq. (4.54), based

on a classical analysis of instanton solutions in N = 2 supergravity, while the second line

restores the appropriate axionic couplings (including characteristics). The integers knΛ

may be interpreted as the flux on the fivebrane, or as charges of a D2-brane wrapped

on knΛBΛ ∈ H3(X ,Z), although this classical interpretation is misleading since fluxes or

D2-brane charges are inherently quantum-mechanical on the fivebrane worldvolume.

3.2.2 Large gauge transformations

The isometry group of C(r) contains in particular the continuous translations

TH,κ :
(

ζΛ, ζ̃Λ, σ
)

7→
(

ζΛ + ηΛ, ζ̃Λ + η̃Λ, σ + 2κ − η̃Λζ
Λ + ηΛζ̃Λ

)

, (3.10)

with H = (ηΛ, η̃Λ) ∈ Rb3, κ ∈ R, satisfying the Heisenberg group law

TH2,κ2TH1,κ1 = TH1+H2,κ1+κ2+
1
2
〈H1,H2〉 , (3.11)
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where 〈H,H ′〉 is the symplectic pairing (2.22). While being a symmetry to all orders in

1/r, the continuous shifts TH,0 are generally expected to be broken to a discrete subgroup

by D-instantons. The form of the D-instanton corrections (3.7) implies that ∂σ continues

to be an isometry of the HM metric at order e−
√

r, but that invariance under continuous

translations of the C-field is broken to the discrete group Γ = H3(X ,Z), dual to the lattice

H3(X ,Z) of D2-brane charges, acting by integer shifts on the RR axions

(

ζΛ, ζ̃Λ
)

7→
(

ζΛ + ηΛ, ζ̃Λ + η̃Λ

)

, (3.12)

where H = (ηΛ, η̃Λ) ∈ H3(X ,Z). In order to be an isometry of the perturbative met-

ric (3.1), this must be accompanied by a shift of the NS-axion, so that Γ acts as the

transformation TH,0 in (3.10), possibly combined with a certain translation T0,c(H) of σ

which, at this order, remains undetermined. Thus, ignoring the NS-axion σ and keep-

ing the complex structure of X fixed, the hypersurface C(r) projects to the intermediate

Jacobian torus T = H3(X ,R)/H3(X ,Z), as stated in [8].

The NS5-brane corrections (3.8) further break the continuous translations in σ to dis-

crete identifications21 T(0,κ) : σ 7→ σ + 2κ, κ ∈ Z. This implies that the hypersurface C(r)

is a circle bundle over the intermediate Jacobian Jc(X ), the fiber of which is parametrized

by eiπσ, 0 ≤ σ < 2. In addition, eq. (3.8) implies that the restriction of C(r) to the torus

T must be isomorphic to the circle bundle CΘ where the NS5-brane partition function is

valued. In particular, the shift T0,c(H) which must accompany the large gauge transfor-

mation (3.12) follows from the transformation property (2.36) of the fivebrane partition

function. This shift is given by

c(H) = −1

2
ηΛη̃Λ + η̃Λθ

Λ − ηΛφΛ mod 1 , (3.13)

where Θ = (θΛ, φΛ) are the characteristics governing the chiral partition function (2.35).

In particular, c(H) satisfies

c(H1 +H2) = c(H1) + c(H2) +
1

2
〈H1,H2〉 mod 1 , (3.14)

as a result of the quadratic refinement law (2.21) for σΘ(H) = (−1)2c(H). Thus, large gauge

transformations imply that the axions (C, σ) take values in the quotient (H3(X ,Z)×R)/Γ′,
where Γ′ is the group generated by T ′

H,κ ≡ TH,κ+c(H) acting via

T ′
H,κ :

(

ζΛ, ζ̃Λ, σ
)

7→
(

ζΛ + ηΛ, ζ̃Λ + η̃Λ, σ + 2κ− η̃Λζ
Λ + ηΛζ̃Λ + 2c(H)

)

, (3.15)

where H = (ηΛ, η̃Λ) ∈ H3(X ,Z), κ ∈ Z and c(H) ∈ R is chosen such that (3.13) holds. It

should be noted that the extra shift22 of c(H) is crucial for the consistency of this action.

21Here we assume that k is integer. This can be argued by carefully dualizing σ as in footnote 18, and

will be confirmed shortly using S-duality.
22The shift in σ induced by the quadratic refinement was already observed in the context of rigid Calabi-

Yau compactifications upon assuming that the moduli space should be invariant under a certain natural

arithmetic group [53]. With hindsight, this additional shift could also have been uncovered in the SL(3, Z)-

invariant construction of [54], had it not been obscured by a redefinition of κ.
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Indeed, the composition of two large gauge transformations

T ′
H2,κ2

T ′
H1,κ1

= T ′
H1+H2,κ1+κ2+c(H1)+c(H2)+ 1

2
〈H1,H2〉−c(H1+H2)

(3.16)

is again a large gauge transformation T ′
H3,κ3

with κ3 ∈ Z, by virtue of (3.14). Thus, upon

acting on functions of the form Fk(ζ
Λ, ζ̃Λ, σ) ≡ Fk(ζ

Λ, ζ̃Λ) eiπkσ with k integer, large gauge

transformations T ′
H,κ are effectively Abelian.

To summarize, at a fixed point in complex structure moduli space we have found

that the circle bundle C indeed restricts to the circle bundle CΘ over the torus T =

H3(X ,R)/H3(X ,Z) governing the fivebrane partition function. We now discuss the fi-

bration of C(r) over the complex structure moduli space.

3.2.3 Monodromies

For discussing the fibration of the circle bundle C(r) over Mc(X ), and in particular its

behavior under monodromies, it becomes important to include the normalization factors

for the D-instanton and NS5-instanton corrections (3.7) and (3.8).

In the case of D-instantons, the normalization factor was determined in [18, 24]. While

the answer depends on the metric component under consideration (see section 5.2.2 for

details), the normalization factor universally involves the product Ω(γ)σD(γ), where Ω(γ)

is the generalized DT invariant associated to the sLag submanifold γ = (pΛ, qΛ), and σD(γ)

is again a quadratic refinement23 of the intersection form on H3(X ,Z). As in the case of

the fivebrane partition function, σD(γ) may be parametrized by characteristics ΘD,

σD(γ) = E

(

−1

2
qΛp

Λ + qΛθ
Λ
D − pΛφD,Λ

)

≡ σΘD
(γ) . (3.17)

In order that the product Ω(γ)σD(γ) be invariant, ΘD must transform in the same

way (2.24) as the fivebrane characteristics Θ under monodromies C 7→ ρ(M) · C.

While it seems natural to identify the two set of characteristics, Θ and ΘD, we do

not know for sure that this is a consistent choice. On the one hand, it is desirable that

physics (in particular the HM moduli space M) be independent on any choice of quadratic

refinement, as it is the case for the class of N = 2 field theories considered in [78]. For

what concerns the D-instanton corrections (3.7), a change ΘD 7→ Θ′
D of the D-instanton

characteristics can be canceled by redefining the coordinate C = (ζ, ζ̃) into24

C ′ = C + Θ′
D − ΘD. (3.18)

Similarly, for what concerns the NS5-instanton corrections (3.8), a change Θ 7→ Θ′ of the

fivebrane characteristics can be canceled by redefining

Ĉ = C + Θ′ − Θ , σ̂ = σ + 〈Θ − Θ′, C〉 − 〈Θ,Θ′〉 , (3.19)

23It would be very interesting to obtain σD(γ) from the one-loop determinant for the topological field

theory on the D2-brane, along the lines of the superpotential computation in [77].
24The cost to pay is that C′ no longer transforms as a symplectic vector under monodromies, as observed

in section 4.1 of [24].
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where we have used (2.37). In order for these two field redefinitions to be consistent, we

require that ΘD and Θ should vary in the same way. This suggests that the difference

Θ − ΘD should be fixed, although it does not yet imply that it should vanish. Now, it

follows from (2.24) that the difference of characteristics transforms as a symplectic vector

under monodromies, modulo the addition of integers. In general, there is no non-zero vector

invariant under the full monodromy group, and so no canonical choice for the difference

Θ − ΘD except zero. On the other hand, while type IIB S-duality suggests that the two

quadratic refinements should be related (as one governs NS5-brane instantons while the

other controls D5-brane instantons) in section 5.3 we shall find some tension between the

equality of the two characteristics and S-duality. In view of this, we shall continue to

distinguish the two quadratic refinements in the sequel.

We now turn to the monodromy invariance of the fivebrane instanton correction (3.8),

and to the topology of the NS-axion circle bundle C over the complex structure moduli space

Mc(X ). As a first approach to this problem, let us evaluate the curvature d(Dσ/2) of the

horizontal one-form (3.2), suitably normalized to take into account the mod 2 periodicity

of σ:

d

(

Dσ

2

)

= ωT +
χ(X )

24
ωSK . (3.20)

The first term, equal to the Kähler class on the intermediate Jacobian torus T , is recog-

nized as the curvature of the circle bundle CΘ discussed in section 2.3. The second term,

proportional to the Kähler class of the complex structure moduli space Mc(X ), suggests

that the restriction of C to Mc(X ) is isomorphic to Lχ(X)
24 , where L is the Hodge line bun-

dle over Mc(X ). Unless χ(X ) is divisible by 24, there is no canonical definition of Lχ(X)
24

(equivalently, the curvature (3.20) is not an integer cohomology class). This suggests that

C is a twisted circle bundle and that the coordinate σ is in fact not globally well-defined,

as already observed in a slightly different context in [79].

To address this point in more detail, observe that under local holomorphic rescalings

Ω3,0 7→ efΩ3,0, the requirement that the horizontal one-form (3.2) be invariant implies that

σ must shift according to

σ 7→ σ +
χ(X )

24π
Im f + 2κf (3.21)

(indeed, recall from (2.5) that AK 7→ AK + d Im f under Kähler transformations K 7→
K − f − f̄). Here, κf is an undetermined constant modulo 1. More generally, under a

monodromy transformation M in Mc(X ), C and σ must transform as

C 7→ ρ(M) · C , σ 7→ σ +
χ(X )

24π
Im fM + 2κ(M) , (3.22)

where fM is a local holomorphic function on Mc(X ) determined by the rescaling Ω3,0 7→
efM Ω3,0 of the holomorphic 3-form around the monodromy, and κ(M) is again an un-

determined constant defined modulo 1. The consistency of the monodromy transforma-

tions (3.22) requires that e2πiκ(M) be a unitary character of the monodromy group. The

combination s ≡ e−
χ(X)
48

K+iπσ then transforms as

s 7→ e2πiκ(M) e
χ
24

f s , (3.23)
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which may be taken as the definition of the twisted bundle Lχ(X)
24 . Since the bundle L itself

is well-defined, the first factor must be a χ(X )/24:th root of unity, κ(M) ∈ χ(X )Z/24.

Similarly, the additional term 2κf ∈ χ(X )Z/12 in (3.21) is needed to escape the paradox

raised in [1]: in the absence of this term, a trivial rescaling Ω3,0 7→ e2πiΩ3,0 would lead

to identifications σ ≡ σ + χ(X )/12 in conflict with the periodicity modulo 2 of σ. Let us

further recall that the twisted bundle Lχ(X)
24 from section 2.5 also arises in the B-model

topological wave function, which is valued in Lχ(X)
24

−1 [45].

In order to fully specify the topology of the circle bundle C, it is necessary to determine

the unitary character e2πiκ(M), and more to the point, its logarithm κ(M). To appreciate

the nature of this question, it is useful to recall a similar problem which arises in the

study of classical modular forms:25 determine the modular properties of the logarithm of

the Dedekind η function. The answer to this question is well-known since the work of

Dedekind (whose sums we shall encounter again in section 4.3), but is most satisfactorily

understood in the language of determinant line bundles [80]. Transposing to the present

context, we expect that the role of the Dedekind η function will be played by the one-loop

B-model topological amplitude ef1/
√
JG, and that κ(M) should be computable from the

fivebrane determinant line bundle along the lines of [35, 36, 81]. Indeed, we shall find

in section 5.5 that the metric-dependent normalization factor of the fivebrane partition

function in the weak coupling limit is proportional to the one-loop B-model topological

amplitude, consistently with the coupling (1.2).

Summarizing, we have found that the HM moduli space M, in the weak coupling limit,

is foliated by a family of hypersurfaces C(r) which are circle bundles26 over the intermediate

Jacobian (2.9),

M ∼ R+
r ×







S1
σ → C(r)

↓
Jc(X )






, (3.24)

whose curvature is given by (3.20). The perturbative moduli space may be defined globally

by the metric (3.1), subject to identifications (3.22) under monodromies, (3.15) under large

gauge transformations, and to possibly other identifications relating different leaves C(r),

as required e.g. by S-duality.

4 Mirror symmetry, S-duality and NS5-branes in type IIB

So far we have worked exclusively within the type IIA picture. In this section we discuss

the mirror map to type IIB where S-duality provides a powerful tool to analyze NS5-brane

effects. We recall that mirror symmetry identifies the HM moduli space Qc(X ) in type IIA

string theory compactified on a CY 3-fold X with the HM moduli space QK(X̂ ) in type

IIB compactified on the mirror CY 3-fold X̂ . While the former extends the moduli space of

complex structures Mc(X ) with data about the dilaton, RR-fields and NS axion, the latter

25We are grateful to A. Neitzke and D. Zagier for suggesting this point of view.
26The dilaton factor R+

r may be used to formally convert this circle bundle into a C×-bundle [82], although

the total space M is not expected to carry a global complex structure.
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instead extends the moduli space of (complexified) Kähler structures MK(X̂ ) with similar

data. In contrast to Mc(X ), the special Kähler metric on MK(X̂ ) receives worldsheet

instanton corrections, and is most easily obtained from Mc(X ) by mirror symmetry.

• In section 4.1 we review the mirror-dual description of M = Qc(X ) as the type

IIB HM moduli space M = QK(X̂ ). In the process, we discuss charge quantization,

and reconcile the apparent fractional charge shifts in the K-theory description of type IIB

instantons (or type IIA black holes) with the manifestly integer charges γ ∈ H3(X ,Z)

of type IIA instantons (or type IIB black holes). • In section 4.2, we then discuss the

action of S-duality on the type IIB hypermultiplet moduli space in the large volume limit

and incorporate a novel shift of the D3-brane axion ca needed to ensure consistency with

charge quantization. • In section 4.3, we use this action to derive the classical action of

(p, k)5-branes. In particular, we show that this action is consistent with the Gaussian flux

partition function discussed in section 2 in the weak coupling limit.

4.1 Topology of the perturbative type IIB HM moduli space

Recall that in the weak coupling limit, the metric on M ≡ QK(X̂ ) is again given by the

one-loop corrected c-map metric (3.1), where the special Kähler manifold SK = MK(X̂ )

is now the moduli space of complexified Kähler structures, the torus T parametrizes the

periods of the RR potential

Aeven = A(0) +A(2) +A(4) +A(6) ∈ Heven(X̂ ,R), (4.1)

and the coordinates r = eφ ∼ 1/g2
(4) and σ still parametrize the 4D string coupling and NS

axion. The deformation parameter c takes the same value c = χX̂ /192π = −χ(X )/192π

as in (3.3). We refer to the total space of the torus T over MK(X̂ ) as the symplectic

Jacobian JK(X̂ ).

4.1.1 Kähler moduli space

To describe the geometry of JK(X̂ ) in more detail, let us choose a basis γa, a =

1, . . . , h1,1(X̂ ), of 2-cycles (Poincaré dual to 4-forms ωa), and a basis γa of 4-cycles (Poincaré

dual to 2-forms ωa), such that

ωa ∧ ωb = κabc ω
c , ωa ∧ ωb = δb

aωX̂ ,
∫

γa

ωb =

∫

γb

ωa = δa
b , (4.2)

where ωX̂ is the volume form, normalized to
∫

X̂ ωX̂ = 1, and κabc =
∫

X̂ ωaωbωc = 〈γa, γb, γc〉
is the triple intersection product in H4(X̂ ,Z). The space Heven(X ) carries a symplectic

form given by

〈H,H ′〉 =

∫

X̂
H ∧ τ(H ′) , (4.3)

where τ flips the sign of the 2-form and 6-form part of H ′. It will be convenient to let

ωΛ = (ωX̂ , ω
a), ωΛ = (1, ωa) such that (ωΛ, ωΛ) forms a symplectic basis of Heven(X ,R).

The Kähler structure moduli space MK(X̂ ) may then be parametrized by the periods

za ≡ ba+ita =
∫

γa(B+iJ) of the complexified Kähler form. In projective special coordinates
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XΛ = (X0,Xa) such that za = Xa/X0, the prepotential governing MK(X̂ ) is given by27

F (X)=−N(Xa)

X0
+

1

2
AΛΣX

ΛXΣ+χ(X̂ )
ζ(3)(X0)2

2(2πi)3
− (X0)2

(2πi)3

∑

kaγa∈H+
2 (X̂ )

n
(0)
ka

Li3

[

E

(

ka
Xa

X0

)]

,

(4.4)

where N(Xa) ≡ 1
6κabcX

aXbXc, and AΛΣ is a constant, real symmetric matrix. The matrix

AΛΣ is ambiguous up to integer shifts AΛΣ 7→ AΛΣ + BΛΣ, BΛΣ ∈ Z, and does not affect

the Kähler potential K = − log[i(X̄ΛFΛ − XΛF̄Λ)] on MK(X̂ ). However, as we shall

demonstrate shortly, it is crucial for charge quantization. In (4.4), the sum over effective

divisors represents the effect of genus 0 worldsheet instantons, while the trilogarithm sum

Li3(z) ≡
∑∞

n=1 z
n/n3 encodes multi-covering effects.

4.1.2 Charge quantization

By the same reasoning as in the type IIA analysis of section 2.1, the torus T in the mirror

type IIB can be written as

T = Heven(X̂ ,R)/Γ , (4.5)

where Γ is the lattice dual to the charge lattice classifying D5-D3-D1-D(-1)-instanton con-

figurations. To determine this lattice, we must invoke the K-theory description of D-brane

charges [83].

For non-vanishing D5-brane charge p0, D5-D3-D1-D(-1)-instanton configurations can

be represented as a coherent sheaf E on X̂ , of rank rk(E) = p0 and generalized Mukai

vector γ′, defined by28 [83]

γ′ ≡ ch(E)

√

Td(X̂ ) = p0 + paωa − q′aω
a + q′0ωX̂ , (4.6)

where ch(E) and Td(X̂ ) are the Chern character of E and Todd class of T X̂ . Using

ch = rk+c1 +

(

1

2
c21 − c2

)

+
1

2

(

c3 − c1c2 +
1

3
c31

)

+ . . .

Td =1 +
1

2
c1 +

1

12
(c21 + c2) +

1

24
c1c2 · · · = ec1/2Â,

(4.7)

where Â is the Dirac genus, the coefficients pΛ, q′Λ of γ′ on the symplectic basis ωΛ, ω
Λ are

found to be [84]

pa =

∫

γa

c1(E) , q′a = −
(∫

γa

ch2(E) +
p0

24
c2,a

)

,

q′0 =

∫

X̂

(

ch3(E) +
1

24
c1(E) c2(X̂ )

)

.

(4.8)

27We restore the important quadratic contribution 1
2
AΛΣXΛXΣ, which was omitted in [18]. Equivalently,

one may extend the range of indices for the cubic form κabc and define κ000 = −3A00, κ00a = −2A0a, κ0ab =

−Aab.
28The prime anticipates the fact that the vector γ′ lies in Heven(X̂ , Q). In eq. (4.20) we introduce a

“modified Mukai vector” which lies in Heven(X̂ , Z).

– 34 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
1

Due to the fractional coefficients appearing in (4.8) and in chn(E), the generalized Mukai

vector γ′ = (pΛ, q′Λ) is not valued in Heven(X̂ ,Z) but rather in Heven(X̂ ,Q). This appears

to challenge the fact that the D2-brane charges in type IIA compactified on the mirror

3-fold X are classified by H3(X ,Z) modulo torsion. To find the correct integer-valued

charge vector γ = (pΛ, qΛ), it suffices to match the central charge
∫

X̂ e
−zaωaγ′ associated

to the sheaf F with the holomorphic supergravity central charge e−K/2Zγ = qΛX
Λ−pΛFΛ,

leading to

qΛ = q′Λ +AΛΣp
Σ . (4.9)

Thus, qΛ and q′Λ differ by a (non-integer) symplectic transformation, which removes the

real quadratic terms in (4.4), transforming the prepotential F into

F ′(X) = F (X) − 1

2
AΛΣX

ΛXΣ . (4.10)

The magnetic charges p0 and pa are manifestly integer. To see that the electric charges

qΛ are integer, it is convenient to rewrite them as

qa =

∫

γa

c2(E) + p0
(

A0a −
c2,a

24

)

+Aabp
b − 1

2
κabcp

bpc,

q0 =

(
∫

X̂
ch(E) Td(X̂ )

)

+ pa
(

A0a −
c2,a

24

)

+A00p
0.

(4.11)

Observing that the first term in q0 is the index of the Dirac operator coupled to the sheaf

F , and therefore an integer,29 it follows that qΛ ∈ Z provided the following additional

constraints are imposed on the matrix AΛΣ:

i) Aabp
b − 1

2
κabcp

bpc ∈ Z for ∀pa ∈ Z ,

ii) A0a ∈ c2,a

24
+ Z ,

iii) A00 ∈ Z .

(4.12)

The last condition shows that A00 can be chosen to vanish. The second condition was

conjectured long ago in [85] on the basis of a few examples, and is now seen to follow

from K-theory considerations. Without loss of generality we shall choose A0a = c2a/24.

The first condition, which appears to be novel, requires that 2Aab is integer. It indeed

holds true in the few examples where AΛΣ has actually been computed [55–58]. For later

reference, we note that the integrality of the Dirac operator on X̂ coupled to a rank one

sheaf (c2(E) = c3(E) = 0) further requires30

iv) N(pa) +
1

12
c2,ap

a ∈ Z for ∀pa ∈ Z . (4.13)

In view of i) and iv), it will be useful to define the integer-valued combinations

L0(p
a) = N(pa) +

1

12
c2,a p

a , La(p
a) =

1

2
κabcp

bpc −Aabp
b . (4.14)

29We are grateful to R. Minasian for discussions on related issues.
30This condition also guarantees that the dimension of the moduli space of the divisor Poincaré dual to

c1(E) be even [86].
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Assuming that these integrality conditions are obeyed (as they must for mirror sym-

metry to hold), the charge vector γ = (pΛ, qΛ) is now valued in Heven(X ,Z), and can be

meaningfully identified with the homology class of a special Lagrangian submanifold on

the mirror type IIA side. On the other hand, the primed charges (4.8) satisfy

q′a ∈ Z − p0

24
c2,a −

1

2
κabcp

bpc, q′0 ∈ Z − 1

24
pac2,a . (4.15)

For p0 = 0, we recover the quantization conditions q′a ∈ Z− 1
2κabcp

bpc and q′0 ∈ Z− 1
24 p

ac2,a

familiar from studies of the D4-D2-D0 brane partition function [72, 73, 87, 88]. As we shall

see in section 4.2, the fractional shifts in (4.15) have important implications for S-duality.

4.1.3 Symplectic Jacobian and mirror symmetry

We are now finally ready to relate the variables (ζΛ, ζ̃Λ) appearing in the metric (3.1) to

the periods of the type IIB RR form Aeven, and to specify the torus bundle T → JK(X̂ ) →
MK(X̂ ). For this purpose, recall that the classical action of the D-instanton associated to

the sheaf E is given by [46, 89]

Sγ = 8πe(φ+K)/2

∣

∣

∣

∣

∫

X̂
e−J γ′

∣

∣

∣

∣

+ 2πi

∫

X̂
γ′ ∧Aeven e−B . (4.16)

Identifying the periods of the RR potential Aeven as

Aeven e−B = ζ0 − ζaωa − ζ̃ ′aω
a − ζ̃ ′0ωX̂ (4.17)

and defining the unprimed axions

ζ̃Λ = ζ̃ ′Λ +AΛΣζ
Λ , (4.18)

we find that the Euclidean action (4.16) associated to the D5-D3-D1-D(-1) bound state

with integer charges (pΛ, qΛ) becomes equal to the Euclidean action (3.7) of a D2-brane

wrapping a sLag in the integer homology class qΛAΛ − pΛBΛ ∈ H3(X ,Z) on the mirror

threefold X . In particular, the coordinates (ζΛ, ζ̃Λ) defined by (4.17), (4.18) have unit

periodicity, and parametrize the torus T .

Under a monodromy M in the moduli space of Kähler structures MK(X̂ ), the torus

transforms by a symplectic rotation ρ(M) ∈ Sp(2b2(X̂ )+2,Z) computable from the prepo-

tential F (X) (see section 4.1.4). Thus, the symplectic Jacobian JK(X̂ ) is the total space

of the torus bundle
Heven(X̂ ,R)/Γ → JK(X̂ )

↓
MK(X̂ ),

(4.19)

where the lattice Γ ⊂ Heven(X̂ ,Z), dual to the lattice of D5-D3-D1-D(-1) brane charges, is

the image of the K-theory lattice K(X̂ ) under the “modified Mukai map”

E 7→ γ = eA ch(E)

√

Td(X̂ ) ∈ Heven(X̂ ,Z), (4.20)

where eA represents the fractional symplectic transformation (4.9).
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Having specified the torus bundle JK(X̂ ), the topology of the type IIB perturbative

HM moduli space M follows by the same reasoning as in section 3: M is foliated by

hypersurfaces C(r) of constant coupling, each of which is a circle bundle C(r) over JK(X̂ ),

with curvature given by

d

(

Dσ

2

)

= ωT − χ(X̂ )

24
ωSK , (4.21)

where ωSK is the Kähler class of MK(X̂ ), and the characteristics Θ which remain to be

specified. This is in full agreement with the quantum mirror symmetry conjecture. While

classical mirror symmetry identifies MK(X̂ ) = Mc(X ), semi-classical mirror symmetry

(in its weakest form) demands JK(X̂ ) = Jc(X ), quantum mirror symmetry requires the

identity of the full HM moduli spaces Qc(X ) = QK(X̂ ) as quaternion-Kähler manifolds.

4.1.4 Monodromy around the large volume point

We mentioned previously that the torus T is non-trivially fibered over MK(X̂ ). Here we

consider the monodromy M :

ba 7→ ba + ǫa , ǫa ∈ Z (4.22)

around the large volume point in MK(X̂ ). This monodromy must be accompanied by the

symplectic rotation

ζa 7→ ζa + ǫaζ0 , ζ̃ ′a 7→ ζ̃ ′a − κabcζ
bǫc − 1

2
ζ0κabcǫ

bǫc ,

ζ̃ ′0 7→ ζ̃ ′0 − ǫaζ̃ ′a +
1

2
κabcζ

aǫbǫc +
1

6
ζ0κabcǫ

aǫbǫc
(4.23)

on the torus T , as follows from the definition (4.17). Upon transforming the charges

according to

p0 7→ p0 , pa 7→ pa + ǫap0 , q′a 7→ q′a − κabcp
bǫc − 1

2
p0κabcǫ

bǫc ,

q′0 7→ q′0 − ǫaq′a +
1

2
κabcp

aǫbǫc +
1

6
p0κabcǫ

aǫbǫc ,
(4.24)

the instanton action (4.16) remains invariant. The transformation (4.24) amounts to ten-

soring the sheaf E with a line bundle E′ with first Chern class c1(E
′) = ǫaωa. We refer to

the transformation (4.24) as a “spectral flow” transformation with parameter ǫa, and the

transformed (unprimed) charge vector as γ[ǫ]. The spectral flow (4.24) can be rewritten as

an integral symplectic transformation of the integral charge vector γ,

γ[ǫ] = ρ(M) · γ , ρ(M) =











1 0 0 0

ǫa δa
b 0 0

−La(ǫ) −κabcǫ
c δa

b 0

L0(ǫ) Lb(ǫ) + 2Abcǫ
c −ǫb 1











, (4.25)

which makes it clear that the spectral flow preserves the quantization conditions (4.15).
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For p0 6= 0, the combinations

q̂a = q′a +
1

2
κabc

pbpc

p0
, q̂0 = q′0 +

paq′a
p0

+
1

3
κabc

papbpc

(p0)2
, (4.26)

are invariant under the spectral flow (4.24). For a fixed p0, we shall refer to γ̂ = (pa, q̂a, q̂0)

as the reduced charge vector. The invariant charges q̂Λ may be expressed in terms of the

Chern classes of E as

q̂a =

∫

γa

[

c2(E) +
1 − p0

2p0
c21(E)

]

− p0

24
c2,a ,

q̂0 =

∫

X̂

[

ch3(E) − 1

p0
c1(E) ch2(E) +

1

3(p0)2
c31(E)

]

.

(4.27)

These combinations coincide (up to the last term in q̂a) with the homogeneous invariants

of [84]. In particular, q̂a + p0

24c2,a is recognized as the “Bogomolov discriminant”. It is also

useful to observe that

Qa ≡ p0

(

q̂a +
p0

24
c2,a

)

, J ≡ 1

2
(p0)2q̂0 (4.28)

are precisely (after matching conventions) the electric charge and angular momentum of the

5D lift of the 4D D6-D4-D2-D0 black hole with charges (p0, pa, q′a, q
′
0) [90–92]. Moreover,

for p0 = 1, Qa and 2J are integer. These observations will play a role in section 5.4.

While the combined action of the monodromy M on the moduli via (4.22) and (4.23)

and on the charges via (4.24) preserves the D-instanton action and stability condition, and

therefore the generalized Donaldson-Thomas invariant Ω(γ, za), the latter is in general not

invariant under γ 7→ γ[ǫ] at fixed values of the moduli, due to wall-crossing phenomena.

In the heuristic discussion of section 5, we shall however ignore this issue and assume that

Ω(γ) is in fact invariant under spectral flow, at fixed values of the moduli.

4.2 S-duality

The type IIB description is more advantageous for dealing with non-perturbative cor-

rections as it provides an infinite discrete symmetry mixing worldsheet instantons and

D-instantons, the 10D SL(2,Z) S-duality symmetry.31 In the zero coupling, infinite vol-

ume limit, where only the first, cubic term in the prepotential (4.4) is retained and the

one-loop correction can be ignored, the moduli space QK(X̂ ) admits an isometric action

of SL(2,R) [14, 18, 93], corresponding to the S-duality of 10-dimensional type IIB string

theory. This action is most easily described using new coordinates (τ1, c
a, ca, c0, ψ) related

31The same SL(2, Z) action is also manifest geometrically in the context of M-theory on X̂ × T 2, whose

VM moduli space is given by the same space QK(X̂ ). As already pointed out in the introduction, it is

debatable whether the full SL(2, Z) symmetry should stay unbroken in vacua with N = 2 supersymmetry,

or whether it should be broken to a finite index subgroup. At this point we assume that it does, though

our discussion can be adapted to accommodate the weaker option.
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to the coordinates (ζΛ, ζ̃Λ, σ) by

ζ0 = τ1 , ζa = −(ca − τ1b
a) ,

ζ̃ ′a = ca +
1

2
κabc b

b(cc − τ1b
c) , ζ̃ ′0 = c0 −

1

6
κabc b

abb(cc − τ1b
c) ,

σ = −2(ψ +
1

2
τ1c0) + ca(c

a − τ1b
a) − 1

6
κabc b

acb(cc − τ1b
c)

(4.29)

and the ten-dimensional inverse coupling τ2 = 1/gs related to the 4D dilaton by [18]

eφ =
τ2
2

16
e−K(z,z̄) − χ(X̂ )

192π
. (4.30)

Then, an element δ =
(

a b

c d

)

∈ SL(2,R) acts by fractional linear transformations of the

axio-dilaton field τ ≡ τ1 + iτ2, rescaling of the Kähler moduli and by linear action on the

RR and NS axions:

τ 7→ aτ + b

cτ + d
, ta 7→ ta|cτ + d| , ca 7→ ca + εa(δ) ,

(

ca

ba

)

7→
(

a b

c d

)(

ca

ba

)

,

(

c0
ψ

)

7→
(

d −c
−b a

)(

c0
ψ

)

.
(4.31)

Here we deviate from [14, 18, 93], and allow for a shift in the D3-brane axion ca by an

additive character εa(δ) of SL(2,R), i.e. such that εa(δ · δ′) = εa(δ) + εa(δ
′).

The continuous isometric action (4.31) is broken by the worldsheet instanton effects

in (4.4) and the one-loop correction c, but a discrete SL(2,Z) subgroup can be restored

by including D(-1) and D1-brane instantons [21]. This in particular provides a common

origin32 for the degenerate instanton contribution, proportional to ζ(3)χ(X̂ ) in (4.4) and

the one-loop correction, proportional to ζ(2)χ(X̂ ). The analysis in [21] did not probe the

possibility of an additional character εa(δ).

In the presence of D3-brane instantons, the character εa(δ) is needed for the following

reason. Due to the fractional shift (4.15) of the D(-1)-brane charge q′0, a D-instanton

contribution proportional to E
(

pΛζ̃Λ − qΛζ
Λ
)

= E
(

pΛζ̃ ′Λ − q′Λζ
Λ
)

transforms under an

S-duality action δb =
(

1 b

0 1

)

by a phase E
(

pac2,a

24 b+ paεa(δb)
)

. Moreover, this S-duality

action differs from the Heisenberg shift (3.15) with parameter η0 = b by a fractional shift

ζ̃a 7→ ζ̃a + εa(δb) +
c2,a

24 b. Both these problems can be avoided by choosing the character

εa(δ) such that εa(δb) = − c2,a

24 b. This is indeed the case if εa is taken to be proportional

to the multiplier system of the Dedekind eta function,

εa(δ) = −c2,a ε(δ) , (4.32)

where ε(δ) is a fractional number defined, up to the addition of integers, by the ratio33

η

(

aτ + b

cτ + d

)

/η(τ) = E(ε(δ)) (cτ + d)1/2 . (4.33)

32In fact, this was used in [21] to confirm the normalization of c in (3.3).
33Strictly speaking, the two factors on the r.h.s. of (4.33) both have sign ambiguities, and only their

product is well-defined. But since the condition (4.13) ensures that c2,a is even, one only requires the value

of ε(δ) modulo 1/2.
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In particular, 24ε(δ) is integer, and may be obtained explicitly as

ε(δ) =

{

b
24 sgn(d) (c = 0) ,

a+d
24c − 1

2 s(d, c) − 1
8 (c 6= 0) ,

(4.34)

where

s(d, c) =
1

4|c|

|c|−1
∑

n=1

cot
πn

c
cot

πnd

c
(4.35)

is the Dedekind sum. The identification (4.32) is also supported by the modular properties

of the D4-D2-D0 partition function [73, 87, 88, 94, 95], which transforms with the multiplier

system E(−c2,ap
aε(δ)) [73, 94].34

4.3 Semi-classical (p, k)5-brane instantons

Having rectified the action of S-duality on the large volume, weak coupling HM moduli

space, we can now use it to obtain NS5-brane instantons from D-instantons. Indeed, from

the action on (c0, ψ) we see that S-duality maps D5-branes, with minimal coupling to

the D5 axion c0, to NS5-branes coupled to the NS-axion ψ, or more generally to (p, k)5-

branes coupled to pc0 + kψ. In particular, since c0 = ζ̃0 + . . . has unit periodicity and

ψ = −1
2 σ + . . . , we conclude that the NS-axion σ must have periodicity 2, as anticipated

in section 3.2.2.

Let us now consider a configuration of D5-D3-D1-D(-1) instantons with charges (p0 6=
0,pa, qa, q0), discussed in detail in the previous subsection. The classical action associated

to this charge configuration is

Sγ = 4π|Wγ | + 2πi(q′Λζ
Λ − pΛζ̃ ′Λ), (4.36)

where

Wγ =
τ2
2

(

q′Λz
Λ − pΛF ′

Λ(z)
)

(4.37)

is proportional to the central charge Zγ = eK/2(q′ΛX
Λ − pΛF ′

Λ) of the D-instanton. In the

large volume limit where the cubic term in (4.4) dominates,

Wγ =
τ2
2

(

N(pa − p0za)

(p0)2
− q̂a(p

a − p0za)

p0
+ q̂0

)

. (4.38)

For any two integers (p, k) 6= (0, 0), with greatest common divisor (gcd) p0, we now apply

an S-duality transformation

δ =

(

a b

−k/p0 p/p0

)

∈ SL(2,Z) , (4.39)

where the integers (a, b), ambiguous up to the addition of (k/p0,−p/p0), are chosen such

that ap+ bk = p0. This will map the D5-brane configuration into a (p, k)5-brane.

34We are grateful to J. Manschot for discussions on this issue.

– 40 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
1

Using (4.31), one finds that the image of Wγ under the map (4.39) is given by

Wk,p,γ̂≡δ ·Wγ =
τ2

2|p− kτ |2
[

N (p̃a− i|p− kτ |ta)− p0q̂a(p̃
a− i|p− kτ |ta)+(p0)2q̂0

]

, (4.40)

where we recall that γ̂ is the reduced charge vector (pa, q̂a, q̂0) and p̃a ≡ pa + kca − pba. As

a result, the action (4.36) is mapped to Sk,p,γ̂ which reads as follows

Sk,p,γ̂ = 4π |Wk,p,γ̂| + 2πi

[

−(pc0 + kψ + paca) +
p− kτ1
k|p − kτ |2

(

N(p̃a) − p0q̂ap̃
a + (p0)2q̂0

)

+
ba

2k

(

1

3
κabc(pb

b − kcb)(3p̃c + pbc − kcc) + κabcp̃
bp̃c−2p0q̂a

)

−a
k
q′0p

0 + c2,ap
aǫ(δ)

]

.

(4.41)

It should be stressed that the unusual additional terms in the imaginary part of Sk,p,γ̂ follow

from the ordinary axionic couplings in (4.36) by S-duality, and evade the no-go result of [96].

This is eventually tied to the impossibility of defining instanton vacua with well defined

mutually non-local D-instanton charges in the presence of NS5-brane instantons. Notice

that the last two moduli-independent terms in (4.41) are the only ones depending explicitly

on the upper entries in the S-duality matrix (4.39). What is important however is that

their combination is independent of the choice of these entries so that the action is well

defined. Although some terms are singular at k = 0, but the total sum in (4.41) is regular

at k = 0, where it reduces to (4.36). Moreover, for q̂a = q̂0 = 0, the action reduces to the

answer found in eq. (3.72) of [54], based on the assumption that the S-duality group is

extended to SL(3,Z).

From (4.41), it is now apparent that ψ is periodic with period 1, and therefore σ is

periodic with period 2. Moreover, in the weak coupling limit τ2 → ∞ and using the form

of the period matrix N for a cubic prepotential,

NΛΣ =

(

−1
3(bbb) 1

2 (bb)a
1
2 (bb)a −κabcb

c

)

+ i

(

−1
6 (ttt) + (bbt) − 1

4V (btt)2 −(bt)a + 1
4V (btt)(tt)a

−(bt)a + 1
4V (btt)(tt)a κabct

c − 1
4V (tt)a(tt)b

)

,

(4.42)

where we introduced the notation (xyz) = κabcx
aybzc, (xy)a = κabcx

byc, we find that the

action for k NS5-branes reduces to

Sk,p,γ̂ =2π|k|V τ2
2 + πik

(

σ+ ζΛζ̃ ′Λ− 2nΛζ̃ ′Λ− N̄ΛΣ(ζΛ − nΛ)(ζΣ − nΣ)
)

− 2πimΛz
Λ. (4.43)

Here we defined

n0 = p/k, na = pa/k, ma = p0q̂a/k, m0 = ap0q′0/k − c2,ap
aǫ(δ). (4.44)

For mΛ = 0 this reproduces (3.9), and thus confirms the validity of (3.8).

5 NS5-instantons in twistor space

In the previous sections we discussed instanton corrections to the HM moduli space M
of type II string theory on a Calabi-Yau threefold at a qualitative level, ignoring the
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tensorial nature of the metric on M and jettisoning the constraints of supersymmetry.

The latter however require that all quantum corrections preserve the quaternion-Kähler

property of the metric on M [4]. A convenient way to ensure this is to formulate the

quantum corrections as deformations of the complex contact structure on the twistor space

ZM, a complex contact manifold locally of the form CP 1 ×M.

In this section, we take steps towards identifying the deformation of the complex con-

tact structure on ZM induced by NS5-brane instantons, by applying S-duality to the known

twistorial description of D-instantons. We work in the one-instanton approximation, i.e.

treat instanton corrections as an infinitesimal deformations of the complex contact structure

on Zpert, the twistor space of the perturbative HM moduli space discussed in section 3.

Infinitesimal deformations are encoded in a holomorphic section of H1(Zpert,O(2)). In

practice it is most convenient to represent this section as a set of local holomorphic func-

tions defined on the overlap of two patches in a suitable open covering of CP 1. In general,

this set need only be invariant under discrete symmetries up to local contact transforma-

tions. Here we assume that this set is in fact simultaneously invariant under S-duality,

Heisenberg invariance and monodromy transformations, without the need for any compen-

sating contact transformation. This is the simplest approach to constructing a metric with

the required discrete symmetries. While we find strong indications that this assumption

is reasonable, we do encounter difficulties in realizing all symmetries simultaneously, due

to certain phases spoiling exact invariance. As a result, sections 5.3 onward should be

considered as exploratory, though we do believe that the structure we uncover should be

realized in a fully consistent treatment.

The outline of this section is as follows. • In section 5.1, we briefly recall the twistorial

description of general quaternion-Kähler manifolds, following [12, 18]. • In section 5.2, we

summarize the twistorial description of D-instanton corrections established in [18], taking

into account the fractional shift (4.18) and quadratic refinement which had been overlooked

in previous treatments. • In section 5.3, we obtain the twistorial description of (p, k)5-

brane instantons in type IIB string theory compactified on X̂ , by applying S-duality on a

general D5-D3-D1-D(-1) configuration. We show that the corresponding deformation of the

contact structure is invariant under the Heisenberg shifts (3.15) and monodromy around

infinity (4.23) (or rather their holomorphic lifts (5.12), (5.13) to the twistor space Zpert), up

to subtle phases which we do not understand. • Under this caveat, we show in section 5.4

that the total contribution of fixed NS5-brane charge k can be expressed as a non-Gaussian

theta series with wave function Hk,µ. For a single NS5-brane, k = 1, H1,0 is recognized (up

to certain prefactors) as the A-model topological string wave function on X̂ , in the real

polarization. • Finally, in section 5.5 we obtain the non-Gaussian chiral partition function

Z(k)
NS5 for k fivebranes as the Penrose transform of the holomorphic function encoding NS5-

brane corrections to the contact structure. In the saddle point approximation it reproduces

the non-linear (p, k)-fivebrane action from section 4.3, whereas the weak coupling limit of

Z(k)
NS5 reduces to a Gaussian partition function Z(k)

NS5-G similar to (but distinct from) the

Gaussian flux partition function Z(k)
G discussed in section 2.
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5.1 Twistor techniques

Recall that a manifold M of real dimension 4n > 4 is quaternion-Kähler if its holonomy

group lies in USp(n) × USp(1) ⊂ SO(4n), where USp(1) = SU(2) (in dimension 4, this

condition must be replaced by the vanishing of the self-dual part of the Weyl curvature).

While M admits locally a triplet of almost-complex structures ~I satisfying the quaternion

algebra, these are not integrable. The space M is nevertheless amenable to complex anal-

ysis by considering its twistor space ZM, a CP 1 bundle over M which carries a canonical,

integrable complex structure, Kähler-Einstein metric as well as a complex contact struc-

ture. To explain how this comes about, let t be a complex stereographic coordinate on

CP 1, and ~p be the SU(2) part of the Levi-Civita connection on M. Under SU(2) frame

rotations, ~p transforms as a SU(2) gauge potential, while t is acted upon by fractional

linear transformations. The complex contact structure on ZM is defined by the kernel of

the one-form

Dt ≡ dt+ p+ − ip3t+ p−t2 , p± = −1

2
(p1 ∓ ip2) . (5.1)

Locally, on a patch Ui ⊂ ZM there exists a function Φ[i] on ZM, holomorphic along the

CP 1-fiber (i.e. independent of t̄) and defined up to an additive holomorphic function on

Ui, such that the product

X [i] = 2 eΦ[i]
Dt

it
(5.2)

is a locally holomorphic one-form (i.e. ∂̄-closed). We refer to Φ[i] as the contact potential.

Φ[i] determines a Kähler potential [12]

K
[i]
ZM

= log
1 + tt̄

|t| + Re Φ[i](x
µ, t) (5.3)

for the canonical Kähler-Einstein metric on ZM

ds2ZM
=

|Dt|2
(1 + tt̄)2

+
ν

4
ds2M (5.4)

(here ν is a normalization constant which determines the scalar curvature of M). Moreover,

ZM is endowed with a real structure acting as the antipodal map on CP 1, and preserving X .

According to theorems by Salamon and Lebrun [97, 98], the complex contact structure

and real structure on ZM uniquely specify the quaternion-Kähler metric on M. Locally,

one may always choose complex Darboux coordinates ξΛ[i], ξ̃
[i]
Λ , α

[i] (Λ = 0, . . . , n − 1) on

Ui ⊂ ZM such that the contact one-form X takes the Darboux form

X [i] = dα[i] + ξΛ[i] dξ̃
[i]
Λ . (5.5)

We shall find it convenient to define a variant of this coordinate system, with α̃[i] =

−2α[i] − ξΛ[i]ξ̃
[i]
Λ such that the contact one-form takes the symmetric Darboux form

X [i] = −1

2

(

dα̃[i] − ξΛ[i] dξ̃
[i]
Λ + ξ̃

[i]
Λ dξΛ[i]

)

. (5.6)
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On the overlap of two patches Ui ∩ Uj, the Darboux coordinates are related by com-

plex contact transformations preserving X [i] up to holomorphic rescaling. Thus, the com-

plex contact structure on ZM may be specified globally by giving generating functions

S[ij](ξΛ[i], ξ̃
[j]
Λ , α[j]) of these complex contact transformations. These must satisfy the ob-

vious reality conditions and compatibility constraints, and are themselves defined up to

independent complex contact transformations on each patch.

The quaternion-Kähler metric on M can be obtained by solving the gluing conditions

for the Darboux coordinates on Ui ∩ Uj following from the generating functions S[ij],

ξΛ[j] = f−2
ij ∂

ξ̃
[j]
Λ

S[ij] , ξ̃
[i]
Λ = ∂ξΛ

[i]
S[ij] ,

α[i] = S[ij] − ξΛ[i]∂ξΛ
[i]
S[ij] , eΦ[i] = f2

ij e
Φ[j] ,

(5.7)

where f2
ij = ∂α[j]S[ij] = X [i]/X [j] is the homogeneity factor relating the contact one-forms.

The parameter space {xµ} of solutions is M itself, while the solutions ξΛ[i](t;x
µ), ξ̃

[i]
Λ (t;xµ)

and α[i](t;xµ) can be plugged in (5.5) to read off the SU(2) connection in (5.1). The metric

itself follows after some more steps explained in [12].

Furthermore, infinitesimal perturbations around a given quaternion-Kähler mani-

fold preserving the quaternion-Kähler structure are in one-to-one correspondence with

H1(ZM,O(2)) [99]. They can be parametrized explicitly as a set of local holomorphic

functions H [ij]
(1) on the overlap of two patches Ui ∩Uj , corresponding to the variation of the

quantity H [ij] entering in the generating function S[ij] via [12]

S[ij](ξΛ[i], ξ̃
[j]
Λ , α[j]) = α[j] + ξΛ[i] ξ̃

[j]
Λ −H [ij](ξΛ[i], ξ̃

[j]
Λ , α[j]) . (5.8)

The consistency conditions on S[ij] are equivalent to the cocycle conditions on H [ij] at

the linearized level. For perturbations around a toric quaternion-Kähler manifold, the

variation of the Darboux coordinates and contact potential can be obtained by certain

contour integrals of H [ij], as explained in [12], from which the variation of the metric

follows. While the integral formulae in [12] are rather involved, they generalize the well-

known Penrose integral formula

∑

j

∫

Cj

dt

t
eΦ

[j](t)H [ij]
(

ξΛ[i](t), ξ̃
[j]
Λ (t), α[j](t)

)

(5.9)

which maps a holomorphic section of H1(ZM,O(−2)), which we again represent by a local

holomorphic functionH [ij], into a function on M which satisfies a certain set of second order

differential equations determined by the quaternion-Kähler structure on M [10]. In sec-

tion 5.5, we shall use (5.9) to construct a scalar-valued fivebrane partition function on M.

Finally, we recall that via the moment map construction, continuous isometries of

M are in one-to-one correspondence with real elements of H0(ZM,O(2)), i.e. with global

holomorphic sections of the line bundle O(2) over ZM, invariant under the antipodal map.

It follows that any continuous isometry of M can be lifted to a holomorphic isometry

of ZM. Moreover, one can always choose the local Darboux coordinates such that the

holomorphic Killing vector is ∂α[i] on each patch Ui. In that case, the generating function
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H [ij] becomes independent of α[i], the contact one-form X [i] becomes globally defined, and

H [ij] can be viewed as a generating function for symplectomorphisms with respect to the

complex symplectic form dX on the quotient of ZM by the vector field ∂α[i] . Thus, any

quaternion-Kähler manifold with a Killing vector can be mapped locally to a hyperkähler

manifold of the same dimension.35

5.2 Twistorial description of M
The twistorial description of the HM moduli space was worked out at tree-level in [10], the

one-loop correction was included in [12, 17] and D-instantons were incorporated in [18, 19].

The structure of the D-instanton corrected twistor space is closely related to that of the

twistor space of the hyperkähler manifold governing the moduli space of N = 2 gauge

theories on R3 × S1 [24], in line with the remark at the end of the last subsection.

5.2.1 Perturbative twistor space

In the absence of non-perturbative effects, i.e. for the one-loop corrected metric (3.1), the

twistor space may be described by three patches U+,U−,U0 around the north pole (t = 0),

south pole (t = ∞) and equator of the CP 1 fiber over a fixed point on M. The transition

functions from U0 to U± are governed by the prepotential F on SK, viewed as function of

Darboux coordinates ξΛ, as explained in [12, 18]. The one-loop correction is incorporated

by a non-zero “anomalous dimension”, i.e. as a logarithmic singularity around the north

and south pole. In the patch U0, the “Darboux coordinates” may be chosen as

ξΛ = ζΛ + τ2
2

(

t−1zΛ − t z̄Λ
)

,

ξ̃Λ = ζ̃Λ + τ2
2

(

t−1FΛ(z) − t F̄Λ(z̄)
)

,

α̃ = σ + τ2
2

(

t−1W (z) − t W̄ (z̄)
)

+ iχ(X )
24π log t ,

(5.10)

where W (z) ≡ FΛ(z)ζΛ − zΛζ̃Λ. As in (4.18), we define

ξ̃′Λ = ξ̃Λ −AΛΣξ
Σ , α′ = α− 1

2
AΛΣξ

ΛξΣ , (5.11)

such that, for any charge vector γ ∈ Γ, qΛξ
Λ − pΛξ̃Λ = q′Λξ

Λ − pΛξ̃′Λ.

Under monodromies M in SK, (ξΛ, ξ̃Λ) transforms linearly under ρ(M). On the other

hand, α̃ is shifted by κ(M) from (3.22), whereas the middle term is canceling against the

variation of the logarithmic term in (5.10) under the R-symmetry rotation t 7→ t ei Im fM . In

particular, under a monodromy ba 7→ ba + ǫa around the large volume point, the Darboux

coordinates transform as

ξ0 7→ ξ0 , ξa 7→ ξa + ǫaξ0 , ξ̃′a 7→ ξ̃′a − κabcξ
bǫc − 1

2
κabcǫ

bǫcξ0 ,

ξ̃′0 7→ ξ̃′0 − ξ̃′aǫ
a +

1

2
κabcξ

aǫbǫc +
1

6
κabcǫ

aǫbǫcξ0 , α̃ 7→ α̃+ 2κaǫ
a ,

(5.12)

where we used (5.10), (4.23), and took into account the fact that κ(M) must be linear in

ǫa, κ(M) = κaǫ
a. The constants κa should be computable along the lines suggested in the

discussion below eq. (3.23), but we do not know their values at this stage.

35We are grateful to A. Neitzke for discussions on this construction.
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Similarly, the Heisenberg action (3.15) lifts to a holomorphic action on ZM given by

T ′
(H,κ) :

(

ξΛ, ξ̃Λ, α̃
)

7→
(

ξΛ + ηΛ, ξ̃Λ + η̃Λ,

α̃+ 2κ− η̃Λξ
Λ + ηΛξ̃Λ −

(

ηΛη̃Λ − 2η̃Λθ
Λ + 2ηΛφΛ

)

)

,
(5.13)

where ηΛ, η̃Λ, κ ∈ Z. Thus, the quotient of ZM by translations along ∂α̃ defines a com-

plexified torus TC, parametrized by the coordinates (ξΛ, ξ̃Λ) and their complex conjugates,

while eiπα̃ parametrizes the fiber of a C×-bundle LC
Θ over TC. The restriction of LC

Θ to the

intermediate Jacobian torus T ⊂ TC, at a fixed point on the special Kähler base SK, coin-

cides with the theta line bundle LΘ. It is interesting to note that the two-form dX endows

TC with a complex symplectic structure, and therefore a natural hyperkähler metric, as

explained at the end of section 5.1.

5.2.2 D-instanton corrected twistor space

In the presence of D-instantons, the covering of ZM must be refined as follows [18, 24].

Over a fixed point in M, the CP 1 fiber of ZM is divided into angular sectors extending

between two BPS rays

ℓγ = {t : Zγ(za)/t ∈ iR−}. (5.14)

Across such a BPS ray, the Darboux coordinates (ξΛ, ξ̃Λ) are related by a complex sym-

plectomorphism generated by36

Hγ =
Ω(γ)

(2π)2
Li2 [σD(γ)E(−Ξγ)] , (5.15)

where Ξγ = qΛξ
Λ − pΛξ̃Λ, the factor Ω(γ) is the generalized Donaldson-Thomas (DT)

invariant for the charge vector γ, Li2(x) ≡
∑∞

n=1 x
n/n2 is the dilogarithm function, taking

care of multi-covering effects, and σD(γ) is a quadratic refinement (3.17) of the intersection

form on the charge lattice Γ, which plays a crucial role in ensuring consistency across walls

of marginal stability [24]. As discussed in section 3.2, although σD(γ) should be related to

the quadratic refinement which governs the fivebrane partition function and the NS-axion,

and moreover they are expected to coincide, we refrain from identifying them at this point.

The gluing conditions (5.7) for the Darboux coordinates ξΛ, ξ̃Λ can be summarized by

the following integral equation

Ξγ =Θγ+Wγ/t−W̄γt−
1

8π2

∑

γ′

Ω(γ′) 〈γ, γ′〉
∫

lγ′

dt′

t′
t+ t′

t− t′
Li1
[

σD(γ′)E
(

−Ξγ′(t′)
)]

, (5.16)

where Θγ = qΛζ
Λ − pΛζ̃Λ, and we recall that Li1(x) = − log(1− x) = ∂x Li2(x). It is worth

noting that eq. (5.16) is identical to the integral equation found in [24] in the context

of hyperkähler geometry. Moreover, it has the form of a Thermodynamic Bethe Ansatz

36Eq. (5.14) holds in the one-instanton approximation only, and must be amended to take into account

the difference between Darboux coordinates in different angular sectors. The exact generating function

was derived [19], and reproduces the symplectomorphism appearing in [24], up to the quadratic refinement

σD(γ) which must be added by hand.

– 46 –



J
H
E
P
0
3
(
2
0
1
1
)
1
1
1

equation [24] with an S-matrix satisfying all axioms of integrable field theories [100], hinting

at a possible integrable structure.

Once the Darboux coordinates (ξΛ, ξ̃Λ) have been determined, the Darboux coordinate

α̃ follows from the contour integral

α̃ = σ +
τ2
2

(

t−1W − t W̄
)

+
iχ(X )

24π
log t− 1

4π2

∑

γ

Ω(γ)
(

t−1Wγ + tW̄γ

)

Jγ(0)

+
1

8π2

∑

γ

Ω(γ)

[

i

π

∫

ℓγ

dt′

t′
t+ t′

t− t′
Li2
[

σD(γ)E
(

−Ξγ(t′)
)]

+
(

Θγ + t−1Wγ − tW̄γ

)

Jγ(t)

]

− 1

64π2

∑

γ 6=γ′

Ω(γ)Ω(γ′)〈γ, γ′〉
∫

ℓγ

dt′

t′
t+ t′

t− t′
Li1
[

σD(γ)E
(

−Ξγ(t′)
)]

Jγ′(t′), (5.17)

where

Jγ(t) = −
∫

ℓγ

dt′

t′
t+ t′

t− t′
Li1
[

σD(γ)E
(

−Ξγ(t′)
)]

. (5.18)

The contact potential is similarly given by

eΦ =
τ2
2

8
e−K(z,z̄) +

χ(X )

96π
+

i

16π2

∑

γ

Ω(γ)

∫

ℓγ

dt

t

(

t−1Wγ − tW̄γ

)

Li1 [σD(γ)E(−Ξγ(t))] .

(5.19)

Note that it is constant on CP 1, as required by the continuous shift isometry along σ, and

may be chosen to define the “instanton corrected 4D string coupling” eφ = eΦ.

Eqs. (5.16) (and subsequently (5.17), (5.19)) may be solved recursively by first substi-

tuting Ξγ(t) on the r.h.s. by its perturbative value Ξ
(0)
γ (t) = Θγ +Wγ/t− W̄γt, computing

the integral to obtain the one-instanton correction Ξ
(1)
γ and iterating this procedure. This

provides an asymptotic series for the exact, D-instanton corrected Darboux coordinates,

Ξγ(t) = Θγ +Wγ/t− W̄γt+
∞
∑

N=1

Ξ(N)
γ , (5.20)

where Ξ
(N)
γ involves N nested contour integrals of sums of products of N DT-invariants

Ω(γk), k = 1, . . . , N . This can be interpreted as corrections from multi-centered instanton

configurations, with Ω(γk) providing the contribution to the instanton measure of the kth

center. In the vector multiplet context, these are instead multi-centered Euclidean black

holes whose worldline winds around the Euclidean time direction, and Ω(γk) is instead the

indexed degeneracy of the kth center. At fixed N , the sum over γk typically has zero radius

of convergence, due to the expected exponential growth of the generalized DT-invariants.

It was argued in [27] that the ambiguity of this asymptotic series is of the same order as

the corrections expected from NS5-branes.

Noting that the BPS rays ℓγ and ℓnγ are identical, one may dispose of the dilogarithm

in above formulas by replacing the integer-valued DT invariants Ω(γ) by the rational-valued

DT invariants37

Ω(γ) =
∑

d|γ

1

d2
Ω(γ/d) , Ω(γ) =

∑

d|γ

1

d2
µ(d)Ω(γ/d), (5.21)

37The rational invariants Ω(γ) are also relevant for S-duality and wall-crossing [101, 102].
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where µ(d) is the Möbius function. In particular, one finds that the D-instanton corrected

twistor space can be equally obtained from the above construction where the holomorphic

functions (5.15) are replaced by

H̃γ =
σD(γ)

(2π)2
Ω(γ)E

(

pΛξ̃′Λ − q′Λξ
Λ
)

. (5.22)

Here we expressed the result in terms of the primed charges q′Λ and Darboux coordinates

ξ̃′Λ and used the fact that σD(dγ) = (σD(γ))d for any positive integer d. As an illustration,

the contact potential in the one-instanton approximation is found to be [18]

eΦ =
τ2
2

8
e−K(z,z̄) +

χ(X )

96π
+

1

4π2

∑

γ∈Γ

σD(γ)Ω(γ) |Wγ | cos (2πΘγ)K1(4π|Wγ |) + . . . . (5.23)

In this approximation, eΦ will in general be discontinuous across lines of marginal stability

in SK, where Ω(γ) may jump. However, this discontinuity is canceled by the two- and

higher-instanton contributions, provided the jump in Ω(γ) obeys the Kontsevich-Soibelman

wall-crossing formula [24].

5.2.3 S-duality in twistor space

As mentioned in section 4.1, in the infinite volume and zero coupling limit, QK(X̂ ) admits

an isometric action of SL(2,R) given in (4.31). This action lifts to a holomorphic action

on ZM, given in terms of the Darboux coordinates in the patch U0 as [18]

ξ0 7→ aξ0 + b

cξ0 + d
, ξa 7→ ξa

cξ0 + d
, ξ̃′a 7→ ξ̃′a +

c

2(cξ0 + d)
κabcξ

bξc − c2,aε(δ) ,

(

ξ̃′0
α′

)

7→
(

d −c
−b a

)(

ξ̃′0
α′

)

+
1

6
κabcξ

aξbξc

(

c2/(cξ0 + d)

−[c2(aξ0 + b) + 2c]/(cξ0 + d)2

)

.

(5.24)

Indeed, substituting the Darboux coordinates (5.10) in (5.24) and using the classical mirror

map (4.29), one recovers the isometric action (4.31), supplemented with the following SU(2)

action on the CP 1 fiber,

t 7→ cτ2 + t(cτ1 + d) + t|cτ + d|
(cτ1 + d) + |cτ + d| − tcτ2

. (5.25)

Under the holomorphic action (5.24), the complex contact one-form transforms by an

overall holomorphic factor X [i] → X [i]/(cξ0 + d), leaving the complex contact structure

invariant. Moreover, the relations

eΦ 7→ eΦ

|cτ + d| ,
|t|

(1 + |t|2)2 7→ |t|
(1 + |t|2)2

|cξ0 + d|2
|cτ + d|2 (5.26)

ensure that the Kähler potential varies by a Kähler transformation, consistent with the

rescaling of X [i],

KZ 7→ KZ − log(|cξ0 + d|) . (5.27)
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Note that eΦ transforms like τ
1/2
2 , i.e. has modular weight (−1

2 ,−1
2). The character c2,aε(δ)

in the transformation of ξ̃′a follows from the shift of the real coordinate ca in (4.31). It

may be interpreted geometrically by saying that E
(

paξ̃ ′a
)

transforms like the automorphy

factor of a multi-variable Jacobi form of index mab = 1
2κabcp

c and with multiplier system

E(−c2ap
aε(δ)).

As discussed in section 4.1, worldsheet instantons and the one-loop correction break

continuous S-duality, but an SL(2,Z) subgroup can be preserved upon including D1-D(-

1)-brane instantons, as shown in [21]. The corrections to the Darboux coordinates from

such instanton configurations were computed in [20]. It was found that the Darboux

coordinates continue to transform under the tree-level transformation rules (5.24), up to

a local contact transformation. It is possible to construct new Darboux coordinates which

transform precisely according to (5.24) (those were called ξ[0B] in [20]), although these

coordinates will only be valid in a certain open set in CP 1. If S-duality is indeed maintained

at the quantum level, this should remain true in the presence of D3-brane instantons, and

ultimately, in the presence of D5 and NS5-brane instantons. In the following, we shall be

using such adapted Darboux coordinates, though their explicit construction in the presence

of D3-D1-D(-1) instantons is still an open problem [103].

5.3 Contact structure for fivebrane instantons

In this section, we use the qualitative insights gained in the previous sections and the twistor

techniques reviewed above to determine the form of NS5-brane instanton corrections to

the HM moduli space M, consistently with supersymmetry and S-duality. Our aim is to

determine the data governing the deformation of the complex contact structure on ZM
which encode the NS5-brane corrections. Such data are provided by contours ℓk,p,γ̂ and

the associated holomorphic sections Hk,p,γ̂ ∈ H1(Zpert,O(2)) describing discontinuities of

complex Darboux coordinates across these contours. To find them in the one-instanton

approximation, we covariantize under S-duality the data responsible for the D-instanton

corrections, which are given by the holomorphic sections (5.22) and the contours ℓγ (5.14).

Performing this covariantization, we assume that S-duality requires the invariance of all

these data, namely, that every pair (Hk,p,γ̂, ℓk,p,γ̂) is mapped to another one so that the

total structure of the twistor space remains intact. As apparent from the analysis of the

D1-D(-1)-instanton sector [20], this assumption is strictly speaking unwarranted, since S-

duality can produce contributions which can be canceled by local contact transformations.

Moreover, it leads to a dense set of mutually intersecting discontinuities on the CP 1 fiber,

whose mathematical status is questionable. However, we shall see that it does lead to

an appealing result which matches general expectations about the fivebrane contributions.

We therefore believe that the main features of our approach should subsist in a more

sophisticated treatment.

Thus, we start with the holomorphic sections H̃γ ∈ H1(Zpert,O(2)) given in (5.22),

which describe the D-instanton corrections to the perturbative metric (3.1) in the one-

instanton approximation. In the absence of D5-brane instanton corrections p0 = 0, and

for a fixed D3-brane charge pa, the corrections to the moduli space metric from H̃γ should
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preserve the isometric action of SL(2,Z) (or a finite index subgroup thereof). On the

other hand, the instanton corrections with p0 6= 0 break S-duality completely, unless they

are supplemented by additional contributions from NS5-branes, or more generally (p, k)5-

branes. It is natural to propose that S-duality is restored by refining the contact structure

on ZM by adding all images of (H̃γ , ℓγ) under Γ∞\SL(2,Z), where Γ∞ is the subgroup

of strictly upper triangular matrices, to the data describing discontinuities of Darboux

coordinates. The coset Γ∞\SL(2,Z) can be parametrized by matrices

δ =

(

a b

c d

)

, (5.28)

where (c, d) run over coprime integers, and the integers (a, b) are functions of (c, d), deter-

mined up to multiples of (c, d) by the condition ad− bc = 1. Thus, we propose that in the

one-instanton approximation the contact structure is described by the following data

Hk,p,γ̂ = δ · H̃γ , ℓk,p,γ̂ = δ · ℓγ , (5.29)

where δ · H̃γ and δ · ℓγ denotes the image of (5.22) and (5.14) under the SL(2,Z) transfor-

mation (5.28) with (c, d) = (−k/p0, p/p0) as in (4.39), and we recall that γ̂ = (pa, q̂a, q̂0).

We expect that Hk,p,γ̂ represents the effect on the contact structure of a (p, k)5-brane.

Using (5.24), it evaluates to

Hk,p,γ̂ =
σD(γ)

4π2
Ω(γ)E

(

−k
2
Sα +

p0
(

kq̂a(ξ
a− na) + p0q̂0

)

k2(ξ0 − n0)
+ a

p0q′0
k

− c2,ap
aε(δ)

)

, (5.30)

where

Sα ≡ α̃+ (ξΛ − 2nΛ)ξ̃′Λ + 2
N(ξa − na)

ξ0 − n0
, (5.31)

p0 is defined as gcd(p, k), γ = (p0, pa, qa, q0) ∈ Γ, and we have denoted n0 ≡ p/k, na ≡ pa/k,

valued in Z/k. On the other hand, the transformation (5.25) can be used to find the contour

ℓk,p,γ̂. It is easily seen to be a half-circle stretching between the two zeros of ξ0−n0, which,

as will become clear below in (5.44), are the only singularities of Hk,p,γ̂. The direction

of the contour is determined by the same condition as (5.14) with Zγ replaced by Wk,p,γ̂,

which was introduced in (4.40). As a result, the complete set of contours is given by an

infinite number of copies of the “melon-shaped” picture for D-instantons [18, 24], rotated

into each other by SL(2,Z) transformations. For fixed (p, k), the new BPS rays extend

between two antipodal points whose location is completely determined by a sole rational

number p/k.

A crucial requirement on the new contact structure is that it should be invariant under

the Heisenberg group (5.13). The invariance with respect to T ′
(0,η̃),κ follows trivially from

the invariance of the holomorphic functions (5.30), provided the fivebrane characteristics

θΛ are set to zero. In contrast, Hk,p,γ̂ are not individually invariant under T ′
(η,0),0. To be

nevertheless consistent with the Heisenberg symmetry, the set of functions (5.30) should

be globally invariant under T ′
(η,0),0, i.e. Hk,p,γ̂ should be mapped to Hk,p′,γ̂′ for a suitably

chosen map (p, γ̂) 7→ (p′, γ̂′), with the contours ℓk,p,γ̂ following the same pattern.
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As we demonstrate in appendix A, under the crucial assumption that Ω(γ) are invariant

under the spectral flow (4.24), the combined action of the Heisenberg symmetry together

with a shift p 7→ p + kη0 and the spectral flow action (4.24) with parameter ǫa = kηa/p0

on the charges pa, qa, q0 leaves the set of functions (5.30) globally invariant, up to a phase

factor ν(η) computed in (A.6),

T ′
(ηΛ,0,0) ·Hk,p+kη0,γ̂[kηa/p0] = ν(η)Hk,p,γ̂, (5.32)

where γ̂[ǫ] = (pa + ǫa, q̂a, q̂0). Moreover, the contours ℓk,p,γ̂ stay invariant under this

combined transformation. Indeed, their endpoints, being the zeros of ξ0 −n0 are explicitly

invariant and the direction of approach is also conserved by virtue of the invariance of

Wk,p,γ̂ (4.40). Under the same assumptions, Hk,p,γ̂ are also invariant, up to a phase factor

ν ′(η) computed in (A.12), under the combined action of monodromies (5.12) and of the

spectral flow (4.24) with parameter ǫ′a ≡ (p/p0)ǫa,

Mǫa ·Hk,p,γ̂[pǫ/p0] = ν ′(ǫ)Hk,p,γ̂, (5.33)

where Mǫa is the monodromy operator acting on complex Darboux coordinates as in (5.12).

Unfortunately, while the phase ν(η) can be set to one in the k = 1 case by an ad hoc

choice of the characteristics, namely θΛ
D = 0, φ0 = A00/2, φa − φD,a = Aaa, this is not

possible for general values of k, and it does not lead to a cancelation of the phase ν ′(ǫ).
Moreover, these conditions are not compatible with the transformation rule (2.24) of the

characteristics under monodromies, and therefore should probably not be taken seriously.

This tension between S-duality, Heisenberg and monodromy invariance indicates that it

may be necessary to relax some of our assumptions about the way these symmetries are re-

alized. In this paper, we shall ignore this difficulty and proceed with the analysis as though

the phases ν(η) and ν ′(ǫ) were absent, leaving a more complete analysis for future work.

5.4 Poincaré series for NS5-instantons and the topological string amplitude

It is instructive to construct a formal section of H1(Zpert,O(2)) given by a sum of the

holomorphic functions (5.30) over the integer charges p, pa and qΛ:

H
(k)
NS5(ξ, ξ̃, α̃) =

∑

p,pa,qΛ

Hk,p,γ̂(ξ, ξ̃, α̃). (5.34)

This sum is formal since each term is attached to a different contour on CP 1. Nevertheless,

it can be meaningfully inserted into general formulas for Darboux coordinates and the

contact potential from [12], provided the sum is performed after integration along CP 1.

Let us now recast (5.34) in the form

H
(k)
NS5(ξ, ξ̃, α̃) =

1

4π2

∑

µ∈(Γm/|k|)/Γm

n∈Γm+µ+θ

H
(k,µ)
NS5

(

ξΛ, nΛ
)

E

(

knΛ(ξ̃Λ − φΛ) − k

2
(α̃+ ξΛξ̃Λ)

)

. (5.35)

Using results of the previous subsection, we find that the characteristics θΛ vanish and

that the function H
(k,µ)
NS5

(

ξΛ, nΛ
)

is invariant, up to the phase (A.6), under simultaneous
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shift of ξΛ and nΛ. Therefore, up to the same phase, it is actually a function of only their

difference,

H
(k,µ)
NS5

(

ξΛ, nΛ
)

= ν(nΛ − µΛ)H
(k,µ)
NS5

(

ξΛ − nΛ
)

, (5.36)

where the function on the right is given by

H
(k,µ)
NS5 (ξΛ) =

∑

qΛ

Kk,µΛ,qΛ
Ω(γ)E

(

−kN(ξa)

ξ0
+
p0
(

kq̂aξ
a + p0q̂0

)

k2ξ0
+
k

2
AΛΣξ

ΛξΣ

)

, (5.37)

and we collected various constant factors into

Kk,µΛ,qΛ
= σD(γ)E

(

−k
2
AΛΣµ

ΛµΣ + a
p0q′0
k

− kc2,aµ
aε(δ) + kµΛφΛ

)

. (5.38)

In this expression, γ = (p0, kµa, qa, q0) where p0 = gcd(k, kµ0),

q̂a = q′a +
k2

2p0
κabcµ

bµc , q̂0 = q′0 +
k

p0
µaq′a +

k3

3(p0)2
κabcµ

aµbµc , (5.39)

and q′a, q
′
0 are related to qa, q0 via (4.9). The vectors k(µ0, µa) are identified as the residue

class of (p, pa) modulo k. Setting the phase factor ν(n − µ) in (5.36) to one (which can

be achieved in the case k = 1 by the aforementioned ad hoc choice of characteristics, and

should result more generally from a fully consistent treatment of Heisenberg, S-duality and

monodromy symmetries), we find that the holomorphic section H
(k)
NS5 (5.35) encoding the

fivebrane corrections has the form of a (non-Gaussian) theta series.

Having recast the fivebrane corrections (5.34) into the form (5.35), we can now unravel

the connection between the fivebrane wave-function H
(1)
NS5 for k = 1 and the A-model

topological string amplitude discussed in section 2.5. To this end, notice that for k = 1,

eq. (5.37) simplifies dramatically to

H
(1,0)
NS5 (ξΛ) = ǫ

∑

q̂a,q̂0

Ω(γ) (−1)q̂0 E

(

−N(ξa)

ξ0
+
q̂aξ

a + q̂0
ξ0

+
1

2
AΛΣξ

ΛξΣ
)

. (5.40)

Here we fixed the characteristics as in eqs. (A.7), (A.9) as required for Heisenberg invari-

ance and took into account that p0 = 1, µΛ = 0 for k = 1. The factor ǫ = (−1)A00−φD,0/2

is irrelevant and will be omitted in what follows. Now recall the relation (2.84) which

expresses the A-model wave function eFhol(z,λ) in terms of the DT partition function. Iden-

tifying (Qa, 2J) = (q̂a + c2,a/24, q̂0) as in (4.28) (which are integer-valued when p0 = 1, as

noted below (4.28)) and using the relation38 (2.77) between Fhol(z, λ) and the wave func-

tion Ψtop
R

(ξΛ), we obtain the twistor space version of the real-polarized A-model topological

string wave function

Ψtop
R

(ξΛ) =
(

ξ0
)1+(1+ǫGW)χ(X̂)

24 [M(e2πi/ξ0
)](

1
2
−ǫDT)χ(X̂ )

∑

q̂0,q̂a

(−1)q̂0NDT

(

q̂a +
1

24
c2a, q̂0

)

× E

(

−N(ξa)

ξ0
+

1

2
AΛΣξ

ΛξΣ +
q̂aξ

a

ξ0
+
q̂0
ξ0

)

.

(5.41)

38Here we use the relation λ = 2π/(iξ0), rather than λ = 1/(ξ0
√

2π) as stated in (2.77). We do not

understand the origin of this normalization mismatch. Note also that the prefactor in (5.41) behaves as
`

ξ0
´1+(2ǫDT+ǫGW)

χ(X̂)
24 , which seems unnatural for the usual choices of ǫGW, ǫDT given in the literature.
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Comparing (5.41) with (5.40) and identifying the DT-invariants NDT (q̂a + 1
24c2a, q̂0)

with the rational instanton measure Ω(γ), we find that the wave function H
(1,0)
NS5 (ξΛ) gov-

erning NS5-brane instantons in type IIB/X̂ is proportional to the wave function of the

topological A-model on X̂ in the real polarization,

H
(1,0)
NS5 (ξΛ) =

(

ξ0
)−1−(1+ǫGW)

χ(X̂ )
24 [M(e2πi/ξ0

)](ǫDT− 1
2
)χ(X̂ ) Ψtop

R
(ξΛ) . (5.42)

We note that the sign factor (−1)2J = eπiq̂0 predicted by the GW/DT relation nicely

agrees with the factor E
(

−1
2qΛp

Λ
)

in the quadratic refinement σΘ. The relation (5.42)

is moreover generally consistent with the fact that both H
(1,0)
NS5 (ξΛ) and Ψtop

R
(ξΛ) should

transform under monodromies according to the metaplectic representation, although the

powers of ξ0 and M(e2πi/ξ0
) appear to spoil these transformation properties. Eq. (5.42) also

suggests that the proper mathematical interpretation of the real-polarized wave function

Ψtop
R

may be as a section of H1(ZM), rather than H0(MK) as is commonly assumed.

By mirror symmetry, (5.42) should also determine the wave function governing NS5-

brane corrections in type IIA string theory compactified on X , in terms of the wave function

Ψtop
R

of the topological B-model on X in the real polarization, in agreement with general

expectations expressed in [59], and earlier in [32, 104]. We offer further support for this

assertion in the remainder of this section. More generally, we expect that the wave function

H
(k,µ)
NS5 (ξΛ) for k > 1 in type IIA should originate from a higher rank version of the topolog-

ical B-model on X , presumably related to the generalized invariants of Joyce and Song [26].

5.5 Fivebrane partition function from twistor space

Having identified candidate sections Hk,p,γ̂ in H1(ZM,O(2)) governing the corrections to

the contact structure on the twistor space ZM from k fivebranes, we would now like to

make contact with the qualitative discussion of fivebrane instanton corrections to the HM

moduli space metric of sections 3 and 4. To this end, we should in principle evaluate the

corresponding corrections to the Darboux coordinates and contact potential Φ using the

integral formulae in [12, 18], and from them obtain the corrections to the metric on M.

This analysis is however beyond the scope of the present work.

Instead, we shall address the simpler question raised in section 1.6, namely construct

a scalar-valued function on M which generalizes the Gaussian flux partition function Z(k)
G

at finite coupling. To this end, let us view (5.34) as a formal holomorphic section of

H1(ZM,O(−2)) (barring global issues) and apply the standard Penrose transform (5.9).

This produces a certain function Z(k)
NS5 on the perturbative HM moduli space, satisfying

certain second order differential equations. We shall see that this function reduces to a

close variant of the Gaussian flux partition function Z(k)
G discussed in section 2 in the

limit gs = 0, thereby motivating the name “non-Gaussian NS5-brane partition function”.

This computation may also be viewed as a warm-up for the more complicated compu-

tations involved in extracting the corrections to the HM metric from the H1(ZM,O(2))

section (5.34).
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5.5.1 Penrose transform

We thus consider the Penrose transform (5.9) of a single term Hk,p,γ̂ in the sum (5.34),

given in (5.30):

∫

ℓk,p,γ̂

dt

t
E

(

−k
2

(

α̃+ (ξΛ− 2nΛ)ξ̃′Λ
)

− kN(ξa − na)

ξ0 − n0
+
kp0q̂a(ξ

a− na)+(p0)2q̂0
k2(ξ0 − n0)

)

, (5.43)

where the contour ℓk,p,γ̂ interpolates between the two zeros of ξ0 − n0, and passes through

the saddle point to be analyzed below. We omitted the contact potential which appears

as the overall factor since in our approximation it is independent of t and also dropped

the constant factors given by the quadratic refinement and the last two terms in (5.30).

Note that, by construction, (5.43) is proportional to e−iπkσ, and manifestly invariant under

Kähler transformations and (after summing over charges, ignoring the phases discussed in

appendix A) under Heisenberg translations.

Using the expression for the Darboux coordinates given in (5.10), the integrand eval-

uates to

t−
χ(X̂)
24 E

(

−k
[

1

2

(

σ + (ζΛ − 2nΛ)ζ̃ ′Λ
)

− τ2
2

4
Re (z̄ΛF ′

Λ) +
B + τ2

2

(

t−1A− tĀ
)

τ̃1 + τ2
2 (t−1 − t)

])

, (5.44)

where we abbreviated τ̃ = τ − n0 and introduced

A =
τ2
2

4
z̄ΛF ′

Λ − 1

2
(ζΛ − nΛ)(ζΣ − nΣ)F ′

ΛΣ − p0q̂a
k2

za, (5.45)

B = N(ζ − n) − τ2
2

2

(

τ̃1 ReN(z) + (ζa − na)κabct
btc
)

− p0q̂a
k2

(ζa − na) − (p0)2q̂0
k3

.

It is useful to note that

kτ2
2|τ̃ |2 (τ̃1 ReA− B − i|τ̃ | ImA) = Wk,p,γ̂ (5.46)

reproduces the quantity introduced in (4.40). The integral over t is dominated in the weak

coupling limit by a saddle point at

ts = i
−τ2 ImA−

√

(B − τ̃1 ReA)2 + |τ̃ |2( ImA)2

B − τ̃1Ā
. (5.47)

Substituting into (5.44), we find that (5.43) is given, in the semi-classical approximation,

by the expression

J t
−χ(X̂)

24
s e−S(ts), (5.48)

where the classical action is given by

S(ts) =
2πkτ2
|τ̃ |2

√

(B − τ̃1 ReA)2 + |τ̃ |2( ImA)2

+ 2πik

[

1

2

(

σ + (ζΛ − 2nΛ)ζ̃ ′Λ
)

− τ2
2

4
Re (z̄ΛF ′

Λ) + |τ̃ |−2
(

τ2
2 ReA + τ̃1B

)

] (5.49)
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and J is defined as

J =
p− kξ0(ts)

|p− kτ | |Wk,p,γ̂|−1/2 =
|p− kτ | |Wk,p,γ̂|1/2

(p − kτ1)|Wk,p,γ̂| − ikτ2 ReWk,p,γ̂
. (5.50)

It is straightforward to check that (5.49) (plus the omitted constant terms) reproduces the

action Sk,p.γ̂ in (4.41) obtained by S-duality transformation of the standard D-instanton

action (4.36).

It is also instructive to compute (5.43) directly in the weak coupling limit. Assuming

that the integral is controlled by a saddle point with ts ∼ 1/τ2 as τ2 → ∞ (which is indeed

the case of (5.47)), we can redefine t = t′/τ2 and expand the exponent in the limit τ2 → ∞,

keeping t′ finite. Neglecting the logarithmic contribution, we obtain that the argument of

the exponential in (5.43) reduces to

S ≈ πik
(

σ + (ζΛ − 2nΛ)ζ̃ ′Λ
)

+ 4πkeφ − 2πi
p0

k
q̂az

a (5.51)

−πk
(

iτΛΣ(ζΛ − nΛ)(ζΣ − nΣ) + 2τ2t(ζ
Λ − nΛ) Im τΛΣz̄

Σ − 1

2
τ2
2 t

2z̄Σ Im τΛΣz̄
Σ

)

.

The saddle point for the t integral lies at

ts =
2(ζΛ − nΛ) Im τΛΣz̄

Σ

τ2 z̄Λ Im τΛΣz̄Σ
= 4 eKτ−1

2 (ζΛ − nΛ) ImNΛΣz
Σ , (5.52)

consistently with the weak coupling limit of (5.47), so that the semi-classical approximation

to (5.43) becomes

τ−1
2 t

−1−χ(X̂)
24

s (z̄Λ Im τΛΣz̄
Σ)−1/2 e−S(ts) (5.53)

with

S(ts) = 4πkeφ + πik
(

σ + (ζΛ − 2nΛ)ζ̃Λ − N̄ΛΣ(ζΛ − nΛ)(ζΣ − nΣ)
)

− 2πi
p0

k
q̂az

a. (5.54)

The classical action (5.54) indeed reproduces the Gaussian fivebrane action (4.43), after

using identifications (4.44). While this agreement was guaranteed given the fact that (5.49)

equals Sk,p.γ̂ which reduces to (4.43) at weak coupling, this computation allows us to

make contact with the analysis in [32], where an auxiliary variable t was introduced as

a way to turn the Gaussian partition function in the Weil polarization into an indefinite

Gaussian partition function in the Griffiths polarization: this auxiliary variable t is just

the coordinate on the CP 1 fiber over M, after a simple rescaling.

Eq. (5.51) also indicates that the non-Gaussian theta series (5.37) is formally divergent,

as it reduces to an indefinite Gaussian sum in the regime of weak coupling. However, it

should be kept in mind that each term in (5.37) is integrated on a different contour in CP 1.

Provided one first carries out the contour integral in CP 1 and then the sum over charges,

the end result will involve a sum of exponentially suppressed instantonic corrections, though

each of them might be multiplied by an exponentially growing summation measure as in

the D-instanton sector [27].
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5.5.2 Non-Gaussian fivebrane partition function

We define the non-Gaussian fivebrane partition function by summing the Penrose transform

evaluated in 5.5.1 over charges,

Z(k,µ)
NS5 ≡ eφ

∑

p,pa,q̂a,q̂0

∫

ℓk,p,γ̂

dt

t
Hk,p,γ̂(ξ(t), ξ̃(t), α̃(t)) . (5.55)

The fact that the Gaussian action (5.54) resulting from the integral and the omitted con-

stant prefactor, both depend on charges q̂Λ linearly, allows us to carry out the sum over

electric charges explicitly. We now evaluate this sum for k = 1 in terms of the partition

function of DT invariants. Setting nΛ = 0 by Heisenberg invariance, we have p0 = 1,

q̂a = qa − c2,a

24 and so only one term in (5.54) contributes. Reinstating the summation

measure Ω(γ) and the quadratic refinement with the characteristics fixed as above, the

sum over electric charges leads formally to

∑

qa,q0

Ω(γ)E

(

q̂az
a − 1

2
q̂0

)

= E

(

−c2az
a

24

)

ZDT(za, λ)
∣

∣

∣

λ→0
, (5.56)

where ZDT is the DT-partition function (2.83). Using the DT/GW relation (2.84), this

may be further rewritten as

λ
χ(X̂ )
24

ǫGW [M(e−λ)](ǫDT− 1
2
)χ(X̂ ) eFhol+

(2πi)3

λ2 (N(za)− 1
2
AΛΣzΛzΣ)

∣

∣

∣

λ→0
. (5.57)

In the limit λ→ 0, only genus 0 and genus 1 contributions to Fhol remain. For ǫDT = 0 the

power of the Mac-Mahon function cancels the degenerate Gromov-Witten contributions in

Fhol, while the total remaining power of λ cancels for ǫGW = 1. Still, the non-degenerate

genus zero Gromov-Witten contributions seem to make the limit λ → 0 singular. It is

plausible that these singular contributions may be canceled when α′ and D(-1)-instanton

corrections to the Darboux coordinates are included, and we shall ignore them in what

follows. Thus, we conclude that the expression (5.57) can be replaced by ef1(z) where f1(z)

is the holomorphic part of the one-loop vacuum amplitude F1 (2.50).

As a result, we find that the weak coupling approximation of the fivebrane partition

function is given by

Z(1)
NS5 ∼ τ2 e

f1−K (z̄Λ Im τΛΣz̄
Σ)−1/2

∑

n∈Γm+θ

t
−1−χ(X̂ )

24
s e−2πinΛφΛ−S′(ts) , (5.58)

where S′(ts) is the action (5.54) without the last term. Extracting the factor e−4πeφ−iπσ,

as in (3.8), we obtain the Gaussian NS5-partition function

Z(1)
NS5-G ≡

∑

n∈Γm+θ

F E

(

1

2
(ζΛ − nΛ)N̄ΛΣ(ζΣ − nΣ) + nΛ(ζ̃Λ − φΛ) − 1

2
ζΛζ̃Λ

)

, (5.59)

where the prefactor F is given by

F(n;N , z, φ, ζ) =

(

e−Kτ2
)2+

χ(X̂ )
24

√

z̄ΛIm τΛΣz̄Σ

[

(ζΛ − nΛ)ImNΛΣz
Σ
]−1−χ(X̂)

24 ef1(z). (5.60)
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Comparing the result (5.59) with the analysis in section 2.2 shows that the dependence

on the C-field is given by a generalized Siegel theta series, with an insertion of a power

of ts (given in eq. (5.52)) in the sum.39 Thus, the assumption made in section 2.2 that

the normalization factor F did not depend on the flux H was erroneous. In retrospect,

such flux-dependent insertions into the fivebrane theta series were already present in the

automorphic studies [52, 54].

The fact that the holomorphic part f1(z) of the B-model one loop amplitude F1 (2.50)

appears in the prefactor (5.60) implies that the one-loop determinant of the non-chiral

fivebrane partition function in the flux sector H is proportional to eF1, as anticipated

in [32]. The latter is a product of analytic Ray-Singer torsions [45],

eF1 =
∏

0≤p,q≤3

[

det ′∆p,q
∂̄

] 1
2
pq(−1)p+q

=

(

det ′∆0,0
∂̄

)9/2(
det ′∆1,1

∂̄

)1/2

(

det ′∆1,0
∂̄

)3 , (5.61)

where ∆p,q
∂̄

is the Laplacian on p-forms valued in ΛqTX , and det ′ is the determinant with

zero-modes removed. In the second equality we used the standard identities det ′∆p,q
∂̄

=

det ′∆3−p,q
∂̄

= det ′∆q,p
∂̄

(see e.g. [105]). The fact that this normalization factor differs from

the one computed in [35, 81] should come as no surprise, since these authors considered

the partition function of the chiral two-form, whereas our result applies to the partition

function of the (2,0) supersymmetric field theory on the NS5-brane with an insertion of

(−1)2J3(2J3)
2, as required for computing instanton corrections to the two-derivative low

energy effective action. It would be very interesting to perform the one-loop determinant

computation explicitly.

To summarize, we have found that the saddle point approximation of the Penrose

transform (5.43) produces a refinement of the chiral Gaussian partition function constructed

in section 2.2. It is therefore natural to consider the original Penrose transform as an

extension of the Gaussian fivebrane partition function (5.59) in the regime where the energy

stored in the three-form flux is of the same order or larger than the energy in the fivebrane

itself. Building upon the discussion at the end of section 2.3, we thus define the full

non-linear partition function of k chiral NS5-branes as the integrated matrix element

Z(k,µ)
NS5 = eφ

∫

dt

t
e−iπk(α̃+ξΛξ̃Λ) 〈ΨΓm,k,µ| ei(ξΛT̃Λ−ξ̃ΛTΛ)|H(k,µ)

NS5 〉 , (5.62)

39It is interesting to note that insertions of powers of ts in the sum do not spoil the modular properties

of the theta series, at least in the semi-classical approximation. This is obvious for transformations of

type (2.39) and (2.40). For the inversion N̄ 7→ −N̄−1, it suffices to evaluate the Fourier transform
Z

dζΛ (zΛ ImNΛΣζΣ)−1−
χ(X̂)
24 e−iπζΛN̄ΛΣζΣ+2πikζΛζ̃Λ

in the saddle point approximation. At the extremum ζ = N̄−1ζ̃, we have zΛ ImNΛΣζΣ =
1
2i

zΛ[N (N̄−1 −N−1)]Λ
Σ
ζ̃Σ = −FΛ[ Im (N−1)]ΛΣζ̃Σ, where we used the identity NΛΣzΣ = FΛ, so that

the integral becomes

( det N̄ )−1/2 (−FΛ[ Im (N−1)]ΛΣζ̃Σ)−1−
χ(X̂)
24 eiπζ̃Λ(N̄−1)ΛΣζ̃Σ ,

consistently with the transformations properties of the various quantities involved.
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where ΨΓm,k,µ is the same distribution as in (2.43), and |H(k,µ)
NS5 〉 is the state whose wave-

function in the real polarization is given by (5.37). Note that we are here including the

dependence on the NS-axion σ in the definition of the non-Gaussian partition function.

This is quite natural given the observation at the end of section 3.2.3 that σ is in fact not

well defined by itself.

Finally, we note that the functional space where the generators T̃Λ and TΛ operate is

recognized as a space of (local) holomorphic sections on ZM. For supergravity theories

with a symmetric moduli space, this same space is the habitat of the quaternionic discrete

series representations, whose relevance to the issue of instanton corrections to the HM

moduli space has been advocated previously [2, 52, 54].

6 Discussion

In this work, we have taken steps towards understanding NS5-brane instanton corrections

to the hypermultiplet moduli space M in type IIA string theory compactified on a Calabi-

Yau threefold X , and other moduli spaces related to it by T-duality and mirror symmetry

(see table 1 on page 26).

Our first main result, announced previously in [1], is the identification of the topology

of M around the weak coupling limit: M is a foliated by hypersurfaces C(r), r ∈ R+,

each of which being a circle bundle (LΘ ⊗ Lχ(X)
24 )◦ over the intermediate Jacobian Jc(X ).

Recall from (2.9) that Jc(X ) is the total space of the torus bundle over the complex

structure moduli space Mc(X ) with fiber T = H3(X ,R)/H3(X ,Z). Physically, r ∼ 1/g2
(4)

denotes the 4D string coupling, T parametrizes the harmonic C-field on X , and the circle

fiber S1
σ of C(r) parametrizes the Neveu-Schwarz axion. The curvature of C(r) (1.3) has

two components: i) the Kähler class ωT reflects the fact that translations on T commute

up to a translation along the circle fiber S1
σ, ii) while χ(X )

24 ωSK reflects the fact that σ

shifts under phase rotations of the holomorphic three-form Ω3,0 on X as well as under

monodromies in Mc(X ). In the strict weak coupling limit, g(4) = 0, the metric is invariant

under continuous translations on T and S1
σ, but these continuous isometries are broken

to discrete identifications (3.15) by D-instantons and NS5-brane instantons, respectively.

In particular, the identifications (3.15) and (3.22) involve a choice of quadratic refinement

σΘ of the intersection form on H3(X ,Z), together with a unitary character e2πiκ(M) of the

monodromy group which, to our knowledge, had not been noticed previously (the former

did however appear in [53], which was developed concurrently to the present work). The

character e2πiκ(M) is related to the multiplier system of the one-loop amplitude of the

topological B-model on X , and enters in the definition of the twisted line bundle Lχ(X )/24

where the NS-axion is valued.

The hypermultiplet moduli space in type IIB string theory compactified on the mirror

CY threefold X̂ exhibits the same structure as in type IIA, as required by quantum mirror

symmetry. The hypersurfaces C(r) are now circle bundles over the “symplectic Jacobian”

JK(X̂ ) (4.19), which is the total space of a torus bundle over the Kähler moduli space

MK(X̂ ) with fiber Heven(X̂ ,R)/K(X̂ ). In particular, we have clarified the map from the

K-theory lattice K(X̂ ) to the D-brane charge lattice Heven(X̂ ,Z), by showing explicitly
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that it is given by a modification (4.20) of the standard generalized Mukai map. This

modified Mukai map crucially involves the quadratic real matrix AΛΣ appearing in the

prepotential (4.4). Due to the fractional value of the (primed) D(-1)-brane charge, we

furthermore found it necessary to modify the action of S-duality given in [14, 18, 20] on

the D3-brane axion ca, by a shift proportional to the multiplier system of the Dedekind eta

function. Of course, the same considerations also apply for D6-D4-D2-D0 branes in type

IIA string theory compactified on the CY threefold X̂ .

Using S-duality, we inferred the qualitative form of (p, k)5-brane corrections to the

metric, and verified agreement with the type IIA Gaussian result in the weak coupling

limit. It should be stressed that although the type IIB fivebrane is non-chiral, its par-

tition function can still be written as a theta series of a similar form as in the type IIA

picture. In particular, it must involve a quadratic refinement σΘ, which can in principle

be computed by S-duality from the quadratic refinement σΘD
governing D-instantons. It

would be interesting to understand the origin of this apparent “chirality” on the type IIB

NS5-brane worldvolume, perhaps along the lines of [106]. The independence of the physical

hypermultiplet metric on the choice of quadratic refinement (as is known to be the case in

N = 2 field theories [24]) further suggests that the NS5- and D-instanton characteristics

Θ and ΘD should be equal. On the other hand, our naive implementation of Heisenberg

and S-duality indicates a different answer, eq. (A.7) and (A.9). It is an important open

problem to resolve this discrepancy.

To implement NS5-brane instanton corrections consistently with supersymmetry, it is

necessary to reformulate them in terms of deformations of the complex contact structure on

the twistor space ZM over M. At the perturbative level and over a fixed point in Mc(X ),

ZM can be obtained as the quotient of H3(X ,C) × C by the discrete Heisenberg identi-

fications (5.13). Corrections to the perturbative metric are then encoded in holomorphic

sections of H1(ZM,O(2)). As alluded to above, by applying S-duality to the holomorphic

sections describing D5-D3-D1-D(-1) instanton corrections in type IIB, we constructed a

candidate section Hk,p,γ̂ in eq. (5.30) encoding the contribution of a charge k NS5-brane

instanton. The resulting deformation of the contact structure is formally invariant under

Heisenberg shifts and under monodromies around the large volume point, up to phases

ν(η) and ν ′(ǫ) computed in appendix A. The most conservative explanation of this clash

is probably that our assumption of the invariance of the transition functions is too re-

strictive, and one must allow for local compensating contact transformations, as already

observed in [20]. It is also conceivable that one (or more) of the symmetries must give in.

For instance, one might expect that S-duality is broken to a finite index subgroup, as is

sometimes the case of electric-magnetic duality in N = 2 field theories.

In spite of the problems mentioned above, our results nonetheless indicate that our

approach is reasonable. In particular, we find that the single fivebrane wave-function

H
(1,0)
NS5 (5.37) is proportional to the wave-function Ψtop

R
of the topological B-model in the

real polarization, up to certain factors which deserve further study (see (5.42)). Moreover,

its Penrose transform reproduces a variant of the Gaussian flux partition function with a

normalization factor proportional to the one-loop B-model amplitude, consistent with the

topology of the one-loop corrected HM moduli space. It would be interesting to verify this
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result by a direct computation of the twisted partition function of the (2,0) field theory

on the fivebrane worldvolume, and elucidate the origin of the flux-dependent insertion in

the Gaussian sum.

While we feel that the above results constitute significant progress towards under-

standing fivebrane instanton corrections, they are still far from providing the exact metric

on the HM moduli space. In particular, our prescription for “summing” over images under

SL(2,Z) formally leads to a dense set of mutually intersecting “BPS rays” on the twistor

fiber at fixed values of the moduli, whose mathematical status is unclear. While the twisto-

rial construction of NS5-brane instantons presented in this paper is adapted to type IIB

S-duality, it is natural to wonder if there exists an alternative construction, more suitable

for type IIA, which would make symplectic invariance manifest, and hopefully remove the

dense set of contours mentioned above, as in the D1-D(-1) sector considered in [20].

It is also important to understand how our prescription is consistent with wall-crossing.

Indeed, one of the hints in uncovering the structure of the D-instanton corrections [18–20]

was the Kontsevich-Soibelman wall-crossing formula [25], which involves a product of sym-

plectomorphisms: as shown in [24], the KS formula finds a natural interpretation in the

twistorial description of the hyperkähler moduli space of N = 2 gauge theories on R3×S1.

In the presence of NS5-brane instantons we require a similar formula now involving a

product of contact transformations, perhaps arising from a suitable limit of the motivic

wall-crossing formula of [25]. We hope to return to these issues in future work.
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A Action of Heisenberg shifts and monodromies on Hk,p,γ̂

In this appendix we derive how the transition functions (5.30) encoding NS5-brane correc-

tions transform under the Heisenberg action and monodromies around the large volume

point in MK(X̂ ).
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A.1 Heisenberg symmetry

Let us start from the transition function (5.30) obtained by S-duality on the D-instanton

series. It can be presented in the following form

Hk,p,γ̂ =
1

4π2
Ω(γ)E

(

−k
2

(

α̃+ ξΛξ̃Λ

)

+ knΛ
(

ξ̃Λ − φΛ

)

− k
N(ξa − na)

ξ0 − n0

+
k

2
AΛΣ(ξΛ − nΛ)(ξΣ − nΣ) +

p0
(

kq̂a(ξ
a − na) + p0q̂0

)

k2(ξ0 − n0)
(A.1)

+a
p0q′0
k

− c2,ap
aε(δ) − k

2
AΛΣn

ΛnΣ − 1

2
qΛp

Λ + qΛθ
Λ
D − pΛφD,Λ + knΛφΛ

)

,

where we distinguished between characteristics appearing in the D-instanton series, which

we denoted by (θΛ
D, φD,Λ), and the characteristics appearing in the Heisenberg symmetry

transformation (5.13), (θΛ, φΛ), which are relevant for NS5-branes. Note that the two

terms proportional to the matrix AΛΣ come from the difference between ξ̃′Λ appearing in

Sα, eq. (5.31), and ξ̃Λ appearing in the Heisenberg action (5.13).

It is easy to see that invariance of Hk,p,γ̂ under Heisenberg shifts (5.13) with ηΛ = 0

is ensured provided the characteristics θΛ are set to zero. Thus, it remains to consider

Heisenberg shifts with η̃Λ = κ = 0. It is clear that the shift ξΛ 7→ ξΛ + ηΛ should be

compensated by a similar shift of the charges nΛ. The shift n0 7→ n0 + η0 corresponds to a

S-duality transformation changing p 7→ p + kη0, whereas the shift na 7→ na + ηa amounts

to a spectral flow transformation (4.24) on the magnetic charges pa, with flow parameter

ǫa = kηa/p0. Applying the rest of the spectral flow transformation (4.24) to the charges

qa, q0, and using the invariance of q̂a, q̂0, one observes that the first two lines in (A.1) are

explicitly invariant under this combined action provided Ω(γ) is invariant under the spectral

flow, Ω(γ[ǫ]) = Ω(γ). As a result, under this crucial assumption, we need to evaluate the

transformation of only the constant terms in the last line and the full variation of Hk,p,γ̂

takes the form

Hk,p+kη0,γ̂[ǫ]

(

ξΛ + ηΛ, ξ̃Λ, α̃+ ηΛ(ξ̃Λ − 2φΛ)
)

= ν(η)Hk,p,γ̂

(

ξΛ, ξ̃Λ, α̃
)

, (A.2)

where ν(η) is the phase factor to be found.

We split the phase ν(η) into three contributions. The first one is given by the variation

of the quadratic refinement

ν1(ǫ) ≡
σD(γ[ǫ])

σD(γ)
= E

(

1

2
κabcp

apbǫc − 3

2
(p0)2L0(ǫ) +

1

2
(p0)2La(ǫ)ǫ

a − p0ǫaφD,a (A.3)

−θa
D

(

κabcp
bǫc + p0La(ǫ)

)

− θ0
D (ǫaqa + paLa(ǫ) − L0(ǫ) − (pǫǫ))

)

,

where L0, La are the integer valued functions defined in (4.14). Second, the variation of
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the first two terms in the last line of (A.1) is given by

ν2(ǫ, η
0) ≡ E

(

−c2,a

(

p0ǫaε(δ[η0]) + pa(ǫ(δ[η0]) − ǫ(δ)
)

+ a
p0(q′0[ǫ] − q′0)

k

)

= E

(

p0c2,aǫ
a

(

p

24k
+

1

2
s

(

p

p0
,− k

p0

)

+
1

8

)

(A.4)

+
ap0

k

(

pΛLΛ(ǫ) − qaǫ
a + 2Aabǫ

apb
)

+ (pa + p0ǫa)
c2,a

24
η0

)

,

where q′0[ǫ] ≡ q0[ǫ]−A0Λp
Λ[ǫ], δ[η0] is the SL(2,Z) matrix (5.28) with d replaced by d−cη0,

and we used the fact that the Dedekind sum (4.35) satisfies s(d− η0c, c) = s(d, c). Finally,

the third term in the same line generates the following contribution

ν3(ǫ, η
0) ≡ E

(

−k
2
(ηΛ + 2nΛ)AΛΣη

Σ

)

(A.5)

= E

(

− p0

2k
Aab

(

p0ǫa + 2pa
)

ǫb − c2,a

24

(

p p0

k
ǫa + paη0 + p0ǫaη0

)

− k

2
A00(η

0)2
)

.

As a result, the total variation of the transition function (A.1) is described by the following

phase factor

ν(η) ≡ E
(

kηΛφΛ

)

ν1(ǫ)ν2(ǫ, η
0)ν3(ǫ, η

0)

= E

(

kη0φ0 −
k

2
A00(η

0)2
)

E

(

kηa(φa − φD,a) +
k

2p0
(ppη) +

ap0

k
pΛLΛ(ǫ)

+
k

2
c2,aη

a

(

s

(

p

p0
,− k

p0

)

+
1

4

(

1 − p0
)

)

− k(k + 1)

2
Aabη

aηb − ηaAabp
b

−θa
D

(

κabcp
bǫc + p0La(ǫ)

)

− θ0
D (ǫaqa + paLa(ǫ) − L0(ǫ) − (pǫǫ))

)

.

(A.6)

One may try to cancel this phase by a suitable choice of characteristics. e.g. the first

factor, which carries the dependence on η0 and the only q-dependent term can be canceled

by choosing, in a ad hoc fashion,

θ0
D = 0 , φ0 =

1

2
A00 . (A.7)

Note that vanishing of θΛ is required by the Heisenberg invariance and equivalently results

from casting (5.34) into (5.35). For k = 1, the phase simplifies in this case drastically into

νk=1(η) = E
(

ηa(φa − φD,a) −Aabη
aηb − θa

D

(

κabcp
bηc + p0La(η)

))

, (A.8)

where we took into account that p0 = 1, s(p,−1) = 0. It may therefore be canceled

completely by further choosing

θa
D = 0 , φa − φD,a = Aaa . (A.9)

Thus, provided one takes θΛ = θΛ
D = 0 and (A.7) together with (A.9), for k = 1, the

Heisenberg symmetry can be kept unbroken. Unfortunately, the choices (A.7), (A.9) are

inconsistent with the transformation properties of the characteristics under monodromies,

as we now discuss.
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A.2 Monodromy transformations

Next we discuss the transformation of the transition functions (5.30) under monodromies

M around the large volume point in MK(X̂ ) which acts holomorphically on the twistor

space by (5.12). It is clear that to compensate this transformation, one should supplement

it by a spectral flow transformation of charges (4.24) where the transformation parameter

is taken to be ǫ′a = (p/p0)ǫa. Under this simultaneous variation, the quantity Sα defined

in (5.31) simply varies by a constant

Sα 7→ Sα + κabcǫ
a

[

nbnc + n0nbǫc +
1

3
(n0)2ǫbǫc

]

. (A.10)

In addition one should take into account that the monodromy induces a transformation of

characteristics given in (2.24). It is explicit form can be obtained using the matrix ρ(M)

given in (4.25). Then taking into account that θΛ = 0, the characteristics undergo the

following transformation

φ0 7→ φ0 − ǫaφa −
1

2
(L0(ǫ) − ǫaLa(ǫ) − (ǫǫǫ)) , φa 7→ φa +

1

2
κaacǫ

c, (A.11)

where we took into account that 1
2

(

κaac − ǫbκabc

)

ǫaǫc ∈ Z and can be neglected.

As a result, assuming again that the invariants Ω(γ) are not affected by the spectral

flow, we can write the total variation as in (5.33) with the phase factor ν ′(ǫ) given by

ν ′(ǫ) = E

(

−kκaǫ
a − k

2
δǫSα +

p0

k
q̂aǫ

a + p0ǫaφD,a +
p0

2
(L0(ǫ) − ǫaLa(ǫ) − (ǫǫǫ))

−1

2

(

(ppǫ) +
p

p0
(ǫǫǫ)

))

ν1(pǫ
a/p0)ν2(pǫ

a/p0, 0).

(A.12)

Unfortunately, it does not seem to be possible to dispose of this phase factor either. For

k = p0 = 1 it can be simplified to

ν ′k=1(ǫ) = E

(

c2,aǫ
a

24
(3p2 + 2) − (p− 1)2

2
Aabǫ

aǫb −
(

κa + (p − 1)φD,a

)

ǫa
)

(A.13)

and does not vanish even in this particular situation.

Moreover, the transformation of the characteristics (A.11) seems to be inconsistent

with the identifications (A.7) and (A.9). This shows that although the Heisenberg invari-

ance can be achieved for k = 1, there is a tension between the conditions ensuring this

invariance and the monodromy transformations. In particular, this is why the considera-

tions of the previous subsection do not necessarily imply that the D-instanton and fivebrane

characteristics are not equal.
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ΨBCOV L1−χ(X)
24

ef1 L1−χ(X)
24

+
b3
4 ⊗K

1
2
c

eK L ⊗ L
ΨG L

b3
4 ⊗K

1
2
c

ΨW L
b3
4
−1 ⊗K

1
2
c

JG L−b3/2 ⊗K−1
c ⊗ det−1

G

JW L1− b3
2 ⊗ L̄−1 ⊗K−1

c ⊗ det W
−1

det (− ImN ) det−1
W ⊗ det W

−1

det ( Im τ) det−1
G ⊗ det G

−1

XΛ Im τΛΣX
Σ L2 ⊗ det W ⊗ det G

−1

XΛ ImNΛΣX
Σ L2 ⊗ det G ⊗ det W

−1

e−
χ(X)
48

K+iπσ LΘ ⊗ Lχ/24

Table 2. Transformation properties of various quantities under L ⊗Kc ⊗ det G ⊗ det W.

B List of notations

Here we present a list of the most important notations used throughout the paper (roughly

in order of appearance):

E(z) exp [2πiz]

(X , X̂ ) mirror pair of Calabi-Yau threefolds

M Qc(X ) (IIA) or QK(X̂ ) (IIB), quaternion-Kähler manifold

Qc(X ) hypermultiplet moduli space in type IIA on X
QK(X ) hypermultiplet moduli space in type IIB on X̂
SK Mc(X ) (IIA) or MK(X̂ ) (IIB), special Kähler manifold

Mc(X ) complex structure moduli space of X
MK(X̂ ) (complexified) Kähler moduli space of X̂

K Kähler potential for the special Kähler metric on SK
ωSK Kähler form on SK
Kc canonical bundle over SK
τΛΣ period matrix in Griffiths complex structure (Λ,Σ = 0, 1, . . . , h2,1)

NΛΣ period matrix in Weil complex structure (eq. (2.12))

T torus H3(X ,R)/H3(X ,Z) (IIA), Heven(X̂ ,R)/K(X ) (IIB)

Γ charge lattice, H3(X ,Z) (IIA) or K(X ) (IIB), or its Poincaré dual

〈γ, γ′〉 qΛp
′Λ − pΛq′Λ, integer symplectic pairing on Γ

Γe,Γm electric and magnetic charge sublattices of Γ = Γe ⊕ Γm, isotropic
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ωT Kähler form on T , (eq. (2.8))

Jc(X ) intermediate Jacobian: total space of T → Jc(X ) → Mc(X )

JK(X̂ ) symplectic Jacobian: total space of T → JK(X̂ ) → MK(X̂ )

Ω3,0 holomorphic 3-form on X
L Hodge line bundle L → Mc(X ) where Ω3,0 is valued

LΘ “theta line bundle” LΘ → T , defined by periodicity (eq. (2.36))

CΘ unit circle bundle L◦
Θ inside LΘ

Z(k)
G = Z(k)

Θ,µ Gaussian partition function of a chiral 3-form obtained by

holomorphic factorization

Z(k)
NS5 non-linear NS5-partition function governing instanton corrections

Z(k)
NS5-G weak-coupling limit of Z(k)

NS5/[e
−4π|k|eφ−πikσ]

F metric-dependent normalization of Z(k)
Θ,µ

CNS5 circle bundle CNS5 → Jc(X ) of which Z(1)
NS5 is a section

Θ = (θΛ, φΛ) characteristics of the theta function Z(k)
Θ,µ

σΘ quadratic refinement of the intersection form on H3(X ,Z) modulo 2

(AΛ,BΛ) symplectic basis of H3(X ,Z) (Λ = 0, 1, . . . , h2,1)

(αΛ, β
Λ) symplectic basis of H3(X ,Z)

C RR 3-form potential in D = 10 type IIA string theory

B 2-form in D = 4 spacetime

B “chiral” 2-form on the worldvolume X of the NS5-brane

H = dB imaginary self-dual field strength of B
C = (ζΛ, ζ̃Λ) periods of C along (AΛ,BΛ), “RR-axions” (eq. (2.6))

Ω = (XΛ, FΛ) periods of Ω3,0 along AΛ,BΛ (eq. (2.2))

za = Xa/X0 projective coordinates on Mc(X ) = MK(X̂ )

(a = 1, . . . , h2,1(X ) = h1,1(X̂ ))

zΛ (1, za)

F (X) prepotential, FΛ = ∂XΛF (X)

σ dual of the 2-form B (“NS-axion”)

H = (nΛ,mΛ) integral periods of H along (AΛ,BΛ)

χ(X ) Euler number of X
r = eφ = g−2

(4) four-dimensional dilaton φ and string coupling g(4)

τ2 = 1/g2
s ten-dimensional type IIB string coupling, related to φ via eq. (4.30)

ΨR wave function in the real polarization

F1 one-loop topological string vacuum amplitude

f1 holomorphic part of F1 (eq. (2.50))

κ(M) logarithm of a unitary character of the monodromy group of Mc

γ charge vector (Mukai vector), valued in H3(X ,Z),Heven(X̂ ,Z)

for IIA, IIB
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Zγ central charge eK/2(qΛX
Λ − pΛFΛ) (stability data)

Wγ rescaled central charge, Wγ = τ2
2 e

−K/2Zγ

C(r) circle bundle C(r)→Jc(X ) (IIA), or C(r)→JK(X̂ ) (IIB), with fiber S1
σ

N(Xa) 1
6κabcX

aXbXc

ωX̂ , ω
a, ωa, 1 symplectic basis of H6(X̂ ) ⊕H4(X̂ ) ⊕H2(X̂ ) ⊕H0(X̂ )

X̂ , γa, γ
a, [pt] symplectic basis of H6(X̂ ) ⊕H4(X̂ ) ⊕H2(X̂ ) ⊕H0(X̂ )

AΛΣ real symmetric matrix defined up to integer shifts (eq. (4.4))

c2,a

∫

X̂ c2(X̂ )ωa

γ = (pΛ, qΛ) integer magnetic and electric D2-brane charges

(resp. D(-1)-D1-D3-D5 in IIB)

q′Λ primed electric charges, Q-valued (eq. (4.9))

ζ ′Λ primed RR axions (eq. (4.18))

q̂Λ spectral flow-invariant combination of electric charges (eq. (4.26))

γ̂ reduced charge vector (pa, q̂a, q̂0)

Qa, J electric charge and momentum of 5D black hole (eq. (4.28))

Aeven type IIB RR potential

τ1, ca, ca, c0, ψ RR and NS axions adapted to S-duality (eq. (4.29))

k integer NS5-brane charge

Z twistor space of M, a fibration Z → M with fiber CP 1

Ui open covering of Z
X [i] complex contact one-form (eq. (5.2))

Φ[i] contact potential (eq. (5.2))

K[i]
Z Kähler potential on Z (eq. (5.3))

(xµ, t) generic coordinates on M× CP 1

(ξΛ[i], ξ̃
[i]
Λ , α

[i]) complex Darboux coordinates on Ui ⊂ Z, X [i] = dα[i] + ξΛ[i] dξ̃
[i]
Λ

α̃ −2α− ξΛξ̃Λ, symplectic invariant Darboux coordinate

H [ij] holomorphic section of H1(Z,O(2)), controlling deformations of Z
Hγ complex symplectomorphism encoding deformations of Z due

to D-branes

ℓγ “BPS ray”, defined as {t : Zγ(za)/t ∈ iR−}
Ω(γ) generalized Donaldson-Thomas invariants (Z-valued)

Ω(γ) generalized Donaldson-Thomas invariants (Q-valued) (eq. (5.21))

NDT standard (rank 1) Donaldson-Thomas invariants (Z-valued)

ZDT Donaldson-Thomas partition function

ZGW Gromov-Witten partition function

δ SL(2,Z)-transformation (eq. (4.39))

ε(δ) multiplier system of the Dedekind η-function (eq. (4.34))

s(d, c) Dedekind sum (eq. (4.35))
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Wk,p,γ̂ image of D-instanton central charge Wγ under δ

ℓk,p,γ̂ image of the BPS ray ℓγ under δ

Hk,p,γ̂ image of D-instanton transition function Hγ under δ

H
(k)
NS5 formal sum of Hk,p,γ̂ over all p, γ̂
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