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Abstract

In recent years, magnetic tracking has been applied in many biomedical settings due
to the transparency of the human body to low-frequency magnetic fields. One way
to improve system performance and/or reduce system cost is to optimize the sensor
positions of the tracking system.

In this work, the sensor positions of a magnetic tracking system are optimized by
exploiting an analytical model where the transmitting and sensing coils of the system
are approximated by magnetic dipoles.

In order to compare different sensor array layouts, two performance measures based
on the Fisher information matrix are discussed and compared for the optimization of
the sensor positions of a circular sensor array. Furthermore, the sensor positioning
problem is formulated as an optimization problem which is cast as a sensor selection
problem. The sensor selection problem is solved for a planar sensor array by the
application of a convex relaxation. Several transmitter positions are considered and
general results are established for the dependence of the optimal sensor positions on
the transmitter’s position and orientation.
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1 Introduction

1.1 Magnetic tracking

Magnetic tracking deals with the determination of the position and/or orientation
of a specially designed marker or device by its interaction with low-frequency or
static magnetic fields. This tracking technique has recently been used in numerous
applications within the area of biomedical engineering. For example, Iustin et al. [1]
developed a magnetic tracking system for real-time organ-positioning during radio-
therapy of cancer tumors, and Plotkin et al. [2] designed a magnetic tracking system
for tracking of the human eye and used it to diagnose vestibular disorders. Other
biomedical applications include monitoring of heart valve prostheses [3], recogni-
tion of isolated words in silent speech by patients who have lost their larynx [4],
tracking of a wireless capsule endoscope in the gastro-intestinal tract [5], catheter
tracking [6, 7], and positioning of implanted medical devices embedded in a patient’s
bone [8]. The reason for the popularity of magnetic tracking within biomedical en-
gineering is that the human body is transparent to low-frequency magnetic fields
and, therefore, the tracking system does not have to take the details of the human
body into account.

There are also non-medical applications for magnetic tracking systems, for example
virtual and augmented reality [9], head tracking for helmet-mounted sights used by
military pilots [10] and tracking of an American football on the football pitch [11].

1.1.1 Inverse problems

Magnetic tracking systems solve a so-called inverse problem, i.e. to find character-
istic features of a source by observations or measurements of the fields caused by
the source. In contrast, the forward problem deals with finding the fields from a
known source. However, inverse problems are often formulated in terms of the for-
ward problem which is solved by the forward model fmodel(p). The forward model
takes the parameters p that describe the source by characteristics like position and
orientation as argument and returns the measured quantities, e.g. a value from a
sensor that is sensitive to the field from the source.

For a non-linear model fmodel(p), an iterative approach is normally adapted where
the misfit between model and measurements fmeas is minimized by changing the
parameters p. This corresponds to solving the optimization problem

minimize
p

J [fmeas, fmodel(p)] (1.1)

where J is a suitable cost function(-al) that measures the difference between its
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2 Chapter 1 Introduction

arguments. The most commonly chosen cost function is

J [fmeas, fmodel(p)] = ||fmeas − fmodel(p)||2L2 . (1.2)

The solution to the optimization problem, i.e. the set of parameters that minimizes
the misfit between model and measurements, constitutes the solution to the inverse
problem. For magnetic tracking systems, certain system designs allow for an esti-
mation process where p can be determined directly and, consequently, an iterative
procedure can be avoided.

1.2 System designs

Magnetic tracking systems exploit either static magnetic fields, as in for example
reference [4], or low-frequency alternating magnetic fields, as in for example refer-
ence [2]. In the static case, permanent magnets are normally used as sources and
the field is measured by Hall sensors. The corresponding function is usually fulfilled
by coils in the case with alternating fields, where the source often is referred to as
a transmitter and the sensor as a receiver. The tracked object is often equipped
with a receiver that is exposed to the field due to a set of transmitters. However,
several systems are operated in the reversed manner and, consequently, the position
and orientation of one transmitter is determined by measuring the field with several
receivers. In the following, we refer to such a system if not stated otherwise.

To allow for identification of the individual transmitted signals in a multi-transmitter
system, multiplexing in time or frequency is normally used. This is not needed in a
uni-transmitter system. The most common multi-transmitter arrangement is a flat
array, cf. reference [12]. However, several other arrangements exist, for example mul-
tiple multi-axial transmitters as described in reference [13]. Naturally, the receivers
can also be uni-axial, bi-axial and tri-axial. Further system designs are discussed by
Plotkin et al. [14]. In addition, there are examples of receivers that measure both
the magnetic field and its gradient as described in reference [15]. Iustin et al. [1]
presented a system with passive magnetic shielding that mitigates problems associ-
ated with unknown objects in the vicinity of the measurement region. Consequently,
the design process of a magnetic tracking system involves several decisions and such
design considerations are presented by Shafrir et al. [16].

1.3 Optimal measurements

In general, more sensors give higher accuracy in the estimated parameters, see for
example reference [17] for such a result for magnetic tracking systems. However,
the system cost, complexity, size etc. limit the number of sensors that can be used.
Furthermore, measurement and processing time generally increases as the number of
sensors is increased, which may be a restriction for real-time systems used for control
purposes. Therefore, it is of great interest to maximize the information collected by
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the available sensors. One possible way of achieving this is to optimize the sensor
positions. Ucinski summarizes this on page 2 of reference [18]:

“The location of sensors is not necessarily dictated by physical consider-
ations or by intuition and, therefore, some systematic approaches should
still be developed in order to reduce the cost of instrumentation and to
increase the efficiency of identifiers.”

The optimization of sensor positions is a central part of the field of optimal mea-
surements, a field that is also known as design of experiments. The field has many
applications in spatial statistics, where problems from geology, agriculture, meteo-
rology etc. are treated. Introductions to the field have been written by Ucinski [18],
Pukelsheim [19], Atkinson et al. [20], and Walter et al. [21]. A short introduction is
also given in section 3 of this report.

The theory of optimal measurements has been applied to hydrophone-based source
localization [22], robotics [23] and target tracking with moving targets [24], among
other applications. As to electromagnetic applications of optimal measurements,
Nordebo et al. [25] optimized a measurement set-up for the estimation of antenna
near-fields.

1.4 Scope of this work

Our overall aim is to optimize the sensor positions of the magnetic tracking system
described in reference [1]. In this work, we aim to formulate a performance measure
that can be used for comparison between different sensor array layouts and to use
this measure for the optimization of sensor arrays with different topology. To achieve
this, we model a generic magnetic tracking system in section 2. Performance mea-
sures are proposed and an optimization problem is formulated in section 3 whereas
section 4 presents results from the optimization of planar sensor arrays.
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2 Modeling

2.1 Introduction

Modeling of a magnetic tracking system is always needed since the model is used
in the parameter estimation process. Static and low-frequency alternating mag-
netic fields are usually modeled using the same models by the use of quasi-static
approximations for the alternating fields. A commonly used model, see for example
references [3, 10, 12], is the one which models both transmitting and receiving coils
as magnetic dipoles. Such a model is valid when the distance between the transmit-
ting and the receiving coil is large compared to the coils’ dimensions. In contrast,
Plotkin et al. [2] used a more elaborate model based on the Biot-Savart law, which
is accurate even at small distances. Under the assumption that the model based
on the Biot-Savart law is correct, the relative error of the dipole model was inves-
tigated by Roetenberg et al. [26] for circular coils and by Baszynski et al. [27] for
square coils. On an axis perpendicular to the sensor plane and passing through the
coil’s midpoint, both studies reported an relative error of 1% at a distance of 6 coil
diameters and 6 coil side lengths respectively.

An alternative approach was taken by Ge et al. [28]. For a tri-axial receiver at a
certain distance from a transmitter, the amplitude of the received signal is maxi-
mized by pointing the magnetic moment of the transmitter straight at the receiver.
If several transmitters are pointing at the receiver, the receiver position can easily
be obtained by triangulation. Ge et al. [28] proposed to exploit this with a system
that included several transmitters which could point in an arbitrary direction. The
main difficulty of such an approach is how to make the transmitters point straight
at the receiver. Unfortunately, this was not commented on, nor explained by the
authors. In particular, the received signal is insensitive to small deviations of the
transmitter orientation from the correct orientation.

Modeling errors, interference from magnetic and/or metal objects in the surround-
ings, mutual coupling between coils, an ill-designed parameter estimation procedure,
and other factors can degrade the positioning performance. Several methods have
been proposed to mitigate these effects. For example, compensation for fixed objects
in the surrounding was proposed by Raab et al. [10] and calibration procedures were
used by Plotkin et al. [29] and Li et al. [30], whereas Plotkin et al. [2] measured the
crosstalk present in the system and compensated for it in the model.

Instead of modeling the true system as accurately as possible, Paperno et al. [31]
searched for coil designs which yield a magnetic field in the vicinity of the coil that
resembles the ideal magnetic dipole field as closely as possible.

Iustin et al. [1] went one step further and generated surrogate models from measure-
ment data obtained with the transmitter in known positions. Compensation for all
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6 Chapter 2 Modeling

types of imperfections is thus possible at the expense of a lengthy calibration pro-
cedure needed to construct the surrogate model. The performance of this method
is highly dependent on the ability of the surrogate model to model the true system.
In addition, changes in the system and its surroundings between calibration and
positioning can degrade the performance of the system.

2.2 Dipole-based model

We model a generic single-frequency magnetic tracking system. The transmitting
and receiving coils are approximated by magnetic dipoles in free space. This ap-
proximation is valid when the distance between transmitter and receiver is large
compared to the size of the coil. Furthermore, the model can include an infinite
plane of a perfect magnetic conductor (PMC).

Magnetic tracking systems generally operate at frequencies lower than 200 kHz. At
200 kHz, the wavelength is approximately 1.5 km and the phase variation of the
magnetic field over the size of a magnetic tracking system is very small. Thus, we
exploit a quasi-static approximation and only consider the amplitude of the magnetic
field. The fields below are expressed as phasors such that f(t) = Re{f(ω) exp(jωt)}
where j is the imaginary unit, ω the angular frequency, and t the time.

The magnetic vector potential, A⃗, for a magnetic dipole is [32]

A⃗(R⃗) = µ0
m⃗trans × R⃗

4πR3
(2.1)

where µ0 is the permeability of free space, m⃗trans is the magnetic moment of the
dipole, and R⃗ = r⃗ − r⃗ trans is the vector of length R from the position of the dipole
r⃗ trans to the evaluation point r⃗. The corresponding magnetic flux density B⃗ is
obtained from

B⃗ = ∇× A⃗(R⃗) (2.2)

as

B⃗ =
µ0

4π

(
3(m⃗trans · R⃗)R⃗

R5
− m⃗trans

R3

)
. (2.3)

If a receiver coil with number k is placed in this magnetic field at r⃗k
rec, a voltage V

is induced in the coil and it can be expressed according to Faraday’s law as

V =− jωαrecm̂rec · B⃗ =

− jωαrecαtransItrans
µ0

4π

(
3(m̂trans · R⃗)(m̂rec · R⃗)

R5
− m̂trans · m̂rec

R3

)
(2.4)

where αrec is the number of turns times the area of the receiving coil, αtrans the
corresponding quantity for the transmitting coil, Itrans is the amplitude of the current



2.2 Dipole-based model 7

in the transmitting coil, R⃗ = r⃗k
rec − r⃗ trans, and unit vectors are indicated by a hat.

The introduction of a constant

α = jωαrecαtransItrans (2.5)

simplifies the notation of the induced voltage to

V = −α
µ0

4π

(
3(m̂trans · R⃗)(m̂rec · R⃗)

R5
− m̂trans · m̂rec

R3

)
. (2.6)

As can be seen in equation (2.6), the expression is symmetric in m̂trans and m̂rec

which makes the model invariant to changes in which coil acts as transmitter and
which coil acts as receiver (the only modification needed is in equation (2.5) where
Itrans should be changed to Irec). This is a consequence of the reciprocity of the
mutual inductance between two circuits in linear media.

2.2.1 Linearization and derivatives

In order to optimize the sensor positions (see section 3 below) the model described
above will be linearized. We therefore need to find the partial derivatives of the in-
duced voltage with respect to the position and direction of the transmitter. Receiver
electronics in the system can also be included in these derivatives and linearized,
should non-linearities be present.

The gradient of the voltage with respect to the position of the transmitter is given
by

∇(r⃗ trans)V =

[
∂V

∂xtrans
,

∂V

∂ytrans
,

∂V

∂ztrans

]T
=

= −α
µ0

4π

(
15

(m̂trans · R⃗)(m̂rec · R⃗)R⃗

R7

− 3
(m̂trans · R⃗)m̂rec + (m̂rec · R⃗)m̂trans + (m̂trans · m̂rec)R⃗

R5

)
.

(2.7)

The gradient of the voltage with respect to the position of the sensor is

∇(r⃗ rec)V = −∇(r⃗ trans)V, (2.8)

and the gradient of the voltage with respect to the magnetic moment of the trans-
mitter is given by

∇(m⃗trans)V =

[
∂V

∂m⃗trans
x

,
∂V

∂m⃗trans
y

,
∂V

∂m⃗trans
z

]T
= −α

µ0

4π

(
3(m̂rec · R⃗)R⃗

R5
− m̂rec

R3

)
.

(2.9)
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If we introduce a spherical coordinate system defined by


x = ρ sin θ cosφ
y = ρ sin θ sinφ
z = ρ cos θ

(2.10)

with its origin at the transmitting dipole, we can find the derivative of the induced
voltage with respect to the magnetic moment expressed in these coordinates. This is
useful when the dipole is rotated without changing the value of its magnetic moment.
Application of the chain rule gives


∂V

∂m⃗trans
ρ

∂V
∂m⃗trans

θ
∂V

∂m⃗trans
φ

 =


∂x
∂ρ

∂y
∂ρ

∂z
∂ρ

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂φ

∂y
∂φ

∂z
∂φ




∂V
∂m⃗trans

x
∂V

∂m⃗trans
y

∂V
∂m⃗trans

z

 =

=

 sin θ cosφ sin θ sinφ cos θ

ρ cos θ cosφ ρ cos θ sinφ −ρ cos θ

−ρ sin θ sinφ ρ sin θ cosφ 0




∂V
∂m⃗trans

x
∂V

∂m⃗trans
y

∂V
∂m⃗trans

z

 .

(2.11)

2.2.2 Infinite perfect magnetic conductor plane

Different types of magnetic materials can be used in situations where the magnetic
tracking system needs to be shielded or have its signal strength improved. We model
one such situation by the possibility to include an infinite plane modeled as a PMC
with normal vector n̂. Consider a PMC plane defined by z = 0 and a source located
in the half space z > 0. The corresponding fields and gradients in the region z > 0
can easily be computed by the method of images. The PMC plane is replaced by
artificial image sources in the region z < 0 such that the boundary condition for the
magnetic field H⃗ is satisfied on the PMC, i.e.

n̂× H⃗ = 0⃗. (2.12)

A magnetic dipole situated at r⃗ = (x, y, z), z > 0 with magnetic moment m⃗ =
(mx,my,mz) is imaged with a dipole at r⃗ image = r⃗ − 2(n̂ · r⃗)n̂ = (x, y,−z) and
magnetic moment m⃗image = 2(n̂ · m⃗)n̂− m⃗ = (−mx,−my,mz) in order to fulfill the
boundary condition on the PMC.

The total derivative (denoted with the superscript tot) of the induced voltage in a
receiving coil placed in the half space z > 0 is given as a function of the derivative
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of the original dipole (superscript ori) and the image dipole (superscript img) as

∂V tot

∂xi
=

∂V ori

∂xi
+

∂V img

∂xi

∂V tot

∂yi
=

∂V ori

∂yi
+

∂V img

∂yi

∂V tot

∂zi
=

∂V ori

∂zi
− ∂V img

∂zi

∂V tot

∂m⃗i
x

=
∂V ori

∂m⃗i
x

− ∂V img

∂m⃗i
x

∂V tot

∂m⃗i
y

=
∂V ori

∂m⃗i
y

− ∂V img

∂m⃗i
y

∂V tot

∂m⃗i
z

=
∂V ori

∂m⃗i
z

+
∂V img

∂m⃗i
z

(2.13)

where i ∈ {trans, rec}. The derivatives with respect to the magnetic moment ex-
pressed in spherical coordinates are given by application of the transformation in
equation (2.11) on the total derivatives from equation (2.13).

An infinite non-magnetic half-space z < 0 of finite conductivity can be approximated
by complex image theory as presented in reference [33], where the source is imaged
in a plane that coincides with z = zimage < 0 with zimage as a function of the skin
depth. Arumugam et al. [11] used this theory for a magnetic tracking system.
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3 Optimization of sensor positions

3.1 Introduction

Gilbert et al. [4] took an engineering approach to the optimization of sensor positions
for tracking of body parts involved in speech production. Modeling was combined
with clinical considerations to ”maximise sensitivity to desired articulator movement
while minimising the effect of implant/sensor misplacement and misorientation”. In
contrast, Shafrir et al. [16] adopted a more structured approach and employed a two-
step evolutionary algorithm to optimize the sensor positions of a magnetic tracking
system in the minimax sense, i.e. the worst-case performance was maximized. The
optimization suffered from long simulation times, partly due to the fact that ”[they]
had to run 103 iterations of the tracking algorithm” for each transmitter position in
order to evaluate the tracking error caused by additive white noise in the measured
signals. Thus, there is a need for more sophisticated performance measures to be
incorporated in structured optimization methods for the problem at hand.

In order to find such performance measures, we use concepts and theory from the
field of design of experiments and optimal measurements. The literature is vast
and we refer to the textbooks [18, 19, 20, 21] for an introduction. Applications of
optimal measurements in an electromagnetic context are rare and one example is the
work by Nordebo et al. [25] who used multi-pole expansions and theory on optimal
measurements to optimize a measurement set-up for antenna near-field estimation.

3.2 Performance measure

In order to optimize the sensor positions, a performance measure is needed that
permits different sensor array layouts to be compared to each other. In the opti-
mization procedure, a sensor array layout is sought that maximizes the performance
measure.

We express our performance measure in terms of the so-called Fisher information
matrix (FIM) which is derived in section 3.2.1. One such performance measure is
based on the concept of D-optimality which is introduced in section 3.2.2.

3.2.1 Fisher information

Consider a situation where we want to determine the five degrees of freedom of a
transmitting magnetic dipole (we assume that the total magnetic moment is known)
by measuring the induced voltage in each of the sensors in a sensor array. Let p ∈ Rp

11
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denote the vector of parameters that we want to estimate. In our case, the parameter
vector includes the three spatial coordinates of the transmitter as well as the two
angles that describe its orientation, i.e. p = 5 and

p =
[
xtrans, ytrans, ztrans, θtrans, φtrans

]T
(3.1)

where aT denotes the transpose of a vector a. Assume that the position and direction
of the transmitting dipole is described by p0, that is a point in the parameter space.
The signal measured by the N rec sensors Vmeas(p0) ∈ RNrec

is modeled as the true
signal V(p0) plus additive Gaussian noise as

Vmeas(p0) = V(p0) + n,

n ∈ N (0, σ2I)
(3.2)

where the entries of n ∈ RNrec
are independent and identically distributed (i.i.d),

N (µ,C) denotes the multivariate Gaussian distribution with mean µ ∈ RNrec
and

covariance matrix C ∈ RNrec×Nrec
, and I is the N rec-dimensional identity matrix.

Now, express the true signal as a Taylor expansion in the parameter space around
the point p0 as

V(p0 + δp) = V(p0) +∇pV(p0)δp+H.O.T. (3.3)

where δp is the deviation from p0, H.O.T signifies higher order terms, and

∇pV(p0) = G =


∇pV1(p0)

T

∇pV2(p0)
T

...
∇pVNrec(p0)

T

 (3.4)

is the sensitivity matrix where Vi is the signal measured with receiver i. By neglect-
ing the higher order terms in equation (3.3) and equating this expression with the
expression for the measured signal in equation (3.2) we obtain

Gδp = −n (3.5)

and

δp = −G−1n (3.6)

where G−1 denotes the (pseudo-)inverse.

Following from the behavior of the multivariate normal distribution under affine
transformations1 and equations (3.2) and (3.6), we get

δp ∈ N (0,G−1σ2I(G−1)T ) = N (0, σ2(GTG)−1). (3.7)

1If X ∈ N (µ,Σ) then Y = c + BX ∈ N (c + Bµ,BΣBT ) where X, µ ∈ Rm, Σ ∈ Rm×m,
Y, c ∈ Rn, and B ∈ Rn×m.
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The Fisher information matrix M = GTG ∈ Rp×p corresponds to a sum of the
sensors’ individual Fisher information matrices as

M = GTG =
Nrec∑
i=1

Mi =

=
Nrec∑
i=1


(

∂Vi

∂xtrans

)2 (
∂Vi

∂xtrans

)(
∂Vi

∂ytrans

)
. . .

(
∂Vi

∂xtrans

)(
∂Vi

∂φtrans

)
...

...(
∂Vi

∂φtrans

)(
∂Vi

∂xtrans

) (
∂Vi

∂φtrans

)(
∂Vi

∂ytrans

)
. . .

(
∂Vi

∂φtrans

)2
 .

(3.8)

Note that this relationship holds true only when the noise terms are independent.
From equation (3.7), we see that the deviation of our estimate from the true value
depends on the inverse of the FIM. Maximizing, in some sense, the FIM therefore
corresponds to minimizing the errors in the estimated parameters that are due to
the noise. This follows from the Cramér-Rao inequality, see [21],

cov p̂ ≽ M−1 (3.9)

which gives a lower bound for the covariance of the estimated parameter p̂ for an
unbiased estimator. Note that the inequality should be understood in the sense that
A ≽ B is equivalent to A − B ≽ 0 which corresponds to that A − B is positive
semi-definite.

The FIM can be derived and interpreted in several other ways. For example, the
FIM can be seen as the Hessian of the least-squares criterion, i.e. the l2-norm of
the difference between the measured values and their modeled counterparts [18].
Furthermore, the FIM is also closely related to the Hessian of the log-likelihood
with respect to the estimated parameters [21].

3.2.2 D-optimality

It is, in general, not possible [18] to find an optimal FIM, i.e. a M∗(p) such that

M∗(p) ≽ M(p), ∀M ̸= M∗. (3.10)

Therefore, one often seeks to minimize some real-valued function Ψ(M). There
exists a vast number of such functions, see for example references [18] and [20], from
which we have chosen the standard choice

Ψ(M) = − ln det(M). (3.11)

Successful minimization of this function leads to a so-called D-optimal solution
where the D stands for determinant. (Many of the alternatives to this function
are described with other letters such as A, E, and T wherefore the derogatory term
alphabetic criteria sometimes is used). The D-criterion is intended to minimize the
volume of the uncertainty ellipsoid (for a fixed noise level) described by M−1 in
equation (3.9). One attractive feature of the D-criterion is that it is invariant to the
scaling of the estimated parameters [18].
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3.2.3 Ds-optimality

In some situations, only a subset of the parameters in p are of interest but the entire
set of parameters needs to be estimated in order to achieve a successful estimation.
For example, in magnetic tracking only the position of the transmitter might be of
interest, but the estimation algorithm is formulated such that also the orientation of
the transmitter must be estimated concurrently. Parameters that are of no interest
except that they are needed in the estimation process are called nuisance parameters.

In contrast to D-optimality where the determinant of the entire inverse of M is
minimized, Ds-optimality is intended to minimize the determinant of the block of
M−1 that is related to the interesting parameters.

Assume that we are interested in the first ps parameters of p. The Ds-optimality
criterion is then the determinant of the ps×ps upper left block ofM−1. The complete
inversion of M can be avoided by using the following formulas from reference [21].
Let

M =

[
M11 M12

M21 M22

]
, (3.12)

assume that M22 is non-singular and let

Γ = M11 −M12M
−1
22 M21.

The inverse of M is then given by

M−1 =

[
Γ−1 −Γ−1M12M

−1
22

−M−1
22 M21Γ

−1 M−1
22 +M−1

22 M21Γ
−1M12M

−1
22

]
(3.13)

from where the Ds-optimality criterion to be minimized is

Ψ(M) = ln det(Γ−1) = ln det((M11 −M12M
−1
22 M21)

−1) (3.14)

which is equivalent to minimizing

Ψ(M) = − ln det(M11 −M12M
−1
22 M21). (3.15)

3.3 Formulating an optimization problem

We seek to find the optimal sensor positions for our magnetic tracking system when
the transmitter is within the measurement domain Ωp, which is a limited part of
the complete parameter space. Thus, we wish to solve

minimize
r⃗k

Ψ(M(p; r⃗1, . . . , r⃗Nrec)) = − ln det(M(p; r⃗1, . . . , r⃗Nrec))

subject to p ∈ Ωp

k = 1, . . . , N rec.

(3.16)

Three major problems are common when solving problems of this type [18]:
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1. High dimensionality of the multimodal optimization problem
In the case of a planar sensor array, there are two coordinates to determine
for each sensor wherefore the number of parameters to optimize is 2N rec. The
cost function may also contain many local minima which makes it hard to find
a global optimum.

2. Sensor clusterization
As a consequence of the assumption of uncorrelated noise between measure-
ments, sensors could end up close to or on top of each other in the optimal
solution. This is not desired in general since the assumption of uncorrelated
noise is not true for several sensor types when the sensors are close to each
other (cf. mutual coupling in the magnetic tracking case). Furthermore, tech-
nical limitations may set limits to how closely spaced the sensors can be.

3. Dependence of the solution on the parameters to be identified
In the formulation of M, we linearize the expression for the measured voltages
around a certain point in the measurement domain. However, the linearization
is only valid in a small region around this point, a region that usually is smaller
than the measurement domain.

In this work, we restrain ourselves to a measurement domain which only includes
one point. This point can then be moved to different positions in the measurement
domain of the system we want to model. Inclusion of the entire measurement domain
will be carried out in our future work, see section 5.

3.4 Sensor selection

One way to alleviate the sensor clusterization problem, when solving the optimiza-
tion problem (3.16), is to specify a finite number J of allowed sensor positions. The
problem is thereby changed into a combinatorial one

minimize
wj

− ln det

(
J∑

j=1

wjMj(p)

)
subject to p ∈ Ωp

wj ∈ {0, 1}, j = 1, . . . , J∑
j

wj = N rec

(3.17)

where we seek which N rec sensors among the J candidates to use (wj = 1). There
are

(
J

Nrec

)
combinations wherefore an exhaustive search is tractable only for small

problems.

An approximate solution to the problem in equation (3.17) can be obtained by
relaxing the constraint on the weights [34] so that they become real numbers instead
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of integers, that is

minimize
wj

− ln det

(
J∑

j=1

wjMj(p)

)
subject to p ∈ Ωp

wj ∈ [0, 1], j = 1, . . . , J∑
j

wj = N rec.

(3.18)

The relaxed problem is convex [34] and the possible multimodality of the optimiza-
tion problem has thereby been removed. The value of the cost function of the
solution to the relaxed problem is clearly a lower bound to the same quantity of the
non-relaxed problem since the feasible set of the non-relaxed problem is a subset of
the relaxed problem’s feasible set [35].

3.5 Number of sensors

In order to estimate p parameters, at least p independent measurements are needed.
In our case p = 5 and, consequently, we need at least five sensors. However, sensors
can be “blind” in some parts of the parameter space. For example, consider a
transmitter oriented along the x-axis at (0, 0, 1) and a line of sensors oriented along
the z-axis positioned at (xi, 0, 0). Let the transmitter move an infinitesimal distance
in the y-direction. The sensors will be unable to distinguish if the transmitter has
moved in the positive or negative y-direction since the measured field stays constant,
that is ∂Vi

∂ytrans
= 0. Similar problems are discussed by McGary et al. [36] for a system

with two tri-axial sensors.

The parameter estimation can be successful even if some sensors are blind. How-
ever, unambiguous parameter estimation is not possible if the sensitivity matrix
G, defined in equation (3.4), does not have full rank. Thus, several vectors in
the parameter space correspond to the same measured signals for a rank-deficient
sensitivity matrix.

The minimum number of sensors needed is therefore p plus the maximum number
of concurrently blinded sensors. Shafrir et al. [16] employed differential evolution (a
type of evolutionary algorithm) in a simulation-based maximization of the condition
number of the sensitivity matrix and showed that unambiguous parameter estima-
tion is not possible with five, six, or seven sensors for a magnetic tracking system
with a flat sensor array. Plotkin et al. [12] claimed that not more than two sensors
can be blinded simultaneously for their specific sensor layout which comprises eight
sensors.

An interesting result on the number of sensors is obtained if the problem in equa-
tion (3.17) is modified slightly before being relaxed. Allow multiple measurements to
be performed with the same sensor and let wj denote the number of measurements
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performed with sensor j. The number N rec is now the total number of experiments.
Introduce λj = wj/N

rec which is the fraction of the total number of measurement
which is performed with sensor j. After relaxation (which can be easily motivated
if the number of measurements is large), the problem is changed into

minimize
λj

− ln det

(
J∑

j=1

λjMj(p)

)
subject to p ∈ Ωp

λj > 0, j = 1, . . . , J∑
j

λj = 1.

(3.19)

By application of Caratheodory’s theorem one can show, see reference [21], that the
D-optimal solution uses at most p(p + 1)/2 sensors. In general, for any choice of
optimality criterion Ψ(M), the maximum number of sensors is [p(p+ 1)/2] + 1.
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4 Results

4.1 Optimization of a circular sensor array

4.1.1 D-optimal sensor positions

We start by reducing the dimensionality of the optimization problem in (3.16) and
confine our sensors to a circle of radius r on which the sensors are uniformly po-
sitioned. Furthermore, we reduce the measurement domain to a point, that is
Ωp = {p0}. The optimization problem we solve is thus

minimize
r

Ψ(M(p; r)) = − ln det(M(p; r))

subject to p = p0.
(4.1)

We solve the problem by performing an exhaustive search with a resolution in r
of 0.01 z0 where z0 is the height of the implant above the sensor plane as shown
in figure 4.1. We compare the performance of sensor arrays with 5, 8, and 16
sensors. These numbers are used since 5 is the smallest number of sensors needed
to estimate the five parameters in p, 8 is the smallest number of sensors needed to
avoid a degenerated problem according to Shafrir et al. [16], and 16 since it is the
first even number larger than p(p+1)/2 = 15 which is the upper limit to the number
of sensors used by a D-optimal solution to the problem in equation (3.19).

We solve the problem for two different transmitter positions. In the first, the trans-
mitter is positioned straight above the center of the sensor circle, with a magnetic
moment pointing along the y-axis, that is p0 = [0, 0, z0, 90

◦, 90◦]T . In the second,
the transmitter has been moved away from the circle center and it is making an
angle to the sensor plane: p0 = [z0/3, z0/3, z0, 70

◦, 90◦]T . The non-centered (second)
transmitter position is shown in figure 4.1.

The cost function is given in figure 4.2 for the centered transmitter position as a
function of the normalized radius of the array, r/z0. The left hand plot of figure 4.2
shows that optimal performance is given by an array which is neither too small
nor too large. This result agrees well with the intuitive idea that the sensors of a
small array will collect similar information whereas a large array will suffer from low
signal levels due to the increased distance between the transmitter and the sensors.
An optimal array size will have the best balance between these two effects. In our
case, this balance is achieved for a radius of 0.47 z0 for all three arrays. Clearly, an
array with a large number of sensors will perform better than an array with fewer
sensors due to the impact from noise being reduced by averaging. We have therefore
normalized the cost function with respect to the number of sensors in the right hand
plot of figure 4.2 by using the identity

det(xA) = xp detA (4.2)

19
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Figure 4.1. Circular sensor array with five sensors and a non-centered transmit-
ter. Sensor and transmitter positions are indicated by stars whereas arrows show
the orientation of their magnetic moments.
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Figure 4.2. Cost function for a circular sensor array with 5, 8, and 16 sensors
as a function of array radius, without (left) and with (right) normalization with
respect to the number of sensors for a centered transmitter. The radius has been
normalized with respect to the transmitter height above the sensor plane (z0).

where A is p× p. The normalized cost function is thus

− ln det(M(p)) + p ln(N rec) = − ln det

(
M(p)

N rec

)
(4.3)

where N rec is the number of sensors. The normalized cost function does not change
if a sensor is added to the array in the same place as an already existing sensor. As
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Figure 4.3. Cost function for a circular sensor array with 5, 8, and 16 sensors
as a function of array radius, without (left) and with (right) normalization with
respect to the number of sensors for a non-centered transmitter. The radius has
been normalized with respect to the transmitter height above the sensor plane
(z0).

can be seen in the figure, additional sensors added after the first five only provide an
improvement in the averaging of noise and does not provide any new information.

The cost function for the non-centered implant is shown in figure 4.3. The optimal
radius is [0.55, 0.59, 0.60] ∗ z0 for an array with 5, 8, and 16 sensors respectively.
Furthermore, the right hand plot in the figure shows that new information is gained
by an increase in the number of sensors from 5 to 8. A similar, but much smaller
gain, is obtained by an increase from 8 to 16 sensors.

The cost function behaves similarly if an infinite PMC plane is added 0.085 z0 below
the plane with the sensors. The optimal value of the radius is now 0.5 z0 for the
centered case and [0.57, 0.62, 0.62] ∗ z0 for the non-centered case. In addition, the
minimum value of the cost function is lower with the PMC plane than without it.
An explanation could be that the PMC plane increases the measured signal strength
and, therefore, the sensors can move further away from the transmitter to receive
more diverse information.
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Free space PMC plane
N rec D Ds-position Ds-angle D Ds-position Ds-angle

5 0.47z0 0.55z0 0.56z0 0.50z0 0.58z0 0.60z0
8 0.47z0 0.55z0 0.56z0 0.50z0 0.58z0 0.60z0
16 0.47z0 0.55z0 0.56z0 0.50z0 0.58z0 0.60z0

Table 4.1. Optimal radius for a circular sensor array as a function of the
number of sensors, optimality criterion, and presence of an infinite PMC plane.
The transmitter is in the centered position.

Free space PMC plane
N rec D Ds-position Ds-angle D Ds-position Ds-angle

5 0.55z0 0.56z0 0.75z0 0.57z0 0.59z0 0.79z0
8 0.59z0 0.62z0 0.73z0 0.62z0 0.65z0 0.77z0
16 0.60z0 0.62z0 0.73z0 0.62z0 0.65z0 0.77z0

Table 4.2. Optimal radius for a circular sensor array as a function of the
number of sensors, optimality criterion, and presence of an infinite PMC plane.
The transmitter is in the non-centered position.

4.1.2 Ds-optimal sensor positions

We consider the same circular array and transmitter positions as in section 4.1.1
above and try to find the array radius that minimizes the Ds-criterion as described
in equation (3.15). First, we optimize for the subset of p that contains the three
spatial coordinates and refer to this as “Ds-position”. Next, we perform a similar
task for the two angular components and refer to this as “Ds-angle”.

The cost function has similar shape for the Ds-optimality criteria as for the D-
optimality criteria as shown in figures 4.2 and 4.3 above. The optimal radii are
summarized in table 4.1 for the centered transmitter and in table 4.2 for the non-
centered transmitter. Both choices of parameter subset for the Ds-criterion yield
radii that are larger than the D-optimal radius. Of the Ds-optimal radii, the Ds-angle
radius is consistently larger than the Ds-position. This result is in agreement with the
results on page 47 in reference [16] where the sensor array optimized for orientation
resolution is larger than the sensor array optimized for location resolution. As
before, the optimal radius is larger for a non-centered transmitter than for a centered
transmitter.

The addition of a PMC plane beneath the sensors causes the optimal radii to in-
crease slightly regardless of which optimality criterion is used. The optimal radii
are presented in table 4.1 for the centered transmitter position and in table 4.2 for
the non-centered transmitter position.

It is interesting to note that the D-optimal radius is not a convex combination of
the Ds-position radius and the Ds-angle radius, instead it is smaller than both of
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them.

Figure 4.4 shows the cost functions for the D, Ds-position, and Ds-angle optimality
criteria for a centered transmitter where the radius of the array has been varied
over a larger interval than before. The peaks in the curves show when the problem
degenerates. For example, for a radius of 1.41 z0, the transmitter orientation is nearly
impossible to determine as showed by the peak in the Ds-angle curve. Similarly, the
transmitter position is difficult to estimate for a radius of 2.00 z0, as shown by the
peak in the Ds-position curve. Peaks are present at both these radii for the curve
associated with the D-optimality criterion.

4.2 Optimization of a planar sensor array

Consider a planar sensor array consisting of 2009 sensors placed on a Cartesian
grid with |x| ≤ 100mm, |y| ≤ 120mm and a cell size of 5mm in each direction.
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Furthermore, consider a measurement domain Ωp defined by

x ∈ [−50, 50]mm,

y ∈ [−50, 50]mm,

z ∈ [100, 200]mm,

θ ∈ [70◦, 110◦],

φ ∈ [70◦, 110◦].

(4.4)

We wish to solve the sensor selection problem in equation (3.18) for this sensor array
and measurement domain. The problem is simplified by reducing the measurement
domain to a point. However, we will investigate how the solution changes for differ-
ent positions of the point in the measurement domain. To solve the sensor selection
problem in equation (3.18), we use CVX, a package for specifying and solving convex
programs [37, 38].

By symmetry, a translation of the transmitter parallel to the sensor plane and a
rotation of the transmitter around the z-axis result in a similar transformation
of the sensor weights as long as the sensor candidates’ positions permit such a
transformation. Thus, the impact of x, y, and φ on the sensor weights is understood
and, therefore, we investigate the impact of z and θ in the following.

The sensor selection problem is solved for the two extreme values of z in Ωp. For a
transmitter located close to the sensor plane with p = [0 cm, 0 cm, 10 cm, 90◦, 90◦]T ,
the optimal distribution of weights is shown in the left-hand part of figure 4.5. The
right-hand part of the same figure shows the positions of the 8 sensors with largest
weights. These weights constitute 68.6% of the total sum of weights.

Similarly, for a transmitter positioned far away from the sensor plane with p =
[0 cm, 0 cm, 20 cm, 90◦, 90◦]T , the optimal distribution of weights and the positions
of the 8 sensors with largest weights are shown in figure 4.6. In this case, the 8
largest weights constitute 84.2% of the total sum of weights. In figures 4.5 and 4.6
we see that the distribution of weights consists of a few peaks surrounded by values
which are close to zero. There are 6 peaks in both figures wherefore the optimal
number of sensors for this transmitter position is 6 if the noise averaging effect is
neglected. This is also reflected by the positions of the sensors with largest weights,
where we see that the sensors cluster around the 6 best positions.

Some of the best sensor positions seem to be located on straight lines parallel with
the x- and y-axes. This might not be the case if the cell size of the sensor grid is
decreased.

The distance between the transmitter and the sensor plane is double for the results
in figure 4.6 as compared to the situation for the results in figure 4.5. Similarly, the
distance from the origin to the optimal sensor positions have doubled and the sensor
pattern in figure 4.6 is just a radially scaled version of the pattern in figure 4.5 when
clusterization effects and cell size have been compensated for.

The impact of the transmitter orientation is illustrated by the result for a transmitter



4.2 Optimization of a planar sensor array 25

x, [m]

y,
 [m

]
Weights, log

10
(w), [.]

 

 

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

−8

−7

−6

−5

−4

−3

−2

−1

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

Sensor positions

x, [m]

y,
 [m

]
Figure 4.5. Optimal sensor weights (left) and sensor positions of the
8 sensors with largest weights (right) for a transmitter situated at p =
[0 cm, 0 cm, 10 cm, 90◦, 90◦]T .
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Figure 4.6. Optimal sensor weights (left) and sensor positions of the
8 sensors with largest weights (right) for a transmitter situated at p =
[0 cm, 0 cm, 20 cm, 90◦, 90◦]T .

situated at p = [0 cm, 0 cm, 20 cm, 70◦, 90◦]T as shown in figure 4.7. The rectangular
shape of the sensor positions obtained for θ = 90◦ has now turned into a conical
one. The sensors positioned in the half-plane at which the transmitter is pointing
downwards have approached the midline x = 0 whereas the sensors in the opposite
half-plane have moved away from the midline. It is also interesting to note that the
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Figure 4.7. Optimal sensor weights (left) and sensor positions of the
8 sensors with largest weights (right) for a transmitter situated at p =
[0 cm, 0 cm, 20 cm, 70◦, 90◦]T .

sensors formerly on the line y = 0 have moved into the lower half-plane. For this
transmitter position 70.5% of the total weight is used by the 8 sensors with largest
weights.

In conclusion, the positions and pattern of the sensor array with optimally placed
sensors depends on the position and orientation of the transmitter. For a transmitter
oriented in parallel with the sensor plane, the optimal sensor configuration is a
rectangle with sensors at the corners and at the midpoints of the long sides. A
movement of the transmitter in the x- and y-directions corresponds to a similar
movement of the sensors. If the transmitter is rotated around the z-axis, i.e. φ
is changed, so are the optimal sensor positions. An increase in the transmitters
z-coordinate causes the sensor positions to move away from the origin. Finally,
rotating the transmitter by changing θ causes the sensor rectangle to assume the
shape of a part of a cone.

Clearly, it is not a trivial task to optimize the sensor positions for an arbitrary
measurement domain, which is discussed further in section 5.



5 Conclusion

In this work, the sensor positions of a magnetic tracking system were optimized by
exploiting a model where the transmitting and receiving coils of the system were
approximated by magnetic dipoles. The model can also include an infinite PMC
plane that is modeled with the method of images.

In order to compare different sensor array layouts, performance measures based on
the Fisher information matrix (FIM) were discussed. Two optimality criteria acting
on the FIM were exploited, namely D- and the Ds-optimality, and compared for
the optimization of the sensor positions of a circular sensor array. Furthermore,
a normalized version of the D-optimality criterion was proposed to measure the
additional information added by a sensor apart from its contribution to the averaging
of noise.

The sensor position problem was formulated as an optimization problem which was
cast as a sensor selection problem. The sensor selection problem was solved by the
application of a convex relaxation. The convex optimization problem was solved
for a planar sensor array. Several transmitter positions were considered and general
results were established for the dependence of the optimal sensor positions on the
transmitter’s position and orientation.

Our future work includes the following items:

• Further investigation on performance measures.

• Optimization for a complete measurement domain, also known as robust de-
signs. This is based on a design decision: should the average accuracy, the
accuracy in the worst case (so-called minimax designs), or some other quantity
be considered? Several techniques exist in the literature for solving these types
of problems as described in references [16, 18, 21, 35].

• Local optimization can in some cases improve the approximate solution ob-
tained from the relaxed problem. See, for example, the sensor exchanging
scheme in reference [35].
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