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Abstract: This paper describes a new algorithm for initializing and estimating Wiener-
Hammerstein models. The algorithm makes use of the best linear model of the system which
is split in all possible ways into two linear sub-models. For all possible splits, a Wiener-
Hammerstein model is initialized which means that a nonlinearity is introduced in between
the two sub-models. The linear parameters of this nonlinearity can be estimated using least-
squares. All initialized models can then be ranked with respect to their fit. Typically, one is only
interested in the best one, for which all parameters are fitted using prediction error minimization.
The paper explains the algorithm and the consistency of the initialization is stated. Compu-
tational aspects are investigated, showing that in most realistic cases, the number of splits of
the initial linear model remains low enough to make the algorithm useful. The algorithm is
illustrated on an example where it is shown that the initialization is a tool to avoid many local
minima.
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1. INTRODUCTION

There has always been a need to identify nonlinear systems
using measured data. In real life all systems are nonlinear
to some extent but linear system theory and linear sys-
tem identification methods have often been successfully
applied. Theory for linear system identification is a fairly
mature area, well covered in books like, eg, Ljung (1999);
Söderström and Stoica (1989), focusing on time domain
methods and Pintelon and Schoukens (2001), focusing on
frequency domain methods.

One approach to nonlinear system identification is to
work with block-oriented nonlinear models built up by
combining blocks which are either linear dynamic or static
nonlinear and in this paper the Wiener-Hammerstein (W-
H) model is considered. It consists of two linear dynamic
blocks and a static nonlinear block in the middle, see
Figure 1.

The paper presents a novel consistent algorithm for esti-
mating W-H models. It is based on the Best Linear Ap-
proximation (BLA) of the nonlinear system. That means
that the algorithm starts with linear identification to ob-
tain the BLA model. Under some mild assumptions, see
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Fig. 1. A Wiener-Hammerstein model structure.

Section 4, the BLA model will be a consistent estimate of
the concatenated dynamics of the two linear sub-systems.
The core idea of the algorithm is simply to split the BLA
model into two sub-models in all possible ways, and to
initialize a W-H model with each one of these splits. This
can be done quickly with the least squares algorithm so
that a large number of splits can be handled fairly fast.

Earlier estimation algorithms for W-H models have been
less general, or more complicated than the suggested one.
In Crama and Schoukens (2005) an iterative initialization
procedure is proposed which requires specially designed
periodic excited input signals. This experimental require-
ment is relaxed in Schoukens et al. (2006). Techniques
where the need of initial values is avoided by restricting
the allowed model complexity are given in Bershad et al.
(2001); Tan and Godfrey (2002, 2003). In Leith et al.
(2003) an approach is presented which applies for the case
that the linear sub-models can be described as FIR models.

In Wills and Ninness (2009) random, stable, initialization
of the two sub-systems is investigated with quite good re-
sult. The authors show that there are many local minima,
so, typically, the estimation need to be repeated several
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times with different starting values to increase the chances
to find a model corresponding to a good local minimum.
In this sense, the proposed algorithm can be seen as a
suggestion on how to obtain a good starting value to
increase the chances to end up in a good minimum.

In Lauwers et al. (2009) an alternative algorithm based on
splitting the BLA model is given. Instead of considering
many splittings, they offer all poles and zeros to both linear
models.

The paper is organized as follows. Section 2 details the
problem formulation and the proposed algorithm is pre-
sented in Section 3. The consistency of the algorithm is
shown in Section 4. Section 5 concerns the number of
partitions of the initial linear model. In Section 6 the
algorithm is illustrated on an example and in Section 7
the paper ends with conclusions.

2. PROBLEM FORMULATION

The problem formulation is divided into three steps, the
definition of the model structure, the assumptions on the
data, and the definition and computation of the estimate.

2.1 Model structure

The concerned model structure is of W-H type described
by

z(t) =G1(q
−1, α)u(t)

x(t) = f(β, z(t)) (1)

ŷ(t) =G2(q
−1, γ)x(t) + ν(t)

where where ŷ(t) is the model’s prediction of the output
y(t), and G1(q

−1, α) and G2(q
−1, γ) are linear time in-

variant transfer functions in the delay operator q−1, and
parameterized with α and γ, respectively. The signal ν(t)
is a zero mean stochastic process representing disturbances
of the measurements and the function f is a static nonlin-
earity parameterized with β.

All parameters of the model structure are stored in a
common parameter vector

θ = [α, β, γ]. (2)

The first linear part of the model can be described as

G1(q
−1, α) =

b10 + b11q
−1 + · · ·+ b1mb1

q−mb1

1 + a11q
−1 + · · ·+ a1ma1

q−ma1

(3)

where α = [b10, . . . , b
1
mb1

, a11, . . . , a
1
ma1

] , and G2(q
−1, γ) is

described similarly with γ = [b20, . . . , b
2
mb2

, a21, . . . , a
2
ma2

].

The static nonlinearity is described as a basis function
expansion

f(β, z) =

n
∑

k=1

β1
kfk(β

2
k, z)

β = [β1, β2]T = [β1
1 , . . . , β

1
n, β

2
1 , . . . , β

2
n]

T (4)

where fk are basis functions, and β has been divided
into β1, which enters linearly in f , and β2 which enters
non-linearly in f . The parameters entering nonlinearly
may indicate features like position and width of the
basis function and, hence, each β2

k can contain several

parameters. With this general description of the static
nonlinearity most specific basis function expansions can
be described with a specific choice of the basis fk. If, for
example, a polynomial model is chosen, then

f(β, z) = β1
0 + β1

1z + β1
2z

2 + . . . β1
nz

n

and in this case there are no parameters in β2.

To define a model in this model structure, not only the
parameters need to be determined but also the orders of
the sub-models, and the type of basis function expansion
in f .

2.2 Data

For the estimation of the parameters in the model (1) a
data set is assumed to be available, {u(t), y(t)}Nt=1 of N
input u(t) and output y(t) samples.

The intermediate variables z(t) and x(t) are not available.
For the consistency it is assumed that the input signal u(t)
is Gaussian. Otherwise rather mild conditions are needed
on the data like the one in Ljung (1978) for the algorithm
to be applicable.

2.3 Estimation

A standard prediction error approach is assumed to be

used to define the estimate θ̂N of the parameter vector θ
for the model (1) based on the data set {u(t), y(t)}Nt=1. It
is based on minimizing the prediction error

ε(t, θ) = y(t)− ŷ(t, θ), (5)

the difference between the measured output y(t) and the
prediction with (1),

ŷ(t, θ) = G2(q
−1, γ) f(β,G1(q

−1, α)u(t)). (6)

This is done by using a criterion of fit

VN (θ) =
1

N

N
∑

t=1

ε2(t, θ) (7)

and then defining the estimate as

θ̂N = argmin
θ

VN (θ). (8)

After that the estimate (8) has been defined, it remains to
compute it. This must be done using a gradient based it-
erative algorithm since the model is not a linear regression
model. That is, given a start value θ(0), iterate

θ(i+1) = θ(i) −Ri
dVN (θ)

dθ
(9)

until convergence. The matrix Ri is to modify the search
direction and step size to assure downhill steps. Depend-
ing on how Ri is chosen, (9) describes a wide class of
well-known standard algorithms like Gauss-Newton and
Levenberg-Marquardt algorithms.

All three blocks of the model structure (1) contain a gain
parameter, and two of them are typically fixed in the
iterative minimization, eg, b10 and b20.

In the example in Section 6 a Levenberg-Marquardt al-
gorithm is used to compute the minimization. A software
package for the Mathematica platform, Sjöberg and Hjal-
marsson (2009), has been used which has the advantage
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that when the model structure (1) has been defined, all ex-
pressions needed in (9) to apply the Levenberg-Marquardt
algorithm are calculated automatically. The symbolic fea-
tures of Mathematica are used to automatically generate
expressions for the derivatives. The symbolic expressions
are also simplified so that, eg, multiple identical expres-
sions are only calculated once.

Typically, VN (θ) can have many minima and the success of
the minimization depends on the initial estimate θ(0). The
contribution of this work is a novel algorithm to compute
this initial estimate.

3. PROPOSED ALGORITHM

The algorithm consists of the following steps.

1. Start with the best linear model G(q−1) of the plant.

2. Split the linear model into all possible G1(q
−1) and

G2(q
−1) so that G(q−1) = G1(q

−1)G2(q
−1).

To do this, the poles and the zeros of the linear model need
to be calculated. These are then divided in all possible
ways into two sub-models G1 and G2. Depending on prior
knowledge of the system, some of the divisions can be
excluded. This is discussed in Section 5.

3. For all partitions of the linear model, {G1, G2}, use
u(t) and G1 to decide values for β2 and then LS to
fit the linear parameters, β1, in the nonlinearity as
initialization.

The position parameters β2 for the basis functions are de-
cided using the distribution of the input to the nonlinearity
{z(t) = G1(q

−1)u(t)}Nt=1.

Minimizing (7) with respect to the parameters β1 in (4) is
straightforward by first writing (6), ŷ(t, θ),

ŷ(t, θ) =

n
∑

k=1

β1
kG2(q

−1, γ)fk(β
2
k, z(t)) = β1Tϕ(t) (10)

where

ϕT (t) =

[G2(q
−1, γ)f0(β

2
0 , z(t)), . . . , G2(q

−1, γ)fn(β
2
n, z(t))]. (11)

Since (10) is a linear regression, the LS estimate is given
by

β̂1 =

(

1

N

N
∑

t=1

ϕ(t)ϕT (t)

)−1

1

N

N
∑

t=1

ϕT (t)y(t). (12)

4. Order the initialized models with respect to their
initial fit.

The criterion VN (θ), (7) is calculated for all initializations
and the models are ranked using this measure.

5. Fit all parameters of the best, or some of the best
models.

This means that the minimization algorithm (9) is applied
and it is actually not part of the initialization, but the step
after the initialization.

4. CONSISTENCY OF THE ALGORITHM

If the system generating the data is within the model
structure described by the W-H model (1), and with

some assumption on the input signal, then the consistency
of proposed algorithm when the number of data goes
to infinity follows almost immediate. To show this the
following lemma is used.

Lemma 1. Suppose the input data u(t) is a stationary
normal distributed sequence and the output y(t) is ob-
tained by filtering u(t) through a system of form (1) with
linear parts G0

1 and G0
2 being stable, single input, single

output finite order transfer functions, and the nonlinear
part f0 is a continuous function ℜ → ℜ. Then best linear
approximation (BLA), converge to

κG0
1(q

−1)G0
2(q

−1) (13)

where κ is a constant which value depends on u(t), f0, G0
1

and G0
2.

Proof: See Pintelon and Schoukens (2001).

The essence of this lemma is that the BLA captures the
dynamics of the two linear parts and the nonlinear function
is approximated with a constant. The miss-match between
the true nonlinear function and the constant is captured as
noise. This is further described in Schoukens et al. (1998);
Enqvist and Ljung (2005); Schoukens et al. (2005).

Given this lemma, it follows that, asymptotically in N ,
one of the partitioning of the linear models will have the
correct dynamics, ie, κ1 G

0
1 in the first linear part and

κ2 G
0
2 in the second one, where κ1κ2 = κ. It remains

to show consistency in the estimate of the nonlinear
function. This is done using a polynomial expansion and
Weierstrass’s Approximation Theorem for polynomials.
The convergence is over an arbitrary bounded interval.

Theorem 1. Suppose the data is generated in the same way
as in Lemma 1 with the additional assumption that G0

1G
0
2

does not contain any zero-pole cancellations.

Assume the algorithm in Section 3 is applied and the
nonlinearity is modeled by a polynomial expansion fn of
degree n combined with a saturation to limit the output
for large positive and negative values outside a region
which grows with the number of data. Then, on any
interval [za, zb] for the nonlinear part of the model, the
best initialized Wiener-Hammerstein model converges to
the true data generating system when N,n → ∞ under
the constraint n/N → 0.

Proof: See Sjöberg and Schoukens (2011).

The theorem states that the proposed algorithm is sound
and it gives the true system description asymptotically.
In practical situations the number of data is limited
and the theorem motivates the use of the algorithm to
obtain the initial parameter estimate before the iterative
minimization. There are a number of comments one can
make on the theorem.

• The properties of u(t) influence the convergence speed
when N → ∞. Generally, an input signal which ex-
cites the system more will accelerate the convergence.

• The consistency is proven for a general continuous
nonlinear function but only on an arbitrary chosen
interval. A larger interval will typically make the
convergence slower in n and then also in N due to
the requirement n/N → 0.
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• Instead of a polynomial model for the non-linearity,
any basis function expansion can be used.

5. NUMBER OF LINEAR PARTITIONS

An obvious possible disadvantage of the algorithm is that
the original linear model can be partitioned in many
different ways which leads to many least-squares problems
to solve when all W-H models are being initialized. In this
section it will be shown that for moderate model orders,
this number does not need to be very high.

With m real poles 2m different splittings into two linear
models are possible. If the poles are complex the number
of possibilities reduce to 2m/2 (assuming m to be even).
Assuming also m zeros gives equal many possibilities of
ways to split them. This gives the following result.

Result 1. A linear system of order m can be partitioned
into between 2m and 22m different pairs of linear systems.
The lower limit hold if all poles and zeros are complex and
the upper limit when they are all real.

For a 10th order system this means that there will be
between 1024 and 10242 > 106 possible splittings of the
linear system. The lower limit is feasible for the proposed
algorithm but the upper limit would typically be too many
possibilities to investigate.

The number of partitions can, however be reduced with
prior knowledge or assumptions. In many situations it
could make sense to require the two linear parts to be
proper. Dividing m poles into two models with k and m−k
poles can be done in

m(m− 1) . . . (m− k + 1)

1 · 2 · . . . k
=

(

m

k

)

(14)

ways. For a given k, the number of possible divisions of
the zeros are equally many. The total number of proper
divisions is given by summing (14) over all k,

m
∑

k=0

2

(

m

k

)

= 2m+1

where the factor 2 comes from the zeros. Hence, we have
the following result.

Result 2. A linear system of order m can be partitioned
into between 2m/2+1 and 2m+1 different pairs of proper
linear systems. The lower limit holds if all poles and zeros
are complex and the upper limit when they are all real.

This means that for an original linear plant of order 10
the number of splits becomes between 210/2+1 = 64 and
211 = 2048. Note that the two special cases where all
the dynamics is either placed in the first or in the second
linear sub-system corresponds to either a Wiener model or
a Hammerstein model, respectively. Tests of these model
structures are hence treated as special cases if the W-H
model selection.

Another type of possible assumption could be the order of
the two linear sub-system. The number of possible splits
is then given directly by (14) and we form this as a result.

Result 3. A linear system of order m can be partitioned
into two proper linear parts, one of order k and the other

of order m−k, in between 2
(m/2
k/2

)

and 2
(

m
k

)

different ways.

The lower limit is for the case that all poles and zeros are
complex and the upper limit is for the case that they are
all real.

For the example system of order 10, and a split into a 4th
and a 6th order systems this means between 2

(

5
2

)

= 2 ·

5!/(2!3!) = 20 and 2
(

10
4

)

= 2 · 10!/(4!6!) = 420 different
possible splits. The number of possibilities is slightly
higher if the 10th order system is to be split into two 5th
order systems. However, this can only been done if at least
two of the poles and two of the zeros are real. Hence the
lower number of possible splits becomes 2·2

(

4
2

)

= 24, where
the extra factor 2 is due to the two possibilities how to
divide the real poles and zeros. Similarly, the upper limits
of possible splits becomes 2

(

10
5

)

= 2 · 10!/(5!5!) = 504.

Since linear regression problems can be solved very fast,
one concludes from the results in this section that the
computational burden is reasonable if the linear model
stays within limits.

6. EXAMPLE

In this example the proposed algorithm is tested on data
generated by a W-H model. The main message is to
illustrate that the algorithm has a good chance to avoid
bad local minima. The software described in Sjöberg and
Hjalmarsson (2009) is used for implementing the example.

A white Gaussian signal with standard deviation 15 is
used as input signal to a system with the W-H structure.
Figure 2 depicts the poles and zeros of the two linear parts
and Figure 3 a) shows the nonlinearity which is between
them. The exact mathematical definition of the system is
given in Appendix A.

o
o

x

x

�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

o

o

o x
x

x
�1.0 �0.5 0.5 1.0

�1.0

�0.5

0.5

1.0

Fig. 2. Poles (x) and zeros (o) of the two linear parts of
the true system.

With this true system, 2000 data samples where generated
where the output is corrupted with white Gaussian noise
with standard deviation 0.1. This gives a signal-to-noise
amplitude ratio of 57.

The first step of the algorithm is to estimate a linear
model. In the example the search for the best linear model
is skipped and the prior knowledge that it should be of
5th order is used. See any standard literature on system
identification for strategies to obtain the best linear model,
eg Pintelon and Schoukens (2001); Ljung (1999); Söder-
ström and Stoica (1989). In Figure 4 the simulation with
the 5th order linear model is shown together with the true
output. The poles and zeros of the linear model are shown
in Figure 3 b). Two zeros are clearly incorrect compared to
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Fig. 3. a) True nonlinearity. b) Poles (x) and zeros (o) of
the linear model.
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Output signal: 1 RMSE: 1.75245

Fig. 4. Output signal (solid) together with the simulated
output of the linear model (dashed).

the true positions shown in Figure 2 but the rest of poles
and zeros seem to be reasonably well estimated.

The linear model is now partitioned into two linear parts
which should be at least first order systems. That means
that the prior information of the degree of the two sub-
systems is not used. This gives 22 partitions and all of
these are extended with a first order spline with 8 knots,
ie, a local linear function with 9 segments. The positions
of the knots are distributed so that each segment contains
the same number of data.

Given the division of the linear model and the positions
of the knots, the nonlinearity can be initialized according
to (12). The models are sorted according to their fit at the
initialization and the result is shown in Figure 5 where
the bullets show the RMS after initialization. The best
initialization has a RMS fit of 1.05 compared to 1.75 for
the linear model. The initialization of all 22 models took 35
CPU seconds on an average PC of the time of this paper.
The best initialization outperforms the other. In the same

�

�
� � � � � � � � � � � � � � � � �

� � �

�

� � �
� � � � � �

� � � � � � � � � � � �

5 10 15 20

0.5

1.0

1.5

Fig. 5. Bullets: The RMS error of the 22 initialized W-H
models. Squares: The obtained RMS after fitting all
parameters of the 22 models. The first model is clearly
the best initialized model, and it is also the one which
improves considerably when the parameters are fitted.

figure the fit after that all parameters have been fitted, is

also shown with squares. The best initialized model is also
the one which gives the best fit after that the criterion has
been minimized with respect to all parameters. It has an
RMS fit of 0.095 which corresponds to the noise level.

In Figure 6 the estimated nonlinearity at initialization
and for the final model are shown together with the true
nonlinearity.

�20 �10 10 20

�30

�20

�10

10

20

30

Fig. 6. Solid, true nonlinearity, dashed estimate at the
initialization, dashed-dotted after estimating all pa-
rameters.

Since poles and zeros cannot move from one linear part
to the other, it is clear that the most important issue is
to have the right number of poles and zero in each one
of them. For this example, out of the 22 partitions, 8 of
these have the correct number of poles and zeros in each
linear part. That is, all of these could converge to the best
model if they would not get caught in any local minima.
Figure 7 shows the criterion decrease during the iterative
minimization for these 8 models.

5 10 15 20 25 30

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 7. Criterion decrease for the 8 initializations with
correct number of zeros and poles in the linear parts.
The ones with incorrect positions of poles and/or
zeros either converge very slow or they are caught
in bad local minima.

Clearly, the proposed initialization gives a good initializa-
tion so that only 10 iterations are needed in the recursive
minimization. Some of the other initializations might lead
to a good minimum if many more iterations would be
applied, but after 30 iterations only a few of them have
not yet terminated due to convergence to a local minima,
and their decrease is very slow.

7. CONCLUSIONS

A novel algorithm for initializing Wiener-Hammerstein
models has been proposed. It starts with a best linear
model which is partitioned in all possible ways into two
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linear sub-models. Using least squares the nonlinearity
between the two linear parts can efficiently be initialized.
The initialized models can be ranked, and the one with
the best fit is the one with best chances to converge to
the global minimum when all parameters are estimated
simultaneously.

Consistency of the algorithm has been stated. Finally the
algorithm has been illustrated with an example which
shows that it can really make a difference.

Appendix A. TRUE WIENER-HAMMERSTEIN
SYSTEM

The data used in the example in Section 6 where generated
by the Wiener-Hammerstein system with of the following
form of the two linear parts

G1(q
−1) =

1− 1.4q−1 + 0.5q−2

1− 1.6q−1 + 0.8q−2
(A.1)

and

G2(q
−1) =

0.01− 0.014q−1 + 0.0098q−2

1− 2.8q−1 + 2.6528q−2 − 0.850944q−3
q−1.

(A.2)
The poles and zeros of these transfer functions are depicted
in Figure 2. The nonlinearity, depicted in Figure 3 a), is
defined as

f(z) =



























1.5z + 4.5 z < −15

0.3z − 13.5 −15 < z < −5

3z −5 < z < 5

0.3z + 13.5 5 < z < 15

1.5z − 4.5 15 < z

. (A.3)
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