
 
  

Chalmers Publication Library             

  

  

  

  

  

Copyright Notice  

  

  

This paper was published in Optics Express and is made available as an electronic reprint with the 
permission of OSA. The paper can be found at the following URL on the OSA website: 
http://dx.doi.org/10.1364/OE.19.011977. Systematic or multiple reproduction or distribution to multiple 
locations via electronic or other means is prohibited and is subject to penalties under law.  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
(Article begins on next page)  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70589885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/OE.19.011977


Higher-capacity communication links
based on two-mode

phase-sensitive amplifiers

C. J. McKinstrie, 1,∗ N. Alic,2 Z. Tong3 and M. Karlsson3

1Bell Laboratories, Alcatel–Lucent, Holmdel, New Jersey 07733
2Jacobs School of Engineering, University of California at San Diego,

La Jolla, California 92093
3Department of Microtechnology and Nanoscience, Chalmers University

of Technology, SE-412 96 Gothenburg, Sweden
∗mckinstrie@alcatel-lucent.com

Abstract: Optical communication links are usually made with erbium-
doped fiber amplifiers, which amplify the signal waves in a phase-insensitive
(PI) manner. They can also be made with parametric fiber amplifiers, in
which the signal waves interact with idler waves. If information is trans-
mitted using only the signals, parametric amplifiers are PI and their noise
figures are comparable to those of erbium amplifiers. However, transmitting
correlated information in the signals and idlers, or copying the signals prior
to transmission, allows parametric amplifiers to be phase-sensitive (PS),
which lowers their noise figures. The information capacities of two-mode
PS links exceed those of the corresponding PI links by 2 b/s-Hz.
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1. Introduction

As network traffic increases, communication systems need to transmit information at higher
rates [1]. Not only should such high-capacity systems encode (transmit) information effi-
ciently [2], they should also transport it efficiently. Communication links are sequences of trans-
mission fibers (attenuators), amplifiers (which compensate fiber losses) and detectors. Standard
links employ erbium-doped fiber amplifiers [3] or Raman fiber amplifiers [4], which operate
on individual signals in phase-insensitive (PI) manners. However, one could also use paramet-
ric amplifiers [5, 6], which are based on four-wave mixing (FWM) in fibers. These devices
can operate on individual signals or signal–idler (sideband) pairs, in PI or phase-sensitive (PS)
manners.

In a previous paper [7], the transmission and detection of information, and the effects on that
information of individual attenuators and parametric amplifiers (or frequency convertors), were
studied in detail. In this paper, the methods and results of [7] are reviewed briefly, and used to
study the information efficiencies of communication links with PI or PS parametric amplifiers.
PS amplifiers have lower noise figures (NFs) than PI amplifiers, which (usually) allow PS links
to transport information at higher rates than the corresponding PI links.

The analysis of this paper applies to conventional systems with coherent-state (CS) input sig-
nals [8], (complex) amplitude-keyed information formats, linear attenuators and amplifiers, and
homodyne detectors. For such systems, the signal and idler (sideband) amplitude fluctuations
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have Gaussian statistics [9,10]. This fact has two important consequences. First, the sidebands
are specified completely by their amplitude means, variances and correlations. General formu-
las for the variances and correlations produced by concatenated (multiple-mode) parametric
processes are known [11–14]. Second, once the variances and correlations produced by spe-
cific links have been determined, the associated information capacities follow from the results
of classical information theory [15,16].

This paper is organized as follows. In Sec. 2, the information capacities of one-mode signals
and two-mode signal-idler pairs are defined and discussed briefly. In Sec. 3, the FWM processes
that enable PI and PS amplification are reviewed briefly. The noise properties and information
capacities of two-mode PI links, one-mode PS links and two-mode PS links are determined in
Secs. 4, 5 and 6, respectively, as are the optimal input conditions for these links. Two-mode PS
links, which require the inputs to be correlated, have the lowest noise figures and the highest
capacities. Finally, in Sec. 7 the main results of this paper are summarized. The measurement
of information by homodyne detection was discussed in [7].

2. Input information

The analysis of this paper is based on the assumption that the input signals are CS [8]. For
a CS with amplitude mean〈a〉 = α, where〈 〉 is an expectation value, the quadrature mean
〈q(φ)〉 = (αe−iφ +α∗eiφ )/21/2, whereφ is the the local-oscillator (LO) phase.〈q(0)〉 and
〈q(π/2)〉 are called the real and imaginary quadratures, respectively. Quantum optics theory
shows that the quadrature variance〈δq2〉 = 1/2, which does not depend on the LO phase, and
the associated quadrature distribution has Gaussian statistics. The quadrature fluctuations are
called vacuum fluctuations, because they do not depend on the amplitude mean. The quadrature
signal-to-noise ratio (SNR) is the square of the quadrature mean divided by the quadrature
variance. For a CS and an optimal LO phase, the quadrature SNR is 4|α|2.

In the semi-classical model of fluctuations (noise), one replaces the classical signal quadra-
turex by the semi-classical quadraturey= x+n, wheren is a Gaussian random variable with
mean 0 and (vacuum) varianceσv = 1/2. As shown in the Appendix, this ansatz reproduces
exactly the quadrature variance of a CS with quadrature meanx.

Let X = [xi ]
t be a vector of signal quadratures andN = [ni]

t be a vector of noise quadratures
with Gaussian statistics. The information content (capacity) of an ensemble (distribution) of
signal vectors is maximal if the signal quadratures also have Gaussian statistics [15]. Such
distributions are specified completely by their means, variances and correlations. Define the
signal covariance matrixKx = 〈XXt〉, the noise covariance matrixKn = 〈NNt 〉 and the signal-
plus-noise covariance matrixKy = Kx+Kn, and let∆n and∆y be the determinants of the latter
matrices. Then the total information capacity [15]

Ct = ln(∆y/∆n)
1/2. (1)

The unit of Eq. (1) is nats if the natural logarithm is used, or bits if the base-2 logarithm is
used. For each example in this paper, there is only one signal channel, so the capacity (bits) is
numerically equal to the spectral efficiency (bits-per-second-per-Hertz) [7]. (This relation does
not account for the idler bandwidth.)

For the special case in which there is only one input quadrature, the covariance matrices are
scalars and the input capacity

C= ln(1+σx/σv)
1/2, (2)

where the signal variance (strength)σx = 〈x2〉 and the noise strengthσn = σv. This capacity de-
pends logarithmically on the ensemble-averaged SNRσx/σv. Hence, any process that changes
the SNR (by changing the numerator or the denominator) also changes the capacity.
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For two input quadratures (real and imaginary parts of the same complex amplitude, or
quadratures from different amplitudes), the covariance matrices

Ky =

[

σ11+σv σ12

σ12 σ22+σv

]

, Kn =

[

σv 0
0 σv

]

. (3)

The first matrix is full, because two input signals can be correlated, whereas the second is
diagonal, because the fluctuations associated with orthogonal quadratures of the same CS, or
quadratures from independent CS, are uncorrelated. It follows from Eqs. (1) and (3) that the
total capacity

Ct = ln[(1+σ11/σv)(1+σ22/σv)− (σ12/σv)
2]1/2, (4)

where the signal momentsσi j = 〈xix j〉. The total capacity depends on the individual SNRs and
the (normalized) correlation. If the inputs are independent (σ12 = 0), the total capacity is just
the sum of the individual capacities. If the total input strengthσ11+σ22 is constant, the total
capacity decreases as the correlation increases. Hence, any process that changes the correlation
also changes the total capacity.

3. Amplification and attenuation

Amplification and attenuation are governed by linear input–output (IO) equations for the op-
erators of the participating modes [11–14]. Quantum optics theory shows that if the input am-
plitude fluctuations have Gaussian statistics (as they do for CS), so also do the output ampli-
tude fluctuations [9, 10], which are specified completely by their variances and correlations.
As shown in the Appendix, the semi-classical model reproduces exactly the output quadrature
variances and correlations produced by sequences of parametric processes.

Amplification is made possible by FWM in highly-nonlinear fibers. The modulation inter-
action (MI) is a degenerate FWM process, in which two pump photons are destroyed, and one
signal and one idler photon are created (2πp → πs+πi, whereπ j represents a photon with fre-
quencyω j ) [17]. In the inverse MI, one photon from each of two pumps is destroyed and two
signal photons are created (πp+ πq → 2πs) [18, 19]. Both processes are illustrated in Fig. 1.
The former process provides two-sideband-mode PS amplification if the signal and idler inputs
are nonzero, and two-mode PI amplification if the idler input is zero. The latter process always
provides one-mode PS amplification.

s p i
 

(a)

p s q
 

(b)

Fig. 1. Frequency diagrams for degenerate four-wave mixing. (a) modulation interaction
and (b) inverse modulation interaction. Downward (upward) arrows denote modes that lose
(gain) photons.

Phase conjugation (PC) is a non-degenerate FWM process, in which one photon from each
of two pumps is destroyed, and one signal and one idler photon are created (πp+πq → πs+πi)
[20]. This process is illustrated in Fig. 2. It provides two-mode PS amplification if both inputs
are nonzero and two-mode PI amplification is one input is nonzero. For both two-mode PS
processes, the input idler can be produced by another signal generator, or by a PI amplifier used
as a copier prior to transmission [21,22].
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Fig. 2. Frequency diagrams for non-degenerate four-wave mixing. (a) outer-band and (b)
inner-band phase conjugation. Downward (upward) arrows denote modes that lose (gain)
photons.

One-mode PS amplification is governed by the IO equations [12,18]

y′r = (µ +ν)yr , y′i = (µ −ν)yi , (5)

wherey andy′ are input and output (signal-plus-noise) quadratures, respectively, and the sub-
scriptsr andi denote real (in-phase) and imaginary (out-of-phase) parts, respectively. The trans-
fer coefficientsµ andν (which can be assumed real) satisfy the auxiliary equationµ2−ν2 = 1,
from which it follows thatµ − ν = 1/(µ + ν). The real quadrature is stretched, whereas the
imaginary quadrature is squeezed.

Two-mode amplification is governed by the real IO equations [5,12]

y′1r = µy1r +νy2r , y′2r = νy1r + µy2r , (6)

where the subscripts 1 and 2 denote the signal and idler modes, respectively. (We used the labels
1 and 2, rather thansandi, becausei already denotes imaginary andswill denote stage number.)
The imaginary IO equations are similar (r → i andν →−ν). The signal (information-carrying)
contributions to the input quadratures combine coherently, whereas the noise contributions add
incoherently. For reference, the real superposition modesy± = (y1r ± y2r)/21/2 obey the IO
equations

y′± = (µ ±ν)y±, (7)

which are equivalent to Eqs. (5). The real sum quadrature (+) is stretched, whereas the real
difference quadrature (−) is squeezed. Similar equations apply to the imaginary superposition
quadratures (ν →−ν).

Attenuation is modeled as two-mode beam splitting [8, 12], in which signal photons are
converted into loss-mode photons (πs→ πl ). This process is illustrated in Fig. 3. It is governed
by the real IO equations

y′1r = τy1r +ρylr , y′lr =−ρy1r + τylr , (8)

where the subscriptl denotes the loss mode, and the transfer coefficientsτ andρ (which also
can be assumed real) satisfy the auxiliary equationτ2+ρ2 = 1. The imaginary equations are
similar (r → i). The input loss modes are vacuum states.

Equations (5) and (7) show that amplification does not decrease the information capacity by
itself, because for each quadrature, the signal and noise components are dilated by the same
amount, so the quadrature SNRs are not changed [7]. However, amplification combined with
attenuation has a significant effect on capacity. First, consider attenuation followed by ampli-
fication. By combining Eqs. (5) or (6) with the first of Eqs. (8), one obtains the composite IO
equations

y′± = (µ ±ν)τy±+(µ ±ν)ρv±, (9)
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s

l

M

s 

l 

Fig. 3. Illustration of attenuation (modeled as two-mode beam splitting), in which a signal
mode (s) interacts with a loss mode (l ) at a partially-reflecting mirror (M).

wherev± are the loss-mode quadratures (physical or superposition, for one- and two-mode am-
plification, respectively). Equations (9) show that attenuation reduces the quadrature capacities,
by lowering the quadrature SNRs, but subsequent amplification conserves the (reduced) capac-
ities, for the reason stated above. Now consider amplification followed by attenuation, which is
governed by the composite IO equations

y′± = τ(µ ±ν)y±+ρv±. (10)

Suppose thatµ ∼ ν andµτ ∼ 1. Then, for the+ mode, the output signal is comparable to the
input signal and the attenuator noise is comparable to the transmitted noise. Hence, the output
SNR is reduced, but only by a factor of order 1. In contrast, for the− mode, the attenuator
noise is much larger than the transmitted noise, and might even be stronger than the transmitted
signal, both of which are diminished. Hence, the output SNR is decreased significantly: For all
practical purposes, the− mode information is lost. This behavior has important consequences
for communication links.

4. Two-mode phase-insensitive links

Two-mode PI links are sequences of attenuators followed by two-mode PI amplifiers, as illus-
trated in Fig. 4. They are considered first, because of their similarity to standard links, which
are based on erbium-doped or Raman fiber amplifiers and are also PI. For the first stage in a
two-mode PI link, the (real) IO equations are

y(1)1 = (µτ)y(0)1 +(µρ)v(1)l +νv(1)2 , (11)

y(1)2 = (ντ)y(0)1 +(νρ)v(1)l + µv(1)2 , (12)

wherey(0)1 is the input signal quadrature,y(1)1 andy(1)2 are the output signal and idler quadratures,
respectively,τ andρ are the transfer coefficients of the attenuator, andµ andν are the transfer

coefficients of the amplifier. The input idler and loss-mode quadratures are denoted byv(1)2 and

v(1)l , respectively, to emphasize that these inputs are vacuum states, which originate within the
stage. After every stage except the last, the output idler is discarded.

By iterating Eq. (11), one finds that the composite IO equation for ans-stage PI link is

y(s)1 = (µτ)sy(0)1 +
s

∑
r=1

(µτ)s−r [(µρ)v(r)l +νv(r)2 ], (13)

wherev(r)2 and v(r)l are the idler and loss-mode (noise) quadratures associated with stager,
respectively. For the output idler, only the last stage matters, so

y(s)2 = (ντ)y(s−1)
1 +(νρ)v(s)l + µv(s)2 . (14)
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Fig. 4. Architecture of a stage in a two-mode phase-insensitive link. An attenuator (⊳) is
followed by a two-mode amplifier (⊲). Modes 1 and 2 are the signal and idler, respectively,
and model is a loss mode. After every stage except the last, the output idler is discarded.

Define the signal strengthσx = 〈x2
1〉 and the noise strengthσn = 〈n2

1〉. Then the output strengths

σ (s)
x = (µτ)2sσ (0)

x , (15)

σ (s)
n = {(µτ)2s+[(µρ)2+ν2][1− (µτ)2s]/[1− (µτ)2]}σv. (16)

Equations (15) and (16) are consistent with previous results [12]. On the right side of the lat-
ter equation, the first term represents transmitted signal fluctuations, whereas the other terms
represent accumulated idler and loss-mode fluctuations.

For a balanced link (µτ = 1), the output strengths

σ (s)
x = σ (0)

x , (17)

σ (s)
n = [1+2s(L−1)]σv, (18)

whereL = 1/τ2 is the stage loss. The noise figure (NF) of the link is defined to be the input
SNR divided by the output SNR. It is a figure of demerit. Because the input and output signal
strengths are equal, the NF is just the output noise strength divided by the input (vacuum)
strength. Equation (18) shows that the NF increases linearly with the number of stages and the
loss of each stage. Notice that amplifier and attenuator noise contribute equally to the link NF.

According to Eq. (1), the output signal capacity

C(s)
1 = ln[1+σ (s)

x /σ (s)
n ]1/2. (19)

Compared to the argument of the input logarithm [Eq. (2)], the output argument is reduced by
the factor 1+2s(L−1) ≈ 2sL, which is the NF of the link. This result is similar to the cor-
responding result for links with erbium-doped fiber amplifiers [23]. However, parametric links
also produce an output idler, which is a copy of the signal, and which also contains information,
so the idler and total output capacities should also be determined.

It is instructive to consider the last stage in detail. At the end of stages−1, the signal and

noise strengths areσ (0)
x and [1+ 2(s− 1)(L− 1)]σv, respectively. After the last attenuation

process,σ (s−1/2)
x = Tσ (0)

x andσ (s−1/2)
n = T[1+2(s−1)(L−1)]σv+(1−T)σv, whereT = τ2

is the transmission. At this point, the signal capacity

C(s−1/2)
1 = ln[1+σ (s−1/2)

x /σ (s−1/2)
n ]1/2. (20)

Notice thatσ (s−1/2)
x /T = σ (s−1)

x = σ (s)
x andσ (s−1/2)

n /T = σ (s−1)
n + (L− 1)σv = σ (s)

n − (L−

1)σv. It follows from these results thatC(s−1)
1 > C(s−1/2)

1 > C(s)
1 . The intermediate capacity is

lower than the input (to stages) capacity because loss-mode fluctuations were added, but is

#144953 - $15.00 USD Received 28 Mar 2011; accepted 19 Apr 2011; published 6 Jun 2011
(C) 2011 OSA 20 June 2011 / Vol. 19,  No. 13 / OPTICS EXPRESS  11983



higher than the output capacity because idler fluctuations were not (yet) added. Now consider
the final amplification process. Equations (6) imply that the output covariance matrices

K(s)
y =

[

µ2(σx+σn)+ν2σv µν(σx+σn+σv)
µν(σx+σn+σv) ν2(σx+σn)+ µ2σv

]

, (21)

K(s)
n =

[

µ2σn+ν2σv µν(σn+σv)
µν(σn+σv) ν2σn+ µ2σv

]

, (22)

where the superscriptss−1/2 onσx andσn were omitted for brevity. It is easy to verify that
the determinant∆n = σnσv and, hence, that∆y = (σx+σn)σv. It follows from these results and
Eq. (1) that the output idler capacity

C(s)
2 = ln{1+σ (s−1/2)

x /[σ (s−1/2)
n +Lσv/(L−1)]}1/2

= ln{1+σ (s)
x /[σ (s)

n +(2L−1)σv/(L−1)]}1/2, (23)

where the superscripts were restored for clarity. In the high-loss regime (L≫ 1), σ (s)
n ≫ σv, so

the idler capacity (23) is only slightly lower than the signal capacity (19): The idler is a very
good copy of the signal. It also follows from the aforementioned results that the total output
capacity

C(s)
t = ln[1+σ (s−1/2)

x /σ (s−1/2)
n ]1/2. (24)

Equation (24) shows that the total output capacity equals the intermediate signal capacity: Al-
though two-mode amplification redistributes information between the signal and idler, it con-

serves the total information, as stated in Sec. 2. In the high-loss regime,C(s)
t −C(s)

1 ≈ 1/4s≪ 1,
so the idler contains (almost) no extra information. Nonetheless, it is useful to have an extra
copy of the signal (for broadcasting or monitoring). Notice that the diagonal entries and deter-
minants of the covariance matrices (21) and (22) depend onν2, so the imaginary sideband and
total capacities are the same as their real counterparts.

5. One-mode phase-sensitive links

Each stage in a one-mode PS link consists of an attenuator followed by a one-mode PS am-
plifier, as illustrated in Fig. 5. By combining Eqs. (5) and (8), one finds that the composite IO
equation for the first stage is

y(1) = (λ τ)y(0)+(λ ρ)v(1), (25)

wherey(0) andy(1) are the input and output signal quadratures, respectively, andv(1) is the input
loss-mode quadrature. For the in-phase (real) quadrature the dilation factorλ = µ +ν, whereas
for the out-of-phase (imaginary) quadratureλ = µ −ν.

y

v

Fig. 5. Architecture of a stage in a one-mode phase-sensitive link. An attenuator (⊳) is
followed by a one-mode amplifier (⊲). The closed loop around the amplifier indicates that
the signal interacts with itself.
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By iterating Eq. (25), one finds that the composite IO equation for ans-stage PS link is

y(s) = (λ τ)sy(0)+(λ ρ)
s

∑
r=1

(λ τ)s−rv(r), (26)

wherev(r) is the loss-mode (noise) quadrature associated with stager. Hence, the output signal
and noise strengths are

σ (s)
x = (λ τ)2sσ (0)

x , (27)

σ (s)
n = {(λ τ)2s+(λ ρ)2[1− (λ τ)2s]/[1− (λ τ)2]}σv, (28)

respectively. Equations (27) and (28) are consistent with previous results [12,24]. On the right
side of the latter equation, the first term represents transmitted signal fluctuations, whereas the
other terms represent accumulated loss-mode fluctuations.

For a balanced link, the in-phase gain compensates loss [(µ +ν)τ = 1], so the real signal is
conserved. The output strengths

σ (s)
x = σ (0)

x , (29)

σ (s)
n = [1+ s(L−1)]σv. (30)

The NF of a one-mode PS link is 1+ s(L−1)≈ sL, which is lower than that of the associated
PI link by a factor of 2 (3 dB). It follows from these results and Eq. (1) that the real output
capacity

C(s)
r ≈ ln[1+σ (0)

x /σvsL]1/2. (31)

No noise is added by the one-mode PS amplifiers. The output capacity is lower than the input
capacity because of the noise added by the attenuators in the link.

In contrast, even for a balanced link the out-of-phase gain does not compensate loss [(µ −
ν)τ = τ/(µ +ν) = τ2], so the imaginary signal is attenuated. The output strengths

σ (s)
x = σ (0)

x /L2s, (32)

σ (s)
n = 1/L2s+(1−1/L2s)/(L+1)

= (1+1/L2s−1)/(L+1). (33)

The largest noise contribution (which is of order 1/L) comes from the last stage in the link.
Because the output signal strength is lower than the input strength by a factor ofL2s, the NF of
the link is(L2s+L)/(L+1)≈ L2s−1. Hence, the imaginary output capacity

C(s)
i ≈ ln[1+σ (0)

x /σvL
2s−1]1/2. (34)

Even though the output fluctuations are weaker than the input vacuum fluctuations, the output
signal is much weaker than the input signal, so the imaginary output capacity is almost zero:
Fiber losses obscure the information in the imaginary quadrature, as stated in Sec. 2. For this
reason, a one-mode PS link has a lower capacity than the corresponding two-mode PI link.

6. Two-mode phase-sensitive links

Two-mode PS links are sequences of attenuators followed by two-mode PS amplifiers, as illus-
trated in Fig. 6. By combining Eqs. (6) and (8), one finds that the (real) IO equations for the
first stage are

y(1)1 = (µτ)y(0)1 +(ντ)y(0)2 +(µρ)v(1)k +(νρ)v(1)l , (35)

y(1)2 = (ντ)y(0)1 +(µτ)y(0)2 +(νρ)v(1)k +(µρ)v(1)l , (36)
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wherey1 and y2 are the signal and idler quadratures, respectively, andvk andvl are the associ-
ated loss-mode quadratures. The other symbols were defined previously.

y1

y2

vk

vl

Fig. 6. Architecture of a stage in a two-mode phase-sensitive link. Two attenuators (⊳) in
parallel are followed by a two-mode amplifier (⊲). Modes 1 and 2 are the signal and idler,
respectively, and modesk andl are loss modes. Both sidebands are transmitted through the
link.

By iterating Eqs. (35) and (36), one obtains the composite IO equations [14]

y(s)1 = τs[psy
(0)
1 +qsy

(0)
2 ]+ρ

s

∑
r=1

τs−r [ps−r+1v(r)k +qs−r+1v
(r)
l ], (37)

y(s)2 = τs[qsy
(0)
1 + psy

(0)
2 ]+ρ

s

∑
r=1

τs−r [qs−r+1v(r)k + ps−r+1v(r)l ], (38)

which apply to a two-mode PS link withsstages. The polynomialsps andqs are defined by the
initial conditionsp1 = µ andq1 = ν, together with the recursion relationspr+1 = µ pr + νqr

andqr+1 = µqr +ν pr . By solving these equations, one finds that

ps = [(µ +ν)s+(µ −ν)s]/2, (39)

qs = [(µ +ν)s− (µ −ν)s]/2. (40)

If the input quadratures are equal and in-phase with the transfer coefficients (positive), the

(common) output quadraturex(s)j = [(µ+ν)τ]sx(0), so the entries of the output signal covariance
matrix

〈xix j〉= [(µ +ν)τ]2sσt/2, (41)

whereσt is the total input strength and the superscriptswas omitted for brevity. (In this section,
we do not abbreviate〈xix j〉 by σxi j , to avoid the use of multiple subscripts.) Because most of
the noise variables in Eqs. (37) and (38) are independent, the (common) output noise variance
and correlation

〈n2
j 〉/σv = τ2s(p2

s +q2
s)+ρ2

s

∑
r=1

τ2(s−r)(p2
s−r+1+q2

s−r+1), (42)

〈n1n2〉/σv = τ2s(2psqs)+ρ2
s

∑
r=1

τ2(s−r)(2ps−r+1qs−r+1), (43)

respectively. (We also do not abbreviate〈nin j〉.)
The link is balanced if(µ + ν)τ = 1. This condition can be rewritten asG0 = L, where

G0 = (µ +ν)2 is the in-phase (power) gain andL is the (power) loss of each stage. By making
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these substitutions in Eqs. (42) and (43), and doing the summations, one finds that

〈n2
j 〉/σv = [1+ s(L−1)+ (1+1/L2s−1)/(L+1)]/2, (44)

〈n1n2〉/σv = [1+ s(L−1)− (1+1/L2s−1)/(L+1)]/2. (45)

In the high-loss regime,〈n2
j 〉 ≈ sLσv/2 ≈ 〈n1n2〉. The output sidebands produced by a two-

mode PS link are strongly correlated and the NF of the link (sL/2) is lower than that of the
associated two-mode PI link by a factor of 4 (6 dB) [14,25]. A difference of 5.5 dB was observed
in a recent experiment [26]. For the special case in whichs= 1, 〈n2

j 〉/σv = (L+1/L)/2 and
〈n1n2〉/σv = (L−1/L)/2, which tend to 1 and 0, respectively, asL tends to 1.

The individual and total information capacities are determined by the covariance matrices

Ky =

[

(α +β + γ) (α +β − γ)
(α +β − γ) (α +β + γ)

]

, Kn =

[

(β + γ) (β − γ)
(β − γ) (β + γ)

]

, (46)

whereα =σt/2,β = [1+s(L−1)]σv/2 andγ = [(1+L2s−1)/(L+1)]σv/2. (Notice thatγ ≪ β .)
First, the (common) sideband capacity

Cj = ln[1+α/(β + γ)]1/2. (47)

By calculating the determinants of the covariance matrices, one finds that the total capacity

Ct = ln(1+α/β )1/2. (48)

[Notice that the largest terms in the determinant (α2) cancel, so the capacity is determined
by smaller terms. This fact requires the variance and correlation calculations to be done accu-
rately.] The sideband capacity is lower than the total capacity (as it must be), but is only slightly
lower. (The relative difference is of order 1/L2.) This means that most (almost all) of the infor-
mation is shared between the sidebands. They are nearly perfect copies of each other [14]. The
common capacity

C≈ ln(1+σt/σvsL)1/2. (49)

The (information) SNRσt/σvsL is larger than the SNR for the corresponding PI link by a
factor of 2 (equal total input powers) or a factor of 4 (equal input sideband powers). These SNR
increases are equivalent to capacity increases of 1/2 or 1 bit per quadrature, respectively. The
imaginary quadratures transport information in a similar way.

Although the physical-mode calculation is straightforward, the superposition-mode calcu-
lation is instructive. Define the sum and difference modesy± = (y1 ± y2)/21/2, respectively.
Then, by combining Eqs. (35) and (36), one obtains the superposition-mode IO equations

y(1)± = (λ±τ)y(0)± +(λ±ρ)v(1)± . (50)

Equations (50) are identical to the one-mode equations (11). Hence, the modes propagate inde-
pendently. The real sum-mode information is transmitted and the difference-mode information
is lost. In contrast, the imaginary sum-mode information is lost and the difference-mode infor-
mation is transmitted. So two quadratures are transported (just like PI links), but with higher
efficiencies (NFs lower by a factor of 2). It follows from Eqs. (15) and (17) that, for a balanced
link, the output noise strengths

〈n2
+〉/σv = 1+ s(L−1), (51)

〈n2
−〉/σv = (1+1/L2n−1)/(L+1). (52)
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For the special case in whichs= 1, 〈n2
+〉 = L and〈n2

−〉 = 1/L, both of which tend to 1 asL
tends to 1. By using the identitiesn1 = (n++n−)/21/2 andn2 = (n+−n−)/21/2, one can show
that Eqs. (51) and (52) are equivalent to Eqs. (44) and (45).

It can be shown that the capacity is maximized by using uncorrelated superposition-mode
inputs [7]. In this case, the covariance matrices

Ky =

[

α++β+ 0
0 α−+β−

]

, Kn =

[

β+ 0
0 β−

]

, (53)

whereα+ = σ+, α− = σ−/L2s, β+ = [1+s(L−1)]σv andβ− = (1+L2s−1)σv/(L+1). Hence,
the individual capacities

C± = ln(1+α±/β±)
1/2, (54)

and the total capacityCt =C++C−. If α− = 0 (as assumed previously),C− = 0 andCt = ln(1+
α+/β+)

1/2, which is consistent with the physical-mode result. However, the superposition-
mode calculation is easier and the superposition-mode picture provides more physical insight.

The superposition-mode picture also sheds light on PI links. Such links are inefficient, be-
cause they divide the input information equally between the sum and difference modes, and
the difference-mode information is promptly lost. If one replacesσ+ by σt/2 in the sum-mode
capacity, one recovers the PI signal capacity (in the high-loss regime). So another explanation
of the 3-dB difference between the SNRs associated with PI and PS links is that in the former,
half the information is discarded!

The preceding results apply to links with pairs of CS inputs. For links with individual CS
inputs, one can use PI amplifiers before the links to generate the idlers (copy the signals).
Detailed studies of the noise properties of links with copiers were made in [14, 25]. Just as
copiers increase the link NFs slightly (by amounts of order 1≪ L), so also do they decrease the
link capacities slightly.

7. Summary

In this paper, detailed studies were made of the information capacities of communication links
made with one- and two-mode parametric amplifiers. These studies were based on homodyne
detection of (complex) amplitude-keyed signals. The input signals were assumed to be coherent
states (CS), which have amplitude fluctuations with Gaussian statistics. If such signals (and
their associated idlers) propagate through a sequence of (linear) attenuators and amplifiers,
their amplitude statistics remain Gaussian. Hence, the output signal–idler pairs are specified
completely by their amplitude means, variances and correlations.

The amount of information (capacity) that can be encoded in an input signal depends loga-
rithmically on the input signal-to-noise (SNR) ratio, which is the square of the mean quadrature
divided by the quadrature variance. For a CS signal, the quadrature SNR is 4〈p〉, where〈p〉 is
the number of photons. For two CS inputs, the capacity depends on how information is dis-
tributed between the signal and idler (sidebands). If the total input power is fixed, the capacity
associated with two correlated (or anti-correlated) inputs equals that associated with one input,
and the capacity associated with two uncorrelated inputs is higher, by a factor of almost 2.
However, the use of uncorrelated inputs does not maximize the output information, because of
the combined effects of attenuation and amplification on the sidebands.

Parametric amplification is made possible by four-wave mixing (FWM) in fibers. The degen-
erate FWM process called inverse modulation interaction (MI) always provides one-mode PS
amplification. MI and the non-degenerate FWM process called phase conjugation (PC) provide
two-mode PI amplification if the input idler is zero, and two-mode PS amplification if the idler
is nonzero. (One can generate such an idler using a second transmitter, or by copying the signal
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prior to transmission.) Parametric amplification differs from erbium-doped and Raman fiber
amplification because it can involve one or two (light) modes and can be PI or PS.

The noise figure (NF) of a communication link is defined as the input SNR divided by the
output SNR. The NF of a (balanced) one-mode PS link is approximatelysL, wheres is the
number of stages in the link andL is the loss of each stage. Noise is added by the loss modes
of the fibers (attenuators), which have nonzero input fluctuations. The NF of a two-mode PI
link is approximately 2sL. Extra noise is added by the idlers, which also have nonzero input
fluctuations. In contrast, the NF of a two-mode PS link is approximatelysL/2. Once again, noise
is added by the attenuators and idlers. However, in the amplifiers the sideband amplitudes add
coherently (factor of 4 increase in strength), whereas the sideband fluctuations add incoherently
(factor of 2 increase), so PS amplification reduces the link NF by a factor of 4 (6 dB) relative
to PI amplification. (An improvement of 5.5 dB was demonstrated experimentally.) Two-mode
links also produce output idlers that are excellent copies of the signals.

Amplification and attenuation have significant effects on the information carried by a sig-
nal. Amplification stretches the in-phase quadrature and squeezes the out-of-phase quadrature.
Neither process decreases the capacity by itself (because the coherent and incoherent com-
ponents are dilated by the same amount). However, the squeezed information produced by
amplification is swamped by the noise associated with subsequent attenuation. Because only
stretched information survives, it is best to launch information in whichever quadrature(s) will
be stretched during propagation. For one-mode amplification, this quadrature is the in-phase
(real) quadrature, whereas for two-mode amplification, they are the real sum-mode and imag-
inary difference-mode quadratures (which correspond to correlated and anti-correlated inputs
of equal strength, respectively).

For balanced links, the input and output signal strengths are equal, and the information ca-
pacity is limited by the noise added to the signal during propagation. For a one-mode PS link,
the real quadrature is transmitted optimally (with only attenuation noise), whereas the imagi-
nary quadrature is attenuated and the information it carries is lost. This is a serious deficiency
of one-mode PS links (unless the signals are differential phase-shift keyed or the links incor-
porate a phase-diversity scheme). For a two-mode PI link, both quadratures are degraded by
noise from the attenuators and amplifiers. However, both quadratures are transmitted (neither
is attenuated). Although the NF of this (standard) link is higher than that of the corresponding
one-mode link, its ability to transport both quadratures gives it a higher capacity. For a two-
mode PS link, the real sum-mode quadrature and the imaginary difference-mode quadrature are
transmitted optimally (with only attenuation noise), whereas the other quadratures are attenu-
ated and the information they carry is lost. The NFs of two-mode PS links are 6-dB lower than
those of their PI counterparts (if the signal powers are equal), which allows them to transport 1
extra bit per quadrature (2 extra bits per mode). To put this result in perspective, an on-off keyed
system with a bit rate of 100-Gb/s and a channel spacing of 50-GHz has a spectral efficiency
of 2 b/s-Hz. Two-mode PS amplifiers are compatible with multiple-stage (repeatered) links and
are well suited to unrepeatered links (festoons).

The preceding discussion of information capacity does not account for nonlinear effects in
the transmission fibers (four-wave mixing, and self- and cross-phase modulation). These pro-
cesses increase the (complex) amplitude fluctuations of the signals, which decrease their in-
formation capacities concomitantly [27–30]. The capacity formulas derived herein are useful
upper bounds, whose dependences on the system parameters are evident.
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Appendix: Comparison of the quantal and semi-classical results

The coherent state (CS)|α〉 is defined by the eigenvalue equation

a|α〉= α|α〉, (55)

wherea is a mode operator,α is a complex parameter and| 〉 is a ket vector. The mode operator
satisfies the commutation relation (CR)[a,a†] = 1, where[ , ] is a commutator and † is a
hermitian conjugate. It follows from Eq. (55) that the expectation value〈a〉 = α, for which
reasonα is called the mode amplitude. The quadrature operator

q(θ ) = (ae−iθ +a†eiθ )/21/2, (56)

whereθ is the local-oscillator (LO) phase, and the quadrature-deviation operatorδq(θ ) =
q(θ )− 〈q(θ )〉. By combining Eqs. (55) and (56) with the CR, one finds that the quadrature
mean (first-order moment)〈q(θ )〉 = (αe−iθ +α∗eiθ )/21/2, which depends on both the mode
amplitude and LO phase, and the quadrature variance (second-order moment)〈δq2〉 = 1/2,
which does not depend on the amplitude or phase.

Multiple-mode parametric processes are governed by the input-output (IO) equations

b j = ∑k(µ jkak+ν jka†
k), (57)

wherea j is an input-mode operator,b j is an output-mode operator, andµ jk andν jk are transfer
coefficients. The input modes satisfy the CRs[a j ,ak] = 0 and[a j ,a

†
k] = δ jk, whereδ jk is the

Kronecker delta function. The output modes satisfy similar CRs, which imply that

∑l (µ jl νkl − µklν jl ) = 0, (58)

∑l (µ jl µ∗
kl −ν jl ν∗

kl) = δ jk. (59)

Suppose that the inputs are CS with amplitudesα j . [If someα j = 0, those inputs are vacuum
states (VS).] Then the output amplitudes (first-order moments)β j = ∑k(µ jkα j +ν jkα∗

k ). There
are two standard ways to calculate the higher-order output moments. In the first method, one
combines Eqs. (57) and calculates expectation values using the properties of CS [Eq. (55) and
its hermitian conjugate] and the CRs. In the second method, one rewrites the operators as

a j = α j + v j , b j = β j +wj , (60)

where the auxiliary (noise) operatorsv j andwj also satisfy the CRs and Eqs. (57), and calculates
expectation values using the properties of VS (vj |0〉 = 0). The second method will be used
herein (because it is similar to the semi-classical method, which will be described shortly).

The output quadrature and quadrature-deviation operators are also defined by Eq. (56), with
a replaced byb j andwj , respectively. It follows from these definitions and Eqs. (57) that the
output quadratures〈q j(θ j)〉= (β je−iθ j +β ∗

j eiθ j )/21/2 and the output-quadrature correlations

〈δqi(θi)δq j(θ j)〉= 〈(wie
−iθi +w†

i eiθi )(wje
−iθ j +w†

j e
iθ j )〉/2. (61)

By combining Eqs. (61) with the noise moments

〈wiwj〉 = ∑kµikν jk, 〈wiw
†
j 〉 = ∑kµikµ∗

jk,

〈w†
i wj〉 = ∑kν∗

ikν jk, 〈w†
i w†

j 〉 = ∑kν∗
ikµ∗

jk, (62)

one finds that the quadrature correlations

〈δqi(θi)δq j(θ j )〉= ∑k(µike−iθi +ν∗
ikeiθi )(µ∗

jkeiθ j +ν jke−iθ j )/2. (63)
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When i = j, the right side of Eq. (63) is manifestly real. Wheni 6= j, the right side of Eq.
(63) involves summations ofµikµ∗

jkei(θ j−θi), µikν jke−i(θi+θ j ), ν∗
ikµ∗

jkei(θi+θ j ) andν∗
ikν jkei(θi−θ j ).

Equation (58) implies that the sum of the second and third terms is real, whereas Eq. (59)
implies that the sum of the first and fourth terms is real. Hence, the quadrature-correlation
formula predicts real correlations (as it must do).

In the semi-classical method, one adds to each complex amplitudeα j a complex random
variablev j . (Although the same notation is used for quantal operators and classical random
variables, the meaning should be clear from the context.) The random variables have Gaussian
statistics, and the moments〈v j〉= 0, 〈v jvk〉= 0 and〈v jv∗k〉= δ jk/2. For each input, the quadra-
ture mean〈α j + v j〉 = α j and the quadrature variance〈v2e−i2θ + 2|v|2+ (v∗)2ei2θ 〉/2= 1/2,
which are exactly the results associated with a CS, and the number mean〈|α j + v j |

2〉 =
|α j |

2 + 1/2, which is approximately the result associated with a CS. Hence, one describes
the semi-classical method by saying that 1/2 noise photon is added to each mode. In the
semi-classical method, the amplitudes and random variables obey the same IO equations as
their quantal counterparts [Eqs. (57) with † replaced by∗], so the method produces the same
quadrature-correlation formula [Eq. (61)]. It follows from Eqs. (57) and the stated input mo-
ments that the output moments

〈wiwj〉 = ∑kµikν jk, 〈wiw
†
j 〉 = ∑kµikµ∗

jk − δi j/2,

〈w†
i wj〉 = ∑kν∗

ikν jk + δi j/2, 〈w†
i w†

j 〉 = ∑kν∗
ikµ∗

jk. (64)

By comparing Eqs. (62) and (64), one finds that the semi-classical model predicts correctly
all of the random-variable moments required to evaluate the quadrature correlations (i 6= j). It
underestimates the moment〈wiw

†
i 〉 by 1/2 and overestimates〈w†

i wi〉 by the same amount. How-
ever, the only quadrature moments that depend on these quantities are the variances〈δqi(θi)

2〉,
which depend on their sums and, hence, are also correct. In summary, the semi-classical
method, which consists of adding Gaussian amplitude fluctuations with variance 1/2 to each
classical amplitude, reproduces exactly the quadrature means and variances of CS inputs, and
the output quadrature means, variances and correlations produced by sequences of parametric
processes.
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