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CSI feedback in correlated slow-fading channels
Behrooz Makki, Thomas Eriksson

Abstract—This letter studies the effect of quantized channel
state information (CSI) feedback on the average rate of correlated
channels. Demonstrating the general rate optimization problem,
the results are obtained for both delayed and delay-free feedback
conditions under different short- and long-term power allocation
strategies. We also evaluate the effect of adaptive CSI quantization
on the channel average rate. Analytical and numerical results show
that exploiting the channel memory not only increases the forward
channel data transmission efficiency but also can lead to dramatic
feedback rate reduction.

Index Terms—Slow-fading correlated channel, CSI feedback,
channel average rate, feedback compression.

I. INTRODUCTION

Due to the signaling overhead caused by reporting the chan-
nel state information (CSI), it is not feasible to provide the
transmitter with perfect CSI in many applications. This is the
main motivation for the present partial CSI feedback schemes,
e.g., [1], [2], and this paper as well. In these methods, the
transmitter is provided with as much as possible CSI via a
minimum number of feedback bits. Further, among different
research projects involving in this topic we can mention the 3rd
Generation Partnership Project (3GPP) [3] in which partial CSI
is one of the most important issues.

Implementing delay-free quantized CSI feedback, [2] inves-
tigated the channel average rate for uncorrelated slow-fading
channels. Their results were later extended by us [1] where
the system performance was studied in the presence of hybrid
automatic repeat request feedback. However, realistic channels
are often not memoryless. Simulations and practical measure-
ments [4], [5] show high correlation between adjacent blocks,
and exploiting the channel memory is expected to improve the
channel data transmission efficiency. Therefore, in this paper
we study the channel average rate in the case where there is
correlation between successive channel realizations.

In comparison to previous works [1], [2], the new contribu-
tions of the paper are as follows: 1) For different power alloca-
tion strategies, the average rates are obtained under correlated
channel conditions. 2) We investigate the effect of feedback
delay on the achievable rates of the channel. 3) Theoretical
bounds of feedback rate are obtained under different power
allocation strategies and finally, 4) the results are extended to
the case of adaptive CSI quantizers. Analytical and numerical
results show that exploiting the channel memory not only
increases the forward channel data transmission efficiency but
also can lead to substantial feedback rate reduction. The results
would be interesting for people involved in, e.g., 3GPP.

II. SYSTEM MODEL

Consider a communication channel in which the power-
limited input message X multiplied by the fading random
variable h is summed with an iid complex Gaussian noise
Z : CN (0, N0) resulting in the output

Y = hX + Z. (1)

We focus on correlated Markov slow-fading channels with
M -steps-behind dependencies. That is, the channel gain g =
|h|2 remains constant for a long time, generally deter-
mined by the channel coherence time, and then changes
according to the fading probability density function (pdf)
fgk|gk−1,...,gk−M (x0|x1, ..., xM ). It is assumed that there is
perfect instantaneous knowledge about the channel gain at the
receiver, which is an acceptable assumption under slow-fading
conditions [1], [2]. Further, the feedback bits are supposed to
be received by the transmitter error-free. Finally, with no loss
of generality, we set the noise variance N0 = 1.

Notations: In the sequel, gk = |hk|2 represents the chan-
nel gain realization at time slot k, with the gain joint pdf
fgk,...,gk−M (x0, ..., xM ). A quantization encoder

Qk = j, if gk ∈ Aj = [αj−1, αj), α0 = 0, αN = ∞ (2)
is implemented at the receiver where N is the number of quan-
tization regions (QRs), αj’s denote the quantization boundaries
and Aj is the j-th QR. Moreover, the quantization decoder at
the transmitter is represented by Ik = j, if gk ∈ Aj . Further,

πIk...Ik−M = Pr{gk−m ∈ AIk−m , m = 0...M}

=

∫

A
Ik

...

∫

A
Ik−M

fgk,...,gk−M (x0, ..., xM )dx0...dxM (3)

denotes the probability that the successive channel realizations
gk, gk−1, ..., gk−M fall into the AIk , AIk−1 , ..., AIk−M regions,
respectively, and TIk...Ik−M is the transmission power in this
case. Finally, T is the average transmission power constraint.

III. DELAY-FREE QUANTIZED CSI FEEDBACK

Considering a delay-free quantized CSI feedback approach
with N QRs, the quantization encoder (2) is implemented at
the receiver, and the transmitter is informed about the current
quantization output. At the transmitter side, the quantization
outputs are decoded by the decoding function

Ik = j, if gk ∈ Aj , j = 1...N. (4)
The transmitter looks at the M + 1 recent quantization indices
Ik, ..., Ik−M , and selects a fixed gain ĝIk...Ik−M ∈ AIk =
[αIk−1, αIk ) accordingly. Then, data transmission is done at
rate RIk...Ik−M = log(1+ ĝIk...Ik−M TIk...Ik−M ).1 If the instan-
taneous gain realization supports the rate, i.e., gk ≥ ĝIk...Ik−M ,
the data is successfully decoded, otherwise outage occurs.
Hence, for every set of quantization indices Ik−m, m = 0...M ,
the expected achievable rate of the channel is

R̄Ik ...Ik−M =
Pr{gk ≥ ĝIk...Ik−M |gk−m ∈ AIk−m , m = 0...M}RIk...Ik−M .

(5)

Hence, using (3) and (5), the channel average rate is found as

1All results are presented in natural logarithm basis. Also, both the average
and the feedback rates are presented in nats per channel use (npcu).
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R̄ =
∑N

Ik=1 ...
∑N

Ik−M =1 πIk...Ik−M R̄Ik...Ik−M =
∑N

Ik=1 ...
∑N

Ik−M =1 ηIk ...Ik−M log(1 + ĝIk...Ik−M TIk...Ik−M )
(6)

where
ηIk...Ik−M

.
=

Pr{ĝIk...Ik−M ≤ gk < αIk & gk−m ∈ AIk−m , m = 1...M} =
∫ α

Ik

ĝ
Ik...Ik−M

∫

A
Ik−1

...
∫

A
Ik−M

fgk ,...,gk−M (x0, ..., xM )dx0...dxM .

Equation (6) is based on the fact that, as the current gain
realization is in the Ik-th region, the optimal considered gain
ĝIk...Ik−M must be within this region as well. Also, ηIk ...Ik−M

is the probability that the rate RIk...Ik−M is decodable at the
receiver. Finally, the average transmission power is obtained by

T̄ =
N

∑

Ik=1

...

N
∑

Ik−M =1

πIk...Ik−M TIk...Ik−M . (7)

In this perspective, the general power-limited rate optimization
problem can be stated as
R̄max = max

∀T
Ik...Ik−M ,ĝ

Ik...Ik−M ,αj

R̄(TIk...Ik−M , ĝIk...Ik−M , αj)

subject to T̄ ≤ T

which, based on the considered power allocation strategy, can be
solved numerically or analytically. Normally, there are two dif-
ferent interpretations of the power constraint. Short-term power
allocation [1], [2] implies that TIk...Ik−M = T, ∀Ik...Ik−M .
Under the more relaxed long-term power constraint, the trans-
mitter can adapt the power based on channel conditions such
that the average transmission power T̄ does not exceed T . In
this way, the optimal powers maximizing (6) can be found based
on (6), (7) and a Lagrange multiplier approach, leading to the
following water-filling equations

TIk...Ik−M =

⌈

ηIk ...Ik−M

λπIk ...Ik−M

− 1

ĝIk...Ik−M

⌉+

. (8)

Here, λ is the Lagrange multiplier constant obtained by (7).
Based on (6)-(8), there are some interesting points such as:

• With long-term power allocation, the power is not wasted
on weak channel realizations and the saved power is spent
on strong channel conditions. That is, with limited power,
no data is transmitted if the channel falls in low QRs and
the power is preferably given to higher regions. This point
also affects the optimal quantization boundaries, as the low
regions with no power should be merged together.

• Setting ĝIk...Ik−M = ĝIk∀Ik−1...Ik−M , which is a special
case of the general average rate optimization problem, sim-
plifies the results to the ones obtained under memoryless
conditions [2]. Hence, as also emphasized in simulations,
exploiting the channel memory leads to higher (or, in the
worst case, equal) forward channel average rate.

IV. MINIMUM FEEDBACK RATE

Based on the channel correlation properties, there are dif-
ferent practical methods such as differential coding [4] or
sub-sampling [5] which can exploit the channel memory
for feedback compression. However, it is always interest-
ing to find the theoretical minimum feedback rate of the
channel; considering the proposed correlated channel model
fgk |gk−1,...,gk−M (x0|x1, ..., xM ), the channel theoretical mini-
mum feedback rate is found as

Ō = H(Ik|Ik−1, ..., Ik−M ) =
∑N

Ik−1=1 ...
∑N

Ik−M =1 πIk−1...Ik−M×
H(Ik|gk−m ∈ AIk−m , m = 1...M)

(9)

where H(U |V ) is the conditional entropy of random variable
U given V and πIk−1...Ik−M =

∑N
Ik=1 πIkIk−1...Ik−M . Then,

as conditioning reduces the entropy, it is obvious that using
the channel memory can reduce the memoryless channel feed-

back rate obtained by H(Ik) = −
N
∑

Ik=1

πIk log(πIk ), πIk =

N
∑

Ik−1=1

...
N
∑

Ik−M =1

πIkIk−1...Ik−M . Finally, from (9), the feedback

rate reaches zero (H(Ik)) in full (no) correlation conditions.

V. D-STEPS DELAYED QUANTIZED CSI FEEDBACK

Given that the transmitter is provided with D-steps delayed
CSI feedback Ik−m, m = D...M, 1 ≤ D ≤ M , it assumes
the current gain realization gk to be ĝIk−D...Ik−M which, in
contrast to before, is not necessarily limited to any QR. The
data is sent with power TIk−D...Ik−M and rate RIk−D ...Ik−M =
log(1 + ĝIk−D...Ik−M TIk−D ...Ik−M ) which is received if gk ≥
ĝIk−D...Ik−M . In this way, using the same procedure as before,
the channel average rate is found as

R̄ =

N
∑

Ik−D=1

...

N
∑

Ik−M =1

ϕIk−D ...Ik−M RIk−D...Ik−M (10)

where we have
ϕIk−D ...Ik−M =

∫ ∞

ĝ
Ik−D ...Ik−M

∫ ∞

−∞ ...
∫ ∞

−∞

∫

A
Ik−D

...
∫

A
Ik−M

fgk ,...,gk−M (x0, ..., xM )dx0...dxM
.

Finally, using (3), the average input power is obtained by

T̄ =

N
∑

Ik−D=1

...

N
∑

Ik−M =1

πIk−D ...Ik−M TIk−D...Ik−M (11)

which along with (10) change the rate optimization problem
correspondingly.

VI. ADAPTIVE CHANNEL QUANTIZATION

The forward channel average rate can be further increased
by using adaptive quantizers [6]. This is particularly because
adaptive quantizers can provide more accurate CSI at the
transmitter by dynamic monitoring of the channel variations
in correlated conditions. Here, we consider a scheme where,
instead of one fixed encoder function, NM different functions

Qk
{Ik−1...Ik−M} = j, if gk ∈ Aj,{Ik−1...Ik−M}

Aj,{Ik−1...Ik−M} = [αj−1,{Ik−1...Ik−M}, αj,{Ik−1...Ik−M})
,

each one associated with a specific set of previous quan-
tization outputs {Qk−1

{Ik−2...Ik−M−1}
...Qk−M

{Ik−M−1...Ik−2M}
}, are

implemented at the receiver. For each function, the quantiza-
tion boundaries αj,{Ik−1...Ik−M} are dependent on the previous
quantization outputs. Correspondingly, we consider N fixed gain
points ĝj,{Ik−1...Ik−M} ∈ Aj,{Ik−1...Ik−M} and transmission
powers Tj,{Ik−1...Ik−M} for each function. Finally, the decoder
at the transmitter can be kept in synchronization with the
encoders at the receiver, since both have access to the same
history of indices.

Considering these new functions and replacing the opti-
mization parameters by the new ones, the average rates are
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determined with the same procedure as before. Note that these
new parameters are determined off-line at both transmitter and
receiver, and so does not increase the feedback rate. Finally,
as extending the results to delayed feedback case is straightfor-
ward, we do not discuss it further.

VII. SIMULATION RESULTS

The results are obtained for Rayleigh-fading channels
fgk (g) = 1

µ
e−

g
µ , g ≥ 0 with 1-step-behind correlation modeled

by
hk = βhk−1 +

√

1 − β2ε, ε : CN (0, µ), gk = |hk|2. (12)

Here, µ is the exponential pdf parameter and β is the correla-
tion factor demonstrating the two successive gain realizations
dependencies. Under this model, the gain joint pdf is found as

fgk ,gk−1(x, y) =
1

(1 − β2)µ2
e
− x+y

(1−β2)µ Ψ0(
2β

√
xy

(1 − β2)µ
) (13)

where Ψ0(.) is the zeroth-order modified Bessel function of
the first kind [7]. Therefore, e.g., πIkIk−1 and ηIkIk−1 can be
determined based on the following integration procedure

∫ v

u

∫ z

w
fgk ,gk−1(x, y)dxdy

(a)
=

∫ v

u
1
µ
e−

x
r

(

∫

√
2z
r√

2w
r

θe−
θ2

2 Ψ0(s
√

xθ)dθ

)

dx

(b)
=

∫ v

u
1
µ
e−

x
µ {ξ(s√x,

√

2w
r

) − ξ(s
√

x,
√

2z
r

)}dx

(c)
= e−

w
µ {ξ(

√

2w
r

β,
√

2u
r

) − ξ(
√

2w
r

β,
√

2v
r

)}
−e−

z
µ {ξ(

√

2z
r

β,
√

2u
r

) − ξ(
√

2z
r

β,
√

2v
r

)}
+e−

v
µ ξ(

√

2w
r

,
√

2v
r

β) − e−
u
µ ξ(

√

2w
r

,
√

2u
r

β)

−e−
v
µ ξ(

√

2z
r

,
√

2v
r

β) + e−
u
µ ξ(

√

2z
r

,
√

2u
r

β)

.

Here, (a) is obtained by defining r
.
= (1 − β2)µ, s

.
=

√

2/rβ and using variable transform θ =
√

2y/r. Then, (b)
is directly obtained from the definition of the Marcum Q-
function ξ(x, y) =

∫ ∞

y
te−

t2+x2

2 Ψ0(xt)dt and (c) is derived

by ξ(x, y) = 1 + e−(x2+y2)/2Ψ0(xy) − ξ(y, x), using variable
transform t =

√
x, partial integration and some calculations.

Considering µ = 1, β = 0.8 and N = 2 QRs (if not
otherwise mentioned)2, Fig.1a shows the channel average rate
under different data transmission strategies. Also, the results
obtained under no knowledge, i.e., (7) in [2], and full knowledge
assumptions have been plotted as two lower and upper bounds,
respectively. Moreover, considering fixed quantizers and differ-
ent input powers, Fig.1b verifies the effect of channel memory
on the channel feedback rate for different power allocations.
Finally, utilizing fixed equal-probability quantizers, Fig.2 shows
the average rate versus the feedback rate for different number
of QRs.

VIII. DISCUSSIONS AND CONCLUSION

This report studies the average rate of correlated slow-
fading channels in the presence of quantized CSI feedback.
The results show that: 1) utilizing fixed quantizers, there is a
small average rate gain when exploiting the channel memory.
However, in harmony with practice [4], [5], substantial feedback
compression is obtained even with fixed quantizers (Fig.2).

2While not shown here, the simulations have been run for different parameter
settings with similar qualitative results.
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Figure 1. (a): Average rate vs input power, (β = 0.8). (b): Minimum feedback
rate vs correlation factor β, (T = 1 & 7). µ = 1,N = 2 if not mentioned.
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Figure 2. Average rate vs feedback rate, short-term power constraint T = 2.

2) Further, adaptive quantization considerably improves the
average rate. For instance, in Rayleigh-fading channels with
1-step-behind dependency (β = 0.8), (almost) half the gain
obtained in the forward link by N = 4 QRs is achieved by
utilizing adaptive quantizers with N = 2 QRs (Fig.1a). 3)
long-term power allocation increases both the forward channel
average rate and the feedback rate. Therefore, its optimality is
under question when both metrics are considered as optimization
criterion. However, these effects diminish in high SNR regimes
(Fig.1b). 4) Depending on the channel memory, considerable
rate increment can be achieved even with delayed CSI feedback
(Fig.1a). 5) The feedback rate decreases as the transmission
power (the channel correlation) reduces (increases) (Fig.1b).
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