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Comments on ”Timing Estimation and
Resynchronization for Amplify-and-Forward

Communication Systems”
Hani Mehrpouyan, Member, IEEE, and Steven D. Blostein, Senior Member, IEEE,

Abstract— This correspondence first shows that the Cramer-
Rao lower bound (CRLB) derivations in the above paper are
incorrect. In addition, contrary to the claims in the above
paper, the assumptions of perfect timing offset estimation and
matched-filtering at the relays affect the generality of the
analytical results and cannot be justified assumption.

Index Terms— Cooperative communications, amplify-and-
forward, synchronization, timing offset estimation, Cramer-Rao
lower bound.

I. INTRODUCTION

In the above-named paper [1], the topic of timing offset
and channel estimation in amplify-and-froward (AF) relaying
cooperative networks consisting of K relays is analyzed. The
authors derive least squares (LS) and maximum-likelihood
(ML) algorithms for the estimation of both channel gains
and timing offsets and provide a general expression for
the Cramer-Rao lower bound (CRLB) [2]. Subsequently,
the CRLB is used as a measure to provide insights into
the uncertainties of estimated parameters. Finally, a re-
synchronization algorithm is proposed.

Note that in [1], it is assumed that the timing offsets
corresponding to the source-relay links, for K relays, are
perfectly estimated and the received signals at the relays are
perfectly matched-filtered.

Notation: italic letters (x) are scalars, bold lower case
letters (x) are vectors, bold upper case letters (X) are ma-
trices, I is the identity matrix, and ⊗, ℜ{·}, ℑ{·}, (·)T , and
(·)H , denote Kronecker product, real, imaginary, conjugate,
transpose, and conjugate transpose (hermitian), respectively.

Comment 1: The analysis does not correspond to the
actual CRLB but is only an approximation. In Section
III C. of [1] the authors present a derivation for the CRLB
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for the estimation of timing offsets, ϵ = [ϵ1, ϵ2, · · · , ϵK ]T

and channel gains h = [h1, h2, · · · , hK ]T and ξ =
[ξ1, ξ2, · · · , ξK ]T , [f1h1, f2h2, · · · , fKhK ]T . Note that
h and f , the channel gains from relays to destination and
sources to relays, respectively, are defined in [1, Eq.(7)],
and ξ is defined in [1, Eq.(9)].

Next, to determine the CRLB the elements of the Fisher’s
information matrix (FIM) according to [1, Eq.(20)] are
determined. The expressions
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are, however, derived incorrectly. Note that in (1) and (2),
µ is given by [1, Eq.(20)],

µ = AϵHFΩst +AϵHP, (3)

where Aϵ , [Aϵ1 ,Aϵ2 , · · · ,AϵK ] and st are defined
in [1, Eq.(6)], Ω = [ΩH

1 ,ΩH
2 , · · · ,ΩH

K]H and P =
[p1,p2, · · · ,pK] are defined in [1, Eq.(2)], and H =
diag (h1, h2, · · · , hk)⊗ I and F = diag (f1, f2, · · · , fk)⊗ I
are defined in [1, Eq.(6)].

In deriving (1) and (2) in [1], it is assumed that
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However, note that the terms ξi and hi, for i = 1, 2, · · · ,K,
are not independent of one another, where ξi , fihi, for
i = 1, 2, · · · ,K [1, Eq. (9)]. Thus, contrary to the results in
[1], the terms in (4) should instead be
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, and (5)

∂ξi
∂ℜ{hi}

= −j
∂ξi

∂ℑ{hi}
= fi. (6)

More importantly, this shortcoming propagates to the
numerical results section, where the approximate CRLB is
used to justify the performance of the proposed estimators.
The derivation of the true CRLB is beyond the scope of this
correspondence.



Comment 2: The signal model for the received signal
at the relays and destination is based on perfect timing
synchronization and does not match the AF framework.

In [1], it is assumed that the timing offsets from source
to relays can be estimated perfectly so as align the re-
lay transmissions in the second hop. Unfortunately, this
assumption requires absolute timing correction, which is
not achieved by the symbol-based synchronizers referenced
in [1], unless all delays are short and relay clocks are
synchronized. Therefore, the proposed signal model in [1]
does not realistically match the AF framework.”

Note that due to the timing offset from source to the kth,
ϵ
[sr]
k , the received training signal model at the kth relay,
rk(t), is given by

rk(t) = fk

Lo+Lg+1∑
i=−Lg

s(i)g(t− iT − ϵ
[sr]
k T ), (7)

where g(t) is the pulse shaping filter, T is the symbol
duration, and s(i) is the ith element of the training sequence
transmitted from the source. On the other hand, in [1], due
to the assumption of perfect timing offset estimation, the
signal model for rk is over simplified and the effect of
timing offset ϵ

[sr]
k , for k = 1, 2, · · · , R, is ignored (see

[1, Eq. (2)]). Considering that [1] seeks to address timing
synchronization in AF relaying cooperative networks, it can
be concluded the the signal model in [1, Eq. (2)] is over
simplified, since in practical cooperative communications
systems the timing offsets, ϵ[sr]k , for k = 1, 2, · · · , R, cannot
be perfectly estimated and compensated.

The authors of [1] further assume that at the kth relay,
a second training sequence, pk, can be perfectly superim-
posed on the received signal (see [1, Eq. (3)]). However,
this assumption is an over simplification, since in practical
communications systems the source and relays are equipped
with different oscillators. Therefore, pk and s are affected
by different timing offsets and subsequently, [1, Eq. (6)])
must be rewritten as

rk(t) =
K∑

k=1

hkfkAϵ̄kWkΩks+
K∑

k=1

hkAϵkWkpk

+
K∑

k=1

hkAϵkWkek + v, (8)

where Aϵ̄k ,
[
a−Lg(ϵ̄k), · · · ,a0(ϵ̄k), · · · ,aLo+Lg−1(ϵ̄k)

]
with ai , [g(−iT − ϵ̄kT ), g(−iT +Ts− ϵ̄kT ), · · · , g(−iT +
(LoQ− 1)Ts − ϵ̄kT ), ϵ̄k, for k = 1, 2, · · · , R, accounts for
the timing offset estimation error at the kth relay plus the
timing offset from the kth relay to the destination, ϵk, and
the remaining terms in (8) are defined in [1, Eq. (6)]. Based
on the training design proposed in [1], the received signal
at the destination is affected by two sets of timing offset
values ϵ̄k and ϵk, for k = 1, 2, · · · , R, instead of only the
ϵk as claimed in [1].

Finally, unlike the results in [1], which assumes that the
signal at the relays is perfectly matched-filtered, AF relaying

cooperative communications systems only require the relays
to amplify and forward the received signal as shown in
prior work in this field [3]–[6]. This is one of the main
advantages of AF relaying, which ensures that the relays
have a simple structure that can be more easily deployed in
practical applications.
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