
Enhanced gauge groups inN ¼ 4 topological amplitudes and Lorentzian Borcherds algebras

Stefan Hohenegger1,* and Daniel Persson2,†,‡

1Max—Planck—Institut für Physik, Werner—Heisenberg—Institut, Föhringer Ring 6, 80805 München, Germany
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We continue our study of algebraic properties of N ¼ 4 topological amplitudes in heterotic string

theory compactified on T2, initiated in arXiv:1102.1821. In this work we evaluate a particular one-loop

amplitude for any enhanced gauge group h � e8 � e8, i.e. for arbitrary choice of Wilson line moduli. We

show that a certain analytic part of the result has an infinite product representation, where the product is

taken over the positive roots of a Lorentzian Kac-Moody algebra gþþ. The latter is obtained through

double extension of the complement g ¼ ðe8 � e8Þ=h. The infinite product is automorphic with respect to

a finite index subgroup of the full T-duality group SOð2; 18;ZÞ and, through the philosophy of Borcherds-
Gritsenko-Nikulin, this defines the denominator formula of a generalized Kac-Moody algebra GðgþþÞ,
which is an ’automorphic correction’ of gþþ. We explicitly give the root multiplicities of GðgþþÞ for a
number of examples.
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I. INTRODUCTION

This work is a continuation of our previous analysis [1]
of a particular class of BPS-saturated higher string-loop
amplitudes F g, arising in type II string theory compacti-

fied on K3� T2, which are captured by correlation func-
tions of the N ¼ 4 topological string [2]. For any loop
order g, the dual amplitudes in heterotic string theory
compactified on T6 receive contributions at all loop orders
in (heterotic) perturbation theory. However, the leading
contribution in the weak coupling limit is a one-loop ex-
pression which can be studied in detail. In particular,
following a similar analysis of Harvey and Moore in the
N ¼ 2 setting [3,4], one can explicitly perform the world-
sheet torus integral and analyze its algebraic and modular
properties. The latter are expected as a consequence of the
familiar worldsheet SLð2;ZÞ-invariance of the integrand.
Mathematically, heterotic one-loop amplitudes fall into the
category of so-called ‘‘singular theta correspondences,’’ as
analyzed in detail by Borcherds [5,6]. This means that the
worldsheet SLð2;ZÞ and the target space T-duality group
SOð6; 22;ZÞ form a dual reductive pair within a larger
metaplectic group, and integrating over the fundamental
domain of SLð2;ZÞ thus induces good modular properties
under the T-duality group.

We focus on an analytic piece of the one-loop in-
tegral which is characterized by the fact that it does
not violate a particular class of supersymmetric Ward
identities discussed in [2,7] (see also [8,9]). Upon splitting

T6 ¼ T4 � T2, we evaluate F analy
1 explicitly in the large-

volume limit of T4 using the method of orbits [3,10] (or in

mathematical parlance, the Rankin-Selberg method), for
any choice of the unbroken gauge group h � e8 � e8.
In particular, we allow for h to be semisimple, thus ex-
tending previous results in the literature where always one
e8-factor remained unbroken [3,11–15]. Equivalently, we
allow for Wilson lines to be embedded in any of the factors
in the sum e8 � e8. As we will see, in this setting the theta
correspondence is generalized to subgroups of SLð2;ZÞ
and the T-duality group, respectively.
Taking the above mentioned modular properties into

account, we show further that part of the analytic in-

tegral F analy
1 can be written as an infinite product over

the positive root lattice of the Lorentzian Kac-Moody
algebra gþþ, which is a double extension of the comple-
ment g ¼ ðe8 � e8Þ=h. In the spirit of [16,17], the infinite
product so obtained then defines an ‘‘automorphic correc-
tion’’ GðgþþÞ of gþþ. The correction GðgþþÞ is a
Borcherds-Kac-Moody (BKM) algebra with real root lat-
tice coinciding with the root lattice of gþþ. The BPS-

integral F analy
1 can then be related to the denominator

formula of the BKM algebra GðgþþÞ.
This paper is structured as follows. In Sec. II, we discuss

some relevant features of Wilson line moduli in Narain
compactifications, with special emphasis on how the split-
ting of the Narain-lattice �6;22 depends on the enhanced
gauge group h � e8 � e8. Then, in Sec. III, we first recall
the structure of the N ¼ 4 topological amplitudes F g,

focusing on the role of harmonicity, which allows us to

single out the analytic partF analy
g of the full amplitudeF g.

In Sec. III B, we evaluate the one-loop integral F analy
1

explicitly, and in Sec. III C, we show how to write part of
the result in terms of an infinite product, from which we
extract the denominator formula �gðyÞ of the BKM

algebra GðgþþÞ. We show that the automorphic properties
of the denominator formula with respect to a subgroup
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G � SOð2; 18;ZÞ can be made manifest through an inte-
gral representation of �gðyÞ, corresponding to a theta cor-

respondence for certain congruence subgroupsG� �½0� �
SOð2; 18;ZÞ � SLð2;ZÞ. In Sec. IV, we further analyze
some particular examples in detail. Finally, we end in
Sec. V with a discussion of our results and suggestions
for future work. Various calculational details and some
relevant mathematical background are relegated to the
three Appendices A, B, and C.

II. WILSON LINE MODULI IN NARAIN
COMPACTIFICATIONS

We start by reviewing some basic facts about toroidal
compactifications of the E8 � E8 heterotic string. The
classical moduli space for heterotic string theory on T6 is
described by the coset space

M ¼ ðSLð2;RÞ=Uð1ÞÞ � ðSOð6; 22Þ=ðSOð6Þ � SOð22ÞÞÞ;
(2.1)

where the first factor encodes the heterotic ‘axio-dilaton’,
while the second factor accounts for the remaining Narain
moduli of the torus. In order to make contact with the
topological amplitudes analyzed in Sec. III, we only need
to consider the perturbative string spectrum. The latter
consists of the states that are created from a momentum
ground state labeled by ðpL; ~p;pR; ~pÞ by the action of the
oscillators. Here, the compactified (and internal) momenta
take values in the Narain-lattice,1 ðpL; pRÞ 2 �6;22, while
~p describes the space-time momentum, i.e. the uncompac-
tified 4-dimensional theory. The T-duality group, which
leaves the Narain-lattice invariant, is SOð6; 22;ZÞ, and thus
the quantum moduli space is the quotient of (2.1) by this
arithmetic group.

For the one-loop string amplitudes it will be important to
realize that the BPS-states come in two different classes:
Since the compactification of heterotic string theory on T6

preserves N ¼ 4 supersymmetry we may distinguish be-
tween 1=2 BPS-states associated with short multiplets, and
1=4 BPS-states associated with intermediate multiplets. As
has been discussed in [18], all 1=4 BPS-states are non-
perturbative and only the 1=2 BPS-states are perturbative.
Thus, perturbative topological amplitudes only receive
contributions from 1=2 BPS-states.

A. The sublattice �g � �6;22

In the following, we shall be interested in a certain
sublattice �g of the full momentum lattice �6;22. In order

to describe this sublattice, we proceed in two steps. First,
we split T6 ¼ T2 � T4, and take the large-volume limit of
the T4, effectively setting the T4 momenta to zero. This
corresponds to restricting ourselves to momentum ground

states in the even self-dual lattice �2;18 of signature ð2; 18Þ,
which is obtained by splitting

�6;22 ¼ �2;18 � �4;4; (2.2)

where �4;4 describes the momenta of the T4. Notice that we
are, therefore, effectively considering E8 � E8 heterotic
string theory compactified on T2, for which the compo-
nents in �2;18 characterize the momentum ground states.
The moduli space of such compactifications is described
by the Kähler (T) and complex structure (U) moduli of T2,
as well as by two real Wilson lines ~v� 2 R16, � ¼ 1, 2. At
a generic point in this moduli space, a general element of

the momentum lattice �2;18 can be parametrized as x ¼
ðm1; n1;m2; n2; ~‘Þ, where ðm1; m2Þ and ðn1; n2Þ are the

momentum and winding numbers along T2, while ~‘ 2
�e8

��e8
, where �e8

is the root lattice of the Lie algebra

e8. The inner product on �2;18 is defined by

hxjx0i ¼ �m1n
0
1 � n1m

0
1 �m2n

0
2 � n2m

0
2 þ ~‘ � ~‘0; (2.3)

where the first four terms represent the Lorentzian inner
product on �2;2 ’ �1;1 ��1;1, and the last term is the
standard Euclidean inner product inherited from R16 �
�e8

��e8
. For a given vector x ¼ ðm1; n1;m2; n2; ~‘Þ 2

�2;18, the actual internal momentum is then a vector
in R16:

~PðxÞ ¼ n1 ~v1 þ n2 ~v2 þ ~‘: (2.4)

In the following, we want to consider the subspace of the
moduli space where the Wilson lines ~v� break the e8 � e8
gauge symmetry to a fixed unbroken gauge symmetry h,

e 8 � e8 ! h with h � g � e8 � e8; (2.5)

where g is the maximal commuting subalgebra in e8 � e8.
To describe this compactly, we first combine ~v1 and ~v2 into

a complex Wilson line ~V ¼ ~v1 þ i ~v2. Given ~V, we then
denote by �h the sublattice of �e8

��e8
consisting of all

vectors that are orthogonal to the complex Wilson line ~V
(or equivalently to both real Wilson lines ~v�),

�h ¼ f ~d 2 �e8
��e8

: ~d � ~V ¼ 0g: (2.6)

The vectors of length squared two in�h are the roots of the

unbroken Lie algebra h. The commutant of h in e8 � e8
defines the Lie algebra g, whose root lattice is spanned by
the roots of e8 � e8 that are orthogonal to�h [see Eq. (2.5)].

Adding to the corresponding root lattice the T2 torus direc-
tions in �2;2 leads to the sublattice �g � �2;18. More for-

mally, �g is defined as

�g ¼ fx 2 �2;18: ~PðxÞ 2 �?
h
g; (2.7)

where ~PðxÞwas defined in (2.4). Note that the root lattice�g

is the sublattice of �g generated by the vectors of the form

ð0; 0; 0; 0; ~‘Þ 2 �g, where
~‘ is orthogonal to �h. If g is

1In our conventions, the left-movers are ‘‘supersymmetric’’,
while the right-movers are ‘‘bosonic’’.
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semisimple (i.e. g ¼ L
n
i¼1 gðiÞ with n > 1 and gðiÞ

simple Lie algebras), we will adopt the notation

~‘ ¼ ð ~‘1; . . . ; ~‘nÞ; with ~‘i 2 �gðiÞ ; (2.8)

and the inner product inherited from �2;18 becomes

hxjx0i ¼ �m1n
0
1 �m0

1n1 �m2n
0
2 �m0

2n2 þ
Xn
i¼1

~‘i � ~‘0i;

x; x0 2 �g: (2.9)

Furthermore, by definition of �h, n1 ~v1 þ n2 ~v2 2 �?
h
, and

hence �g has signature (2, 2þ k) where k ¼ rkðgÞ. Since
�h is naturally a sublattice of �2;18 (corresponding to

choosing ni ¼ mj ¼ 0), we have

�g ��h � �2;18; (2.10)

and the sublattice on the left hand side is of maximal rank.
Generically, �g ��h is a proper sublattice of �2;18 with

index s. We can write the decomposition

�2;18 ¼ ð�g ��hÞ �
Ms�1

�¼1

ð�� þ �g ��hÞ; (2.11)

where �� denotes the different cosets. More precisely, this

construction can be understood as follows.While the lattice
�g ��h is integral Euclidean it is in general not self-dual

and the (finite) quotient group ð�g ��hÞ	=ð�g ��hÞ is

typically nontrivial. We therefore choose a set of generators
�� to write the coset representatives of the glue group as

(see e.g. [19,20])

ð�g ��hÞ	=ð�g ��hÞ ¼ f��g; with �� 2 �g ��h:

(2.12)

Here, the conjugacy classes � are called the glue classes
and �� is sometimes referred to as the glue vector. The

union of all glue vectors in all glue classes � forms
the integral lattice �2;18. The order of the glue group (i.e.
the number of different glue classes � ¼ 0; . . . ; s� 1) is
given by j�gj ¼ s. In some cases we also introduce�0 
 0,
and include � ¼ 0 in (2.11).

In order to get an intuition for these various sublattices it
is useful to consider the ‘‘extremal’’ cases. For generic

Wilson line moduli ~V, then �h ¼ f0g, and the condition

for ~PðxÞ to be orthogonal to �h is empty; in this case, g ¼
e8 � e8, and the lattice �g has signature ð2; 18Þ. This is the
case discussed at length in [1]. The other extremal case

arises if ~V ¼ ~0, in which case �h ¼ �e8
��e8

. Then the

condition to be orthogonal to �h means that ~PðxÞ ¼ 0, and
�g ffi �2;2 has signature ð2; 2Þ and is generated by ni and
mj. For suitable intermediate choices of Wilson lines,

however, we can also get lattices that lie in between.

B. The Wilson line moduli

As is clear from this discussion, the lattice decomposi-
tion (2.10) depends on the choice of Wilson lines. In the
following, we want to study the submanifold of the moduli
space (which we shall call M2;2þk, where k is the rank

of g) along which this decomposition is constant. One way

to guarantee this is to fix the ‘‘direction’’ of ~V in the
following way. Let us introduce a basis ~ei, i ¼ 1; . . . ; 16
for R16 consisting of the simple roots of e8 � e8. (Thus,
in particular, ~ei � ~ej ¼ Cij, with Cjk the Cartan matrix of

e8 � e8.) We denote the dual basis by ~fl, l ¼ 1; . . . ; 16 so

that ~ej � ~fl ¼ �l
j, and write

~V in this basis, i.e. ~V ¼ Vj
~fj. If

~V has precisely k nonzero coefficients Vj, say Vlð1Þ;...;VlðkÞ,
then the decomposition (2.10) is generically independent
of the actual values of these coefficients. Indeed,�h is then

a (16-k)-dimensional lattice generated by

�h ¼ spanZðejjj =2 flð1Þ; . . . ; lðkÞgÞ: (2.13)

We parametrize an arbitrary point in this moduli space
M2;2þk by

y ¼ ðU; T; ~VÞ 2 C1;1þk; (2.14)

where ~V ¼ ðV1; . . . ; VkÞ and Vj is the component with

respect to ~flðjÞ, j ¼ 1; . . . ; k. On the space C1;1þk, we

have the inner product ðyjy0Þ ¼ �TU0 � T0Uþ ~V � ~V 0

such that

ðyjyÞ ¼ �2TUþ ~V2: (2.15)

For the following, it is also useful to define the map
(see [3])

u: C1;1þk ! C2;2þk;

y ¼ ðU; T; ~VÞ � uðyÞ ¼
�
U;T;

ðyjyÞ
2

; 1; ~V

�
; (2.16)

which associates to every element y 2 C1;1þk a lightlike
vector uðyÞ 2 C2;2þk. Here, the inner product on C2;2þk

is defined by h�j�i as in (2.9). With this notation, an

arbitrary momentum state x 2 �g parametrized by x ¼
ðm1; n1;m2; n2; ~‘Þ has jpLj2 ¼ �2jhxjuðyÞij2=Y, where

Y ¼ ð=yj=yÞ and =y ¼ ðU2; T2;= ~VÞ is the imaginary
part of y. We further have hxjxi ¼ ðjpRj2 � jpLj2Þ.

III. TOPOLOGICAL AMPLITUDES AND
DENOMINATOR FORMULAS

In this section, we introduce and analyze a particular
class of topological N ¼ 4 amplitudes F g in heterotic

string theory compactified on T6 (see [2,7]). We evaluate
the one-loop integral corresponding to a particular analytic

part F analy
1 of the amplitude, for a generic unbroken gauge

algebra h. We show that part of the result can be identified
with the infinite product side of the denominator formula
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for a certain Borcherds extension of gþþ (for details on
Borcherds algebras see Appendix A). To verify the auto-
morphic properties of the denominator formula, we find an
explicit integral representation of (the logarithm of) the
infinite product, which corresponds to a theta correspon-
dence for congruence subgroups of SOð2; 2þ k;ZÞ �
SLð2;ZÞ.

A. N ¼ 4 topological amplitudes

In the naive field theory limit, the couplings F g only

receive contributions from perturbative 1=2 BPS-states.
However, in string theory additional nonanalytic terms
appear as well. We shall make use of the key observation
from our previous work [1], namely, that one may use the
harmonicity equations satisfied byF g to isolate an analytic

partF analy
g . In a sense, this represents theN ¼ 4 analogue

of the ‘‘threshold corrections’’ in N ¼ 2 theories.
In [2,7] (see also [21]), a particular class of N ¼ 4

topological string amplitudes has been discovered. These
amplitudes appear at the g-loop level in type II string
theory compactified on K3� T2, while their dual counter-
parts in heterotic string theory compactified on T6 start
receiving contributions at the one-loop level. We will focus
on the case g ¼ 1 for which the latter amplitude takes the
following form

F 1ðyÞ ¼
Z
F

d2�

��24
�2G2ð�; ��Þ�ð6;22Þð�; ��; yÞ; (3.1)

where the integral is over the fundamental domain F :¼
Fð�Þ ¼ H=� of � ¼ SLð2;ZÞ, where H is the standard
upper half plane. Moreover, the expression

�ð6;22Þð�; ��; yÞ ¼ X
p2�6;22

p�0

qð1=2ÞjpLj2 �qð1=2ÞjpRj2 ; (3.2)

is a Siegel-Narain theta function (without momentum in-
sertions) of the even unimodular lattice �6;22. Notice that
we do not sum over p ¼ 0 in the definition of

�ð6;22Þð�; ��; yÞ. As was explained in [1], this is a particular
choice of regularization which removes an overall singu-
larity of F 1. The object G2ð�; ��Þ in (3.1) is a weight 4
nonantiholomorphic modular form. The explicit expres-
sion was computed in [22] (see also [23]) and is given by

G2ð�; ��Þ ¼ �ð4Þð �E4ð�Þ þ 5 �̂E
2
2ð�; ��ÞÞ; with

�̂E2ð�; ��Þ ¼ E2ð ��Þ � 3

��2
; (3.3)

where E2kð�Þ is the weight 2k Eisenstein series. Notice that
E2 is a ‘‘quasimodular form’’ [24,25], which means that, in
addition to a weight factor, it also receives an anomalous
shift-term under modular transformations. Therefore, fol-
lowing standard practice, we have introduced the quan-

tity �̂E2, which is an honest weight 2 modular form, but

nonantiholomorphic in �. It is natural to decompose
G2ð�; ��Þ into an analytic (antiholomorphic) and nonana-
lytic part

G2ð�; ��Þ¼G
analy
2 ð ��ÞþG

non-analy
2 ð�; ��Þ; with

G
analy
2 ð ��Þ¼ �ð4Þ �E4ð�Þ; G

non-analy
2 ð�; ��Þ¼ 5�ð4Þ �̂E2

2ð�; ��Þ:
(3.4)

In [1], this splitting was proposed based on the fact that (for
generic g) the nonanalytic part is responsible for an anoma-
lous violation of particular supersymmetric Ward-
identities [7] (‘‘harmonicity relations‘‘) satisfied by the
amplitudes F g at the string quantum level.

At particular points where the gauge group is enhanced
due to the presence of additional massless bosons, some
additional care is needed, since the harmonicity relations
require regularization of certain singular contributions.
However, once this subtlety has been properly addressed,

we will continue using the definition of Ganaly
g ð ��Þ and

discard the remaining nonantiholomorphic terms.
As the main object of study, we thus introduce the

analytic one-loop integral

F analy
1 ðyÞ ¼

Z
F

d2�

��24
�2G

analy
2 ð ��Þ�ð6;22Þð�; ��; yÞ: (3.5)

We recall that the decomposition (3.4) does not break

modular invariance, and therefore the integral F analy
1 ðyÞ is

well defined.
As in Sec. II, we will consider the internal six-torus to be

factorized as T6 ¼ T4 � T2, and take the large-volume
limit of T4. This implies that the Siegel-Narain theta
function of the original �6;22 Narain-lattice decomposes
according to

Ganaly
2 ð ��Þ�22
��24

�ð6;22Þ � Vol
G

analy
2 ð ��Þ
��24

�ð2;18Þ; (3.6)

where Vol is the volume of T4 and�ð2;18Þ the Siegel-Narain
theta function of the lattice �2;18 appearing in (2.2). As we

shall see in Sec. III, due to the choice of Wilson line ~V
described in Sec. II B, the �2;18 lattice will be decomposed
even further. For the time being, however, we will study
more closely (3.6), which will already teach us some

valuable lessons about the algebraic properties of F analy
1 .

For example, one can show that the integral F analy
1

develops singularities at complex codimension one sub-
manifolds of SOð2; 2þ kÞ=ðSOð2Þ � SOðkÞÞ, which coin-
cide with the walls of the (complexified) fundamental Weyl
chamber of the hyperbolic extension gþþ of the broken
part g of the gauge algebra e8 � e8. As a consequence, the
singularity behavior of the BPS-spectrum is controlled by
the hyperbolic Weyl group W ðgþþÞ, similarly as for the
nonperturbative 1=4 BPS dyon spectrum [26]. In order to
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better understand the underlying algebraic structure, we

will now proceed to evaluate the integral F analy
1 explicitly.

B. One-Loop integral for any choice of gauge group

The first step to explicitly perform the analytic one-loop
integral (3.6) for arbitrary choices of the gauge group is to
implement the splitting (2.5) at the level of the Siegel-

Narain theta function �ð2;18Þð�; ��; yÞ. Since we are inter-
ested in the submanifold M2;2þk of the moduli space,

along which only some components of ~V are nonzero, we
can use the same decomposition as in (2.11) of the lattice
�2;18 and write

G
analy
2 ð ��Þ
��24

�ð2;18Þð�; ��;yÞ
 Xs�1

�¼0

P ðkÞ
� ð ��Þ�ð2;2þkÞ

� ð�; ��;yÞ: (3.7)

Here,�ð2;2þkÞ
� ð�; ��; yÞ is the theta function associated to the

�g coset �� (see (2.11)),

�ð2;2þkÞ
� ðyÞ ¼ X

x2�gþ�g
�

�qð1=2Þhxjxie2��2ðjhxjuðyÞij2=ð=yj=yÞ2Þ; (3.8)

while P ðkÞ
� ð ��Þ captures the contributions from Ganaly

2 = ��24

and the theta constants from the different �h cosets

P ðkÞ
� ð ��Þ ¼ G

analy
2

��24
�h

�ð ��Þ ¼ G
analy
2

��24

X
~‘2�hþ�h

�

�qð1=2Þ ~‘� ~‘: (3.9)

Since �h is a sublattice of e8 � e8 that is orthogonal to ~V,

P ðkÞ
� ð ��Þ does not depend on the moduli y ¼ ðU;T; ~VÞ. In

(3.8) and (3.9) � labels the s conjugacy classes of the

lattices as in (2.11), while �g
� and �h

� are the projections
of �� onto g and h, respectively. We will parametrize the

summation in (3.8) by x ¼ ðm1; n1;m2; n2; ~‘Þ with ~‘ 2
�g þ �g

�, and similarly for (3.9).

Putting things together, the analytic integral can be
written in the following form

F analy
1 ðyÞ ¼

Z
F
d2��2

Xs�1

�¼0

P ðkÞ
� ð ��Þ�ð2;2þkÞ

� ð�; ��; yÞ: (3.10)

An integral of this type has already been computed in [1]
by splitting the integral in different orbits with respect to
SLð2;ZÞ (this method was first developed in [10] and
further extended in [3,14,27–30]). Generalizing the result
of [1] to the case of arbitrary gauge groups we arrive at the
following explicit expression

F analy
1 ðyÞ ¼ Xs�1

�¼0

� X
~‘2�gþ�g

�

�
2�Y

3U2

ðc�ð0; ~‘Þ � 24c�ð�1; ~‘ÞÞ þ 2 logj1� e2�i
~‘ ~Vjc�ð0; ~‘Þ

þ 2 log
Y
n0 ;r2Z
r>0

j1� e2�iðrTþn0Uþ ~‘ ~VÞjc�ðn0r; ~‘Þ þ 2 log
Y1
n¼1

j1� e2�iðnUþ ~‘� ~VÞjc�ð0; ~‘Þ
�

þ c�ð0; ~0Þ
�
�U2

3
� lnY þ K

�
þ 2 log

Y1
n¼1

j1� e2�inUjc�ð0;0Þ
�
þ 2U2

3�
þ 2�

U2

ð ~‘  = ~VÞðð ~‘  = ~VÞ þU2Þ; (3.11)

where K ¼ 	E � 1� ln 8�
3
ffiffi
3

p , with 	E being the Euler-
Mascheroni constant. Furthermore, we have introduced
the shorthand notation for the modified scalar product: ~‘ 
~V ¼ ‘ � < ~V þ ij ~‘ � = ~Vj. The coefficients c�ðn0r; ~‘Þ arise
from the Fourier expansion

Xs�1

�¼0

P ðkÞ
� ð ��Þ X

~‘2�gþ�g
�

�qð1=2Þ ~‘� ~‘e2�i ~‘�~z

¼ Xs�1

�¼0

X1
n¼�1

X
~‘2�gþ�g

�

c�ðn; ~‘Þ �qne2�i ~‘�~z: (3.12)

For some simple examples, explicit expressions for
c�ðn; ~‘Þ will be given in Sec. IV.

By construction, (3.12) transforms as a weak Jacobi

form under SLð2;ZÞ, and thus the coefficients c�ðn; ~‘Þ
only depend on ðn; ~‘Þ through the combination (n� 1

2
~‘ �

~‘) [31]. Moreover, by inspection of (3.9) it is clear that the
integrand in (3.10) has a simple pole at � ! i1, hence

c�

�
n� 1

2
~‘ � ~‘

�
¼ 0 8 n� 1

2
~‘ � ~‘ <�1: (3.13)

In the following, we shall mainly be interested in the con-
tribution of the trivial conjugacy class labeled by � ¼ 0.

For this, the only terms in the sum over ~‘ with ~‘ � ~0 come

from the degenerate orbit and have ~‘ � ~‘ ¼ 2. We can then
choose to work in a chamber of the moduli space where

= ~V 2 �þ
g � C, for which the condition ~‘ � ð= ~VÞ> 0 can

be equivalently written as ~‘ 2 �þ
g .

C. Borcherds lift and denominator formula

In the following, we shall restrict the analysis to a
particular part of the full analytic amplitude (3.11), corre-
sponding to the contribution of the trivial conjugacy class
� ¼ 0. We will show that this may be identified with the
infinite product side of the denominator formula for the
Borcherds extension GðgþþÞ, where gþþ is the double
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extension of the unbroken gauge algebra g.2 From this
point of view, the reason for restricting to � ¼ 0 becomes

clear: only for the zero conjugacy class does the sum over ~‘
correspond to a sum over roots of g. Indeed, the higher
conjugacy classes give rise to sums over weights of g rather
than roots.

1. Automorphic product

The zero conjugacy class contribution to (3.11) can be
written as

F analy
1 ðyÞj�¼0 ¼ logk�gðyÞk2 þ c0ð0; ~0Þ

�
�U2

3
� lnY þ K

�

þ . . . ; (3.14)

where we have defined

�gðyÞ ¼ e�2�ið
jyÞ Y
ðr;n0; ~‘Þ>0

ð1� e2�iðrTþn0Uþ ~‘� ~VÞÞc0ðn0r; ~‘Þ;

(3.15)

and the norm k � k in (3.14) takes into account the contri-

bution with ðr; n0; ~‘Þ< 0. We will give a more precise
description of this norm below, once we have analyzed
the modular properties of �gðyÞ in detail. For the moment

we just remark that the exact range of ðr; n0; ~‘Þ needs to be
discussed separately for the cases when g is simple or
semisimple. Since this discussion is mostly technical and
somewhat tedious, we have relegated it to Appendices B 1
and B 2 respectively. There we show that the product can
be written to range over the elements � 2 �þ

gþþ with norm

�2 � 2. Because of this, we can then write �gðyÞ as the
following product

�gðyÞ ¼ e�2�ið
jyÞ Y
�2�þ

gþþ

ð1� e2�ið�jyÞÞc0ð��2=2Þ; (3.16)

where we used c0ðnÞ ¼ 0 for n <�1. The idea is now to
identify �gðyÞ with the denominator formula (A1) for a

BKM algebra which we shall callGðgþþÞ to indicate that it
is an ‘automorphic correction‘ (in the terminology of [16])
of gþþ. Indeed, we would identify 
 as the Weyl-vector of
GðgþþÞ (see Appendix A) and the multiplicities of all (real
and imaginary) roots of GðgþþÞ could then be conven-

iently read off as the Fourier coefficients c0ðn; ~‘Þ as defined
by the seed function

c gð ��; ~zÞ ¼
X1

n¼�1

X
~‘2�g

c0ðn� 1

2
~‘ � ~‘Þ �qne2�i ~‘�~z; (3.17)

with Fourier coefficients arising from the zeroth conjugacy
class� ¼ 0 in (3.12). However, to justify the identification

of�gðyÞ with a denominator formula for GðgþþÞ, we must

show that �gðyÞ extends to an automorphic form on

GnM2;2þk¼GnSOð2;2þkÞ=ðSOð2Þ�SOð2þkÞ; (3.18)
for some discrete subgroup G � SOð2; 2þ kÞ. To show
this, we note that although the seed function c gð�; ~zÞ in
(3.17) no longer transforms nicely under the full mapping
class group � of the original string worldsheet torus, it is
nevertheless a weak Jacobi form with respect to a congru-
ence subgroup �½0� � �.3 Realizing, moreover, that (3.10)

has structurally the form of a ‘‘multiplicative’’ (Borcherds)
lift, one might suspect that the modular properties of
c gð ��; ~zÞ with respect to �½0� directly translate into modular

properties of�gðyÞwith respect to some subgroupG of the

T-duality group SOð2; 2þ k;ZÞ. We shall now verify that
this is indeed the case.

2. Theta correspondence and modular properties

As already mentioned, the integral representation (3.10)

of the amplitude F analy
1 provides an example of a so-called

theta correspondence. Since this notion will play an im-
portant role in what follows, we begin this section with a
brief review of the key features (see, e.g, [6,32,33] for more
details).
Let ðG1; G2Þ be a dual reductive pair of Lie groups in the

sense of Howe [34]. This means that the product G1 �G2

is a subgroup of (the universal cover of) a symplectic group
SpðWÞ, with W a symplectic vector space, such that G1

(resp. G2) is the centralizer of G2 (respectively, G1) inside
SpðWÞ. The standard example is when G1 ¼ SLð2;RÞ
and G2 ¼ SOðm; nÞ such that SLð2;RÞ � SOðm; nÞ �
Spð2ðmþ nÞÞ. Automorphic forms correspond to irreduc-
ible components in the decomposition of L2ðG1ðZÞnG1Þ
and L2ðG2ðZÞnG2Þ, where ðG1ðZÞ; G2ðZÞÞ are discrete sub-
groups. In a nutshell, the theta correspondence is then an
integral transform from automorphic representations of G1

to automorphic representations of G2. For the reductive
pair ðSLð2;RÞ; SOðm; nÞÞ, the kernel of this integral trans-
form is a Siegel-Narain theta series �ðm;nÞð�; ��; yÞ, as
exemplified by (3.1) for ðm; nÞ ¼ ð6; 22Þ.
The purpose of this section is to determine the modular

properties of the infinite product �gðyÞ in (3.16). We shall

do this by utilizing the theta correspondence outlined
above. We thus seek an integral transform from a �½0� �
SLð2;ZÞ modular form to an automorphic form for G �
SOð2; 2þ k;ZÞwhich can be identified with�gðyÞ. To this
end, we assume that �½0� has finite indexN (we will see that

this is indeed the case in all examples discussed in Sec IV),

2For details on double extensions of Lie algebras in this
context see Appendix A of [1].

3This is, in fact, true for every individual � in the right hand
side of (3.7): each summand is a weak Jacobi form of zero
weight under a particular congruence subgroup �½�� � �. We
notice,, in particular, that every single summand is invariant
under the generator T 2 SLð2;ZÞ which acts as T: ��þ 1.
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for which we can choose coset representatives 	1; . . . ; 	N

such that � can be written as the disjoint union (see
e.g. [35])

� ¼ 	1�½0� [ . . . [ 	N�½0�: (3.19)

We can then construct a fundamental domain of �½0� by

F ½0� :¼ 	1F [ . . . [ 	NF ¼ H=�½0�; (3.20)

where F ¼ H=� is the fundamental domain of �. Using

this result, we can rewrite F analy
1 in the following manner

F analy
1 ðyÞ ¼ 1

N

Z
F½0�

d2��2P
ðkÞ
0 ð ��Þ�ð2;2þkÞ

0 ð�; ��; yÞ

þ 1

N

Z
F½0�

d2��2
Xs�1

�¼1

P ðkÞ
� ð ��Þ�ð2;2þkÞ

� ð�; ��; yÞ:

(3.21)

Notice that this is indeed a consistent splitting of the
integral, since the integrands of both terms separately are
modular invariant under �½0� in the fundamental domain

F½0�. We can now use similar methods as developed in [10]

(and further extended in [3,14,28–30,36])4 to evaluate the
first term of (3.21) separately. To this end, we first perform
a Poisson resummation to obtain

Z
F½0�

d2��2P
ðkÞ
0 ð ��Þ�ð2;2þkÞ

0 ð�; ��; yÞ

¼
Z
F½0�

d2�

�22

Y

U2

P ðkÞ
0 ð ��Þ X

ðp1 ;n1;p2 ;n2Þ
~‘2�g

�qð1=2Þ ~‘� ~‘eFðA;yÞ (3.22)

with the shorthand notation

FðA;yÞ¼2�i ~‘ � ~z� �Y

U2
2�2

jAj2�2�iTdetA

��n2ð ~V2 ~A� ~�V
2
AÞ

U2

þ2�ið= ~VÞ2
U2

2

ðn1þn2 �UÞA

where p1, p2, n1, n2 2 Z such that ðp1; n1;p2; n2; ~‘Þ �
ð0; 0; 0; 0; ~0Þ and the matrices ðA;A; ~AÞ are the same as

in [1]. We have also used the shorthand expression ~z ¼
i

2U2
ð ~V ~A� ~�VAÞ. In this form, following [15,29,38,39],

we can use modular invariance of the integrand under
�½0�, and trade a modular �½0�-transformation � � a�þb

c�þd

for a transformation of the matrix A. This allows us to
extend the domain of integration to images of F½0� under
�½0�, while simultaneously restricting the summation over

A to inequivalent �½0�-orbits with an appropriate choice of

representative matrices. To make this more precise, we use
the result of [10] that a generic matrix A lies in exactly one

out of three inequivalent SLð2;ZÞ orbits, with representa-
tives denoted by A ¼ 0, AND

0 , AD
0 which we take to be the

same as in [1].
We now obtain

Z
F½0�

d2��2P
ðkÞ
0 ð ��Þ�ð2;2þkÞ

0 ð�; ��; yÞ

¼
Z
F½0�

d2�

�22

Y

U2

P ðkÞ
0 ð ��Þ X

~‘2�g

�qð1=2Þ ~‘� ~‘eFð0;yÞ

þ
Z
F½0�

d2�

�22

Y

U2

P ðkÞ
0 ð ��ÞX

V2�
~‘2�g

�qð1=2Þ ~‘� ~‘eFðAND
0 V;yÞ

þ
Z
F½0�

d2�

�22

Y

U2

P ðkÞ
0 ð ��ÞX

V2�
~‘2�g

�qð1=2Þ ~‘� ~‘eFðAD
0
V;yÞ: (3.23)

In order to apply this result to the case of �½0� � �, we note
that (after choosing an appropriate representative matrix
A0) each of these �-orbits can be decomposed into several
(inequivalent) �½0� orbits by writing

A¼A0V¼XN
i¼1

A0	iV̂; with V2�; V̂2�½0�: (3.24)

Note moreover, that the integration over the fundamental
domain of �½0� allows us to write

Z
F½0�

d2��2P
ðkÞ
0 ð ��Þ�ð2;2þkÞ

0 ð�; ��; yÞ

¼ XN
i¼1

�Z
F½0�

d2�

�22

Y

U2

P ðkÞ
0 ð ��Þ X

~‘2�g

�qð1=2Þ ~‘� ~‘eFð0;yÞ

þ
Z
F½0�

d2�

�22

Y

U2

P ðkÞ
0 ð ��Þ X

V̂2�½0�
~‘2�g

�qð1=2Þ ~‘� ~‘eFðAND
0

	iV̂;yÞ

þ
Z
F½0�

d2�

�22

Y

U2

P ðkÞ
0 ð ��Þ X

V̂2�½0�
~‘2�g

�qð1=2Þ ~‘� ~‘eFðAD
0
	iV̂;yÞ

�

:¼ XN
i¼1

ðI ½0�
0 ð	iÞ þ I ½0�

NDð	iÞ þ I ½0�
D ð	iÞÞ: (3.25)

For simplicity, we can focus on the trivial coset represen-
tative 	1 which by itself results in a well defined expres-
sion. Choosing the representative matrices AND

0 and AD
0 in

the same way as in [10] one can work out explicit expres-
sions for the contributions to the individual orbits.

For the zero orbit I ½0�
0 ð	1Þ, one has A ¼ 0 and the

integral over F½0� can be solved using standard methods

due to modular covariance with respect to �½0�, and the

integral can be reduced to an integral over �1 2
½�1=2; 1=2Þ at �2 ! 1. This contribution, however, is
the same as the � ¼ 0 part of the zeroth orbit contribution
to (3.11).

4See also e.g. [37] for a recent treatment of such integrals in
the mathematics literature.
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In the nondegenerate orbit, the representative AND
0 can

be parametrized in the standard way in terms of upper-
triangular matrices with integer entries ðr; j; pÞ, satisfying
r > j � 0 and p 2 Znf0g. The integration domain can be
unfolded to the full upper half plane:

I ½0�
NDð	1Þ �

Z
H

d2�

�22

Y

U2

P ðkÞ
0

X
p�0

r>j�0
~b2�g

�qð1=2Þ ~b� ~beFðAND
0

;yÞ:

Up to a factor of 1=N this yields the � ¼ 0 contribution of
nondegenerate part of (3.11).

Finally, we turn to the degenerate orbit. Realizing that
transformations of the form Tm for integer m leave A0

invariant provided we choose c ¼ 0 and d ¼ 1, we can
further restrict the domain of integration to the semi-
infinite strip S parametrized by ð�1; �2Þ 2 ½�1=2; 1=2Þ �
½0;1Þ, such that we may write

I ½0�
D ð	1Þ ¼

Z
S

d2�

�22

Y

U2

P ðkÞ
0

X
j;p2Z

ðj;pÞ�ð0;0Þ
~b2�g

�qð1=2Þ ~b� ~beFðAD
0
;yÞ:

Up to a factor of 1=N, this is again the � ¼ 0 contribution
of the degenerate part of (3.11).

To conclude, we have found that (up to an irrelevant
factor of 1=N which stems from the fact that there are
exactly N inequivalent choices of the coset representatives
	1; . . . ; 	N) the zero conjugacy class contribution to (3.11)
can be expressed as follows

F analy
1 ðyÞj�¼0 � I ½0�

0 ð	1Þ þ I ½0�
D ð	1Þ þ I ½0�

NDð	1Þ: (3.26)

Hence, up to an overall N-dependent factor, we can write
the infinite product �gðyÞ in terms of an explicit integral

theta lift:

logk�gðyÞk2 �
Z
F½0�

d2��2P
ðkÞ
0 ð ��Þ�ð2;2þkÞ

0 ð�; ��; yÞ þ � � �
(3.27)

where the ellipsis represent irrelevant terms, c.f. (3.14).5

This expression makes the modular properties of �gðyÞ
with respect to G � SOð2; 2þ kÞ manifest. Indeed, G is
generically only a subgroup of the full T-duality group
SOð2; 2þ k;ZÞ. More precisely, �gðyÞ retains the invari-

ance under lattice shifts y ! y þ v, v 2 �gþþ , and under

w 2 SOð1; 1þ k;ZÞ, while the symmetry under S 2
SOð2; 2þ k;ZÞ (see Appendix A) is generically broken.
These statements are consistent with Theorem 2.23 in [40]
(which in turn builds upon earlier work by Borcherds
[5,6]). Borcherds projects arising from lifts of Jacobi forms

for �0ðNÞ have also been constructed recently in [41]; it
would be interesting to understand if there is a relation to
our work.6

3. Denominator formula and automorphic correction

With the modular properties under G � SOð2; 2þ kÞ
now manifest, we can indeed identify �gðyÞ with the

denominator formula of a new algebra GðgþþÞ. Thus, we
can reinterpret the infinite product over �þ

gþþ in (3.16) as a

product over the positive roots �þ
G of GðgþþÞ

�gðyÞ ¼ e�2�ið
jyÞ Y
�2�þ

G

ð1� e2�ið�jyÞÞc0ð��2=2Þ: (3.28)

Following [5,42], due to the appearance of simple imagi-
nary roots, the automorphic correctionGðgþþÞ indeed falls
in the class of generalized Kac-Moody algebras. While the
multiplicity of all real positive roots is given by c0ð�1Þ ¼
1, the multiplicities of the imaginary roots are encoded via

(3.16) in the remaining Fourier coefficients c0ð��2=2Þ ¼
c0ðn0r� ~‘ � ~‘=2Þ. The norm k � k2 in (3.14) can now also
be interpreted as splitting the infinite product (3.16) into
contributions from positive and negative roots. More ab-
stractly and in view of its modular properties,�gðyÞ can be
interpreted as a meromorphic section of the line bundle
L ! GnM2;2þk of weight c0ð0Þ=2 modular forms on

M2;2þk. In this language, the norm k � k corresponds to

the invariant Petersson metric on L [5,6,32].

IV. EXPLICIT EXAMPLES

We shall now illustrate the general discussion of the
previous sections by a few explicit examples for different
choices of simple Lie algebras g. Our prime example will
be the case g ¼ a1, which we will discuss in quite some
detail. We will then proceed to study a list of further
examples to show that our approach works in great general-
ity. For many of these examples the decomposition of the

full �2;18 Siegel-Narain theta function for nontrivial ~V has
already been considered previously in the literature using
the so-called ‘‘sequential Higgs mechanism’’ [13,43]. Our
method, however, is more flexible and allows a quick
adaptation also for more general cases. One very particular
class of examples corresponding to semisimple g, which
have not previously been discussed in the literature, will be
presented in Sec IVB.

A. Simple Sequence: g ¼ ak

The first series of examples we wish to study are g ¼ ak
with k ¼ 1; . . . ; 4. We will be fairly explicit for the case
k ¼ 1, which acts to demonstrate the methods we have
discussed in the previous sections, and will only state the
relevant results in the other cases.

5As a side-remark we would like to comment that the choice of
the representative 	1 was merely due to convenience. Although
we have not checked this explicitly, we expect that the contri-
butions from each of the remaining terms in (3.25) in fact yield
similar results. 6We thank Boris Pioline for pointing out this reference.
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1. The case g ¼ a1

Our first example is the case g ¼ a1 such that the
unbroken gauge algebra is h ¼ e7 � e8. The Wilson line
~V is proportional to the single root of a1 and we will call
the coefficient V in the following. Following the work of
[20,44] on theta series of Lie algebra lattices, we can
immediately extract the relevant part of the integrand
in (3.7):

P ða1Þ
0 ð ��Þ�ða1Þ

0 ð�; ��; VÞ

¼ E4ð ��Þ2
�ð ��Þ24 ð#3ð2 ��Þ7 þ 7#3ð2 ��Þ3#2ð2 ��Þ4Þ#3ð2V; 2 ��Þ

:¼ E4ð ��Þ2
�ð ��Þ24 fðV; ��Þ ¼

X1
n¼�1

X
‘2Z

c0ðn; ‘Þ �qne2�i‘V; (4.1)

where fðV; ��Þ was defined by the last equality on the first
line. Explicit evaluation yields the following values for the
first few Fourier coefficients

c0ð�1Þ ¼ 1 c0ð0Þ ¼ 630

c0ð1Þ ¼ 138024 c0ð2Þ ¼ 9987360: (4.2)

If we want to use (4.1) to define a Borcherds extension of
aþþ
1 we first need to show that it transforms well under (a

congruence subgroup of) SLð2;ZÞ. We indeed claim that
(4.1) transforms as a weak Jacobi form of weight 0 under
�0ð4Þ (see Appendix C). To see this, we first notice that the
overall factor �E2

4= ��
24 transforms with weight�4 under the

full SLð2;ZÞ. Thus, all we have to consider are the modular
properties of the function fðV; ��Þ defined in (4.1). We can
make the latter manifest by expanding the combination of
theta series in a basis of modular forms of �0ð4Þ (for details
of the notation see Appendix C)

fðV; ��Þ ¼
�
2E4ð ��Þ
45

� E4ð2 ��Þ
20

þ 4E4ð4 ��Þ
45

�
�0;1ð ��; VÞ

�
�
8E6ð ��Þ
189

� 11E6ð2 ��Þ
252

þ 16E6ð4 ��Þ
189

þ 26h6ð ��Þ
�
��2;1ð ��; VÞ; (4.3)

which indeed proves that (4.1) is invariant under �0ð4Þ.
This implies that the infinite product �a1

ðyÞ, which is

computed from (3.15) by inserting the coefficients (4.2),
is also automorphic with respect to a finite index subgroup
G � SOð2; 3;ZÞ which is induced by �0ð4Þ through the

theta correspondence [40] (see also section 13 of [5] for a
discussion of modular products induced from modular
forms for �0ðNÞ). Therefore, as explained before, �a1

ðyÞ
defines the denominator formula for a BKM algebra
Gðaþþ

1 Þ, i.e.

�a1
ðyÞ¼e�2�ið
jyÞ Y

�2�þ
Gðaþþ

1
Þ

ð1�e2�ið�jyÞÞc0ð�ð�j�Þ=2Þ: (4.4)

The root multiplicities of Gðaþþ
1 Þ are simply given by

multð�Þ ¼ c0ð��2=2Þ ¼ c0ðn0r� 1
2
~‘ � ~‘Þ, encoded in

(4.2). In particular, as we can read off, the simple positive
roots all have squared length 2, and thus appear with
multiplicity c0ð�1Þ ¼ 1. The corresponding hyperbolic
subalgebra aþþ

k is characterized by the 3� 3 Cartan ma-

trix whose Dynkin diagram is:

As a final comment, we would like to remark that Gðaþþ
1 Þ

constructed here differs from the automorphic completion
g1;0 of a

þþ
1 considered in [16] since we have not added any

odd roots; in other words, Gðaþþ
1 Þ is not a ‘‘super BKM

algebra’’, in contrast to g1;0.

2. The cases g ¼ a2, a3, a4

Let us now also briefly sketch the remaining members of
this series of Lie algebras, i.e. the examples g ¼ ak ffi
slðkþ 1;RÞ for k ¼ 2, 3, 4 with the algebras h given by
e6 � e8, d5 � e8, and a4 � e8 respectively. Furthermore, we
will use the notation y ¼ ðU; T;ViðkÞÞ.7 We are again inter-

ested in the contribution of the zero conjugacy class in the
integrand (3.7). The latter can be derived in a straightfor-
ward manner using the results of [20,44,45] for the theta
series of the root lattices of ak, d5 and e6.
Indeed, with this information, we can immediately com-

pute the Fourier coefficients c�, introduced in (3.12). For

the reader’s convenience, we have compiled the first few of
them in Table I. The explicit expressions of the theta series
also imply modular invariance of the � ¼ 0 contribution
under some particular congruence subgroup of SLð2;ZÞ,
which is again necessary for an interpretation as the

TABLE I. Fourier coefficients of (3.17) for various algebras g which can be deduced using the
work of [20,44].

g Fourier coefficients c0ðn� 1
2
~‘ � ~‘Þ

a2 c0ð�1Þ ¼ 1 c0ð0Þ ¼ 576 c0ð1Þ ¼ 110 322 c0ð2Þ ¼ 8 142 848
a3 c0ð�1Þ ¼ 1 c0ð0Þ ¼ 544 c0ð1Þ ¼ 94 014 c0ð2Þ ¼ 5 691 200
a4 c0ð�1Þ ¼ 1 c0ð0Þ ¼ 524 c0ð1Þ ¼ 83 874 c0ð2Þ ¼ 4 185 500

7In order to avoid cluttering the notation, we will from now on
denote ViðkÞ simply by Vi.
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denominator formula for a BKM algebra. To be specific,
the groups are given in the following table:

group a1 a2 a3 a4
�½0� �0ð4Þ �0ð6Þ �0ð8Þ �0ð10Þ
As explained before, this implies that �ak

ðyÞ, which is
defined using the coefficients of Table I, has good modular
properties under a finite index subgroup G � SOð2; 2þ
k;ZÞ and can be interpreted as the denominator formula for
the BKM algebra Gðaþþ

k Þ
�ak

ðyÞ¼e�2�ið
jyÞ Y
�2�þ

Gðaþþ
k

Þ

ð1�e2�ið�jyÞÞc0ð�ð�j�Þ=2Þ: (4.6)

Thus the root multiplicities of Gðaþþ
k Þ are simply given by

the Fourier coefficients in Table I. In particular, the simple
positive roots all have length 2, and thus appear with
multiplicity c0ð�1Þ ¼ 1. The corresponding hyperbolic
subalgebra aþþ

k is characterized by the ðkþ 2Þ � ðkþ 2Þ
Cartan matrix whose Dynkin diagram is of the form

B. Semisimple Sequence: g ¼ ak1 � ak2

We also want to discuss examples in which g is no
longer a simple group. As an illustrative series of ex-
amples, let us consider the case where

g ¼ ak1 � ak2

h ¼ hk1 � hk2 with hki ¼

8>>>><
>>>>:

e7 if ki ¼ 1

e6 if ki ¼ 2

d5 if ki ¼ 3

a4 if ki ¼ 4

ði ¼ 1; 2Þ: (4.8)

In order to be able to make use of the results of Sec. III B,
we need to find the equivalent of the Fourier coefficients
introduced in (3.12). To this end, we perform a Poisson
resummation, after which we can write for the integral the
following sum over conjugacy classes

F analy
1 ðyÞ ¼

Z
F

d2�

�22

Y

U2

Xs�1

�¼0

G
analy
2

��24

Xs�1

�¼0

�
hk1
� ð ��Þ�hk2

� ð ��Þ X
ðp1;n1;p2;n2Þ

X
~‘12�1þ�1�
~‘22�2þ�2�

�qð1=2Þð ~‘1� ~‘1þ ~‘2� ~‘2Þ

� e2�i ~‘1�~z1þ2�i ~‘2�~z2�ð�Y=U2
2�2ÞjAj2�2�iT detA�ð�n2ð ~V2 ~A� ~�V

2
AÞ=U2Þþð2�ið= ~VÞ2=U2

2Þðn1þn2 �UÞA: (4.9)

Here, �1
� and �2

� are the projections of the glue vector on the root lattices �1 and �2 of ak1 and ak2 , respectively, while
�

hk1;2
� ð ��Þ are the theta series of the various�hk1;2

cosets. The latter are obtained from the projections �
h1;2
� of the glue vector

�� onto hk1 and hk2 , respectively

�
hka
� ð ��Þ ¼ X

~‘2�hka
þ�

hka
�

�qð1=2Þ ~‘� ~‘; 8 a ¼ 1; 2: (4.10)

As before, � ¼ 0; . . . ; s� 1 labels the various conjugacy classes. The Fourier expansion (3.12) for the case at hand can
then be written more explicitly as

TABLE II. Fourier coefficients c0ðnÞ for various algebras g ¼
gð1Þ � gð2Þ. Note that the coefficients are symmetric under the

exchange of gð1Þ and gð2Þ.

n a1 a2 a3 a4

a1 �1 1 1 1 1

0 516 462 430 410

1 92 160 70 614 57 954 50 094

2 7 002 096 4 528 948 3 105 820 2 236 960

a2 �1 1 1 1

0 408 376 356

1 51 984 41 052 34 272

2 2 878 112 1 936 448 1 365 668

a3 �1 1 1

0 344 324

1 31 144 25 004

2 1 276 640 880 340

a3 �1 1

0 304

1 19 264

2 592 040
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G
analy
2

��24

Xs�1

�¼0

�
hk1
� ð ��Þ�hk2

� ð ��Þ X
ðp1;n1;p2;n2Þ

X
~‘12�1þ�1�
~‘22�2þ�2�

�qð1=2Þð ~‘1� ~‘1þ ~‘2� ~‘2Þe2�i ~‘1�~z1þ2�i ~‘2�~z2

¼ Xs�1

�¼0

X1
n¼�1

X
~‘12�1þ�1�
~‘22�2þ�2�

c�

�
n� 1

2
ð ~‘1 � ~‘1 þ ~‘2 � ~‘2Þ

�
�qne2�ið ~‘1� ~z1þ ~‘2� ~z2Þ: (4.11)

The modular properties, particularly of the � ¼ 0 contri-
bution, follow this time already from our analysis of
Sec. IVA 1, and we can thus immediately proceed to
interpretation in terms of a BKM algebra. According to
Sec. III C, the important information about root multiplic-
ities (i.e. the denominator formula) of GðgþþÞ is encoded
in the Fourier coefficients of the trivial conjugacy class
� ¼ 0. We have tabulated the first few such coefficients for
different choices of k1 and k2 in Table II. These coefficients
are sufficient to obtain the full denominator formula from
(3.14). Let us consider this result also from a more alge-
braic perspective, i.e. from the point of view of Eq. (3.16).
The ð2þ k1 þ k2Þ � ð2þ k1 þ k2Þ Cartan matrix is en-
coded in the Dynkin diagrams in Fig. 1. This matrix has
a single zero eigenvalue, which implies that the associated
simple roots are not all linearly independent. Indeed one
can check that

�ð2Þ
0 ¼ �ð1Þ

0 �Xk1
i¼1

�ð1Þ
i þ Xk2

m¼1

�ð2Þ
m : (4.12)

Following the general discussion of Sec. III C, the Fourier
coefficients c0 will correspond to the root multiplicities of
the algebra8 Gððak1 � ak2ÞþþÞ. As required, the simple

positive roots all have length 2 and therefore have multi-
plicity c0ð�1Þ ¼ 1.

V. CONCLUSIONS AND DISCUSSION

In this work, we have analyzed a particular N ¼ 4
topological one-loop amplitude F 1 in heterotic string the-
ory on T2. We evaluated the integral F 1 explicitly for
arbitrary enhanced semisimple gauge group h � e8 � e8,
i.e. for any choice of Wilson lines. The analytic part

F analy
1 ðyÞ can be written in terms of an infinite product

over a Lorentzian lattice, identified with the root lattice of
the Lorentzian extension gþþ of the complement g ¼
ðe8 � e8Þ=h. Using the Borcherds-Gritsenko-Nikulin phi-
losophy of ‘‘automorphic correction’’, this gives rise to a
class of Borcherds algebras GðgþþÞ, of which the root
multiplicities are explicitly calculable in terms of the
Fourier coefficients of certain modular forms.
As a by-product of our analysis, we have provided

explicit expressions for this class of one-loop integrals in
heterotic string theory on T2 for an arbitrary breaking of
the gauge group. In particular, our method does not require
the factors h and g in (2.5) to be simple. These results
generalize previous work, which had been restricted to
specific choices of Wilson lines, notably always keeping
one of the e8-factors unbroken (see for instance [3,13,14]).
The present work arose as a continuation of our previous

analysis [1], where a certain universal ‘‘algebra of BPS

FIG. 1. Dynkin diagrams of the double extensions ðak1 � ak2 Þþþ for various ðk1; k2Þ.

8Our conventions for double extensions of semisimple Lie
algebras follow the philosophy of [46]; see also Appendix A of
[1] for details on our precise conventions.

ENHANCED GAUGE GROUPS IN N ¼ 4 . . . PHYSICAL REVIEW D 84, 106007 (2011)

106007-11



states’’ G for heterotic string theory on T2 was constructed
using an auxiliary bosonic conformal field theory. It is an
interesting open question whether there is a similar ‘‘mi-
croscopic’’ CFT construction of the class of ‘‘automorph-
ically corrected’’ Borcherds algebras GðgþþÞ uncovered
herein. Although these algebras appear not to be subalge-
bras of the BPS-algebra of [1], it is conceivable that they
can be obtained as quotients of G.

A natural extension of our analysis would be to go away
from the large-volume limit of T4 and consider the full
N ¼ 4 amplitude on T6 for which the Narain moduli
space is enlarged to SOð6; 22;ZÞnM6;22. Since this is

no longer a Hermitian symmetric domain, one might re-
cover a complex structure by treating the harmonic super-
space amplitude F gðy; u; �uÞ as an automorphic function

on the extended moduli space M6;22 � SUð4Þ=ðSUð2Þ �
SUð2Þ �Uð1ÞÞ ffi SOð6; 22Þ=ðSOð4Þ � SOð2Þ � SOð22ÞÞ,
similarly to the twistor space construction of [47].9 This
point of view might also shed light on the geometric mean-
ing of the harmonicity and second order equations satisfied
by F gðy; u; �uÞ.
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APPENDIX A: WEYLVECTORS AND
DENOMINATOR FORMULAS

Our conventions for Lie algebras and Borcherds-Kac-
Moody algebras can be found in Appendix A of [1]. Below,
we just briefly recall some of the essential features which
are needed for the present analysis. We denote by g a finite
Lie algebra, gþþ its Lorentzian extension, and by G a
general BKM algebra.

Similarly, as for finite Lie algebras, BKM algebras have
a Weyl vector 
, satisfying ð
j�Þ � � 1

2 ð�j�Þ, with equal-
ity if and only if � is a simple root. By restricting the
general Weyl-Kac-Borcherds character formula to the triv-
ial representation one obtains the so-called denominator
formulaX

w2W

�ðwÞwðSÞ ¼ e

Y

�2�þ

ð1� e�Þmult �: (A1)

This formula relates a sum over the Weyl group W ðGÞ
to an infinite product over all positive roots �þ of G.
The factor SðwÞ is a correction due to the imaginary simple
roots [42]:

S ¼ e�þ

X

�2�þ
G

ð�Þe�; (A2)

where ð�Þ ¼ ð�1Þm if � is a sum of m distinct pairwise
orthogonal imaginary simple roots which are orthogonal to
�, and ð�Þ ¼ 0 otherwise.
A key point of this paper is the fact that BKM algebrasG

can be constructed from Lorentzian Kac-Moody algebras
gþþ through a so-called automorphic correction [5,17], as
we now recall.
Suppose we are given a weak Jacobi form c ð�; zÞ with

expansion coefficients

c gð�; zÞ ¼
X

�2�
gþþ

cð�Þq�ð1=2Þð�j�Þe2�iðzj�Þ; (A3)

where�gþþ is the root lattice of gþþ. Then we consider the
modular product [5]

�gðyÞ ¼ e�2�ið
jyÞ Y
�2�þ

gþþ

ð1� e�2�ið�jyÞÞcð�Þ;

y 2 �gþþ � C; (A4)

where 
 is the lattice Weyl-vector of gþþ. Upon identify-
ing (A4) with (A1) we interpret the additional terms in
(A4) with additional roots—beyond those already in �þ

gþþ .

Because of the crucial minus sign in the exponent of q in
(A3), these additional roots are generically imaginary.10

It was shown in [5,42] that there exists indeed a BKM G
with these roots. In order to emphasize that the latter
was constructed from gþþ, we will in many cases write
G 
 GðgþþÞ. It is, however, important to realize that the
extension of gþþ is not unique, since different modular
products will lead to different algebras G.
By construction, the product �gðyÞ is an automorphic

function for SOð1; 1þ k;ZÞ. However, Borcherds shows
[5] that in fact �gðyÞ extends to an automorphic form of

weight cð0Þ=2 for the full T-duality group SOð2; 2þ k;ZÞ.
To be precise, it is invariant under shifts

�gðy þ vÞ ¼ �gðyÞ; with v 2 �gþþ ; (A5)

and arbitrary transformations under SOð1; 1þ k;ZÞ
(maybe even extended by a nontrivial multiplier system,
see e.g. [5])

�gðwðyÞÞ ¼ �gðyÞ; with w 2 SOð1; 1þ k;ZÞ: (A6)

However, it transforms with weight cð0Þ=2 under the fol-
lowing transformation

9We thank Boris Pioline for suggesting this possibility.

10We do not consider the case in this paper that also additional
simple real roots are added in this way. See [48] for examples
where this happens.
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�gðSðyÞÞ ¼
�ðyjyÞ

2

�
cð0Þ=2

�gðyÞ; with

SOð2; 2þ k;ZÞ 3 S: � y
2y

ðyjyÞ :
(A7)

More generally, if �gðyÞ is a modular form for a subgroup

G � SOð2; 2þ k;ZÞ, the weight under the corresponding
S-transformation is given by a character of G (see, e.g.
[40]).

APPENDIX B: POSITIVE ROOT CONDITION

1. Proof of positive root condition: simple g

When g is simple, the range of the product ðr; n0; ~‘Þ> 0
in (3.15) is defined by

n0r� 1

2
~‘ � ~‘ � �1; and

8>>>><
>>>>:

r > 0; n0 2 Z; ~‘ 2 �g or

r ¼ 0; n0 > 0; ~‘ 2 �g or

r ¼ n0 ¼ 0; ~‘ 2 �þ
g :

(B1)

As mentioned above, the norm k � k2 in (3.14) takes into

account that there are contributions with ðr; n0; ~‘Þ> 0 and

contributions with ðr; n0; ~‘Þ< 0. It remains to show that
(B1) are the conditions that characterize the elements of
�þ

gþþ with �2 � 2. Let us work with the set of simple roots

�I of g
þþ in the following basis

��1 ¼ ð1;�1; ~0Þ (B2)

�0 ¼ ð�1; 0;� ~�Þ (B3)

�i ¼ ð0; 0; ~eiÞ; i ¼ 1; . . . ; k; (B4)

where ~� is the highest root of g (which exists for every
simple Lie algebra), and ~ei, i ¼ 1; . . . ; k are the simple
roots of g. An arbitrary positive root of gþþ may be written
as a linear combination of the simple roots ��1, �0, �i

� ¼ Xk
I¼�1

xI�I 2 �þ
gþþ ; with xI 2 Zþ; (B5)

where Zþ denotes the non-negative integers. Using the
definition of the inner product (2.15), we find that the scalar
product of � with y is given by

ð�jyÞ ¼ x�1T þ ðx0 � x�1ÞUþ ðxi ~ei � x0 ~�Þ � ~V: (B6)

Since the exponent in (3.16) is c0ð��2=2Þ, it is natural to
identify

x�1¼ r; x0¼n0 þr; xi ~ei¼ ~‘þðn0 þrÞ ~�: (B7)

Contracting the last identity with the fundamental weights
~fi of g, we can write the coefficients xi as xi ¼ ~‘ � ~fi þ
ðn0 þ rÞ ~� � ~fi. The proof then reduces to a case-by-case
analysis. For example, if r > 0, we obviously have x�1 >

0, but then in order for n0r� 1
2
~‘ � ~‘ � �1, we need that

n0 � �1, thus leading to x0 � 0. In order to understand the
condition for xi we consider the different possibilities for

n0 separately. If n0 ¼ �1, then r ¼ 1 and ~‘ ¼ ~0, and thus

xi ¼ 0. Similarly, for n0 ¼ 0, ~‘ � ~‘ � 2, which means that

either ~‘ is a root of g or ~‘ ¼ ~0. In the latter case it follows
immediately that xi � 0, while in the former case

xi ¼ ~‘ � ~fi þ r ~� � ~fi � ðr� 1Þ ~� � ~fi � 0: (B8)

Finally, for n0 � 1 we use the Cauchy-Schwarz inequality,
following a similar discussion in [4], to conclude that

j ~‘ � ~fij2 � ð ~fi � ~fiÞð ~‘ � ~‘Þ � ð ~fi � ~fiÞð2þ 2n0rÞ
� ðn0 þ rÞ2ð ~fi � �Þ2: (B9)

Since ~� � ~fi � 0 for all fundamental weights, it then fol-
lows that also xi � 0. The other cases work similarly, and it
follows that (B1) characterizes indeed the elements of
�þ

gþþ with �2 � 2.

2. Proof of positive root condition: semisimple g

Let us now repeat the discussion for the case that the
broken gauge group g is semisimple. For simplicity of
presentation, we shall restrict to the case when g decom-
poses into a sum of two simple factors, g ¼ gð1Þ � gð2Þ, of
rank k1 and k2, respectively. The generalization to more
factors is straightforward. It is still possible to write the
integral in terms of an infinite product (3.14), but now the

condition on ðr; n0; ~‘Þ is replaced by the conditions

n0r� 1

2
~‘ � ~‘ � �1 and either

8>>>><
>>>>:

r > 0; n0 2 Z; ~‘ð1Þ 2 �gð1Þ
~‘ð2Þ 2 �gð2Þ

r ¼ 0; n0 > 0; ~‘ð1Þ 2 �gð1Þ ;
~‘ð2Þ 2 �gð2Þ ;

r ¼ n0 ¼ 0; ~‘ � = ~V > 0;

(B10)

where ~‘ � ~‘ ¼ ~‘ð1Þ � ~‘ð1Þ þ ~‘ð2Þ � ~‘ð2Þ. Here, we work in a

chamber of the moduli space where

= ~V 2 ð�þ
gð1Þ ��þ

gð2Þ Þ � C; (B11)

such that the only contribution to the degenerate orbit with
~‘ � ~0 comes from vectors ~‘ which correspond to simple
roots of either gð1Þ or gð2Þ, both of which have length

squared two. We will now show that (B10) are just the
conditions which characterize ‘‘positive’’ elements of
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the root lattice of gþþ of norm �2 � 2, which—just as in
the simple case—will allow us to reinterpret �g as an

infinite product of the form (3.16) over the positive roots
of Gððgð1Þ � gð2ÞÞþþÞ.11 Here, the ‘‘positive’’ elements of

the root lattice of gþþ are those that have positive scalar
product with a fixed vector � of the underlying vector
space

�þ
gþþ ¼ fx 2 �gþþ : ðxj�Þ> 0g: (B12)

For further convenience, we will choose the vector ~� to be
of the form

� ¼ ðuþ 2; uþ 1; ~w1; ~w2Þ with

u ¼ ~�1 � ~w1 þ ~�2 � ~w2 > 0; (B13)

where ~w ¼ ð ~w1; ~w2Þ 2 �þ
gð1Þ ��þ

gð2Þ . In the following, we

will find it useful to introduce ~� ¼ ð ~�ð1Þ; ~�ð2ÞÞ 2 �g. Let us

also introduce a basis of simple roots ~�I for ~g
þþ

~��1 ¼ ð1;�1; ~0; ~0Þ ~�ð1Þ
0 ¼ ð�1; 0;� ~�ð1Þ; ~0Þ

~�ð2Þ
0 ¼ ð�1; 0; ~0;� ~�ð2ÞÞ (B14)

~� ð1Þ
i ¼ ð0; 0; ~eð1Þi ; ~0Þ~�ð2Þ

m ¼ ð0; 0; ~0; ~eð2Þm Þ; (B15)

where i ¼ 1; . . . ; k1,m ¼ 1; . . . ; k2, and ~eð1Þ, ~eð2Þ are simple

roots of gð1Þ, gð2Þ, with ~�ð1Þ, ~�ð2Þ the corresponding highest

roots. The roots (B14) and (B15) define an overcomplete
basis for the root lattice �gþþ ¼ �1;1 ��gð1Þ ��gð2Þ . In

fact, there is one relation (generating the center r of ~gþþ,
see [1] for more details) which we may use to express ~�ð2Þ

0

in terms of the other roots

~�ð2Þ
0 ¼ ~�ð1Þ

0 þXk1
i¼1

ð ~�ð1Þ � ~fiÞ~�ð1Þ
i � Xk2

m¼1

ð ~�ð2Þ � ~fmÞ~�ð2Þ
m : (B16)

Here ~fi and ~fm are the fundamental weights of gð1Þ and
gð2Þ, respectively. With this relation, we can then write for

any � 2 �gþþ

� ¼ x�1 ~��1 þ x0 ~�
ð1Þ
0 þXk1

i¼1

xð1Þi ~�ð1Þ
i þ Xk2

m¼1

xð2Þm ~�ð2Þ
m : (B17)

Using the same inner product as in (2.15) we find that the

product between � and a moduli vector y ¼
ðU; T; ~Vð1Þ; ~Vð2ÞÞ reads

ð�jyÞ¼ x�1Tþðx0�x�1ÞUþ
�Xk1
i¼1

xð1Þi ~ei�x0 ~�ð1Þ
�
� ~Vð1Þ

þ Xk2
m¼1

xð2Þm ~em � ~Vð2Þ: (B18)

With these preparations, the scalar product of a generic
vector � 2 �gþþ , parametrized as in (B17), with � is

given by

ð�j�Þ ¼ x�1 þ x0ðuþ 1Þ þ
�Xk1
i¼1

xð1Þi ~ei � x0 ~�ð1Þ
�
� ~w1

þ Xk2
m¼1

xð2Þm ~em � ~w2: (B19)

Comparing (B18) to the exponent of the denominator
formula (3.16) suggests the identification

x�1 ¼ r x0 ¼ n0 þ r

Xk1
i¼1

xð1Þi ~ei � ~�ð1Þðn0 þ rÞ ¼ ~‘ð1Þ
Xk2
m¼1

xð2Þm ~em ¼ ~‘ð2Þ;

in terms of which the scalar product (B19) becomes

ð�j�Þ ¼ rþ ðn0 þ rÞðuþ 1Þ þ ð ~‘ � ~wÞ: (B20)

In order to show that (B10) indeed characterizes vectors
of�þ

gþþ with norm� 2, we first have to show that (B20) is

positive for all three cases in (B10). This can again be done
by a case-by-case analysis which is rather similar to that in
Sec. III C. For example, for r > 0 the first equation implies
n0 � �1. If n0 ¼ �1, the first equation furthermore im-

plies that ~‘ ¼ ~0, and thus ð�j�Þ> 0. For n0 ¼ 0, we have

instead ~‘ � ~‘ � 2, which means that either ~‘ ¼ ~0 or ~‘ is one
of the roots of gð1Þ or gð2Þ. In the former case, it immedi-

ately follows that ð�j�Þ ¼ rðuþ 2Þ> 0, while in the latter
case,

ð�j�Þ � rðuþ 2Þ �maxð ~�ð1Þ � ~w1; ~�ð2Þ � ~w2Þ> 0: (B21)

Finally, for n0 > 0 we can estimate

ð�j�Þ�2rþn0 þðn0 þrÞð ~� � ~wÞ�j ~‘ � ~wj

�2rþn0 þðn0 þrÞð ~� � ~wÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~w � ~wÞð ~‘ � ~‘Þ

q

�2rþn0 þðn0 þrÞð ~� � ~wÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ2n0rÞð ~w � ~wÞ

p
>0;

(B22)

where the last inequality follows from expanding ~w into

weights ~fi for gð1Þ and gð2Þ, respectively, and using the

estimate ð ~� � ~fiÞ2ð ~� � ~fjÞ2 � ð ~fi � ~fiÞð ~fj � ~fjÞ � ð ~fi � ~fjÞ2.
All other cases follow in a similar fashion and we will
not explicitly write them down here.

11See Appendix A of [1] for our conventions for the double
extension ðgð1Þ � gð2ÞÞþþ.
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Conversely, one can also show that if (B10) is not
satisfied, the corresponding � is not an element of �þ

gþþ

since ð�j�Þ< 0. Thus, also in the case g being semisimple,
(3.14) can be written in the form of (3.16), which is
identified with the infinite product part of the denominator
formula for the Borcherds algebra GðgþþÞ.

APPENDIX C: JACOBI FORMS FOR �0ð4Þ
For the explicit computations in Sec. IVA1, we require

some terminology of weak Jacobi forms (in the framework
of the congruence subgroup �0ð4Þ). Any weak Jacobi form
of index 1 can be expanded in terms of a basis of Jacobi
forms of weight 0 and �2 respectively [31]

fw;1ð�; zÞ ¼ hð1Þw ð�Þ�0;1ð�; zÞ þ hð2Þwþ2ð�Þ��2;1ð�; zÞ; (C1)

where we have the definitions

�0;1ð�;zÞ :¼ 4
X4
i¼2

#ið�;zÞ2
#ið�;0Þ2

; ��2;1ð�;zÞ :¼�#1ð�;zÞ2
�ð�Þ6 ;

(C2)

and hð1;2Þ are modular forms of weight w and wþ 2
respectively. In Sec. IVA1, we will be interested in the

case where the latter are not modular forms under the full
SLð2;ZÞ, but rather one of its congruence subgroups
�0ðNÞ, where we define for N 2 N

�0ðNÞ :¼
�

a b
c d

� �
2 SLð2;ZÞ: c ¼ 0modN

�
: (C3)

Specifically, we will be interested in the case w ¼ 4 and
N ¼ 4. A (for our purposes convenient) basis for the
spaces Mwð�0ð4ÞÞ of modular forms of weight w under
�0ð4Þ is given by (for further details see [49])

M4ð�0ð4ÞÞ: fE4ð�Þ; E4ð2�Þ; E4ð4�Þg; (C4)

M6ð�0ð4ÞÞ: fE6ð�Þ; E6ð2�Þ; E6ð4�Þ; h6ð�Þg; (C5)

where h6ð�Þ is an element of the space of cusp forms (i.e.

forms which vanish at all cusps of H=�0ðNÞ). Its Fourier
expansion is given by12

h6ð�Þ ¼ q� 12q3 þ 54q5 � 88q7 � 99q9 þ 540q11

� 418q13 � 648q15 þ 594q17 þOðq19Þ: (C6)
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