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Abstract—Reutilization of the spectrum licensed to services
with low occupancy is of great interest for cognitive radios(CRs).
To achieve this goal, we introduce a simple hidden Markov model
which captures the primary users activity, signal uncertainties,
and noise. For evaluating the performance of any CR, two new
criteria are presented entitled spectrum utilization ratio (UR) and
interference ratio (IR). Based on this model and new measures,
a new a-posterior log-likelihood-ratio based CR is designed and
implemented. Its performance is compared with standard energy-
detection based spectrum-sensing CR. We demonstrate more than
300% increase in UR for up to 1% allowed interference at the
SNR of −5dB.

Index Terms—Cognitive radio, hidden Markov model, inter-
ference ratio, spectrum sensing and spectrum utilization.

I. I NTRODUCTION

In spite of all attractive features of cognitive radio (CR),
there exist many basic questions that limit the usage of CR
in real-world applications. First and foremost, especially for
CRs utilizing energy detection spectrum sensing, the capability
of CR is limited by the so-called SNR wall [1]. This is
due to the low received power of the PU signal at the CR
receiver and uncertainties in signals, noise, and channels.
There are several attempts in overcoming this problem, e.g.,
by using sequential spectrum sensing methods [2] [3]. The
other impediment on the way to fully reutilizing the spectrum
is knowledge about the future activities of the PU in the
same band. Hence, since CRs must be cautious in transmitting
over the bands with possible future PU activities, spectrum
reuse is limited by the causality of spectrum information.
On the other hand, the performance measures normally used
for characterization of CRs performance are dedicated to the
detection efficiency of their spectrum sensing, e.g., receiver
operating characteristic (ROC) curves. These measures do not
consider the PU transmission model, channel uncertaintiesor
the interaction between CR and PU. Thus, any CR design
based on such criteria will not be ideal.

In this contribution, we deploy a hidden Markov model
(HMM) to form a framework for modeling the behavior of CRs
in the presence of PUs and all the uncertainties. Additionally,
a benchmark for evaluation of CR performance is introduced.
Then, using this foundation and these measures, a new CR
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transmission strategy is designed and implemented. This new
design ensures that the vacant spectrum is optimally used
conditioned on the level of interference for the PU, due to
all uncertainties in the model, is not exceeding a certain level.

HMMs are long in use for modeling different phenomena
ranging from speech signals [4] to the complex behavior of
computer networks. In the context of cognitive radio, many
researchers modeled the spectrum white space with Markov
models and spectrum sensing using HMMs [5]–[8]. In our
paper, HMMs are used not only for spectrum sensing but
also as a tool for CR transmission strategy making. The
closest published approach to our method is presented in
[9], which employs a partially observed Markov decision
process (POMDP). They introduced the POMDP for optimal
policy making for multiple channel sensing and access. The
approach is similar to ours due to Markovian assumption for
the PU transmission model and in the presence of sensing
error. However, the sensing model, performance metric and
constraints are different from ours.

This paper will be continued by introducing the system
model in the next section, which will cover the signal and noise
models and the HMM representation of the CR perception
of spectrum activities. In Section III, the new performance
measures utilization ratio (UR) and interference ratio (IR)
will be introduced. Section IV computes the UR and IR
for standard CR based on spectrum sensing using energy
detection.. Section V is devoted to the design of a new CR
strategy, which improves reutilization of the spectrum. Itwill
be followed in Section VI by the simulation scenario, some
results, and a comparison between the baseline and new CR.
The paper will be concluded in Section VII by some final
remarks.

II. SYSTEM MODEL

A cognitive radio system is interested in utilizing the
spectrum vacancies. To take advantage of time-frequency
slots which are not used by the PU, the CR must be aware of
the PU activities. In this research, it is assumed that the CR
has a full buffer to reuse the spectrum whenever it is available.
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Figure 1. PU transmission model

A. PU transmission model

Here, the PU transmissions are slotted with a slot length
T . The existence of a PU transmission in slotk is denoted by
hypothesis theH1 , {qk = 1} and its absence is denoted
by H0 , {qk = 0}. A simple model which represents
the PU transmission is the two-state on-off Markov process
depicted in Fig. 1, where the Markov chain is represented by
the transition probabilitiesai,j = Pr{qk+1 = j|qk = i} for
i, j ∈ {0, 1} andqk stands for the PU state at time slotk. This
model is represented by the transition matrix

A ,

[

a00 a01
a10 a11

]

(1)

wherea00 + a01 = a10 + a11 = 1.
Due to the noise and other channel impairments, CR is

unable to directly observeqk. In the following sections, the
uncertainties in signal and noise are modeled as Gaussian
random processes. The initial distribution of the states is
assumed to be in steady state [4] and defined as

π ,
[

π0 π1

]

,
[

Pr{qk = 0} Pr{qk = 1}
]

=
[

a10

a01+a10

a01

a01+a10

]

, k = 0, 1, 2, · · · (2)

B. Signal and noise models

The receiver front end is an energy detector whose its
outputxk is

xk =

K−1
∑

i=0

|r (kT + iTs)|
2
, (3)

where r(·) is the complex envelope of received signal low-
pass filtered to the PU signal bandwidthW , T is the period
in which energy is collected, which happens to be the same as
the period for the PU to change its state (for simplicity),Ts

is the sampling time, andK is the total number of samples in
each period. The channel is assumed to be an additive white
Gaussian noise channel. We also assume that the PU signal
can be modeled as a Gaussian signal (which is a reasonable
model for many PU signals [10] [11]). If we selectTs such
that Ts ≫ 1/W , then the samplesr(iTs) are approximately
statistically independent. We note thatK is constrained as
K ≤ T/Ts. The following is a review of the assumptions that
the model is based on.

1) Noise only: This model presumes that the noise
n(iTs) ∼ CN (0, σ2

n) is a zero-mean complex circular Gaus-
sian sample with varianceσ2

n, and the received signal will be
r(iTs) = n(iTs). Thus,xk is chi-square distributed with2K
degrees of freedom and Gaussian varianceσ2

n.
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Figure 2. HMM model for the energy detector.

2) Signal plus noise:This model assumes that the noise is
a zero-mean complex circular Gaussian sample with variance
σ2
n, the signal is also zero-mean complex circular Gaussian

with varianceσ2
s , and r(iTs) = s(iTs) + n(iTs), r(iTs) ∼

CN (0, σ2
r), where σ2

r = σ2
s + σ2

n. Thus, xk is chi-square
distributed with2K degrees of freedom and Gaussian variance
σ2
r .

C. Hidden Markov model representation of energy detector

Energy detection, which is one of the most widely deployed
spectrum sensing methods due to its simplicity, compares the
estimated received energy (xk) with a threshold to detect the
existence or absence of the PU signal. Using this threshold at
a certain received PU signal power to CR noise ratio (SNR)
will result in certain probabilities of mis-detection and false
alarm. This procedure introduces the HMM presented in Fig.
2. In this model,yk = 0 andyk = 1 denote the detected state
to beH0 andH1, respectively, and is decided by

yk =

{

0, if xk ≤ θe;

1, if xk > θe,
(4)

where θe is detection threshold. Thus, the elements of the
emission matrixB are

B ,

[

b00 b01
b10 b11

]

,

b00 , Pr{yk = 0|qk = 0} = 1− b01 = 1− PFA

= 1− P0(θe) = 1−
γ(K, θe/2σ

2
n)

Γ(K)
, (5)

b11 , Pr{yk = 1|qk = 1} = 1− b10 = 1− PM

= P1(θe) =
γ(K, θe/2σ

2
r)

Γ(K)
, (6)

whereΓ is the Gamma function,γ is the lower incomplete
Gamma function,P0 andP1 are the CDF of a chi-square distri-
bution with2K degrees of freedom and Gaussian varianceσ2

n

andσ2
r , respectively , andPM andPFA are the probabilities of

mis-detection and false-alarm, respectively. This model,fully
specified byλ , (A,B,π) [4], captures the whole behavior
of the standard energy detection based CR in the presence of
the simplified PU model.



III. SPECTRUM UTILIZATION RATIO AND INTERFERENCE

RATIO

The performance of a cognitive radio is usually assessed
based on its spectrum-sensing algorithm. Spectrum sensingis
judged based on itsPFA andPM , which are normally presented
in receiver operating characteristic plots. However, the ultimate
goal of CRs is to reutilize the idle spectrum slots while keeping
the level of interference for PUs below a certain level. The two
aforementioned measures are not taking the PU behavior into
account. Besides, utilization and interference are definedby
the presence or absence of PU transmission. Therefore, it is
necessary to define new criteria which consider the full picture
including PUs, CRs, and even the channel.

A. Definitions

Let the CR transmission strategy at timek be denoted
by uk+1, where uk+1 = 0 and uk+1 = 1 represents no
transmission and transmission, respectively in slotk + 1.
Interference will happen whenever the CR transmits at the
same time as the PU. Thus, the interference ratio (IR)ρ is
defined as

ρ , Pr{uk+1 = 1|qk+1 = 1}. (7)

Utilization of spectrum occurs whenever the CR transmits ina
vacant time–frequency slot. Thus, we define spectral utilization
ratio as

η , Pr{uk+1 = 1|qk+1 = 0}. (8)

The intention of any CR is to design a strategy that keeps
ρ below a specified level, sayρmax, and then maximize the
utilization ratioη. Hence, we call a transmission scheme that
maximizesη while ρ ≤ ρmax an optimal transmission scheme.

B. Relation of UR and IR to transmission rate

It is noticeable that UR can be directly translated into
cognitive transmission rate. However, in this paper there is
no assumption on any particular modulation and coding; thus,
we will not demonstrate any exact rate for the CR. Still, an
average rate might be calculated based on UR and IR as

R = Rb(ηπ0 + ρπ1) = Rb (π0(η − ρ) + ρ) , (9)

whereR andRb is average CR transmission rate in bit/s and
data rate for continuous CR transmission in bit/s, respectively.
Thus, for smallρπ1/π0 (9) is approximated byR ≈ Rbπ0η.
In the same way, the probability of error can be derived for
the CR as

Pr{error} =
(

Pr{error|qk+1 = 0, uk+1 = 1}ηπ0 (10)

+ Pr{error|qk+1 = 1, uk+1 = 1}ρπ1

)

/(ηπ0 + ρπ1).

The first term in (10) includes the probability of error in the
absence of PU and the second term includes the probability of
error in the presence of PU. In both expressions (9) and (10),
the first term represents the rate or error due to reutilizing
slots and the second term represents the rate and error during
interference with the PU. Thus, the UR and IR are also useful
in evaluating actual transmission performance of cognitive
communication links.

IV. UR AND IR FOR THE BASELINECR TRANSMISSION

STRATEGY

The CR strategy for transmission, in the presence of an
active PU, can be adapted and optimized according to these
new measures. One might consider different methods in which
UR is maximized while IR is limited. An ideal rule for
transmission would beuk+1 = qk+1, where · denotes the
negation. Obviously, this rule is unrealistic because it isnon-
causal. Thus, the next PU state might be predicted and used
instead of its real state, i.e.,uk+1 = q̂k+1, whereq̂k+1 denotes
a prediction of the next PU state. In an even simpler scheme,
the CR may simply transmit in next slot whenever the current
slot is estimated to be vacant, i.e.,uk+1 = q̂k. The strategy
which simply takes current detectionyk for deciding whether
to transmit or not (uk+1 = yk) is widely used due to its
simplicity [11] and is herein referred to as the baseline system.

Theorem 1:In the HMM presented in Section II-C with
the transmission strategy ofuk+1 = yk, UR and IR are

ηe = a01b10 + a00b00 = a01(b10 − b00) + b00, (11)

ρe = a10b00 + a11b10 = a10(b00 − b10) + b10. (12)

Proof: The UR and IR foruk+1 = yk can be computed
from (7) and (8) as

ηe = Pr{uk+1 = 1|qk+1 = 0} =
Pr{yk = 0, qk+1 = 0}

Pr{qk+1 = 0}
,

(13)

ρe = Pr{uk+1 = 1|qk+1 = 1} =
Pr{yk = 0, qk+1 = 1}

Pr{qk+1 = 1}
.

(14)

From the HMM it follows thatyk andqk+1 are independent
conditioned onqk. Thus, the numerators can be written as

Pr{yk = 0, qk+1 = j}

=

1
∑

i=0

Pr{qk+1 = j|qk = i}Pr{yk = 0|qk = i}Pr{qk = i}

=

1
∑

i=0

aijbi0πi. (15)

Hence, by substituting (15) into (13) and (14) and using (2)
the theorem follows.
Expressions (11) and (12) capture the impact of the PU and
the CR on spectrum reutilization and collisions. They depend
on PFA andPM , which are properties of the CR front end as
well as the matrixA, which is the PU’s property.

V. LLR- BASED TRANSMISSION STRATEGY

In Section IV, a simple strategy which is widely used
for CR was presented. In this section a new HMM-based
transmission strategy, which depends on observations until
time k yk , [y1, y2, . . . , yk]

T is introduced.
As described in Section IV, a generic transmission scenario

for a full buffer CR can be phrased asuk+1 = q̂k+1. Thus, the
better the PU state prediction performed by the CR, the higher
the spectrum reutilization. One reasonable way to incorporate



both the model and whole observations is to form the a
posterior probability ofPr{qk+1 = 1|yk;λ}. This probability
will be used in the decision rule as

uk+1 =

{

1, if zk ≤ θl

0, if zk > θl
, (16)

zk , log
Pr{qk+1 = 1|yk}

Pr{qk+1 = 0|yk}
, (17)

wherezk and θl are thea posteriori log-likelihood ratioand
the threshold forzk, respectively. Thezk, which is based on
the future state of PU, hereafter will be addressed as the LLR.
To calculatePr{qk+1 = i|yk}, i ∈ {0, 1}, the fact thatqk+1

andyk, conditioned onqk, are independent, is used. Thus, this
probability might be expressed as

Pr{qk+1 = i|yk}

=
∑

j∈{0,1}

Pr{qk+1 = i|qk = j,yk}Pr{qk = j|yk}

=
∑

j∈{0,1}

Pr{qk+1 = i|qk = j}Pr{qk = j|yk}. (18)

In (18), Pr{qk+1 = i|qk = j} = aji is given in the matrixA
andPr{qk|yk} can be calculated using the forward-backward
method [4]. Since only the information about the past is
available,Pr{qk|yk} is the forward variableαk(i) = Pr{qk =
i|yk}, i ∈ {0, 1} which is computed recursively [4, eqs. 19–
21] with moderate complexity. Thus, the LLR is

zk = log
a01αk(0) + a11αk(1)

a00αk(0) + a10αk(1)
. (19)

For the cognitive transmission scheme in (16), a threshold
for the LLRs is needed. This threshold firstly should fulfill a
required IRρ ≤ ρmax. To achieve this, one must derive the
expression for the IR for this new transmission strategy. By
substituting (16) in (7) and (18), we can write the IR as a
function of θl as

ρl(θl) = Pr
{

zk ≤ θl

∣

∣

∣
qk+1 = 1

}

= Fzk|qk+1=1(θl) (20)

and the UR as

ηl(θl) = Pr
{

zk ≤ θl

∣

∣

∣
qk+1 = 0

}

= Fzk|qk+1=0(θl), (21)

whereFzk|qk+1=i is the CDF ofzk conditioned onqk+1 = i.
Since bothρl(θl) andηl(θl) are nondecreasing functions ofθl,
it follows that the optimum threshold, which does not cause
more interference than the allowedρmax and maximizes the
UR, is

θl = F−1

zk|qk+1=1
(ρmax), (22)

whereF−1

zk|qk+1=1
is the inverse CDF ofzk conditioned on

qk+1 = 1.

VI. PERFORMANCE EVALUATION AND RESULTS

To assess the performance of the CR specified in ex-
pressions (16)–(19), and to have a fair comparison with the
classical energy detection based spectrum sensing modeledin
Section IV, a setup in which both introduce the same level of
interferenceρmax for the PU must be used. According to (12),
energy detection can attain a certain IR if for a givenA, the
thresholdθe is selected to be

θe = ρ−1
e (ρmax), (23)

ρe(θ) = a10(1− P0(θ)) + a11(1− P1(θ)).

By the same reason as in Section V, this threshold will
give the maximum achievable UR for a given interference.
The threshold given in (23) through expressions (5)–(6) gives
the matrixB. The HMM model specified byλ = (A,B,π)
will be used as the front-end model.

The same model is used to evaluate the new CR trans-
mission strategy presented in Section V. For this new model
to work, a new thresholdθl is needed. To compute this
threshold, the CDF ofzk conditioned onqk+1 = 1 is estimated
empirically.

The rest of this section discusses the evaluation setup by
which these CRs are assessed. Then, some results and a
comparison are presented.

A. Evaluation setup

In simulating the performance of a CR transmission strat-
egy, the ratio of received primary signal power (at the CR
receiver) to the CR receiver noise power is important. Here,for
simplicity, we assume one PU link and one CR link. Of course
it can be extended to a case with multiple coordinated PUs
and multiple coordinated CRs. Hence, we define the SNR as
SNR, σ2

s/σ
2
n (in dB). In this simulation,K is selected to be

10. This parameter plays a role for the SNR scaling. The other
factor which is important in evaluating CRs is the maximum
allowable IR ρmax. This parameter is normally decided by
regulatory bodies like FCC. The intention is to keep it low
and we assume thatρmax = 1%.

B. Results

First, the UR for LLR-based CR and baseline CR are
compared for different PU parameters and SNRs. Figure 3
depictsη vs.a01. In this figure, it is apparent that UR increases
with the SNR. This is expected due to the simplicity of PU
detection for the CR in higher SNRs. There exists an obvious
gain in UR in LLR-based CR over baseline CR. This gain
is due to the inclusion of model and observations in the CR
transmission decisions. The smaller thea01, the higher the
chance that the PU remains in the zero state whenqk = 0.
Thus, the LLR-based CR presents much higher UR gains over
the baseline CR for lower values ofa01. The gain disappears
when a01 increases because the prediction capability of the
LLR-based CR decreases when there is higher chance of a
PU transition to the transmission state whenqk = 0.

Figure 4 illustrates that both CRs have higher sensitivity
to a10 than a01. This sensitivity is caused by the limitation
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Figure 3. UR vs.a01 for the baseline CR (thin red lines) and corresponding
LLR-based CR (thick blue lines) atρmax = 1% over differenta10 and SNRs
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Figure 4. UR vs.a10 for the baseline CR (thin red lines) and corresponding
LLR-based CR (thick blue lines) atρmax = 1% over differenta01 and SNRs

introduced due toρmax. A smallera10 means a higher chance
of the PU staying in transmission state. For keeping the inter-
ference belowρmax, the CR should back off in the thresholdθe
more. This will eventually reduce the UR for both schemes.

VII. C ONCLUSIONS

In this paper, we have proposed a new framework for the
design and evaluation of cognitive radios. In this new model,
the behavior of both PU and CR is captured in a single hidden
Markov model. Moreover, two new performance measures,
UR and IR, for evaluating the performance of CRs were
introduced. In short, the UR is the fraction of the PU-unused
slots that the CR transmits in, and the IR is the fraction of the
PU-used slots that the CR transmits in. Hence, the UR shows

how much of the vacant spectrum is reutilized by the CR and
the IR indicates how much interference the CR causes to the
PU. The HMM was introduced to model the standard energy-
detection based CR.

The same HMM was used to define a new CR which
considers CR and PU models and the history of observation.
For the scenarios with low PU spectral occupancy, this new
CR shows significant improvement in UR for a given IR in
comparison with the baseline system. For a maximum IR
of 1%, the LLR-based CR yields more than300% increase
in UR over the baseline CR at the SNR of−5 dB for
a01 = a10 = 0.01.

The ideas presented herein are dependent on perfect knowl-
edge of the model, which is not always reasonable. This
knowledge might only be available partially or erroneously,
which will have direct impact on the performance of the CR.
These issues are subject to future research by the authors and
will be addressed in forthcoming papers.
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