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Interlayer asymmetry gap in the electronic band structure of
bilayer graphene

Edward McCann∗

PACS 73.63.-b, 73.43.Cd, 81.05.Uw

The low-energy electronic band structure of bilayer graphene consistsof four bands: a pair of bands split
from zero energy by the interlayer coupling and a pair of bands which touch at zero energy in a nominally
undoped system. The latter support massive, chiral quasiparticles witha parabolic dispersion and Berry
phase2π. Asymmetry between the potential energies of the layers opens a tuneablegap between the con-
duction and valence bands. A self-consistent Hartree approximation is used to model the control of such an
interlayer asymmetry gap induced by a transverse electric field in a graphene-based field-effect transistor.
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1 Introduction The discovery that electrons in graphene possess some of thefeatures of relativistic
particles has generated huge interest. In monolayer graphene, the low-energy charge carriers are chiral
particles exhibiting Berry’s phaseπ with a linear energy-versus-momentum relation [1, 2, 3, 4, 5, 6]. The
chirality is based on a ‘pseudospin’ quantum number arisingfrom the relative phase of the electronic wave
function on adjacent atomic sites of the hexagonal lattice and chirality means that the pseudospin always
lies parallel or antiparallel to the electron’s momentum. The behaviour of low-energy particles in bilayer
graphene is perhaps even more remarkable [7, 8, 9]. They havea parabolic dispersion relation and a degree
of chirality related to Berry’s phase2π, with the pseudospin linked to, but turning twice as quicklyas, the
direction of momentum.

It has been possible to describe the electronic band structure of bilayer graphene using both the tight-
binding model [10, 7, 11, 12, 13, 14] and density functional theory [15, 16, 17]. It has been predicted [7]
that asymmetry between the on-site energies in the layers will create a gap∆ between the conduction and
valence bands. As the gap∆ arises from layer asymmetry, there is a possibility of tuning its magnitude
using external gates. Indeed, a gate is routinely used in experiments to control the density of electrons
n on the bilayer system [1, 2, 8] and, in general, this will produce a simultaneous change in∆. The
dependence of the gap on external gate voltage has been modelled taking into account screening within
the tight binding model [13, 14, 17]. It seems that such calculations produce good agreement with ARPES
experiments [9], measurements made in the regime of the quantum Hall effect [14], and density functional
theory calculations [17].

In the following, we review the tight-binding model of bilayer graphene in Section 2, including trigonal
warping effects. We obtain the effective low energy Hamiltonian of bilayer graphene in Section 3 and we
show that it is dominated by chiral quasiparticles with a parabolic dispersion and Berry phase2π. Section 4
describes the opening of a gap in bilayer graphene due to layer asymmetry, followed by a calculation using
a self-consistent Hartree approximation to describe the control of the gap in the presence of an external
gate.

2 The tight-binding model of bilayer graphene Bilayer graphene consists of two coupled hexagonal
lattices with inequivalent sitesA1, B1 andA2, B2 on the bottom and top graphene sheets, respectively,
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arranged according to Bernal (A2-B1) stacking: as shown in Fig. 1(a), everyB1 site in the bottom layer
lies directly below anA2 site in the upper layer, but sitesA1 andB2 do not lie directly below or above
a site in the other layer. We use the tight-binding model of graphite [18] by adapting the Slonczewski-
Weiss-McClure parameterization [19, 20] of relevant couplings in order to model bilayer graphene. In-
plane hopping is parameterized by couplingγA1B1 = γA2B2 ≡ γ0 and it leads to the in-plane velocity
v = (

√
3/2)aγ0/h̄ wherea is the lattice constant. We also take into account the strongest inter-layer

coupling,γA2B1 ≡ γ1, between pairs ofA2-B1 orbitals that lie directly below and above each other.
Such strong coupling produces dimers from these pairs ofA2-B1 orbitals, leading to the formation of
high energy bands [7]. In addition, weakerA1-B2 coupling γA1B2 ≡ γ3 is included, leading to an
effective velocityv3 = (

√
3/2)aγ3/h̄ wherev3 ≪ v. We write the Hamiltonian [7] near the centers of the

valleys in a basis corresponding to wave functionsΨ = (ψA1, ψB2, ψA2, ψB1) in the valleyK [21] and of
Ψ = (ψB2, ψA1, ψB1, ψA2) in the valleyK̃:
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whereπ = px + ipy, π† = px − ipy, p = (px, py) ≡ p(cosφ, sinφ) is the momentum measured with
respect to theK point,ξ = +1(−1) labels valleyK (K̃). The Hamiltonian takes into account asymmetry
∆ = ǫ2 − ǫ1 between on-site energies in the two layers,ǫ2 = 1

2∆, ǫ1 = − 1
2∆.
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They are plotted in Fig. 1(b) for∆ = 0 (dashed lines) and∆ = γ1 (solid) where, for simplicity, we neglect
v3. The dispersionǫ(2)± describes two bands with energiesǫ(2)+ ≥ γ1 andǫ(2)− ≤ γ1: they do not touch at
theK point. These bands are the result of strong interlayer coupling γA2B1 ≡ γ1 which forms ‘dimers’
from pairs ofA2-B1 orbitals that lie directly below and above each other [7].

The dispersionǫ(1)± (p) describes low energy bands that touch at theK point in the absence of layer
asymmetry∆ = 0. In the intermediate energy range,1

4γ1(v3/v)
2, |∆| < |ǫ1| < γ1, it can be approximated

[7] with ǫ
(1)
± ≈ ± 1

2γ1[
√

1 + 4v2p2/γ2
1 − 1]. This interpolates between a linear spectrum|ǫ(1)± | ≈ vp at

high momenta and a quadratic spectrum|ǫ(1)± | ≈ p2/2m, wherem = γ1/2v
2. Such a crossover happens

atp ≈ γ1/2v, which corresponds to the carrier densityn∗ ≈ γ2
1/(4πh̄

2v2). This is lower than the density
at which the higher energy bandǫ(2) becomes occupiedn(2) ≈ 2γ2

1/(πh̄
2v2) ≈ 8n∗. Using experimental

graphite values [20] givesn∗ ≈ 4.36 × 1012cm−2 andn(2) ≈ 3.49 × 1013cm−2. The estimated effective
massm is light: m = γ1/2v

2 ≈ 0.054me.
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Fig. 1 (a) schematic of the bilayer lattice contain-
ing four sites in the unit cell:A1 (white circles) and
B1 (grey) in the bottom layer, andA2 (grey) andB2
(black) in the top layer. (b) schematic of the low en-
ergy bands near theK point obtained by taking into
account intralayer hopping with velocityv, B1A2
interlayer couplingγ1, with zero layer asymmetry
∆ (dashed lines) and finite layer asymmetry∆ (for
illustrative purposes a very large asymmetry∆ = γ1

is used). For simplicity, we neglectA1B2 interlayer
couplingγ3.
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3 Effective low-energy Hamiltonian The transport properties of bilayer graphene are conveniently
described by a low-energy Hamiltonian that describes effective hopping between the non-dimer sites,A1-
B2, i.e. those that do not lie directly below or above each other and are not strongly coupled byγ1. This
two component Hamiltonian was derived in [7] using Green’s functions. Alternatively (and equivalently),
one can view the eigenvalue equation of the four component Hamiltonian Eq. (1) as producing four simul-
taneous equations for componentsψA1, ψB2, ψA2, ψB1. Eliminating the dimer state componentsψA2,
ψB1 by substitution, and treatingγ1 as a large energy, gives the two component Hamiltonian [7] describing
effective hopping between theA1-B2 sites:

Ĥ2 = − 1

2m

(

0
(

π†
)2

π2 0

)
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The effective Hamiltonian̂H2 is applicable within the energy range|ǫ| < 1
4γ1. In the valleyK, ξ = +1, we

determineΨξ=+1 = (ψA1, ψB2), whereas in the valleỹK, ξ = −1, the order of components is reversed,
Ψξ=−1 = (ψB2, ψA1). The HamiltonianĤ2 describes two possible ways ofA1 ⇀↽ B2 hopping. The first
term takes into accountA1 ⇀↽ B2 hopping via theA2B1 dimer state. ConsiderA1 to B2 hopping as
illustrated with the thick solid line in Fig. 1(a). It includes three hops between sites: an intralayer hop from
A1 to B1, followed by an interlayer transition via the dimer stateB1A2, followed by an intralayer hop
fromA2 toB2. Since the two intralayer hops are bothA toB, the first term in the Hamiltonian contains
π2 or (π†)2 on the off-diagonal with the massm = γ1/2v

2 reflecting the energetic costγ1 of a transition
via the dimer state. This term in̂H2 yields a parabolic spectrumǫ = ±p2/2m with m = γ1/2v

2. It has
been noticed [7] that quasiparticles described by it are chiral: their plane wave states are eigenstates of an
operatorσn2 with σn2 = −1 for electrons in the conduction band andσn2 = 1 for the valence band,
wheren2(p) = (cos 2φ, sin 2φ) for p = (p cosφ, p sinφ). Quasiparticles described by this term acquire
a Berry phase2π upon an adiabatic propagation along a closed orbit, thus charge carriers in a bilayer are
Berry phase2π quasiparticles, in contrast to Berry phaseπ particles in a monolayer [5].

The second term̂hw in the Hamiltonian Eq. (3) describes weak directA1B2 coupling,γA1B2 ≡ γ3 ≪
γ1. This couplingγA1B2 ≡ γ3 leads to the effective velocityv3 = (

√
3/2)aγ3/h̄ wherev3 ≪ v, Eq. (2).

In a similar way to bulk graphite [19, 22], the effect of coupling γ3 is to produce trigonal warping of the
isoenergetic lines around each valley. At very low energies|ǫ| < ǫL = 1

4γ1(v3/v)
2 ≈ 1meV, the effect

of trigonal warping is dramatic. It leads to a Lifshitz transition: the isoenergetic line is broken into four
pockets, which can be referred to as one “central” and three “leg” parts [22, 7]. Forv3 ≪ v, we find
[7, 20] that the separation of the 2D Fermi line into four pockets would take place for very small carrier
densitiesn < nL ∼ (v3/v)

2 n∗ ∼ 1 × 1011cm−2. Forn < nL, the central part of the Fermi surface is
approximately circular with areaAc ≈ πǫ2/(h̄v3)

2, and each leg part is elliptical with areaAℓ ≈ 1
3Ac.

The overlap between the conduction and valence bands is given by 2ǫL ≈ (γ1/2)(v3/v)
2 ≈ 2meV [12]

usingγ1 ≈ 0.4eV andv3/v ≈ 0.1. Note that, at energies below the Lifshitz transition, the bilayer spectrum
in each of the four Fermi surface pockets is linear, and the integral Berry phase 2π in bilayer graphene [7, 8]
is divided into Berry phaseπ in each of the three side pockets and−π in the central one.

4 Voltage-controlled gap in the spectrum of bilayer graphene The parameter∆ takes into account
a possibly-externally-controlled asymmetry∆ = ǫ2 − ǫ1 between on-site energies in the two layers,ǫ2 =
1
2∆, ǫ1 = − 1

2∆. The electronic bands near theK point, Eq. (2), are shown in Fig. 1(b) for a large value of
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the layer asymmetry∆. For simplicity, we neglectA1B2 interlayer couplingγ3:
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The energies of the bands exactly at theK point are|ǫ(2)± (p = 0)| =
√

γ2
1 + ∆2/4 and|ǫ(1)± (p = 0)| =

|∆|/2: the low energy bands,ǫ(1)± , are split by the layer asymmetry∆ at theK point [23]. In an asymmetric
bilayer, the electronic densities on the individual layers, n1 andn2, are given by an integral with respect to
momentump = h̄ |k| over the circularly symmetric Fermi surface, taking into account the relative weight

of the wave functions:n1(2) = (2/πh̄2)
∫
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factor of four to take into account spin and valley degeneracy. By determining the wavefunction amplitudes
on the four separate atomic sites we find

n1(2) =

∫
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, (4)

where the minus (plus) sign is for the first (second) layer.
In the following we use a self-consistent Hartree approximation to determine the electronic distribution

on the bilayer and the resulting band structure in the presence of an external gate. We consider the graphene
bilayer, with interlayer separationc0, to be located a distanced from a parallel metallic gate. The appli-
cation of an external gate voltageVg = end/ε′rε0 induces a total excess electronic densityn = n1 + n2

on the bilayer system wheren1 (n2) is the excess density on the layer closest to (furthest from) the gate
(we use SI units). Hereε0 is the permittivity of free space,ε′r is the dielectric constant of the material be-
tween the gate and the bilayer, ande is the electronic charge. We assume that the screening of theeffective
charge densityρ+ = en from the metallic gate is not perfect, leading to an excess electronic densityn2

on the layer furthest from the gate. The excess densityn2 gives rise to an electric field with magnitude
E = en2/εrε0 between the layers whereεr is the nominal dielectric constant of the bilayer. There is a
corresponding change in potential energy∆U = e2n2c0/εrε0 that determines the layer asymmetry [13]:

∆(n) = ǫ2 − ǫ1 ≡ e2n2c0
εrε0

. (5)

In terms of the capacitance of a bilayer of areaL2, Cb = εrε0L
2/c0, this may be written∆(n) =

e2n2L
2/Cb.

We self consistently calculate the excess densitiesn1, n2, n = n1 +n2, Eq. (4), and the gap∆, Eq. (5).
This has been done numerically in Ref. [13]. Analytically, for moderately low density,4πh̄2v2|n| < γ2

1 ,
we find

∆ ≈ e2L2n

2Cb

fΛ

(

h̄2v2π|n|
γ2
1

)

, (6)

fΛ (x) ≈ 1

1 + Λ
(

x− 1
2 lnx

) .

The functionfΛ(x) depends on the dimensionless parameterΛ = e2L2γ1/(2πh̄
2v2Cb) which describes

the effectiveness of the interlayer screening of the bilayer. The limitΛ → 0 describes poor screening when
the density on each layer is equal ton/2 whereas forΛ → ∞ there is excellent screening, the density
lies solely on the layer closest to the external gate and∆ = 0. Note thatfΛ(x) → 0 asx → 0 because
of the logarithm, meaning that the effectiveness of interlayer screening increases upon lowering density.
Using typical experimental parameters [20] we findΛ ≈ 1.3. We estimate that the addition of density
n ∼ 1012cm−2 yields a gap∆ ∼ 10meV [24].
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5 Conclusions We reviewed the results of tight-binding model studies of bilayer graphene and its low-
energy electronic band structure. Inter-layer asymmetry creates a gap between the conduction and va-
lence bands so that bilayer graphene is a semiconductor witha tuneable gap of up to about0.4eV. A self-
consistent Hartree approximation was used to determine thedensity distribution of the two layers when the
densityn is varied using an asymmetrically placed gate, resulting ina density dependent gap∆(n). Con-
trol of the gap has been modelled taking into account screening within the tight binding model [13, 14, 17].
It seems that such calculations produce good agreement withARPES experiments [9], measurements made
in the regime of the quantum Hall effect [14], and density functional theory calculations [17]. The use of
a single gate modulates the density and the gap simultaneously, but it should be possible to control them
independently by employing both a top and a bottom gate. Thissuggests a route to nanoelectronic devices
defined within a single sheet of gated bilayer graphene.
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[24] In Section 4 we neglected the role of additional weak couplings, suchasA1-B2 couplingγ3 that results in
trigonal warping, Section 3, and is relevant at low densityn ∼ 1 × 1011cm−2. Indeed, trigonal warping should
result in a small overlap between the conduction and valence band of≈ 2meV.

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


