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Abstract—We consider weighted nonbinary repeat multiple- many accumulators to the Gilbert-Varshamov bound (GVB).
accumulate (WNRMA) code ensembles obtained from the serial The stronger result that the typicdl,;, converges to the GVB
concatenation of a nonbinary rated/n repetition code and the was recently proved in [4]. Also, in [5], it was conjectured

cascade ofL > 1 accumulators, where each encoder is followed . .
by a nonbinary random weighter. We derive the exact weight by Pfister that thel,;, of RMA codes asymptotically grows

enumerator of nonbinary accumulators and subsequently gie the  linearly with the block length, and that the growth rate is
weight enumerators for WNRMA code ensembles. We formally given by the threshold where the asymptotic spectral shape

prove that the symbol-wise minimum distance of WNRMA code function becomes positive. More recently, it was shown in [4
ensembles asymptotically grows linearly with the block legth 6] that RMA code ensembles with two or more accumulators

when L >3 andn > 2, and L = 2 and n > 3, for all powers of . . . .
primes ¢ > 3 considered, wherey is the field size. Thus, WNRMA are indeedasymptotically googin the sense that theti,

code ensembles are asymptotically good for these parameger ~ asymptotically grows linearly with the block length. A foain
proof was given in [4], and a method for the calculation of a

. INTRODUCTION lower bound on the growth rate coefficient was given in [6].

Weighted nonbinary repeat accumulate (WNRA) codes wereln a recent paper [7], the authors considered weighted non-
introduced by Yang in [1] as theary generalization of the binary repeat multiple-accumulate (WNRMA) code ensembles
celebrated binary repeat accumulate (RA) codes. The encodetained from the serial concatenation of a nonbinary repea
consists of a rateR., = 1/n nonbinary repeat code, acode and the cascade @&f > 1 accumulators, where each
weighter, a random symbol interleaver, and an accumulagcoder is followed by a nonbinary weighter, as ary
over a finite field GFg) of size ¢. WNRA codes can be generalization of binary RMA codes [3-6, 8]. Building upon
decoded iteratively using the turbo principle, and in [Thsi the approximate IOWE for nonbinary accumulators [2], it was
lation results were presented that showed that these codess@iown numerically in [7] that thel,;, of WNRMA code
superior to binary RA codes on the additive white Gaussig@msembles grows linearly with the block length, and the ¢ginow
noise (AWGN) channel when the weighter is properly chosefates were estimated. However, no formal proof was provided
In a recent work [2], Kimet al. derived an approximate in [7]. In this paper, we address this issue. We derivexact
input-output weight enumeratofOWE) for the nonbinary expression for the IOWE of a nonbinary accumulator which
accumulator. Based on that, approximate upper bounds @lpws us to derive an exact closed-form expression for ¥he a
the maximum-likelihood (ML) decoding threshold of WNRAerageweight enumerato(WE) of WNRMA code ensembles.
codes withgary orthogonal modulation and coherent detectioe then analyze the asymptotic behavior of the average WE
over the AWGN channel were computed for different valuedf WNRMA code ensembles, extending the asymptatig,
of the repetition factom and the field size;, showing that analysis in [4, 6] for binary RMA code ensembles to WNRMA
these codes perform close to capacity under ML decoding fe@de ensembles. In particular, we prove that thg, of
large values ofi andg. WNRMA code ensembles asymptotically grows linearly with

In [3], Pfister showed that the minimum distanekg,{,) of the block length when. > 3 andn» > 2, and L = 2 and
binary repeat multiple-accumulate (RMA) codes, built from > 3, for all powers of primes; > 3 considered. Hence,
the concatenation of a repeat code with two or more accNRMA code ensembles are asymptotically good for these
mulators, increases as the number of accumulators increag@ameters. The obtained growth rates are very close to the
In particular, it was shown in [3] that there exists a seqeen&VB for practical values of;.

of RMA codes withd,,;, converging in the limit of infinitel
i ging Y Il. ENCODERSTRUCTURE AND WEIGHT ENUMERATORS

The work of A. Graell i Amat was supported by the P36604-1 MBGI  The encoder structure of WNRMA codes is depicted in
project, funded by the Swedish Agency for Innovation Systé@iNNOVA). Fio. 1. It is th ial . f .
The work of E. Rosnes was supported by the Research Counblbofay Ig. 1. Itis the serial concatenation of a rawep - 1/”

(NFR) under Grants 174982 and 183316. repetition codeC,.,, with the cascade of. > 1 identical



K N N consider the ensemble of serially concatenated codes (SCCs

W] € [, | Random Weighter (RW)-~ - obtained by connecting two nonbinary encodétsand Ci,
through a uniform interleaver. The ensemble-average IOWE
of the serially concatenated code ensemble can be written as

Ca Chp
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ha where
( N ) B N!
N 117121---alq—1 lllqull(N—Zg;ll ll)"
—= 7 —= (o RW 3 1= (I1,ls,...,1,—1) is the weight vector with entriei$ giving
the number of symbols in a codewordx, and o’ w1 1S the
Fig. 1. Encoder structure for WNRMA codes. vector-IOWE of encode€,, giving the number of codewords
of input weightw at the input ofC, and output vector-weight
1 at the output oCa, i.e., the codeword hds 1's, I 2's, and
rated, memory-one,gary accumulators’;, I = 1,...,L, soon, leeW|sea1 1, is the vector-IOWE of encodér, giving
with generator polynomialg(D) = 1/(1 + D) over a finite the number of codewords of input vector-weidhind output
field GRg), through random interleavers;,..., 7. Each weighth. In general, it is very difficult to compute the vector-

encoder is followed by a nonbinary weighter, which mulégli |OWE of an encoder in closed-form. However, if encodgr
each symbol at its input by a nonzer@ry symbol. For s followed by a nonbinary RW, the following theorem (which
analysis purposes we consider random weighters (RWs). Weproved in [10]) holds.

denote byC, the (nK, K) outer block code obtained by
concatenating togethdt successive codewords OTGC The
overall nominal code rate (av0|d|ng termination) is dedote
by R = K/N = 1/n, where N = nK is the output
block length. In more detail, a length-information sequence

Theorem 1. Let C be the ensemble of codes over @F(
pbtained by the serial concatenation of two nonbinary en-
codersC andC}, through a uniform interleaver. Furthermore,
encoderC |s followed by a nonbinary RW. Also, denote by
o and aS?, the IOWE of encoder’, and encoderCh,

ug = (uo,1, - - -, uo i) Of gary symbolsug ; € {0,1,...,¢—1

is enéoded by a;ary)/ repeat code. The ou{[put of the re}pea[{aspectwely The ensemble-average IOWE of the ensedinble
codexg = (0.1, .., Zonk) IS fed to a nonbinary weighter €a" be written as

which multiplies each symbaly ; by a nonzergary symbol. ¢ agyap

In [1], it was shown that a careful choice of the weighter can Qw,h = Xl: m'

significantly improve performance. The resulting sequédsce
encoded by a chain of nonbinary accumulators, preceded From Theorem 1 it follows that the ensemble-average IOWE

by interleaversr,, ..., 7. Furthermore, each accumulator i®f WNRMA code ensembles can be computed, when each

followed by a nonbinary RW. constituent encoder is followed by a nonbinary RW, from the
IOWEs of the component encoders, which are easier to com-

A. Average WEs for WNRMA Code Ensembles pute in closed-form than the vector-IOWEs. Using Theorem 1

and the concept of uniform interleaver, the ensemble-gecra

Let al 1, be the ensemble-average nonbinary IOWE of tr] OWE of 2 WNRMA code ensembléyxrara can be written

code ensemblé’ with input and output block lengtlik” and
N, respectively, denoting the average number of codewordd

of input Hamming weightv and output Hamming weight . =~ al al gonw Sfu T
over C. Here, by Hamming weight, we mean the number ofw. Z Z YR
nonzero symbols in a codeword. For convemence we may

h1=0 hr-1=0 )nw

simply speak of weight. Also, denote % Zw 0 wh L f; Ll afﬁ 1h

the ensemble-average nonbinary WE of the code ensefble % ( N )(q — 1)1 ( )(q —1)he
giving the average number of codewords of weightverC. =2 hl ! fr

Throughout the paper we will simply speak of IOWE and WE, Z Z GCWNRMA

avoiding the term nonbinary, when the fact that they refer to =T G hsho b

nonbinary distributions is clear from the context. ! o 1)

Benedettoet al. introduced in [9] the concept alniform
interleaver to obtain average WEs for concatenated cod/ehere‘CWNlRMAh ..» s called theconditional weight enumer-
ensembles from the WEs of the constituent encoders. Sirater (CWE) of CWNRMA
we are dealing with nonbinary codes, we need to extendThe evaluation of (1) requires the computation of the
the approach from [9] to consider vector-WEs. In particulatOWESs of the constituent encoders, which is addressed below
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T (N ) (g — 1)k
=1 thLil/QJ (4)

>

kr=max(1l,hr_1—hr)

~C
qEWNRMA

Lho/2] Lh1/2]

= > D

k1:max(l,ho—h1) kg:max(l,}n—hg)

C—LCWNRMA
w,h1,...,hp—1,k1,....,kL,h

B. IOWEs for Memory-One Encoders and the Repetition Cogesitive constants. We must consider two cases: 1) at least

An approximated expression for the IOWE ofjary accu- ©ne of the quantitieso, hy, ..., hr1,k1,..., kr, or h is of
mulator was given in [2]. In this section, we derive the exa@'dero(NV), and 2) all quantitieso, iy, ..., hr—1, k1, ..., kL,
expression for the IOWE of gary accumulator. We can prove@nd 7 can be expressed as fractions of the block length
the following theorem [10]. le,a=10b = =b1=d = - =d,=c=1

The following lemma (which is proved in [10]) addresses the
Theorem 2. The IOWE for ratet, memory-onegary con- first case for weighted nonbinary repeat double-accumulate
volutional encoders over Gk) with generator polynomials (\WNRAA) code ensembles.
g(D) =1/(1+ D) and g(D) = 1 + D that are terminated .
to the zero state at the end of the trellis and with input ankemma 1. In the ensemble of WNRAA codes with block length
output block lengthV can be given in closed form as N andn > 3, in the case where at least one of the quantities

w, hy, k1, kg, or his of ordero(N), NogEwyeas 0

lw/2] " w,h1,k1,k2,h
o5 14D _ N—-h\/h-1 h—k as N — oo for all positive values ot.

ok = S T ,Z(l IR AVAVESVACES "

x (¢ —1)" (g -

Lemma 1 can be generalized to the case of WNRMA code
ensembles withL > 3. The proof is omitted for brevity.
@) As a consequence of Lemma 1, we can assume dhat
hi,...,hr_1,k1,...,kr, and h are all linear in the block

for positive input weightso, wheref: is the number of error |ength: The average number of codewords of weight at most

events. AlSOaéf? = a(l)j)D = h, for someh, of WNRMA code ensembles is upper-bounded

2)w—2k

b
Notice that the formula in (2) generalizes the closed-formy
expression for the IOWE for rate- memory-one, binary
convolutional encoders from [11] to thgry case.

Theorem 3. The IOWE for then K, K) qary repetition code which from Lemma 1 tends to zero aé tends to infinity if at
C, with input block lengthkK” can be given in closed form asleast one of the quantities is of ordeV'). Thus, the average
number of codewords of sublinear weight of at mbsends
C K w
aw?nw = (U}) (q - 1) . (3)

to zero asN tends to infinity.
We now address the second case by analyzing the asymp-
Proof: The number of binary vectors of lengthi and totic spectral shape function. The asymptotic spectrapsha

weight w is (fj) and the result follows by multiplying this function is defined as [12]
number byw times the number of nonzero elements from
GF(). ]

Using (2) and (3) in (1), we get the expression (4) at the
top of the page for the CWE (withv > 0) of WNRMA code
ensembles, where for concisenégs= nw andhy = h.

N2L+1 max ~CWNRMA

Wohi,eoshp 1,k ek h<h WP R R kLR

1
T = limsup — Ina’
(p) N—>£ N loN]

wheresup(-) denotes the supremum of its argument- %
is the normalized output weight, anl is the code block
length. If there exists some abscisgg > 0 such that
, : .1r(p) <0 Vp* < py, andr(p) > 0 for somep > po,
With _regard to (4) _at the top of the page, without loss C{sﬁgrﬁgi’% c;ﬁ) be sho€vn thpfgt With(ﬁ)igh probabilityp tldglp?n
generality we can write of most codes in the ensemble grows linearly with the block

IIl. ASYMPTOTICANALYSIS OF THEMINIMUM DISTANCE

w=aN?,

h = pN°¢,

hi =fB;N¥% i=1,...,L —1,
ki=~vN%i=1,...,L

where0 <a <b; <by<---<by,_1<c<1,0<d; <a<

length vV, with growth rate coefficient of at leag}. On the
other hand, if-(p) is strictly zero in the rangé0, py), it cannot
be proved directly whether thé,;, grows linearly with the
block length or not. In [4], it was shown that the asymptotic

1,and0 < d; < b1 <1,i=2,...,L. These inequalities spectral shape function of RMA codes exhibits this behavior
can be derived from the binomial coefficients in the expmssii.e., it is zero in the rang@, py) and positive for some > pg.

in (4) combined with the fact that for a binomial coefficienBy combining the asymptotic spectral shapes with the use of
(Z) n >k >0.Also,a,81,...,8-1,7,---,7L, @andp are bounding techniques, it was proved in [4, Theorem 6] that the



dmin Of RMA code ensembles indeed grows linearly with then [7]. However, for finite block lengths, the IOWE of a

block length with growth rate coefficient of at least. nonbinary accumulator as given by Theorem 1 in [7] using
We remark that in the rest of the paper, with a slight abusiee approximation forp(k) given in [7, Eq. (3)] (which is

of language, we sometimes referdgas the exact value of thetaken from [2]) is not exact.

asymptotic growth rate coefficient. However, strictly skeg, From (5) and (6) it can easily be verified that the asymptotic

po is only a lower bound on it. spectral shape function of WNRMA code ensembles satisfies
Now, by using Stirling’s approximation for the binomial cothe recursive relation

efficient () ~ e™H(k/") for n — oo andk/n constant, where c ] c -

H(-) is t&ke) binary entropy function with natural logarithms, rEWNEMAD (p) = 02121 [T mMACD () + w(u’p)]

and the fact thatv, hq,...,hr_1,k1,..., ks, andh can all o

be assumed to be of the same orded\é:{due to Lemma 1, Whereréwsmisw, [ > 0, is the asymptotic spectral shape

generalized to the general casé}V™"4 . can be written function with i accumulators; s (p) = +(H(p) +
as L= pln(g — 1)) is the asymptotic spectral shape function of a
e repeat code, and
a WNRMA
w Lyesny hL71 h /y
> exp{f(a. B, ... 1,71, YL, p) N +0(N)} Ylup) = max(osg)pkw [_H(U) o (E)
ki,okip min(p,1-p,u/2)
whenN — oo, wherea = % is the normalized input weight, ~ u — 2y
K _ —
B ="is the normalized output weight of cod®, v, = L0 +(1-pH (1 —p +(p—yH p—7
and the functionf(-) is given by +(y—u)In(g—1)+ (u—27)In(g — 2)] .
Lemma 2. The asymptotic spectral shape function of the
f(Bo, B, -, Br-1,7, - -5, P) WNRMA code ensemble is nonnegative, i.e.,
L L
- ZH(@ D+ (1-B)H (1 Mﬁ ) rOVNINMAD (p) > 0, Vp € [0,1].
- Ml
L, Proof: We haverwxmmaw (p) > (0, p) + H(0)/n = 0.
n Zﬂ H i Z Bi-1— 2% The general case can be proved by inductiori.on [ ]
! ﬁl To analyze the asymptotit,,;,, behavior of WNRMA code

=t ensembles, we must solve the optimization problem in (5)-

(% — Bi_1) (6). The numerical evaluation of_ (5)-(6) is shown in Fig. 2
for WNRAA code ensembles, with = 3 and ¢ = 4,8, 16,
and32. The asymptotic spectral shape function is zero in the

(Bi—1 — 2v) + foln(g —1) range(0, po) and positive for somg > po. A similar behavior

1 n is observed for weighted nonbinary repeat triple-accuteula

(5) (WNRAAA) code ensembles. In this case, we cannot conclude
directly whether thel,,;, asymptotically grows linearly with

he block length or not. However, we can prove the following

eorem [10].

M= =

+1In(¢—1)

I
-

M=

+1In(q —2)

where for conciseness we defingd = o and 8, =
Finally, the asymptotic spectral shape function for WNRM
code ensembles can be written as

pOWNRNA () Theorem 4. Define py = max{p* € [0,(q — 1)/q)
réwnrMA (p) = 0 Vp < p*}. ThenVp* > 0

= O<Zup<1 f(ﬁOaﬁla'"76L—11717"'a’7L1p)'
max(O,EL—l;—lEZ)S’nS Nh_H)loo Pr (dmin < (PO -r )N) =0
min(B,1-51,61-1/2)
Ll:l,--l-,Ll ' whenL > 3 andn > 2, and L = 2 andn > 3, for all powers

(6) of primesq > 3. Thus, ifpy > 0 and réwxmva (p) > 0 Vp
Note that the objective function in (6), defined in (5), catSee Lemma 2), then almost all codes in the ensemble have

be rewritten into [7, Eq. (6)], since asymptotic minimum distance growing linearly with with
. . growth rate coefficient of at leagk.
2
ZﬂzH (ﬂ) + Z(ﬁz - <ﬁlﬁl WW> We can now prove the following theorem [10].
- N

Theorem 5. The typicald,,;, of WNRMA code ensembles

Bi-1 — 71) ( gl ) whenL > 3 andn > 2, and L = 2 andn > 3, for all powers
= H + — —r ). = Z 2 Z 9 p
Zﬁ ( Bi ; By = w)H Bi-1—m of primes3 < ¢ < 2%, grows linearly with the block length.

Thus, the approximate asymptotic spectral shape functionThe exact values g, are given in Table | for several values
given in [7, Eq. (7)] is indeed exact. Therefore, the growtbf the repetition factom and the field size; for WNRAA
rate coefficients computed in this section coincide withstho codes. For comparison, we have also tabulated the asymptoti
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Fig. 2. Asymptotic spectral shape function of WNRAA codeshwi = 3.

TABLE |

TABLE I
GROWTH RATE COEFFICIENTpg OF WNRAAA CODES FOR DIFFERENT
VALUES OF THE REPETITION FACTOR? AND THE FIELD SIZEq. THE
CORRESPONDING GROWTH RATES FROM THE ASYMPTOTIC NONBINARY
GVB ARE GIVEN IN THE PARENTHESES

q=4 q=28 q=16 q =32
n =3 0.2911 (0.2917) 0.3725 (0.3730) 0.4299 (0.4302) 0.47147(%)
n =25 0.3977 (0.3977) 0.4987 (0.4987) 0.5664 (0.5664) 0.61331@1)
n =10 0.5048 (0.5048) 0.6207 (0.6207) 0.6940 (0.6940) 0.74224@1)

behavior. Furthermore, we formally proved that the symbol-
wise minimum distance of WNRMA code ensembles asymp-
totically grows linearly with the block length wheh > 3
andn > 2, and L = 2 andn > 3, for all powers of primes

g > 3 considered. The asymptotic growth rate coefficient
of the minimum distance of WNRAA and WNRAAA code
ensembles for different values of the repetition factoand

GROWTH RATE COEFFICIENTpg OF WNRAA CODES FOR DIFFERENT
VALUES OF THE REPETITION FACTORn AND THE FIELD SIZEq. THE
CORRESPONDING GROWTH RATES FROM THE ASYMPTOTIC NONBINARY

the field sizeq were also computed. The asymptotic growth
rates are very close to the GVB wheris large, but not too

GVB ARE GIVEN IN THE PARENTHESES large.
q=4 q=28 q=16 q =32 R
n=3 0.2360 (0.2917) 0.3107 (0.3730) 0.3609 (0.4302) 0.39147((5) EFERENCES
n=>5 0.3820(0.3977) 0.4840 (0.4987) 0.5518 (0.5664) 0.59651@1) [1] K. Yang, “Weighted nonbinary repeat-accumulate cddetEEE
n =10 0.5026 (0.5048) 0.6192 (0.6207) 0.6930 (0.6940) 0.741B4@L)

(2]

dmin growth rate coefficient from

the asymptotic GVB for 3]
nonbinary codes computed from

q—1

q

1- Hq(/)min) — Pmin 1qu(q - 1)7 if Pmin S [4]

R>

10, otherwise
where pnin is the normalizedd,,;,, R is the asymptotic Bl
rate, andH,(-) is the binary entropy function with bage-
logarithms. We observe that the gap to the GVB decreas?eﬁ
with increasing values of for a fixed value ofy. For a fixed
value ofn, the growth rate coefficient increases with increasing
values ofq, while the gap to the GVB stays approximately ]
constant. However, we observed that this behavior onlyshola[
for small values ofq. In fact, the asymptotic growth rate
coefficient increases with the field sizeip to some value, and g]
then it decreases again, after which the gap to the GVB aléo
increases. This is also consistent with the behavior oleserv
for nonbinary low-density parity-check codes in [13]. Thel®
values of py for WNRAAA code ensembles are given in
Table Il for selected values ofi and q. The growth rate
coefficients are very close to the GVB for WNRAA codé!¥
ensembles witlh = 5 andn = 10 and for WNRAAA code
ensembles, for the considered valueg.dfor WNRAAA code
ensembles witl = 5 andn = 10 the growth rates coincide [11]
with the GVB, for the considered values @f

IV. CONCLUSION [

In this paper, we analyzed the symbol-wise minimum di&!
tance properties of WNRMA code ensembles, where each en-
coder is followed by a nonbinary random weighter. We derived
an exact closed-form expression for the IOWE of nonbinary
accumulators. Based on that, we derived the ensemblegmvera
WE of WNRMA code ensembles and analyzed its asymptotic
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