
Chalmers Publication Library

Energy optimization of trajectories for high level scheduling

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

2011 IEEE Conference on Automation Science and Engineering, CASE 2011 (ISSN: 2161-

8070)

Citation for the published paper:
Wigström, O. ; Lennartson, B. (2011) "Energy optimization of trajectories for high level
scheduling". 2011 IEEE Conference on Automation Science and Engineering, CASE 2011
pp. 654-659.

http://dx.doi.org/10.1109/CASE.2011.6042472

Downloaded from: http://publications.lib.chalmers.se/publication/150924

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70592146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CASE.2011.6042472
http://publications.lib.chalmers.se/publication/150924


Energy optimization of trajectories for high level scheduling

Oskar Wigström and Bengt Lennartson

Abstract— Minimization of energy consumption is today an
issue of utmost importance in manufacturing industry. A
previously presented technique for scheduling of robot cells,
which exploits variable execution time for the individual robot
operations, has shown promising results in energy minimization.
In order to slow down a manipulator’s movement the method
utilizes a linear time scaling of the time optimal trajectory.
This paper attempts to improve the scheduling method by
generating energy optimal data using dynamic time scaling.
Dynamic programming can be applied to an existing trajectory
and generate a new energy optimal trajectory that follows the
same path but with another execution time. With the new
method, it is possible to solve the optimization problem for
a range of execution times in one run. A simple two-joint
planar example is presented in which energy optimal dynamic
time scaling is compared to linear time scaling. The results
show a small decrease in energy usage for minor scaling, but
a significant reduction for longer execution times.

I. INTRODUCTION

When designing the next generation of robotic manufac-
turing systems one must consider the ever growing demands
on environmental as well as economical sustainability. Re-
ducing the amount of expended energy during production
contributes to both of these goals. In [12], a scheduling
algorithm for decreasing energy usage in production systems
was presented. The algorithm utilizes the fact that individual
robot movements do not necessarily have to be performed in
a time optimal fashion.

Even though minimal cycle time is often preferable, this
does not imply that every action has to be performed at
maximum speed in order to uphold an optimal cycle time. It
might also be the case that a single production cell constrains
the cycle time of other cells in series or parallel. If this
is the case, it might not be necessary to run the other
constrained cells based on time optimal schedules. One of
the building blocks in the optimization model in [12] is
the energy consumption Ei(tfi) for each individual robot
operation i as a function of its execution time tfi. These
local energy functions are then used to determine the globally
optimal execution times t∗fi for all operations, such that the
overall energy of the system is minimized.

To prevent confusion, the terms path and trajectory are
defined as follows. A path is a purely geometrical description
of movement, while a trajectory is a path as a function
of time. This means that velocity and acceleration can be
defined for a trajectory at each coordinate along its path.
The energy functions in [12] are based on a uniform time
scaling of the time optimal robot trajectory, i.e a stretching

O. Wigström, B. Lennartson, Automation Research Group, Department
of Signals and Systems, Chalmers University of Technology, Gothenburg,
Sweden, oskar.wigstrom@chalmers.se

of the acceleration profile. The resulting functions are most
often convex and have the beneficial property that no torque
constraints are violated. However, a linear time scaling of a
trajectory does not equate to an energy optimal trajectory,
and the algorithm may be improved by finding the energy
optimal solution. The scheduling problem is modeled as a
mixed integer linearly constrained problem, with a nonlinear
cost function expressing the energy consumption of the cell.
Generation of the energy consumption functions for the
individual operations is a preprocessing step. Thus adding
new local optimal energy functions requires no significant
changes to the scheduling algorithm.

The focus of this paper is that of generating local optimal
energy functions E∗

i (tfi). This is done for each individual
operation of the moving devices in a system, for instance
a robot cell. Deriving E∗

i (tfi) is synonymous with solving
the minimum trajectory planning problem for a range of tfi,
with the geometric path of operation i as an input.

A trajectory planning problem can be described as gener-
ating the set of control inputs that will move a manipulator
along a predefined geometric path without violating any dy-
namic or kinematic constraints. Usually trajectory planning
problems are concerned with the optimization of some cost
function, most often comprised of time, torque, jerk or a
weighted combination of these.

Trajectory planning has been an area of research since
the early 1970s [4], but at that time neither variable torque-
nor path constraints were considered. Path constraints are a
necessity for collision avoidance, and not until the mid 1980s
[10], [1] the problem formulation was extended including this
property. These early works were mainly focused on time
optimal path planning. An excellent overview of the last three
decades can be found in [3]. In summary, after minimum
time, focus shifted towards minimum energy, which produces
smoother trajectories and smaller tracking errors.

There is a large number of approaches to the minimum
energy problem. Early attempts used dynamic programming
[11], and later iterative dynamic programming [2], param-
eterized b-splines [6], Pontryagins maximum principle [9],
among others, were used. Some of the later methods allow
for constraints on the jerk and results in a continuous
acceleration. Minimizing and constraining jerk is also a topic
of interest as it reduces stress on the robot structure and gives
better tracking.

This paper uses dynamic programming in order to solve
the trajectory planning problem for a range execution times
simultaneously. The grid required is as small as two dimen-
sions and yields an optimal trajectory with discontinuous
acceleration. If the grid is extended to three dimensions as



suggested in [11], continuous acceleration and a bounded
jerk could be achieved. However, this would lead to a
significantly increased computational effort. If the two di-
mensional grid is of high enough resolution and the size of
the acceleration discontinuities are constrained, taking jerk
into further consideration might not be necessary.

In contrast to [11], which employs a weighting between
cost and time, our method includes elapsed time in the
optimization model. This implies that, while [11] is based
on free final time in the optimization, our model can gen-
erate solutions for specific final times. Note that, dynamic
programming, as opposed to other methods, puts no bounds
on model complexity or objective function for this problem.
The main advantage of dynamic programming in this context
however, is that it yields optimal solutions for the entire
grid. In our method, the optimization model is formulated
in such a way that all execution (final) times are included
in the grid, and thus the dynamic programming optimization
only needs to be run once. Even though the complexity of
[11] is somewhat lower than ours, the dynamic programming
optimization will have to be run once for every point in
the energy function, E∗

i (tfi). This means that it is a viable
method if only a low resolution energy function with no
requirements on specific final times is sought, i.e only a
limited number of weightings are evaluated. Also note that
since the optimization parameter is a single time varying
variable, the dimensionality will be unchanged for additional
robot joints as well as more intricate energy models.

The rest of this paper is structured as follows. Section
II contains background on the minimum energy trajectory
planning problem. Section III covers the optimization model
and the dynamic programming algorithm structure. Section
IV provides a numerical example with a comparison to linear
time scaling. Finally, in Section V conclusions are drawn
along with a brief discussion.

II. PROBLEM FORMULATION

As previously established, for each operation, a trajectory
planning problem needs to be solved for a range of execution
times. Since this method is applied to one operation at a time,
the operation index i is now discarded. Solving a trajectory
planning problem entails finding the input torques required to
move a manipulator along a predefined geometric path, while
upholding its dynamical constraints. The joint torques of the
manipulator can be expressed by a Lagrange formulation, see
[8], pp. 131-140. Einstein summation convention is used, as
in [11], where an index appearing in both the subscript and
the superscript of a term constitutes a summation over its
elements. The torque, Ti acting on the i :th joint can be
expressed as

Ti = Jij q̈
j + Cijkq̇

j q̇k + Fij q̇
j +Gi (1)

where Jij is the intertia matrix, Cijk the tensor of centrifugal
and Coriolis coefficients, Fij the viscous friction matrix, Gi
the gravitational vector and qi the angular position of joint i.
Also, q̇i and q̈i represent the 1:st and 2:nd time derivative
of qi.

Let the geometric path be defined by a function q0(τ),
a parameterized curve dependent on one single variable
τ(t). In this paper, the time optimal trajectory is used to
define q0. This implies that τ is the time scale for the time
optimal trajectory, q0. The relationship between q and q0 can
therefore be expressed as

q(t) = q0(τ(t)), 0 ≤ τ ≤ τf , (2)

where τ(t) is an monotonically increasing function with a
starting value of 0 and final value τf . The derivatives of q0
with respect to τ is the same as those of the time optimal
trajectory with respect to time. Differentiating (2) with regard
to time yields expressions for speed and acceleration which
are needed for computing the cost function and upholding
constraints,

q̇i(t) =
dqi0(τ)

dτ
τ̇ (3)

q̈i(t) =
dqi0(τ)

dτ
τ̈ +

d2qi0(τ)

dτ2
τ̇2 (4)

Further, combining (3) and (4) with (1) results in an expres-
sion for the torque as a function of τ and q0,

Ti = Jij
dqj0(τ)

dτ
τ̈ + Jij

d2qj0(τ)

dτ2
τ̇2 +

+ Cijk
dqj0(τ)

dτ

dqk0 (τ)

dτ
τ̇2 +

+ Fij
dqj0(τ)

dτ
τ̇ +Gi (5)

The optimization procedure is also subject to a number of
dynamic constraints, such as limits on torque, acceleration
and speed.

An arbitrary cost function can be used, but in this paper
it is of interest to examine minimum energy trajectories for
specific execution times tf . A simple energy model where
the torque is assumed to be proportional to the current is
adapted. This formulation suggests that the squared torque
is proportional to the power. The cost as a function of tf
can with these assumptions be expressed as the sum of the
squared joint torques

E(tf ) =

∫ tf

0

TiT
i dt =

∫ tf

0

(
n∑
i=1

T 2
i

)
dt (6)

Here, n is the number of joints. With the torque, Ti defined
as in (5), the cost E is a functional of q0 and τ . Since
the former is known, solving the optimization problem is
a matter finding τ while minimizing the cost and upholding
dynamic constraints. The optimal cost E∗(tf ) is the local
energy function sought for each operation.

III. DYNAMIC PROGRAMMING METHOD

Dynamic programming is an optimization method which
can be applied to problems where a series of decisions
need to be made and the dynamics of the system can be
determined from any location within a state space. The
objective is to determine how the state space can be traversed



in order to minimize a specified cost function. A discrete
gridding of the state space generally has to be performed,
and the choice of resolution is governed by requirements
on the quality of the solution as well as limitations on
computational power. Each decision in the decision process
represents a movement within this grid, either from point
to point or, where this is not possible, from any location
where a grid point is reachable. For a detailed account of the
theory behind the dynamic programming algorithm applied
to discrete optimal control problems, see for example [5] or
[7].

A. Modeling

Introduce tk as a time instance and hk as a variable
sampling time, associated with the time index k such that

tk+1 = tk + hk (7)

Note that t0 = 0. This means that the time optimal time
scale τ is updated for each time step (increment of k) as

τ(tk+1) = τ(tk + hk) = τ(tk) + ∆k (8)

where ∆k can be regarded as a user defined sampling period
or gridding of τ . Using this definition of τ implies that (2),
at the sampling instance, can be described as

q0(τ(tk)) = q(tk) (9)

Also, τ is mapped onto t such that both q and q0 share the
same path, although not necessarily the same velocity and
acceleration. Equations (7)-(8) are illustrated in Fig. 1, where
we emphasize that hk is determined by the optimization
while ∆k is defined by the user. Define the second time
derivative of τ as

τ̈(t) = u(tk), tk ≤ t ≤ tk+1, (10)

where u(tk) is a piecewise constant control input. The
decision to use a constant τ̈ is an abstraction that will restrict
the dimensionality of the problem to two. Even though it will
introduce small discontinuities in the acceleration through
(3), these minor artifacts can be considered marginal. One
could instead choose to define the 3:rd derivative of τ as
constant, and instead achive only discontinous jerk, but at
the cost of dimensionality and complexity.

Integration of equation (10) yields the following difference
equations

τ̇(tk + hk) = u(tk) hk + τ̇(tk) (11)

τ(tk + hk) =
1

2
u(tk) h2k + τ̇(tk) hk + τ(tk) (12)

With these equations, τ can be expressed using tk and
τ̇(t0). The optimal trajectory and cost can thus be described
using only these variables. To solve the optimal control
problem, a grid of possible values of tk and τ̇(tk) is also
necessary. If the optimal cost for a location in this grid for
a specific k is denoted J∗

k (tk, τ(tk)), then the functional

f 0
 

1 k k 1 k 

1 
!k k 

h h

ft0
t

1 kt kt 1 kt

1 kh kh

Fig. 1. Uniformly spaced τ mapped onto t.

Fig. 2. The solid line denotes (tk, τ̇(tk)) and the two points show
(tk+1, τ̇(tk+1)). The dashed line represents a constant τ̇(tk+1) = 0.6.
The dotted lines illustrates that the point (tk+1, τ̇(tk+1)) is reachable from
(tk, τ̇(tk)).

equation of dynamic programming in the forward direction
can be written as

J∗
k+1(tk+1, τ̇(tk+1)) = min

u(tk)
[V (tk, τ̇(tk), u(tk)) +

+ J∗
k (tk, τ̇(tk))] (13)

Here, V is the cost of moving from (tk, τ̇(tk)) to
(tk+1, τ̇(tk+1)), i.e the cost in (6), but with the integration
from tk to tk+1. Then, for each (tk+1, τ̇(tk+1)) point in the
grid, compute J∗

k+1. With equations (7)-(13), there is only
one degree of freedom in J∗

k+1 which is u(tk). Even though
the possible solutions may not coincide in specific (tk, τ̇(tk))
grid points, it is still possible to interpolate values from J∗

k .
Solving (13) for all k will result in the optimal cost for all
the points in the grid.

Specifying the trajectory using hk is effectively the same
as using tk. With (8) we can reformulate (11) and (12) to
express hk as

hk = 2
∆k

τ̇(tk+1) + τ̇(tk)
(14)

In Fig. 2, note that the shape of the (tk, τ̇(tk)) curve does
not change for tk along a constant τ̇(tk+1) since (14) does
not depend on the explicit starting time tk. This implies that
the cost function does not have to be evaluated separately
for each tk where the value of τ̇(tk+1) is the same. If
instead τ/τ̇ had been used for a grid, all iterations would
be time invariant and all cost function evaluations could be
performed at the first iteration and reused later. However, if
a nonuniform gridding of t is used to significantly speed
up computations, cost function evaluations from previous
iterations cannot be reused. Our formulation will thus allow
for a significantly decreased computational burden. Most



time is spent on interpolations of J∗
k , as this needs to be

computed seperatly for each grid value of tk.
It is also necessary to compute u(tk) to evaluate the cost

function. Some further algebraic manipulation gives

u(tk) = −2
∆k

h2k
+ 2

τ̇(tk+1)

hk
(15)

The expressions (14) and (15) are now used to compute steps
in the grid, as well as evaluating the cost function. At the final
iteration N , the resulting matrix J∗

N will hold the minimum
cost for every grid point. Since tk represents elapsed time,
tN = tf , and as such the minimum cost for all execution
times within the range of tN can be found in this final J∗

N .

B. Algorithm

To start off, the first and second derivative of q0 with
respect to τ in (3) and (4) will have to be computed. As
previously mentioned, the velocity and acceleration of the
time optimal trajectory can be used to define these. Since
τ̈ is defined as constant between the discrete time updates,
this leads to every point (tk+1, τ̇(tk+1)) in the grid having
a corresponding (tk, τ̇(tk)) curve from where that point can
be accessed at step k + 1. The minimization part in (13)
consists of sampling along this curve and choosing the point
where the combination of J∗

k and Vk yields the lowest cost.
Since the sampling of J∗

k is not available from a specific grid
point, be reminded that the cost will have to be interpolated.

As for the algorithm, define a structure opt that can be
used to store settings for the optimization problem. This
includes grid size, grid resolution, limits on parameters, path
parameters, constraints on dynamics and various sampling
resolutions etc. Note that matrix multiplication is used at
lines 11, 12 and 14 in the routine OPTIMALSOURCE to
clone vectors into matrices. A Matlab like notation is used
where for example A(:, 1) corresponds to all elements in
the first column of a matrix A and A(1 : 2, 1) denotes the
first 2 row elements in the first column.

DP-ALGORITHM(opt)
1 J ← NaN
2 J(1 : 2, :, 1)← 0
3 for k ← 1 to Nτ
4 do for e← 1 to Ndτ
5 do J(:, e, k + 1)←
6 OPTIMALSOURCE(k, e, J(:, :, k), opt)
7 return J

In DP-ALGORITHM , the three-dimensional array J is
used to store the optimal cost to reach a point in the grid
for every time step. Its first two indices correspond to the
values of the grid (transformed to integers) and the third
the time step. Observe that since the sampling period hk
is varying the time step k is not generally the same as the
integer transformation of the grid value tk. Mark initial
states with zeros. For each time step k, iterate over each
value e in the τ̇ grid and call OPTIMALSOURCE. This

function will compute the optimal value for all t in the
grid along the specified τ̇ for time step k. When execution
ends and J has been computed, the optimal cost for each
time instance along the t-axis of the grid can be found by
retrieving the smallest element in J(t, :,end). To find the
optimal trajectory for a specific execution time, J can be
used to trace the optimal path through the grid.

OPTIMALSOURCE(k, e, J(:, :, k), opt)
1 τ̇k = opt.τ̇min : opt.τ̇res : opt.τ̇max
2 hk ← EQUATION14(τ̇k, τk+1, τk, τ̇k+1)
3 uk ← EQUATION15(τ̇k, τk+1, τk, hk)
4 j ← FINDOUTOFBOUNDELEMENTS(hk, uk, opt)
5 if 0 < length(j)
6 then τ̇k(j)← remove
7 hk(j)← remove
8 uk(j)← remove
9 c1← COSTFUNCTION(τ̇k, hk, uk, k, opt)

10 tk+1 ← GETTIMEINDICES(J(:, :, k), opt)
11 Tk ← tk+1 ∗ ones(1, :)− (hk ∗ ones(1, :))T
12 Ṫ auk ← (τ̇k ∗ ones(1, :))T
13 C2← INTERPOLATE(J(:, :, k), Ṫ auk, Tk, opt)
14 C1← (c1 ∗ ones(1, :))T
15 C ← C1 + C2
16 f ← MIN(C, row)
17 Je,k+1 ← FILLUP(f, tk, opt)
18 return Je,k+1

The first 3 rows can be summarized by sampling τ̇ and
using (14) and (15) to calculate the possible sampling periods
hk, i.e compute the shape of the solid curve in Fig. 2.
If this operation generates any hk or uk that are outside
specified limits, these are purged (rows 4-9). Next, the cost
function is evaluated. This can be implemented for example
by computing a number of samples from the trajectories of
the suggested parameters. Now compute which time indices
in the grid that are relevant, i.e discard values that cannot
be reached. On rows 11 − 12, two matrices are generated
that contain the tk and τ̇(tk) values from where each tk+1

is reachable. Interpolate the values from J(:, :, k) based on
these coordinates and store in C2. Clone the values in c1 and
store in C1 so that there is one copy of c1 for each row in
C2. Sum C1 and C2 into C and use f to store the minimum
element of the rows in C, these are the optimal costs for tk+1.
All that needs to be done now is to add NaN elements into f
to correct for the time indices that were discarded on row 10,
this result is then returned in Je,k+1.

IV. A COMPUTATIONAL EXAMPLE

To demonstrate the presented method, an example with
a frictionless two-link planar robot arm has been supplied.
Table I provides the specifications for the example. The
torque requirement for the motors at any instance can be
expressed by the following equations. Their derivation can
be found in [8], pp. 148-151.



TABLE I
EXAMPLE PARAMETERS

Const. Description Value
mli Mass of the i:th link 50 [kg]
mmi Mass of the i:th join motor rotor 5 [kg]
li Distance, i:th link center of mass from axis 0.5 [m]
ai Length of the i:th link 1 [m]
Ili Moment of inertia for the i:th link 10 [kg m2]
Imi Moment of inertia for i:th join motor rotor 0.01 [kg m2]
kri Gear reduction ratio of the i:th motor 100
g Standard gravity 9.807[m/s2]

2
q

1
q

Fig. 3. In this example, the robot arm moves downwards from its upwards
position. Note that the arrows represent the positive direction of q1 and q2.

u1= (Il1 +ml1l
2
1 + k2r1Im1 + Il2 +ml2(a21 + l22 +

+2a1l2c2) + Im2 +mm2a
2
1)q̈1 + (Il2 +ml2(l22 +

+a1l2c2) + kr2Im2)q̈2 − 2ml2a1l2s2q̇1q̇2 −
−ml2a1l2s2q̇

2
2 + (ml1l1 +mm2a1 +ml2a1)gc1 +

+ml2l2gc12 (16)

u2= (Il2 +ml2(l22 + a1l2c2) + kr2Im2)q̈1 + (Il2 +

+ml2l
2
2 + k2r2Im2)q̈2 +ml2a1l2s2q̇

2
1 +ml2l2gc12 (17)

where c1 = cos(q1), c2 = cos(q2), c12 = cos(q1 + q2) and
s2 = sin(q2). For this example we will assume that the
two-jointed manipulator is to move from an upward starting
position to a horizontal end position as illustrated in Fig. 3.
As mentioned, the τ derivatives of q0 are defined via the
time optimal trajectory but with t substituted with τ . For
the current example τf = 0.75 and q0(τ) can be described
by three intervals as follows. The first interval is executed
at maximum acceleration (4π[rad/s2]) during 0 ≤ τ < 0.25,
the second at no acceleration but at saturated speed (π[rad/s])
while 0.25 ≤ τ < 0.5 and at last maximum deceleration
when 0.5 ≤ τ ≤ 0.75. This holds for both joints with the
exception that joint number one moves in negative angular
direction and the second joint in positive. Torque constraints
are assumed to be fulfilled for τ = t.

The following settings were used for the dynamic pro-
gramming algorithm. The number of time steps is set to
30, the grid size 601 × 56, τ̇res is two times that of the
τ̇ -axis resolution as well as tmax/tmin and τ̇max/τ̇min
being 3/0[s] and 1.2/0.01. Running the algorithm with these
parameters took 55[s]. Two optimized sample trajectories
with tf = 1.5[s] and 2.25[s] as well as the time optimal
trajectory (0.75[s]) are shown in Fig. 4. The energy optimal

0 0.5 1 1.5 2

-1.5

-1

-0.5

0

[r
a

d
]

Position of joint 2

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

[r
a

d
/s

]

Velocity of joint 2

0 0.5 1 1.5 2

-10

-5

0

5

10

[r
a

d
/s

2
]

Acceleration of joint 2

[s]

Fig. 4. The dotted line represents the time optimal trajectory while the
solid/dashed lines are two energy optimal trajectories with 2/3 times longer
execution time.

trajectories look significantly different even though they are
based on the same path. It should be noted that small artifacts
can be seen at the starting point of the acceleration. These
are due to the lack of a point to point formulation in the
dynamic programming model. A higher grid resolution will
decrease these. There are also some discontinuities in the
acceleration during the middle segments. These are inherent
to the second derivative of q0 being zero at the same time
as the first derivative is constant. From equation (4) one can
see how a piecewise constant τ̈ will cause piecewise constant
acceleration given these conditions.

Fig. 5 shows a comparison between linear and dynamic
time scaling. Energy consumption is plotted as a function
of execution time. Already after a 5% increase in execution
time, energy consumption is lowered by at least 4 %. When
the execution time is more than doubled, the use of energy
is decreased even further and continues to be as the available
time is increased.

Even though only one run of the algorithm has to be



1 2 3 4

2

4

x 10
6

t
f
 / t

opt

C
o

s
t 
[(

N
m

)2
s
] Dynamic scaling

Linear scaling

Fig. 5. Comparison of energy consumption when using linear and dynamic
time scaling with varying execution time. After a 5% increase in execution
time, energy consumption is lowered by at least 4%.

1 2 3 4

0

1

2

t
f
 / t

opt

E
rr

o
r 

in
 r

e
la

ti
o

n
 t
o

 b
e

n
c
h

m
a

rk
 [
%

]

    9 [s],   601x56   grid

  54 [s],   601x111 grid

108 [s], 1201x111 grid

Fig. 6. Error relative to a benchmark for varying settings. The benchmark
was performed with the following specs: 6690[s] execution time, with a
3001 × 441 size grid. All runs had Nτ = 31 and τ̇res at two times the
τ̇ -axis resolution.

performed, the grid still has to be defined large enough
to encompass all sought final time solutions. However, the
objective is to find energy functions and not optimal tra-
jectories. Trajectories can be computed later with tailored
parameters when a set execution time (t∗f ) has been decided
upon. When the approximate τ̈∗ has been calculated it might
be feasible to use a three dimensional grid to generate a
trajectory with continuous acceleration. In Fig. 6, the relative
error of lower resolution grids compared to one of very
high resolution is shown. It can be seen that the 108[s]
trial has less than 0.6% error compared to a high resolution
benchmark (6690[s]).

V. DISCUSSION AND CONCLUSION

This paper presents a dynamic programming method
which can be used to find multiple energy optimal trajectories
that follow the same path as a given trajectory. The minimum
energy cost for a given execution time can then be used to
enhance an existing scheduling algorithm which uses linear
time scaling. A two-joint planar manipulator example has
been used to investigate the efficiency of the dynamic pro-
gramming method. Comparing the optimal energy consump-
tion with that of a linear time scaling provides a benchmark
for possible improvement. This comparison has shown a min-
imum energy reduction of 4% for execution times extended
with more than 5% compared to the optimal execution time.
After a doubling of execution time, the gain from using the
energy optimal trajectory is steadily increasing. Concerning
the execution of the algorithm we observe that running the

algorithm for 108[s] at lower resolution yields less than 0.6%
error in relation to a high resolution benchmark (6690[s]).
The computational time is low enough for the method to be
tractable for generating minimum energy functions E∗(tf )
for each operation in a large system with multiple machines.

The method exhibits some computationally efficient prop-
erties. For example, the number of cost function evaluations
have been significantly lowered and do not increase with
added resolution or maximum value of the t-component
in the t/τ̇ grid. Nonuniform gridding can also be used to
lower computation time even further, as a high resolution
τ̇ -axis is only required for long execution times, while t-
axis resolution is important for shorter time intervals. For
nonuniform gridding of the t-axis, the choice of t/τ̇ as
gridded variables is far superior to that of τ/τ̇ in terms
of cost function evaluations. The task is also very easily
parallelized, as each time step in the algorithm can be split
into multiple threads.

VI. ACKNOWLEDGEMENT

This work was carried out at the Wingquist Laboratory
VINN Excellence Center within the Area of Advance –
Production at Chalmers, supported by the Swedish Govern-
mental Agency for Innovation Systems (VINNOVA). The
support is gratefully acknowledged.

REFERENCES

[1] J.E. Bobrow, S. Dubowsky, and J.S. Gibson. Time-Optimal Control
of Robotic Manipulators Along Specified Paths. The International
Journal of Robotics Research, 4(3):3–17, 1985.

[2] G. Field and Y. Stepanenko. Iterative dynamic programming: an
approach to minimum energy trajectory planning for robotic manipu-
lators. In Robotics and Automation, 1996. Proceedings., 1996 IEEE
International Conference on, volume 3, pages 2755 –2760 vol.3, April
1996.

[3] Alessandro Gasparetto and Vanni Zanotto. A technique for time-
jerk optimal planning of robot trajectories. Robotics and Computer-
Integrated Manufacturing, 24(3):415 – 426, 2008.

[4] M. E. Kahn and B. Roth. The near-minimum-time control of open-
loop articulated kinematic chains. Journal of Dynamic Systems,
Measurement, and Control, 93(3):164–172, 1971.

[5] F.L. Lewis and V.L. Syrmos. Optimal control. A Wiley-Interscience
publication. J. Wiley, 1995.

[6] B.J. Martin and J.E. Bobrow. Minimum effort motions for open chain
manipulators with task-dependent end-effector constraints. In Robotics
and Automation, 1997. Proceedings., 1997 IEEE International Con-
ference on, volume 3, pages 2044 –2049 vol.3, April 1997.

[7] D.S. Naidu. Optimal control systems. Electrical engineering textbook
series. CRC Press, 2003.

[8] L. Sciavicco, Bruno Siciliano, and B. Sciavicco. Modelling and
Control of Robot Manipulators. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2nd edition, 2000.

[9] Z. Shiller. Time-energy optimal control of articulated systems with
geometric path constraints. In Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference on, pages 2680
–2685 vol.4, May 1994.

[10] Kang Shin and N. McKay. Minimum-time control of robotic ma-
nipulators with geometric path constraints. Automatic Control, IEEE
Transactions on, 30(6):531 – 541, June 1985.

[11] Kang Shin and N. McKay. A dynamic programming approach to
trajectory planning of robotic manipulators. Automatic Control, IEEE
Transactions on, 31(6):491 – 500, June 1986.

[12] A. Vergnano, C. Thorstensson, B. Lennartson, P. Falkman, M. Pel-
licciari, Chengyin Yuan, S. Biller, and F. Leali. Embedding detailed
robot energy optimization into high-level scheduling. In Automation
Science and Engineering (CASE), 2010 IEEE Conference on, pages
386 –392, 2010.


