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Abstract: We show that a linearizing transformation of the Hamilton-Jacobi-Bellman (HJB)
equation can be applied to certain finite-time problem such that the time dependence can be
separated and also has a simple analytical solution. The remaining state dependence is the
solution to a linear eigenvalue problem that may have an analytical solution or is readily solved
numerically. The efficiency of the method is illustrated by an inventory control problem.
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1. INTRODUCTION

Consider a nonlinear, state constrained, input-affine, time
invariant, stochastic system where the disturbance enters
the system in the same way as the control input:

ẋ = f(x) +G(x) (u+ ẇ) , (1)

where x ∈ Ω ⊂ Rn is the system state, u ∈ Rm is the
control signal, f : Ω → Rn and G : Ω → Rn×m are
functions that describe the system dynamics, and ẇ ∈ Rm

is a Gaussian white noise having the covariance matrix
W ∈ Rm×m and w is a Wiener process. The boundary ∂Ω
of the state space Ω defines the state constraints, i.e. the
system must be controlled such that x never leaves Ω.)

This type of systems is common in, for example, process
control where stochastic feed variations are the major dis-
turbances, and also in cases when the actuators themselves
are the dominating source of noise.

Optimal control problems for (1) result in a nonlinear
HJB-equation that is numerically problematic to solve
by standard PDE solvers because of the nonlinearity and
the infinite boundary conditions on ∂Ω (due to the state
constraints). For the infinite horizon case though, Rutquist
et al. [2008] have derived an efficient method based on
a transformation of the cost functional. However, there
are many situations where the non-stationary solution, i.e.
the optimal control problem with a finite end-time, is of
interest. For example finite time buffer problems, which
are typically applicable in process control, both for batch
processes and for continuous processes with stop time, as
in one-shift operation.

Solution of state constrained deterministic finite time op-
timal control problems have been extensively treated in
connection with discrete time Model Predictive Control
(Jones et al. [2007], Borelli et al. [2003]) and for lin-
ear time-invariant systems explicit piecewise affine control
laws can be determined (Bemporad et al. [2002]). Working

in discrete time for systems with stochastic disturbances,
however, imposes problems related to constraint violation.
Unless the disturbance is either bounded or known before-
hand, there may not exist any control that is guaranteed to
keep the system within bounds in the next time step. Be-
mporad et al. [2002] therefore suggest that safety margins
are introduced.

Here, we consider the continuous time case and derive
an explicit control law that guarantees optimality and
no constraint violation. By using the linearizing transfor-
mation introduced in (Rutquist et al. [2008]) the HJB-
equation is transformed into a form that allows for solution
by separation of variables. The time dependent factors
have a simple analytical solution and the remaining state-
dependent factors are the solution to a readily solved
linear eigenvalue problem with zero Dirichlet boundary
conditions.

2. PROBLEM FORMULATION

Now, consider the fixed final time control problem, where
the goal is to find a feedback control policy u(t,x) that
minimizes
V (x(t), t) =

E

{
∫ tf

t

(

l(x(τ)) + u(τ)TQu(τ)
)

dτ + Vf (x(tf ))|x(t)

}

(2)

where t ∈ R is the current time, tf > t is the final time,
l : Ω → R describes the (time independent) cost (non-
singular on Ω) associated with the state, and Vf : Ω → R

is the final cost.

The positive definite symmetric matrix Q ∈ Rm×m defines
the cost of the control signal. A natural choice is

Q = κW−1 , (3)

where κ ∈ R > 0 is an arbitrary constant, since this
corresponds to a lower cost of control for input nodes with

!"#$"%&'()*+)',#)-.',)/012)3*"45)2*&6"#((
7%48&*)9/'84:;)1<6<(')=.)>)?#$'#@A#")=B)=C--

2*$:"%6,')A:)',#
/&'#"&8'%*&84)0#5#"8'%*&)*+)1<'*@8'%D)2*&'"*4)9/012;

EF-E

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70590391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


large noise. The parameter κ can be used to tune the trade-
off between performance and controller actuation.

3. LINEARIZATION OF THE HJB EQUATION

In the following all vectors are column vectors with the
exception of ∇V , which is defined as a row vector.

The stochastic HJB equation for the minimization of (2)
can be formulated as

−
∂V

∂t
= min

u

{l+ (∇V )(f +Gu) + uTQu

+
1

2
tr
[

(∇T∇V )GWGT
]

}
(4)

where V : [t, tf ] × Ω → R is the so-called cost-to-go
function (see for instance Dorato et al. [1995] for details
on the derivation of this equation). Applying tr[AB] =
tr[BA] = tr

[

(AB)T
]

and the fact that the covariance
matrix W is symmetric it is readily verified that this
formulation equals that of Hanson [2007], for example.
Minimization of this quadratic expression with respect to
u gives the optimal control input

u = −
1

2
Q−1GT (∇V )T . (5)

Insertion into (4) gives

−
∂V

∂t
= l−

1

4
(∇V )GQ−1GT (∇V )T + (∇V )f

+
1

2
tr
[

(∇T∇V )GWGT
]

(6)

with infinite boundary conditions on ∂Ω due to the state
constraints. The solution to this equation inserted into (5)
gives the optimal control. However, this nonlinear partial
differential equation has in general no analytic solution
and is costly to solve numerically.

Rutquist et al. [2008] showed that the variable transfor-
mation

V = −2κ log(Z), (7)

where Z ∈ ([t, tf ] × Ω → R > 0), linearizes the station-
ary HJB-equation. Analogously it is shown that it also
transforms equation (6) into the linear partial differential
equation

∂Z

∂t
=

l

2κ
Z − (∇Z)f −

1

2
tr
[

(∇T∇Z)GWGT
]

(8)

with boundary conditions

Z = 0, x ∈ ∂Ω (9)

and

Zf
$
= Z(tf ,x) = exp

(

−Vf

2κ

)

. (10)

For some systems, the HJB equation (4) does not have a
solution in the classical (continuously differentiable) sense,
and in such cases neither does (8). Both equations may still
have viscosity solutions (Crandall et al. [1992]) that can
be used.

4. VARIABLE SEPARATION

In contrast to (6), Equation (8) is linear and also in a form
that allows for solution by separation of variables (Folland
[1992]). The solutions then have the form Z(t,x) =

T (t)φ(x), where T : ([t, tf ] → R) is independent of x,
and φ : Ω → R is independent of time. This gives

φ
dT

dt
= T

(

l

2κ
φ− (∇φ)f −

1

2
tr
[

(∇T∇φ)GWGT
]

)

(11)
which can be separated into

1

T

dT

dt
= λ , (12)

and

λ =
lφ− 2κ(∇φ)f − κtr

[

(∇T∇φ)GWGT
]

2κφ
. (13)

The boundary condition (9) is translated to

φ = 0, x ∈ ∂Ω. (14)

The time-dependent part (12) has an explicit analytical
solution,

T (t) = γeλt, (15)
where γ is an arbitrary constant, while the state-dependent
part (13) may need to be solved numerically. However,
(13) is a linear eigenvalue problem that is readily solved
compared to (6). Solving this eigenvalue problem one
obtains a family of solutions (λn, Tn,φn). The solution
to (8), (9) and (10) is then a linear combination of the
solutions for different eigenvalues λn. We can write

Z(t,x) =
∞
∑

n=1

βn exp(−λn(tf − t))φn(x) , (16)

where the coefficients βn ∈ R are given by the projection
of the final condition (10) onto the space spanned by the
eigenfunctions φn.

〈φj , Zf〉 =
N
∑

n=1

βn 〈φj ,φn〉 ∀j = 1, . . .N, (17)

where 〈φn, Zf〉 is the scalar product of φn and Zf on Ω.

For systems where the eigenfunctions are orthogonal the
projection results in

βn =
〈φn, Zf 〉

〈φn,φn〉
, n ∈ N. (18)

For first order systems we may use this to get closer to
an analytical solution since the eigenfunctions are always
orthogonal then. To see this we begin by writing (13) as

1

2
G2Wφ′′ + fφ′ − αφ = −λφ, (19)

where α = l(x)/(2κ).

A problem on the form

D(p(x)D)φ + q(x)φ = λr(x), (20)

with p *= 0, q and r > 0 real-valued, and p, p′ and q
continuous, is a Sturm-Liouville problem (Griffel [1992]).
In the scalar case we may write

pφ′′ + p′φ′ + qφ = λrφ. (21)

Multiplication by G2W/(2p), p *= 0, gives

G2W

2
φ′′ +

G2W

2

p′

p
φ′ +

qG2W

2p
φ = λ

G2W

2p
rφ. (22)

Identifying the coefficients, noting that W is positive
because it is a variance and assuming G *= 0, gives
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p′ =
2f

G2W
p

q = −
2α

G2W
p

r = −
2p

G2W

⇒

{

p = keΓ(x)

q = −
l

G2W
keΓ(x)

(23)

where

Γ(x) =

∫

2f

G2W
dx, (24)

and k is an arbitrary constant we may set to −W/2,
for example. Hence, our eigenvalue problem is a Sturm-
Liouville problem for which the eigenfunctions are always
an orthogonal basis in the Hilbert space L2(0, 1, r), with
the scalar product (see e.g. Griffel [1992])

〈v1, v2〉 ≡

∫ 1

0
v1v̄2rdx. (25)

5. CONTROL POLICY

Inserting ∇V = −(2κ/Z)∇Z into (5) yields the optimal
control

u =
1

Z
WGT (∇Z)T . (26)

If Z is an exact solution to (8), then Z = 0 corresponds
to V = ∞ so the division by Z in (26) does not introduce
any difficulty that was not in the original problem formu-
lation. 1 For approximate solutions to (8), Z may change
sign in some part of the state-space, and that should then
be taken as a warning signal that the resulting control
policy is very bad. Figure 4 shows an example of this.

If Z is a viscosity solution, then u may be discontinuous
in some points. Equation (26) cannot be used to compute
u in those points. Instead, u is computed using the right
hand side of (4), taking ∇V in the direction of travel for
each possible u.

It can be noted that the policy (26) is unchanged if Z is
multiplied by any function that is independent of x. An
implication of this is that the parameter γ in the analytical
solution for T (t) has no effect on the control. We may also
multiply (16)

by β−1
1 exp(λ1(tf − t)) and then use

Zr(t,x) = φ1(x) +
∞
∑

n=2

βn
β1

exp(−(λn − λ1)(tf − t))φn(x) .

(27)
This formulation is numerically more robust, as it avoids
the risk of floating point underflow.

Because (λn−λ1) > 0 , ∀n > 1, all terms except φ1 vanish
as the “remaining time” (tf − t) approaches infinity. So
for infinite-horizon optimal control, only the eigenfunction
corresponding to the lowest eigenvalue needs to be com-
puted, which is the stationary solution derived by Rutquist
et al. [2008].

6. EXAMPLE

As an example, we consider the following problem: A
chemical plant contains a buffer tank, which regulates the
1 Boundary conditions of Z = 0 is not a problem, because the

system state will never reach the boundary, so the control need not

be computed there.

flow of a certain chemical. The inflow varies stochastically
as a result of upstream events, while the outflow is con-
trolled to be as steady as possible. Specifically, we want
to minimize u2 over time, where u is the deviation from
desired outflow. The buffer state x is allowed to vary in
the interval 0 (empty) to 1 (full).

The system is then described by

ẋ = u+ µ+ σẇ, x ∈ (0, 1) , (28)

where ẇ ∈ R is a random disturbance, which we model as
a white noise with zero mean and intensity 1, and µ is the
average net filling rate from the buffer. 2

The plant operates in batch mode, and at the end of the
batch, at time tf all the chemical remaining in the buffer
will have to be discarded. The optimal control problem
is therefore to minimize both variation in outflow during
operation from current time t to tf and the level in the
buffer at the end. Mathematically the goal is to minimize

V (x(t), t) =

∫ tf

t

u2dτ + ax(tf ) , (29)

where the constant a is the specific cost of the discarded
chemical.

This problem can be expressed by equations (1), (2) and
(3) if we let f = µ, G = 1, l = 0, Q = 1 and W = σ2.
Equation (29) then implies κ = σ2.

In order to compute an optimal control policy, we first
solve the eigenvalue problem given by (13) and (14), i.e.

λφ = −µ
dφ

dx
−
σ2

2

d2φ

dx2
(30)

φ(0) = φ(1) = 0 . (31)
This can be reformulated as a Sturm-Liouville problem
with the solutions

λn =
µ2

2σ2
+

1

2
n2π2σ2, n = 1, 2, 3, . . . (32)

φn = exp
(

−
µ

σ2
x
)

sin(nπx) (33)

where the eigenfunctions form an orthogonal basis for the
Hilbert space L2(0, 1, exp(2µx/σ2)).

Next, we compute the projection of the final condition Zf

onto the space spanned by the φn, using (18).

Since Vf = αx, by (10) we have Zf = exp(−αx/2κ),

which gives

βn =

∫ 1
0 φn(x) exp(−

ax
2σ2 + 2µx

σ2 )dx
∫ 1
0 φ

2
n(x) exp(

2µx
σ2 )dx

. (34)

and the optimal control

u = σ2

∑∞

n=1 βn exp(−λn(tf − t))φ′
n(x)

∑∞

n=1 βn exp(−λn(tf − t))φn(x)
. (35)

Figures 1 – 3 show an example of what Z and u look like
for this inventory control problem. In this case µ = −0.2,
σ = 0.3 and a = 1. The plots show the control policies for
tf−t equal to 10, 1, and 0.1. It can be seen how the control

2 It is possible to eliminate µ from the calculations by a change of

variables, but we will not do that in this example.
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Figure 1. The log-transformed value function Z and the
control policy u at t − tf = 10. At this point, only
the first term in the series is of any consequence. The
long-term control policy has u = −µ when the buffer
is half-full.
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Figure 2. The result at tf − t = 1. The control is starting
to favor lower x.

policy moves towards smaller x as time passes, while the
buffering capability is maintained.

The sums in (35) converge rapidly on most of the time
interval because of the exponential factors. When tf − t
approaches zero, however, a practical difficulty may arise
as an increasing number of terms need to be included in the
sum. Truncating too early can result in very bad control
policies, as shown in Figure 4. The effect is very strong
in this example, because the final condition (the buffer
should be as empty as possible) is in conflict with the
continuous operation condition (the buffer must never be
empty). The resulting discontinuity in V (and hence Z)
makes the Fourier series converge very slowly.

In practice, this problem can be circumvented by using
more terms and/or slightly increasing tf in the calculations
and then interrupt in advance (at the proper tf ). It also
helps to select the final cost Vf compatible with the buffer
boundary constraints (that is: Vf approaching infinity at
x = 0 and x = 1). With a continuous boundary condition,
the Fourier series will converge much more rapidly.
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Figure 3. At tf − t = 0.1, the control policy favors even
lower x. Still the level is not allowed to drop too far, as
buffering capability must be maintained until the end.
(At this point, the Fourier series converges slowly. In
this graph, 15 terms are used, which is sufficient.)
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Figure 4. The result of truncating the series too soon. The
value function and control computed for tf − t = 0.1
using only 5 terms of the Fourier series. (Note that Z
passes below zero near x = 0.7 causing u to become
infinite, which is why there are gaps in the plot of u.)

We note that this method requires the least computational
effort to compute when the final time is far away. The
closer to the final time, the more terms must be included
in the sums in order to obtain the optimal control. This
makes the solution an excellent complement to strategies
such as model predictive control, which requires more
computing power the farther away the time horizon is.

7. CONCLUSION

A previously presented method for the solution of state
constrained stationary optimal control problems has been
extended to the finite-time case. The time dependence is
handled by separation of variables which gives an ana-
lytical solution for the time varying factors. The state
dependent factors are given by the solution to a linear
eigenvalue problem, which can readily be solved analyti-
cally or numerically if the original optimal control problem
is formulated properly.
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