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Abstract: By using a generalized cost function, a modified constant
modulus algorithm (CMA) that allows polarization demultiplexing and
equalization of polarization-switched QPSK is found. An implementation
that allows easy switching between the conventional and the modified
CMA is described. Using numerical simulations, the suggested algorithm
is shown to have similar performance for polarization-switched QPSK as
CMA has for polarization-multiplexed QPSK.
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1. Introduction

Polarization-multiplexed (PM) transmission combined with coherent reception and impairment
mitigation by digital signal processing has recently attracted considerable interest. In particu-
lar, PM quadrature phase-shift keying (PM-QPSK) is currently considered to be very promising
since this format combines good spectral efficiency with manageable implementation complex-
ity. However, although PM-QPSK has many favorable features, it has been shown that by view-
ing the real and imaginary parts of the two polarization components of the electric field as a
four-dimensional (4D) signal space, modulation formats with even better performance can be
found. The first such format to be suggested was a 24-point constellation and a sensitivity im-
provement over PM-QPSK was demonstrated [1]. The topic of 4D modulation has then been
investigated by sphere-packing simulations, which has resulted in a number of suggestions for
new modulation formats [2, 3]. Among these, an 8-point constellation is particularly interesting
due to its optimal power efficiency. This format has been named polarization-switched QPSK
(PS-QPSK) and can be described in the following way: Starting from a single-polarization
QPSK signal we can, for every transmitted symbol, choose the launch polarization. This allows
one extra bit to be transmitted without any power increase. Comparing with PM-QPSK, a (4D)
PS-QPSK symbol carries 3 instead of 4 bits per symbol and has a sensitivity improvement of
1.76 dB at high SNR and 0.97 dB at a bit-error rate (BER) of 10−3.

Numerical studies have confirmed the sensitivity improvement of PS-QPSK. In a comparison
with PM-QPSK in a system using wavelength-division multiplexing (WDM), it was suggested
that PS-QPSK can serve as a fall-back alternative to PM-QPSK when an optical link is de-
graded by additional losses [4]. The link could then continue to operate at 75% of the data rate
with a 3 dB sensitivity improvement without any hardware adjustments. Furthermore, it was
found that PS-QPSK has significantly improved nonlinear tolerance, in particular when using
electronic dispersion compensation, and it was suggested that PS-QPSK may be competitive
for 100 Gigabit Ethernet links. A second numerical study also reported improved nonlinear tol-
erance for PS-QPSK and the largest difference was seen for inter-channel nonlinear effects in a
WDM system [5].

We have performed transmission experiments comparing the performance of PS-QPSK and
PM-QPSK and found that the sensitivity improvement of PS-QPSK can be realized with readily
available components [6]. During this work, we found that the conventional constant-modulus
algorithm (CMA) cannot be used for PS-QPSK. We have investigated this problem and we here
suggest a modified CMA that allows polarization demultiplexing and equalization of PS-QPSK.
We will refer to the conventional CMA as PM-CMA and to the new algorithm as PS-CMA.

This paper is organized as follows: In Section 2, we explain why PM-CMA cannot be used
for PS-QPSK and in Section 3 we describe PS-CMA. In Section 4 we show how we have meas-
ured the performance of PS-CMA and PM-CMA and numerical results are reported in Sec-
tion 5. A discussion about the impact of polarization-mode dispersion (PMD) and polarization-
dependent loss (PDL) is found in Section 6 and this is followed by the conclusions.

Notation: Vectors are denoted in bold letters (e.g., a), and matrices in capital bold letters
(e.g., A). Transposition is written as aT, conjugation as a∗, and conjugate transpose is denoted
by aH. The identity matrix is written as I and the expectation operator is denoted by E[·].



2. The problem with PM-CMA when using PS-QPSK

We write 4D symbols as Jones vectors by combining the real and imaginary parts of the
electric field’s x- and y-polarized components according to (Ex,r + jEx,i,Ey,r + jEy,i)T [2, 3].
The above description of PS-QPSK then corresponds to a symbol alphabet with unit en-
ergy 4D pulses MPS = {(±1± j,0)T/

√
2;(0,±1± j)T/

√
2} for any choice of signs. In to-

tal, there are 8 constellation points, to compare with the 16 points in the PM-QPSK alphabet
MPM = {(±1± j,±1± j)T/2} for any choice of signs. It may seem obvious that PM-CMA
cannot be used for PS-QPSK since the two polarizations do not have a constant modulus, but
PS-QPSK can alternatively be described as a subset of PM-QPSK [2]. Viewed in this way, PS-
QPSK does have a constant modulus and the PM-CMA failure therefore needs a more detailed
explanation.

One alternative symbol alphabet for PS-QPSK is M̃PS = {(±1± j,±1± j)T/2} for any sign
combination with even parity, i.e., Ex,rEx,iEy,rEy,i > 0. The mapping from M̃PS to MPS can be
done with a unitary Jones matrix and can therefore be performed both by the fiber and by the
demultiplexing algorithm. To show this, we introduce the two unitary matrices

T1 =
1√
2

(
1 1

−1 1

)
and T2 =

(
1 0
0 e jϕ

)
. (1)

The T1 matrix is a π/4 rotation of linearly polarized light and T2 is a phase retardation of
the y polarization. Applying the T1 rotation to M̃PS and MPM, respectively, the constellations
in Figs. 1a and 1b are obtained. (Only the x polarization is plotted since the y polarization is
identical.) The constellation in Fig. 1a corresponds to MPS and in Fig. 1b we see four additional
points since all points no longer overlap after a T1 rotation.
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Fig. 1. (a) PS-QPSK after a T1 rotation. (b) PM-QPSK after a T1 rotation. (c) PS-QPSK
after a T1T2T1 rotation. (d) PM-QPSK after a T1T2T1 rotation.

To explain the failure of PM-CMA for PS-QPSK, we construct the unitary Jones matrix
T1T2T1 and for this example we choose ϕ = π/6. The resulting constellations for PS-QPSK
and PM-QPSK are plotted in Figs. 1c and 1d, respectively. For PM-QPSK, the constellation
no longer has a constant modulus and this will be corrected by PM-CMA. However, for PS-
QPSK the constellation conserves its constant modulus property since all points lie on the circle.
Thus, the problem with PM-CMA for PS-QPSK is not that there is no demultiplexing matrix
that gives a constant modulus constellation. Instead, the problem is that obtaining a constant
modulus constellation after equalization is not sufficient to have proper demultiplexing for PS-
QPSK.

3. Description of the PS-CMA

3.1. Obtaining the cost function for PS-CMA

The cost function for PM-CMA is

JPM-CMA = E
[(|Ex|2−P0

)2
+

(|Ey|2−P0
)2

]
, (2)



where, for QPSK modulation, the constant P0 is the average power level for each polariza-
tion [7]. We rewrite this expression in terms of the Stokes parameters

s0 = |Ex|2 + |Ey|2, s1 = |Ex|2−|Ey|2, s2 = 2Re(ExE∗y ), s3 = 2Im(ExE∗y ), (3)

with the result

JPM-CMA = E
[
(s0−2P0)2

2
+

s2
1
2

]
. (4)

Thus, PM-CMA simultaneously makes the total power equal to 2P0 and s2
1 as small as possible.

The latter agrees with the fact that s1 = 0 for all symbols in MPM. However, for PS-QPSK
the alphabet MPS is mapped to only two points on the Poincaré sphere since (s0,s1,s2,s3) =
(1,±1,0,0). Thus, minimizing s2

1 is no longer meaningful. Instead, we should minimize s2
2 +

s2
3 = s2

0− s2
1, where s2

0 = s2
1 + s2

2 + s2
3 was used. The two criteria that i) the total power is equal

to a given constant P and ii) that s2
2 + s2

3 is minimal are combined into the cost function

J = E
[
(s0−P)2

2
+Q

s2
2 + s2

3
2

]
= E

[
(|Ex|2 + |Ey|2−P)2

2
+2Q|Ex|2|Ey|2

]
, (5)

where the trade-off parameter Q must be positive for PS-QPSK. This more general cost function
can be used to find update expressions for both PS-CMA and PM-CMA and switching between
these two algorithms is done simply by changing the numerical parameters. This is convenient
if PS-QPSK serves as a fall-back for PM-QPSK [4]. We set Q = 1/2 for PS-CMA and should
take Q =−1/2 for PM-CMA. The parameter P is equal to the total average power for PS-QPSK
and must be set to the average power of each polarization P0 to reproduce the PM-CMA. We
may also need to adjust the step size.

3.2. Equalizer update expressions

We denote the signal after equalization by y = (y1,y2)T and the samples of the received signal
in time domain by the column vectors x1 and x2. These are related by the multitap equalizer
column vectors according to

y1 = hT
11x1 +hT

12x2, and y2 = hT
21x1 +hT

22x2. (6)

The direction in which the cost function changes most rapidly is found by differentiating with
respect to the complex conjugated tap coefficients, see Theorem 3 of [8]. Performing the dif-
ferentiation for the cost function in (5), we find the update rules

h(k+1)
11 = h(k)

11 −µ
[|y1|2 +(1+2Q)|y2|2−P

]
y1x∗1, (7)

h(k+1)
12 = h(k)

12 −µ
[|y1|2 +(1+2Q)|y2|2−P

]
y1x∗2, (8)

h(k+1)
21 = h(k)

21 −µ
[
(1+2Q)|y1|2 + |y2|2−P

]
y2x∗1, (9)

h(k+1)
22 = h(k)

22 −µ
[
(1+2Q)|y1|2 + |y2|2−P

]
y2x∗2, (10)

where µ is the step size and k is the iteration number. It is easily seen that the well-known
update rules for PM-CMA [9] are recovered with Q =−1/2 and P = P0.

3.3. Singularities in the PS-CMA and the PM-CMA

PM-CMA sometimes produces the same channel two times as output which is commonly re-
ferred to as the singularity problem. This behavior is not penalized by the cost function and



various ways to work around the problem have been suggested. For example, the problem is
avoided in the single-tap case by enforcing the condition that the demultiplexing matrix should
be unitary [10, 11]. Another way is to reinitialize the taps after some iterations [12].

To discuss the singularity problem we introduce the fiber Jones matrix A, a demultiplexing
matrix B, and two singular constant matrices according to

M1 =
(

1 0
1 0

)
and M2 =

(
1 1
0 0

)
. (11)

The total transfer matrix BA = I when B = A−1 and this corresponds to zero cost in the absence
of noise. However, the PM-CMA cost function does not define B uniquely since also B =
M1A−1 leads to zero cost for any symbol from MPM. This is the singularity problem for PM-
CMA and there is a similar problem for PS-CMA, which we see by studying B = M2A−1.
Choosing any symbol from MPS, the cost is zero and the second channel will carry zero power.
The third bit, which can be viewed as the selection of the launch polarization, has therefore
been lost. It is fair to say that PS-CMA is neither better nor worse than PM-CMA in this respect
but it is easy to detect the failure for PS-CMA by checking the output channel power.

4. Numerical evaluation of PS-CMA and PM-CMA

We here perform a numerical investigation of the convergence and tracking capabilities of PS-
CMA and PM-CMA for the single-tap demultiplexing case. A symbol sequence is drawn from
either MPS or MPM and complex white Gaussian noise (AWGN) is added. For the convergence
study, the fiber Jones matrix, A, is drawn uniformly from the set of 2×2 unitary matrices and is
then held constant. The demultiplexing matrix B is initially set to I. Running many simulations
using different A matrices we compute the probability of being above a given SNR penalty
threshold at every iteration. We have set the convergence threshold value to be 1 dB SNR
penalty and used the found probabilities as a measure of the convergence rate. The step size has
been selected as to maximize the final probability of being below 1 dB penalty in all cases. The
polarization tracking study is made by choosing the fiber matrix time evolution to be

A =
(

cosφ(t) sinφ(t)
−sinφ(t) cosφ(t)

)
, (12)

where φ(t) is a linearly evolving phase. Running the algorithms on long sequences of symbols,
we find the averaged value of the SNR penalty. Plotting this penalty as a function of the angular
frequency of φ provides a quantitative measurement of the algorithm tracking capability.

The most relevant performance norm for a communication system is the BER. Although
this would have been possible to use, it is quite computationally demanding. We have therefore
instead used the SNR penalty, which is closely related to the BER. As is often done for multiple-
input multiple-output (MIMO) systems, we use an SNR definition that includes the interference
from the other PM channel. This method is also known as signal to interference plus noise ratio
or signal to interference ratio, see for example [13]. The SNR is then calculated in the following
way: Defining C = BA, we have y = Bx = B(Aa+n) = Ca+Bn, where a is drawn from either
MPS or MPM and n is the complex AWGN. We then have

(
y1
y2

)
=

(
C11 C12
C21 C22

)(
a1
a2

)
+

(
B11 B12
B21 B22

)(
n1
n2

)
. (13)

Viewing the interference from the a2-term in y1 as part of the noise, we obtain

SNR1 =
E

[|C11a1|2
]

E [|C11n1 +B12a2 +B12n2|2] =
|C11|2Ps

|C12|2Ps +2σ2(|B11|2 + |B12|2) (14)



for the first channel, where Ps = E[|a1|2] = E[|a2|2]. For perfect demultiplexing in the case
without PDL, i.e., C12 = 0 and |B11|2 + |B12|2 = 1 since B is then unitary, we recover the
nominal SNRnom = Ps/(2σ2). The expression for SNR2 is obtained in an analogous manner.
Assuming that the channels are processed separately after the polarization demultiplexing, it is
reasonable to define the SNR penalty using the channel with the largest penalty. Thus, assuming
that all SNR values are given in dB, we define the SNR penalty after iteration k as

SNRpen
k = SNRnom−min(SNR1,k,SNR2,k). (15)

5. Numerical results for the single-tap equalizer

Figure 2a shows the convergence result for PS-CMA and PM-CMA when performing symbol-
by-symbol updates. The thin lines correspond to an implementation suggested by Kikuchi [10],
which can be used in the single-tap demultiplexing case. This method avoids the singularity
problem by orthogonalizing the rows of Bk in every iteration. The blue and the red curves show
the result for PS-QPSK and PM-QPSK, respectively, when noise has been added to make the
BER = 10−3. The black curve shows the case for PS-QPSK with equal SNR as for PM-QPSK.

In general, the performance for PS-CMA is similar as for PM-CMA. At equal BER, the PS-
CMA converges marginally slower than PM-CMA, which is a consequence from the extra noise
added for PS-QPSK to obtain BER = 10−3. Comparing the results at equal amount of added
noise, PS-CMA performs somewhat better than PM-CMA. It is seen that without orthogonal-
ization, both algorithms have a probability floor due to the singularity. At the SNR values used,
the probability of failure is 2–4%. The step size used for each case is indicated close to each
curve.
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Fig. 2. (a) The probability to be above the SNR penalty limit of 1 dB as a function of the
number of processed symbols. (b) The SNR penalty (in dB) as a function of the angular
drift frequency of the fiber matrix. The step sizes are indicated close to each curve.

The result of the tracking comparison is seen in Fig. 2b. As indicated, simulations have been
run with three different step sizes. In general, a large step size corresponds to better tracking
capability but worse steady-state performance. We find that the tracking capability of PS-CMA
well matches that of PM-CMA and both algorithms can track fast polarization changes. For
example, 10−3 rad/symbol corresponds to 10 Mrad/s at 10 Gbaud, which is a very high polar-
ization rotation rate. For the longest step size at BER = 10−3, PS-CMA shows an increased
steady-state SNR penalty. However, as seen in Fig. 2b, both better steady-state and tracking
performance than PM-CMA can be obtained by reducing the step size.



As seen in Figs. 2a and b, the step sizes are longer than what is typically used in experimental
investigations. Part of the reason for this is that, as seen from (7)–(10), the parameter µ is not
dimensionless but depends on the signal power. Since PS-QPSK is a 4D modulation format,
we have used unit energy 4D symbols. Thus, the energy per polarization is 1/2, which leads
to an increase of µ by a factor of four. For the convergence phase, it is beneficial to use a long
step size in order to rapidly converge close to the demultiplexing matrix but for the following
tracking phase, the step size can be reduced to improve the steady state performance. As seen
from the tracking study, both algorithms are capable of tracking polarization changes that are
much faster than what is typically seen in practice. Therefore, the step size should be decreased
in order to reduce the steady-state penalty to a negligible value.

6. The impact from PMD and PDL

In addition to separating the two PM channels, the demultiplexing algorithm is also used to
compensate for inter-symbol interference due to, e.g., residual chromatic dispersion (CD) and
PMD. Furthermore, the algorithm should be able to operate in the presence of PDL. The effect
of CD and differential group delay (DGD) can be described as an all-pass filter, i.e., in the
frequency domain only the phase but not the amplitude is affected. Provided that the transfer
function can be identified, such an effect can be compensated without penalty. We have investi-
gated the ability of the PS-CMA to compensate for CD and DGD and found that close to ideal
compensation is indeed possible. The conditions for this are that the number of taps is suffi-
ciently large to account for the memory effect of the channel and that sufficiently much data is
used to allow proper convergence. On the other hand, PDL introduces loss and leads to an SNR
penalty that cannot be compensated by any equalizer.

To investigate the algorithm performance in the presence of PDL, the system model from
Section 4 was changed by introducing PDL into the A matrix. This modified matrix, Ã, was set
up as the product of a random unitary matrix and a PDL matrix that had one transparent axis and
one orthogonal lossy axis. The angle for the lossy axis was randomly selected from a uniform
distribution. The obtained average SNR penalty has been plotted as a function of the amount
of PDL in Fig. 3. In the worst possible alignment of the PDL [14], only one of the channels is
attenuated and the following noise loading will lead to an SNR degradation equal to the amount
of PDL. In the best case, the PDL is equally divided between the two PM channels. The worst
and best cases are indicated by the dashed black lines. The averaged penalty is almost identical
for all three simulated cases. As an example, a PDL of 3 dB causes an average SNR penalty
of 2.4 dB. In these simulations, the convergence has been guaranteed by using an initial matrix
that is sufficiently close to the system transfer matrix.

The penalty found above is caused by a combination of the signal power loss and the impact
from PDL on the algorithm performance. It is therefore interesting to investigate how much of
the penalty that is caused by the latter. To do this, we have compared the CMA algorithms with
the minimum mean square error (MMSE) equalizer, which is known to maximize the SNR as
defined by (15) [13]. In the numerical simulations we assume the channel response to be known
in order to set up the channel-dependent MMSE demultiplexing matrix according to

BMMSE =
(

ÃHÃ+
2σ2

Ps
I
)−1

ÃH. (16)

Comparing the results from PS-CMA/PM-CMA and the MMSE equalizer we found that the
difference in obtained SNR is very small. Indeed, both CMA algorithms seem to converge to
the MMSE result when the step size is decreased. However, it is known [15] that the probability
for failure to converge increases in presence of PDL. For example, introducing 3 dB PDL
into the simulation shown in Fig. 2a increases the probability to fail to get within 1 dB of the
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Fig. 3. The averaged SNR penalty as a function of the amount of PDL. The PDL alignments
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MMSE SNR penalty from the previous 2–4% to roughly 20% for both PS-CMA and PM-CMA.
This increases the importance of monitoring to detect the potential convergence problems but
provided this is done, both CMA algorithms are capable of obtaining SNR penalty values that
are close to the MMSE result.

7. Conclusion

We have presented a generalized CMA cost function that allows polarization demultiplexing
and equalization of both PM-QPSK and PS-QPSK. The resulting algorithm can be implemented
in such a way that a switch between PS-CMA and PM-CMA is easy. Unfortunately, PS-CMA
also shows a singularity problem. Numerical simulations have shown similar convergence and
tracking performance for PS-CMA compared to PM-CMA. Thus, PS-CMA is in several ways
a natural replacement for PM-CMA when using PS-QPSK.
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