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Interlayer asymmetry gap in the electronic band structure of
bilayer graphene

Edward McCann*

PACS 73.63.-b, 73.43.Cd, 81.05.Uw

The low-energy electronic band structure of bilayer graphene comdiftsir bands: a pair of bands split
from zero energy by the interlayer coupling and a pair of bands whiathtatizero energy in a nominally
undoped system. The latter support massive, chiral quasiparticleavpigiabolic dispersion and Berry
phase2w. Asymmetry between the potential energies of the layers opens a turgagbbetween the con-
duction and valence bands. A self-consistent Hartree approximatisedsta model the control of such an
interlayer asymmetry gap induced by a transverse electric field in agmagbased field-effect transistor.
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1 Introduction The discovery that electrons in graphene possess some &dhees of relativistic
particles has generated huge interest. In monolayer gnapliee low-energy charge carriers are chiral
particles exhibiting Berry’s phasewith a linear energy-versus-momentum relation [1, 2, 3,,4]5The
chirality is based on a ‘pseudospin’ quantum number arisimg the relative phase of the electronic wave
function on adjacent atomic sites of the hexagonal lattiwk @hirality means that the pseudospin always
lies parallel or antiparallel to the electron’s momenturheBehaviour of low-energy particles in bilayer
graphene is perhaps even more remarkable [7, 8, 9]. Theydhaaembolic dispersion relation and a degree
of chirality related to Berry’s phasgr, with the pseudospin linked to, but turning twice as quickdy the
direction of momentum.

It has been possible to describe the electronic band steuofibilayer graphene using both the tight-
binding model [10, 7, 11, 12, 13, 14] and density functiohalary [15, 16, 17]. It has been predicted [7]
that asymmetry between the on-site energies in the laydirsreate a gap\ between the conduction and
valence bands. As the gap arises from layer asymmetry, there is a possibility of tgnils magnitude
using external gates. Indeed, a gate is routinely used iergrpnts to control the density of electrons
n on the bilayer system [1, 2, 8] and, in general, this will progl a simultaneous change i The
dependence of the gap on external gate voltage has beenlatbtiing into account screening within
the tight binding model [13, 14, 17]. It seems that such datens produce good agreement with ARPES
experiments [9], measurements made in the regime of thetguadall effect [14], and density functional
theory calculations [17].

In the following, we review the tight-binding model of bilaygraphene in Section 2, including trigonal
warping effects. We obtain the effective low energy Hamilém of bilayer graphene in Section 3 and we
show that it is dominated by chiral quasiparticles with aapatic dispersion and Berry pha®e. Section 4
describes the opening of a gap in bilayer graphene due todsyenmetry, followed by a calculation using
a self-consistent Hartree approximation to describe tm¢robof the gap in the presence of an external
gate.

2 Thetight-binding model of bilayer graphene Bilayer graphene consists of two coupled hexagonal
lattices with inequivalent sited1, B1 and A2, B2 on the bottom and top graphene sheets, respectively,
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arranged according to Bernal2-B1) stacking: as shown in Fig. 1(a), eveBi site in the bottom layer
lies directly below anA2 site in the upper layer, but sitesl and B2 do not lie directly below or above
a site in the other layer. We use the tight-binding model apbite [18] by adapting the Slonczewski-
Weiss-McClure parameterization [19, 20] of relevant cings in order to model bilayer graphene. In-
plane hopping is parameterized by coupling g1 = Y4282 = 7 and it leads to the in-plane velocity
v = (V/3/2)avo/h wherea is the lattice constant. We also take into account the sesinigiter-layer
coupling,v4281 = 71, between pairs ofi2-B1 orbitals that lie directly below and above each other.
Such strong coupling produces dimers from these pairdB1 orbitals, leading to the formation of
high energy bands [7]. In addition, weakdn-B2 coupling~v4152 = 73 is included, leading to an
effective velocityvs = (v/3/2)ays/h wherevs < v. We write the Hamiltonian [7] near the centers of the
valleys in a basis corresponding to wave functions: (¥ a1, ¥'p2, ¥ a2, p1) in the valleyK [21] and of

U = (Yp2,%a1,¥B1,%42) in the valleyK:
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whererr = p, +ip,, 71 = py — ipy, P = (Pz,py) = p(cos ¢, sin ¢) is the momentum measured with
respect to theé< point,§ = +1(—1) labels valleyK (K). The Hamiltonian takes into account asymmetry

A = €; — €, between on-site energies in the two layess= 1A, e; = —JA.
At zero magnetic field, the Hamiltonidgti has four valley-degenerate bands [sﬁj*,)(p), a = 1,2, with
2 A2 2
2 = 8 (2 B 2y (c)e VT
2 4 2
2
r = % (712 - U§p2) +v%p? [712 + A% + v§p2] + 26y1v30%p? cos 3¢. (2)

They are plotted in Fig. 1(b) fah = 0 (dashed lines) and = ~; (solid) where, for simplicity, we neglect
vg. The dispersiomf) describes two bands with energk‘;@ >m ande'? < 7;: they do not touch at
the K point. These bands are the result of strong interlayer aogiplaog1 = 1 which forms ‘dimers’
from pairs ofA2-B1 orbitals that lie directly below and above each other [7].

The diSpGI’SiOI’t&p(p) describes low energy bands that touch at Eagooint in the absence of layer
asymmetryA = 0. In the intermediate energy rangey; (vs/v)?,|A| < |e1]| < 71, it can be approximated
[7] with 6;1) ~ +im[y/1+ 4v?p? /47 — 1]. This interpolates between a linear spectdmﬂﬂ ~ up at
high momenta and a quadratic spectrpﬁw ~ p?/2m, wherem = ~,/2v2. Such a crossover happens
atp ~ 1 /2v, which corresponds to the carrier density~ 7%/(471’712112). This is lower than the density
at which the higher energy bart?) becomes occupied® ~ 2v2/(rh?v?) ~ 8n*. Using experimental

graphite values [20] gives* ~ 4.36 x 10'2¢m~2 andn(® ~ 3.49 x 10'3cm~2. The estimated effective
massm is light: m = v, /2v% ~ 0.054m..

Fig. 1 (a) schematic of the bilayer lattice contain-
ing four sites in the unit cellA1 (white circles) and
B1 (grey) in the bottom layer, and2 (grey) andB2
(black) in the top layer. (b) schematic of the low en-
ergy bands near th& point obtained by taking into
account intralayer hopping with velocity, B1A2
interlayer couplingy:, with zero layer asymmetry
A (dashed lines) and finite layer asymmetxy(for
illustrative purposes a very large asymmeftty= v,

is used). For simplicity, we negleetl B2 interlayer
coupling~ys.

(@)

A2 B2

é

Al BI1

(© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



pss header will be provided by the publisher 3

3 Effective low-energy Hamiltonian The transport properties of bilayer graphene are convépien
described by a low-energy Hamiltonian that describes #fietiopping between the non-dimer siteld,-
B2, i.e. those that do not lie directly below or above each other aadhat strongly coupled by, . This
two component Hamiltonian was derived in [7] using Greeuisctions. Alternatively (and equivalently),
one can view the eigenvalue equation of the four componentilttmian Eq. (1) as producing four simul-
taneous equations for components;, Vg2, Y42, ¥p1. Eliminating the dimer state components,

1 g1 by substitution, and treating as a large energy, gives the two component Hamiltonian [§¢rileing
effective hopping between thél- B2 sites:

R b R G W

Hy = % < - 0 + hy + ha> (3)
he = s 20T h = P+ ipy;

w o U3 0 ,  where T = Pz T 1Py;

“ 11 0 v? [ nlrn 0

o=l B) -5 (0 )]
The effective Hamiltoniart, is applicable within the energy range < 17 Inthe valleyK', £ = +1, we
determine¥.—,1 = (a1, ¥p2), whereas in the vallef(, & = —1, the order of components is reversed,
Ve 1 = (¢¥B2,%a1). The HamiltonianH, describes two possible ways dft = B2 hopping. The first
term takes into accoum1 = B2 hopping via theA2B1 dimer state. Considedl to B2 hopping as
illustrated with the thick solid line in Fig. 1(a). It incled three hops between sites: an intralayer hop from
Al to B1, followed by an interlayer transition via the dimer st&é A2, followed by an intralayer hop
from A2 to B2. Since the two intralayer hops are bothto B, the first term in the Hamiltonian contains
72 or (n")? on the off-diagonal with the masa = ~, /2v” reflecting the energetic cost of a transition
via the dimer state. This term i, yields a parabolic spectrum= +p?/2m with m = ~;/2v2. It has
been noticed [7] that quasiparticles described by it armathiheir plane wave states are eigenstates of an
operatoron, with ony = —1 for electrons in the conduction band and, = 1 for the valence band,
wherens(p) = (cos2¢,sin2¢) for p = (pcos ¢, psin ¢). Quasiparticles described by this term acquire
a Berry phas@r upon an adiabatic propagation along a closed orbit, thugyehzarriers in a bilayer are
Berry phasen quasiparticles, in contrast to Berry phasparticles in a monolayer [5].

The second term,, in the Hamiltonian Eq. (3) describes weak dirddtB2 coupling,ya1p2 = 73 <
1. This couplingya;z2 = 3 leads to the effective velocity; = (v/3/2)ays/h wherevs < v, Eq. (2).
In a similar way to bulk graphite [19, 22], the effect of caugl~s is to produce trigonal warping of the
isoenergetic lines around each valley. At very low energiiesc e, = 171(vs/v)? ~ 1meV, the effect
of trigonal warping is dramatic. It leads to a Lifshitz tréimm: the isoenergetic line is broken into four
pockets, which can be referred to as one “central’” and thieg’ ‘parts [22, 7]. Fors < v, we find
[7, 20] that the separation of the 2D Fermi line into four petskwould take place for very small carrier
densitiesn < ny ~ (v3/v)?n* ~ 1 x 10em=2. Forn < np, the central part of the Fermi surface is
approximately circular with ared. ~ me?/(fiv3)?, and each leg part is elliptical with arey ~ 3 A..
The overlap between the conduction and valence bands is givee;, ~ (v1/2)(v3/v)? ~ 2meV [12]
usingy; =~ 0.4eV andvz /v = 0.1. Note that, at energies below the Lifshitz transition, thayer spectrum
in each of the four Fermi surface pockets is linear, and ttegjinal Berry phases2in bilayer graphene [7, 8]
is divided into Berry phase in each of the three side pockets and in the central one.

4 Voltage-controlled gap in the spectrum of bilayer graphene The parameteA takes into account
a possibly-externally-controlled asymmetly= ¢; — ¢; between on-site energies in the two layess—=
%A, € = —%A. The electronic bands near thepoint, Eq. (2), are shown in Fig. 1(b) for a large value of
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the layer asymmetrA. For simplicity, we neglecti1B2 interlayer couplingys:

2 A2 4
e(f)Q ~ ’Y?l + v?p? + (=1)° \/11 +02p? (7 + A?),
The energies of the bands exactly at fgooint are|e§f)(p =0)| = Vi +A%/4 and|e$)(p =0)| =
|A|/2: the low energy bands(il), are split by the layer asymmettyat theK point [23]. In an asymmetric
bilayer, the electronic densities on the individual layessandns, are given by an integral with respect to
momentunp = 7 |k| over the circularly symmetric Fermi surface, taking inte@mt the relative weight
of the wave functionsn, 5y = (2/7h) [ pdp(|ar(2)(p)|” + |12 (p)|*), where we have included a
factor of four to take into account spin and valley degenerBy determining the wavefunction amplitudes
on the four separate atomic sites we find

eFA/2
n1(2) Z/dpp < h2e )

where the minus (plus) sign is for the first (second) layer.

In the following we use a self-consistent Hartree approxiomato determine the electronic distribution
on the bilayer and the resulting band structure in the prasehan external gate. We consider the graphene
bilayer, with interlayer separatiofy, to be located a distaneéfrom a parallel metallic gate. The appli-
cation of an external gate voltagg = end/c).c, induces a total excess electronic density= n; + no
on the bilayer system wherg (ns) is the excess density on the layer closest to (furthest)ftbengate
(we use Sl units). Herey is the permittivity of free space;. is the dielectric constant of the material be-
tween the gate and the bilayer, anid the electronic charge. We assume that the screening efféative
charge density, = en from the metallic gate is not perfect, leading to an excesstenic density
on the layer furthest from the gate. The excess densitgives rise to an electric field with magnitude
E = eny/e.g( between the layers wheeg is the nominal dielectric constant of the bilayer. There is a
corresponding change in potential enef§y = e%nacq/c.€o that determines the layer asymmetry [13]:

(2 - A2/4)2 T 202pPeA — vipt
(2 — A2/4)2 + 02p2A2 — pipt |

(4)

e2n200

A(’n)zég—ElE (5)

Eréo
In terms of the capacitance of a bilayer of a3 C, = c,e9L?/co, this may be writtenA (n) =
e’ny L2/ G,
We self consistently calculate the excess densities, n = n1 + no, EQ. (4), and the gap, Eq. (5).
This has been done numerically in Ref. [13]. Analytically; fnoderately low densitylrh?v?|n| < 42,

we find
e?L*n h*v2n|n|
A = 6

201) fA ( ’Y% ) 7 ( )

1
1—|—A(x—%lna:).

fa(z) =~

The functionf, (z) depends on the dimensionless paramater e L%y, /(2rh*v2Cy,) which describes
the effectiveness of the interlayer screening of the bilaj/be limit A — 0 describes poor screening when
the density on each layer is equalit@2 whereas forA — oo there is excellent screening, the density
lies solely on the layer closest to the external gate Ang 0. Note thatf, (z) — 0 asz — 0 because

of the logarithm, meaning that the effectiveness of intemtascreening increases upon lowering density.
Using typical experimental parameters [20] we fihd~ 1.3. We estimate that the addition of density
n ~ 102cm~2 yields a gapA ~ 10meV [24].
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5 Conclusions We reviewed the results of tight-binding model studies Gfy@r graphene and its low-
energy electronic band structure. Inter-layer asymmeteates a gap between the conduction and va-
lence bands so that bilayer graphene is a semiconductorvitheable gap of up to aboutieV. A self-
consistent Hartree approximation was used to determingehsity distribution of the two layers when the
densityn is varied using an asymmetrically placed gate, resultirgy density dependent gap(n). Con-

trol of the gap has been modelled taking into account scngemithin the tight binding model [13, 14, 17].

It seems that such calculations produce good agreemenfARIBES experiments [9], measurements made
in the regime of the quantum Hall effect [14], and densityctional theory calculations [17]. The use of
a single gate modulates the density and the gap simultalyebusit should be possible to control them
independently by employing both a top and a bottom gate. Jiiggests a route to nanoelectronic devices
defined within a single sheet of gated bilayer graphene.
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