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ABSTRACT

Most of the techniques developed so far for module perfor-
mance analysis rely on steady-state measurements from a single
operating point to evaluate the level of deterioration of an en-
gine. One of the major difficulties associated with this estima-
tion problem comes from its underdetermined nature. It results
from the fact that the number of health parameters exceeds the
number of available sensors. Among the panel of remedies to
this issue, a few authors have investigated the potential of using
data collected during a transient operation of the engine. A ma-
jor outcome of these studies is an improvement in the assessed
health condition.

The present contribution proposes a framework that for-
malises this observation for a given class of input signals. The
analysis is performed in the frequency domain, following the
lines of system identification theory. More specifically, the mean-
squared estimation error is shown to drastically decrease when
using transient input signals. The study is conducted with an en-
gine model representative of a commercial turbofan.
Keywords: Gas path analysis, frequency domain, least-squares,
system identification.

NOMENCLATURE

E(·) Mathematical expectation operator
FIM Fisher Information Matrix
j Imaginary symbol (

√
−1)

N Spool speed
P Covariance matrix
Pi Total pressure at station i
p Time differentiation operator
SEi Scaling factor on component efficiency,

reference value is 1.0
SWi Scaling factor on component flow capacity,

reference value is 1.0
Ti Total temperature at station i
WF Fuel flow
x State vector
y Measurement signal vector
u Input signal vector
α Amplitude of the sinusoids
ε Measurement disturbance
ω Frequency of the sinusoids
θ Health parameter vector



θ? Actual value of the health parameters
·̂ Estimate
·∗ Conjugate transpose operator
N (m,C) the Gaussian probability density function with

mean m and covariance matrix C

INTRODUCTION
Predictive maintenance aims at scheduling overhaul actions

on the basis of the actual level of deterioration of the engine. The
benefits are improved dispatch reliability and safety as well as
reduced life cycle costs. Generating reliable information about
the health condition of the gas turbine is therefore a requisite and
has been the subject of intensive research in the community.

In this paper, Module Performance Analysis is considered.
Its purpose is to detect, isolate and quantify the changes in en-
gine module performance, described by so-called health param-
eters, on the basis of measurements collected along the gas path
of the engine [1]. Typically, the health parameters are correct-
ing factors on the efficiency and flow capacity of the modules
(fan, LPC, HPC, HPT, LPT) while the measurements are inter-
component temperatures, pressures, shaft speeds and fuel flow.
Since the pioneering work by Urban [2], most of the literature
on module performance analysis has considered the processing
of data observed during steady-state operation of the engine.

In this framework, the estimation of the health parameters
can be cast as an optimisation problem which is characterised by
a number of difficulties. The underlying process is non-linear,
engine measurements are subject to noise and bias and the intro-
duction of model inaccuracy is inevitable. Moreover, the number
of sensors is usually smaller than the number of health parame-
ters, making the problem underdetermined.

One obvious way to tackle this non-uniqueness in the solu-
tion would be to complement the sensor set installed on the en-
gine, but significant additional costs would be incurred. Hence,
this solution on the hardware side is disregarded by engine man-
ufacturers. Two roads of remedy on the software side have then
emerged. The first approach is to make use of a priori informa-
tion on the parameters, e.g. [3, 4]. This strategy, also interpreted
as regularisation, directs the estimation algorithm to one partic-
ular solution based on a prior knowledge on the health condition
of the engine. The second option is to extend the analysis to a
multiple operating point formulation [5,6]. This second solution
takes advantage of the non-linearity of the engine with respect to
its operating point to increase the information contained in the
data samples. Yet, stabilisation of the engine at a number of op-
erating points is rather unlikely in flight and turns out to be quite
a long process on the testbed.

In the late 80’s, Merrington [7] showed that alterations in
the health condition are also reflected in measurements collected
during transient operation of the engine. His work triggered an
endeavour to develop diagnosis techniques based on transient

data. The first contributions, e.g. [7, 8] intended to derive fault
signatures and to detect gross modifications in the dynamic char-
acteristics of the engine. Luppold [9] then applied a Kalman filter
to assess the changes in module performance from transient data.

These last years, the definition of the transient diagnosis
problem has been steadily refined and the effectiveness of var-
ious techniques has been investigated. They encompass least-
squares estimation [10,11], artificial neural networks and genetic
algorithms [12,13] for batch treatment of the data, or Kalman fil-
ters [14, 15] in a recursive framework.

A major outcome of these studies is an improvement in the
estimated health condition with respect to the results obtained
with steady-state data. Most authors relate this improvement to a
better information content of transient data than steady-state one,
yet no formal argument has ever supported this observation.

The present contribution attempts to propose such an argu-
ment for a given class of transient signals. The analysis is per-
formed in the frequency domain, following the lines of system
identification theory. More specifically, the mean-squared esti-
mation error is shown to drastically decrease when using tran-
sient input signals. The study is illustrated with an engine model
representative of a commercial, high by-pass ratio turbofan.

STATEMENT OF THE PROBLEM
The scope of this section is to present the theoretical founda-

tion of the methodology developed to show the benefit of using
transient signals for diagnosis. First, the model relating the ob-
servations to the health parameters is described, in the time and
frequency domains. The problem of estimating the health param-
eters in the frequency domain is then formulated from a system
identification standpoint. Finally, metrics to assess the quality of
the estimates from transient data are defined.

The engine model in time and frequency domains
In the framework of module performance analysis, the en-

gine model relating the measurements to the health parameters is
basically a non-linear aerothermodynamic model based on mass,
energy and momentum conservation laws applied to the engine
components. Such a model is naturally expressed in the state-
space form, namely:

ẋ = f (x,u,θ)
y = g(x,u,θ) (1)

where u are the known inputs, defining the operating point of the
engine (e.g. fuel flow, flight Mach number, altitude), θ are the
aforementioned health parameters and x are the state variables,
associated to the transient effects taking place in the gas path of
the engine. Generally speaking, these transient effects belong
to three categories, namely the heat transfers between the gas



path and the components of the engine, the shaft inertia and the
fluid transport delays. The first equation describes the dynamic
behaviour of the engine, while the second one generates the gas-
path measurements y.

Let u0, θ0, x0 and y0 define a stationary operating point (i.e.
ẋ0 = 0) of the engine. The model can be linearised around this
point as:

ẋ = A x+B u
y = C x+D u (2)

where the system matrices A, B, C, D have the same definition as
in [16]. From now on, u, x, y and θ represent, with some abuse of
notation, deviations with respect to the linearisation point. Note
that this “nominal model” does not account for possible changes
in the health parameters.

In the frequency domain, a (totally) equivalent representa-
tion of system (2) is the so-called transfer function, that describes
the linear mapping between the Fourier transform of the inputs
and the outputs:

Gu( jω) =C ( jω Inx −A)−1 B+D (3)

where Inx is the identity matrix the size of which is the number
of state variables nx.

Inclusion of the health parameters in the linearised model
can be done in two ways. On one hand, they can be introduced
as additional states. Their effect on the state derivatives and the
measurements is captured through two complementary system
matrices, leaving the A,B,C,D matrices of system (2) unaltered.
This methodology is the traditional one used in the community
(see [9, 14]). The other possibility is to integrate the effect of
the health parameters directly into the system matrices. This
approach is as relevant as the first one. Indeed, deterioration
modifies the engine’s behaviour, which is here represented by
these matrices. This second formulation is more common in sys-
tem identification applications and is retained here for its conve-
nience with respect to the objective of this paper. In conclusion
the parameter-dependent model writes:

ẋ = ∆A(θ) x+∆B(θ) u
y = ∆C(θ) x+∆D(θ) u (4)

where the deviation from the nominal model A,B,C,D is ap-
proximated as linear in the health parameter vector θ and ∆M(θ)
is a notation for M +∑

nθ

i=1 Mi θi. Note that for the parameter-
dependent model, the stationary values x0 and y0 are also affected
by the health parameters (just as in classic steady-state analysis).

The corresponding transfer function is given by:

Gu( jω,θ) = ∆C(θ)

(
jω Inx −∆A(θ)

)−1

∆B(θ)+∆D(θ) (5)

Introducing the time differentiation operator p (see [17]), the
concept of transfer function can be exported to the time domain.

Time domain Frequency domain
Gu(p,θ) ↔ Gu( jω,θ)

Parameter estimation in the frequency domain
The transfer function (5) provides a deterministic descrip-

tion of the turbine engine. However, the observed data are con-
taminated with measurement noise whose effect should be incor-
porated into the model:

y(t) = Gu(p,θ)u(t)+ e(t) (6)

where e(t) is a vector of zero-mean, independent and identically-
distributed random variables. As explained in [18], the model
can be scaled so that e(t) ∈N (0, Iny).

The present study focuses on a particular type of input sig-
nals u(t), the so-called multi-sine signals:

u(t) = u0 ·
nω

∑
i=1

αi cos(ωi t +φi) (7)

Multisines have been used to a large extent for system identi-
fication, see for instance [19,20] for some applications to turbine
engines. A number of advantages explain their popularity:

1. they can be strictly band-limited,
2. they allow the signal power to be placed exactly at the de-

sired frequencies,
3. they are periodic signals,
4. good signal to noise ratio can be achieved by tuning the

phases so as to minimise the crest factor of the signal (ra-
tio of peak to rms values).

Provided the multisine is periodic and the data are collected
for an integer number of periods, finite time effects can be ne-
glected and application of the Fourier transform to equation (6)
leaves the following relations in the frequency domain:

Y (ωk) = Gu( j ωk,θ)U(ωk)+E(ωk) k = 1,2, . . . ,nωk (8)

where the Fourier transform of e(t) is a complex normal distribu-
tion E(ω) ∈ N (0,Λ), see the appendix for definition and prop-
erties. Both the real and imaginary parts are independent and



jointly normally distributed with zero mean and covariance ma-
trix Λ/2.

As a consequence, the Fourier transform of the measure-
ments is distributed according to:

Y (ωk) ∈N
(

Gu( j ωk,θ)Uk(ωk),Λ

)
(9)

Following a maximum likelihood approach, the estimated
health parameters are the solution of the following optimisation
problem:

θ̂ = arg min
θ

{V (θ)} (10)

where the objective function V (θ) is given by (see [17] for the
complete derivation):

V (θ) =
nω

∑
k=0
||Y (ωk)−Gu(iωk,θ)U(ωk)||2 (11)

It is important to note that the sum obviously extends over
all the frequencies contained in the multisine input, but integrates
also the static component of the total signal which is the only
piece of information processed in steady-state methods.

Figure 1 illustrates this issue for a sample single sine wave
added to a constant fuel flow. The degradation affecting the en-
gine modifies both static and dynamic characteristics of the out-
put signal: the average level on one hand and the amplitude and
phase on the other hand. The frequency is not affected due to the
linearity assumption.
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Figure 1. CONTRIBUTION OF THE STATIC AND DYNAMIC PARTS OF
THE MEASUREMENT SIGNAL

Assessing the quality of the estimator
A traditional way of assessing the performance of an esti-

mator is to compute its Cramer-Rao lower bound [21]. Briefly
explained, the Cramer-Rao bound introduces a lower limit on the
variance of an unbiased estimator. As a reminder, an estimator
is unbiased, i.e. E(θ̂) = θ? if the system is of full order. This
condition is fulfilled if its Fisher information matrix (FIM, see
below) is of full rank.

The Cramer-Rao inequality means that the uncertainty in
the health parameters cannot be decreased to an arbitrary level.
Mathematically, it writes down:

P≥M−1 (12)

where P is the covariance matrix of the estimates:

P
def
= E

((
θ̂−θ?

) (
θ̂−θ?

)T
)

(13)

θ? being the actual value of the health parameters, and M is the
FIM defined as:

M
def
= E

[ nω

∑
k=0

(
∂

∂θ
log p(Y (ωk),θ)

)∗ (
∂

∂θ
log p(Y (ωk),θ)

)]
(14)

where p(Y (ωk),θ), the joint probability distribution of the mea-
surements and the parameters, is modelled as a Gaussian law
according to (9). The FIM is a square, symmetric and positive
definite matrix, the size of which is equal to the number of pa-
rameters nθ. It quantifies the amount of information that the ob-
servations carry about the unknown parameters.

Introducing the (ny×nθ) matrix H(ωk) as:

H(ωk) =
[

Ψ1( jωk) Ψ2( jωk) . . . Ψi( jωk) . . . Ψnθ
( jωk)

]
(15)

where Ψi( jωk) is a notation for:

Ψi( jωk) =
∂

∂θi
Gu( jωk,θ)Uk(ωk) (16)

and the sensitivity of the model to parameter i being given by:

∂

∂θi
Gu( jωk,θ) = Ci

(
jωk Inx −A

)−1

B

− C
(

jωk Inx −A
)−1

Ai

(
jωk Inx −A

)−1

B

+ C
(

jωk Inx −A
)−1

Bi

+ Di (17)



the FIM becomes:

M =
nω

∑
k=0

[
H∗(ωk) H(ωk)

]
(18)

Around a given operating point, the FIM depends solely on
the features of the input signal u(t), which are the vector of fre-
quencies ωk and the associated amplitudes αk, k = 1, . . . ,nω. For
the purpose of assessing the improvement in estimation quality
brought by a transient signal, it is convenient to summarise the
FIM to a scalar measure. It is a standard way to proceed in de-
sign of experiments, e.g. [22], where the following three metrics
are commonly used:

- the determinant of the FIM, equal to the product of the sin-
gular values. It is inversely proportional to the volume of the
confidence ellipsoid of the estimates,

- the trace of the inverse of the FIM, equal to the sum of the
singular values. It is a measure of the average variance of
the estimates,

- the smallest singular value of the FIM is intimately related
to the variance of the least-well estimated parameter direc-
tion.

APPLICATION OF THE METHOD
Engine Layout

A large bypass ratio mixed-flow turbofan is selected to il-
lustrate the theoretical developments. The engine performance
model has been developed in the frame of the OBIDICOTE1

project and is detailed in [23].
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Figure 2. TURBOFAN LAYOUT WITH STATION NUMBERING AND
HEALTH PARAMETERS LOCATION

1A Brite/Euram project for On-Board Identification, Diagnosis and Control
of Turbofan Engine

A schematic of the engine is sketched in figure 2 where the
location of the ten health parameters and the station numbering
are also indicated. The engine is open-loop controlled by setting
directly the value of the fuel flow WF .

A dynamic model is available in the state-space form spec-
ified by equations (1). It is able to simulate the shaft dynamics
as well as the heat transfers between the working fluid and the
components of the gas generator (HPC, combustor, HPT). The
present study considers small input signals so that the dynamics
of the linearised model is restricted to the mechanical inertia of
the spools. The associated state variables are hence the rotational
speeds of the low- and high-pressure shafts.

The sensor suite selected to monitor the engine condition
is representative of the instrumentation available on-board con-
temporary turbofan engines and is detailed in table 1 where the
nominal accuracy of each sensor is also reported.

Table 1. GAS-PATH INSTRUMENTATION (uncertainty is three times the
standard deviation)

Label Description Uncertainty

P13 fan outlet total pressure ±100 Pa

T 26 LPC outlet total temperature ±2 K

P3 HPC outlet total pressure ±5000 Pa

T 3 HPC outlet total temperature ±2 K

Nl p low pressure spool speed ±6 rpm

Nhp high pressure spool speed ±12 rpm

T 49 LPT inlet total temperature ±2 K

The operating conditions are sea-level static, standard day
(ISA-SLS), and the steady-state fuel flow u0 corresponds to max-
imum continuous regime. The baseline values of the health pa-
rameters θ0 are equal to one.

Set-up of the parametric study
It has been previously mentioned that the FIM depends on

the characteristics of the input signal. This calls for a parametric
study of these features on one of the scalar metrics derived from
the FIM. For sake of simplicity, the input signal is limited to a
steady-state fuel flow perturbed by a sine wave:

u(t) = u0 ·
(

1+α1 cos(ω1 t)
)

(19)

so that the input signal is characterised by two parameters: the
relative amplitude α1 and the frequency ω1 of the sine wave.



The experience of Evans et al. in system identification of jet
engines, see [20], serves as a guideline to define sound intervals
for both parameters. As far as the frequency ω1 is concerned,
it is reported that the typical bandwidth for a linear frequency
response function of a jet engine is 0 to 1 Hz. The range selected
here extends from 10−3 (almost static) to 10 Hz. This choice is
motivated by the fact that gas turbines usually have well damped
dynamics. The sampling frequency of the engine control system
also sets an upper bound on the frequency interval and rarely
exceeds 50 Hz.

Two conflicting requirements govern the choice of the am-
plitude α1. On one hand, the higher the amplitude of the input
signal, the better the signal to noise ratio. On the other hand, the
gas turbine has a non-linear behaviour and the amplitude should
therefore be limited to ensure the validity of the linearised model.
In [20], it is stated that a 10% amplitude of the fuel flow is a good
trade-off between both objectives. Therefore, the interval consid-
ered here ranges between 0.01% (tiny amplitude) and 10%.

Validity of the linearised engine model
Before performing the parametric study, it is safe to check

the validity of the linearised engine model over the range of pos-
sible input signals used in this study with respect to the two as-
sumptions made earlier.

The first assumption is that the behaviour of the engine can
be approximated as linear with a reasonable accuracy. A fuel
flow wave of type (19) was applied to both models (linear and
non-linear). The frequency of the wave was set at 5 Hz and the
amplitude was varied along the interval defined above. Figure 3
shows the root mean square error for each measurement, com-
puted over 5 periods of the input signal and normalised with re-
spect to the standard deviation of the sensor. As expected, the
discrepancy between both models grows as the amplitude α1 of
the wave increases. However, for the largest amplitude consid-
ered here the error due to linearisation lies between 0.01% and
0.1%, which is still fairly acceptable.
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Figure 3. EFFECT OF THE NON-LINEARITY IN THE ENGINE MODEL

The second assumption is that the heat transfers play no sig-
nificant role on the engine response. This time, a fuel flow wave
with a frequency of 5 Hz and an amplitude of 1% was applied to
the full non-linear model that includes shaft dynamics and heat
transfers and to the linearised model based on spool dynamics
only. Figure 4 shows the root mean square error for each mea-
surement, defined as in figure 3. It can be seen that the magni-
tude of the discrepancy is on the order of 0.02% for all sensors
but T 49, which is again acceptable. The maximum error occurs
on T 49 and could be explained by the cumulative effect on the
errors caused by neglecting the heat soakage in the components
of the gas generator.
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Figure 4. EFFECT OF THE HEAT TRANSFERS IN THE ENGINE
MODEL

Results of the parametric study
From the analysis of figures 3 and 4, it can be concluded that

the linearised model represents the behaviour of the “real” engine
with a sufficient accuracy. The parametric study can then be con-
ducted. It consists in computing the FIM over a grid of (ω1,α1)
couples. As the input signal is composed of a static part and a
single sine, the computation of the FIM with equation (18) im-
plies a sum of two terms. The frequency and relative amplitude
of each term are recalled in table 2. Note that even if each term in
the sum is rank deficient, the FIM may be of full rank, similarly
to what happens in multi-point steady-state analysis, see [6].

Table 2. COMPONENTS OF THE FISHER INFORMATION MATRIX

Frequency Relative amplitude
k ωk U(ωk)/u0

0 0 1
1 ω1 α1

Figures 5 and 6 show respectively the evolution of the rank
and of the condition number of the FIM over the definition space
of the input signal. Basically, the condition number gives the



number of health parameters (or linear combinations thereof)
that can be estimated, on average, without any bias. For very
small amplitudes and/or low frequencies, the rank is equal to 7,
the number of measurements. The same result is obtained for
a single-point, steady-state method. As soon as the amplitude
and frequency increase, so does the rank to reach a value of 10,
the number of health parameters. At the same time, the condition
number of the FIM becomes finite. These figures are a first major
indication of the improvement achieved by a transient analysis,
in this case with a periodic input signal, versus a steady-state,
single-point one.
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Figure 7. TRACE OF THE INVERSE OF THE FIM VERSUS FRE-
QUENCY AND AMPLITUDE OF THE INPUT SIGNAL

The trace of the inverse of the FIM is selected as an appropri-
ate metric to assess quantitatively the improvement. Remember
that the trace is an image of the average variance of the estimates.
Figure 7 shows the logarithm of the trace over the (ω1,α1) grid.
It can be seen that in the vicinity of the (0,0) corner, which rep-
resents the classical, pure steady-state case, the value of the trace
tends to infinity, which means that the uncertainty in some of the
health parameters is very large. This is caused by the underdeter-
mined nature of the estimation problem in that case. At very low
frequencies and amplitudes, the magnitude of the trace remains
pretty large, which is in accordance with the fact that the FIM
is not of full rank for these features of the input signal. A large
drop in the trace is witnessed as soon as the rank of the FIM is
equal to 10. At a given frequency, it is easily seen that the metric
decreases in a monotonic way as the amplitude of the wave in-
creases. This behaviour results from a continuous improvement
in the signal to noise ratio.

It is interesting to note the large similarity between figures
6 and 7 which lead to a conclusion previously stated: a transient
signal contains more information about the health condition of
the engine than a steady-state one.

The evolution of the metric with the frequency at a fixed
amplitude looks somewhat more complex. To have a better view
of the situation, figure 8 depicts the evolution of the figure of
merit with respect to the frequency of the sine for 3 particular
amplitudes of 1% (plain line), 5% (dashed line) and 10% (dash-
dotted line). The behaviour is essentially the same for all three
amplitudes.

First, a sharp decrease is noticed as the frequency increases.
The trace is reduced by almost two orders of magnitude per
decade between 10−3 and 10−1 Hz. As the frequency increases
between 0.1 and 1 Hz, the slope decreases and the trace presents
a subtle minimum at a frequency of 0.869 Hz, materialised by



the dotted line in figure 8. Note that the frequency at which the
minimum occurs is the same for the three amplitudes. This hints
at the fact that the “optimal” frequency is conditioned by the sys-
tem’s properties. Past the minimum, the trace increases slightly,
then stabilises in the last portion of the frequency range under
investigation. The difference in information content, in terms of
the cost function, just above the optimal frequency is very small
when a single frequency is used. The amplitude of the signal, as
noticed previously, has a far larger influence: about two orders
of magnitudes can be gained by switching from a one-percent to
a ten-percent amplitude.
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Figure 8. TRACE OF THE INVERSE OF THE FISHER INFORMATION
MATRIX VERSUS THE FREQUENCY AT PARTICULAR AMPLITUDES
– This graph is extracted from figure 7, the frequency axis is here on a
logarithmic scale

Figure 9 depicts the gain of the transfer function of each
sensor versus frequency. It gives the ratio between the ampli-
tude of the output signal and the input signal at a particular fre-
quency. The spool speeds have the typical behaviour of a first or-
der system, the magnitude decreases continuously above the cut-
off frequency. For the pressure and temperature measurements, a
plateau is observed at high frequencies. This is due to a truncated
modelling that does not take into account the gas dynamics nor
the sensor dynamics. The bandwidth of the temperature sensors
is typically in the range of the Hertz while the bandwidth of the
pressure sensors is somewhat larger, albeit depends largely on
the installation.

The two poles of the system are located respectively at 0.479
Hz and 0.713 Hz. In the case of a single sine wave, the optimal
frequency of the input signal, materialised by the plain line, is
located at 0.869 Hz and is quite close to the fastest pole.

Figure 10 shows the singular value of the system versus fre-
quency. Loosely speaking, it represent the “overall gain” from
the fuel flow to the combined outputs at each frequency. It can
be seen that the singular value decreases only moderately as the
frequency increases. It is due to the high frequency gains of T 3,
P3 and T 49 (see figure 9). It means that the loss in signal to noise
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Figure 9. GAIN OF THE TRANSFER FUNCTION BETWEEN FUEL
FLOW AND EACH SENSOR VERSUS FREQUENCY – the dotted line
represents the optimal frequency

ratio is limited for high frequency signals. The singular value
plot provides thereby an explanation to the modest increase in
the trace of the inverse of the FIM past the optimal frequency in
figure 8. It is anticipated tha the introduction of sensor dynamics
would deteriorate the singular value at high frequency and would
translate into a more distinct minimum in figure 8.
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FREQUENCY– the dotted line represents the optimal frequency

DISCUSSION
The results of the parametric study have underlined the im-

provement in the quality of the estimates that can be expected
from the processing of transient signals. To complete the analy-
sis of the results, additional questions that call for complemen-
tary exploration of the present topic are discussed below.

The first point concerns the practical usefulness of an es-
timation tool processing the transient signal used in this study.
A possible application is the assessment of the baseline perfor-
mance of each new engine coming out of the production line
during the acceptance testing. With a frequency of roughly 1 Hz,
several periods of the sine wave can be recorded in a relatively
short time (a few dozens of seconds) and averaged to filter out
the measurement noise. Such a practice has already been fol-



lowed by Evans et al. [20] in their experiments on identification
of dynamic models of a jet engine and could well be transferred
to the present application.

The technique could also be applied to in-service engines.
The data could be recorded after each landing for instance. How-
ever, it would be desirable to run the engine at a lower power set-
ting for several reasons (e.g. environmental, economics, safety).
The influence of the mean power setting on the estimator quality
should be studied as it directly affects the signal to noise ratio.
As the deterioration evolves with the engine’s cycles, the linear
engine model should also be updated regularly around the most
recent estimated health condition to guarantee its validity.

The influence of the non-linearity and of the neglected heat
soakage dynamics has been shown negligible on the model re-
sponse for the class of input signals considered in the study. The
engine was modelled as an open-loop system, and controlled
by imposing the perturbed fuel flow directly. In practice how-
ever, the engine needs to work within operating constraints and
a closed-loop control system is employed. The engine is piloted
through a thrust setting parameter (e.g. fan speed or engine pres-
sure ratio). In closed-loop control, the measurement noise is
correlated with the input signal (the fuel flow) and the dynamic
model should be adapted with a relevant noise model. Refer-
ence [24] addresses these specific issues of closed-loop identifi-
cation.

The present analysis was focused on the case of an input
signal consisting of a constant fuel flow perturbed by a single
sine wave, but can readily cover a broader spectrum provided the
linearity assumption is not violated. Other small transient signals
could be analysed by first decomposing them in a series of sines
and then performing the present analysis. However, the passage
from time to frequency domain with the Fourier transform, which
can be regarded as the core of the proposed analysis, is exact only
for strictly periodic signals. Otherwise, finite time effects have
to be accounted for, see [17].

The extension to large transient trajectory, for instance a
snap acceleration from idle to take-off regime, looks as a chal-
lenge so far. The non-linearity of the engine with the power
setting has to be taken into account. Linear-parameter varying
models [25] might offer an appropriate framework.

CONCLUSION
The present contribution develops a methodology to evalu-

ate the benefit of using transient data for engine health monitor-
ing. A commercial turbofan serves as an example application.
The study focuses on a particular class of input signals consist-
ing of a constant fuel flow perturbed by a sine wave for which
the assumption of a linear behaviour of the gas turbine is reason-
able. A formulation in the frequency domain is adopted, which
is shown to be a convenient framework to efficiently summarise
the informational content of the transient estimation problem.

The quality of the estimates is assessed by means of two
scalar metrics derived from the Fisher information matrix: its
rank and its trace. A parametric study applied to a constant fuel
flow perturbed with a single sine wave has shown the existence
of an optimal frequency that minimises the trace of the Fisher
information matrix. This frequency is close to those associated
to the spool dynamics. The amplitude of the sine wave should
be as large as possible to enhance the signal to noise ratio while
ensuring the validity of the linear model approximation.
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APPENDIX: The complex Normal distribution
Let a be a random vector whose elements may take complex

values. Its mean and covariance matrix are defined as

m
def
= E(a)

Cov(a)
def
= E [(a−m)(a−m)∗]

In this case, the notation a ∈N (m,C) will mean that

1. the real and imaginary part of a are jointly normal,
2. E(a) = m, a complex number
3. Cov(a) =C,
4. the real ℜ(a) and imaginary ℑ(a) parts are independent,
5. Cov(ℜ(a)) = Cov(ℑ(a)) = 1/2 C


