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Fundamental Limits of Wideband Localization—
Part II: Cooperative Networks

Yuan Shen,Student Member, IEEE,Henk Wymeersch,Member, IEEE,and Moe Z. Win,Fellow, IEEE

Abstract—The availability of positional information is of great
importance in many commercial, governmental, and military
applications. Localization is commonly accomplished through the
use of radio communication between mobile devices (agents)and
fixed infrastructure (anchors). However, precise determination
of agent positions is a challenging task, especially in harsh envi-
ronments due to radio blockage or limited anchor deployment.
In these situations, cooperation among agents can significantly
improve localization accuracy and reduce localization outage
probabilities. A general framework of analyzing the fundamental
limits of wideband localization has been developed in Part I
of the paper. Here, we build on this framework and establish
the fundamental limits of wideband cooperative location-aware
networks. Our analysis is based on the waveforms received at
the nodes, in conjunction with Fisher information inequality.
We provide a geometrical interpretation of equivalent Fisher
information for cooperative networks. This approach allows us
to succinctly derive fundamental performance limits and their
scaling behaviors, and to treat anchors and agents in a unified
way from the perspective of localization accuracy. Our results
yield important insights into how and when cooperation is
beneficial.

Index Terms—Cooperative localization, Craḿer-Rao bound
(CRB), equivalent Fisher information (EFI), information i nequal-
ity, ranging information (RI), squared position error boun d
(SPEB).

I. I NTRODUCTION

The availability of absolute or relative positional informa-
tion is of great importance in many applications, such as
localization services in cellular networks, search-and-rescue
operations, asset tracking, blue force tracking, vehicle rout-
ing, and intruder detection [1]–[8]. Location-aware networks
generally consist of two kinds of nodes: anchors and agents
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Fig. 1. Cooperative localization: the anchors (A, B, C, and D) communicate
with the agents (1 and 2). agent 1 is not in the communication/ranging range
of anchor C and D, while agent 2 is not in the communication/ranging range
of anchor A and B. Neither agents can trilaterate its position based solely on
the information from its neighboring anchors. However, cooperation between
agent 1 and 2 enables both agents to be localized.

(see Fig. 1), where anchors have known positions while agents
have unknown positions. Conventionally, each agent localizes
itself based on range measurements from at least three dis-
tinct anchors (in two-dimensional localization). Two common
examples include the global positioning system (GPS) [9],
[10] and beacon localization [11], [12]. In GPS, an agent
can determine its location based on the signals received from
a constellation of GPS satellites. However, GPS does not
operate well in harsh environments, such as indoors or in
urban canyons, since the signals cannot propagate through
obstacles [7]–[9]. Beacon localization, on the other hand,relies
on terrestrial anchors, such as WiFi access points or GSM base
stations [11], [12]. However, in areas where network coverage
is sparse, e.g., in emergency situations, localization errors can
be unacceptably large.

Conventionally, high-accuracy localization can only be
achieved using high-power anchors or a high-density anchor
deployment, both of which are cost-prohibitive and impractical
in realistic settings. Hence, there is a need for localization
systems that can achieve high accuracy in harsh environments
with limited infrastructure requirements [6]–[8]. A practical
way to address this need is through a combination ofwideband
transmissionand cooperative localization. The fine delay
resolution and robustness of wide bandwidth or ultra-wide
bandwidth (UWB) transmission enable accurate and reliable
range (distance) measurements in harsh environments [13]–
[18].1 Hence, these transmission techniques are particularly

1Other aspects of UWB technology can be found in [19]–[25].
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well-suited for localization. Cooperative localization is an
emerging paradigm that circumvents the needs for high-power,
high-density anchor deployment, and offers additional local-
ization accuracy by enabling the agents to help each other
in estimating their positions [5], [6], [26]–[28]. In Fig. 1, for
example, since each agent is in the communication/ranging
range of only two anchors, neither agents can trilaterate its
position based solely on the information from its neighboring
anchors. However, cooperation enables both agents to be
localized.

Understanding the fundamental limits of localization is cru-
cial not only for providing a performance benchmark but also
for guiding the deployment and operation of location-aware
networks. Localization accuracy is fundamentally limiteddue
to random phenomena such as noise, fading, shadowing, and
multipath propagation. The impact of these phenomena has
been investigated for non-cooperative localization [7], [8],
[29]–[31]. However, little is known regarding the bounds for
cooperative localization. In particular, bounds on the coopera-
tive localization performance were previously derived in [27],
[28] using only specific ranging models. In other words, these
works start from signal metrics, extracted from the received
waveforms.2 Such a process may discard information relevant
for localization. Furthermore, the statistical models forthose
signal metrics depend heavily on the measurement processes.
For instance, the ranging error of the time-of-arrival (TOA)
metric is commonly modeled as additive Gaussian [27], [28],
[31]. However, other studies (both theoretical [15], [38],[39]
and experimental [8], [18]) indicate that the ranging erroris
not Gaussian. Hence, when deriving the fundamental limits of
localization accuracy, it is important to start from the received
waveforms rather than from signal metrics extracted from
those waveforms.

In Part I [29], we have developed a general framework to
characterize the localization accuracy of a given agent. Inthis
paper, we build on the framework and determine fundamental
properties ofcooperativelocation-aware networks employing
wideband transmission. The main contributions of this paper
are as follows:

• We derive the fundamental limits of localization accuracy
for wideband wireless cooperative networks in terms of
a performance measure called thesquared position error
bound(SPEB).

• We employ the notion ofequivalent Fisher information
(EFI) to derive the network localization information, and
show that this information can be decomposed into basic
building blocks associated with every pair of the nodes,
called theranging information(RI).

• We quantify the contribution of the a priori knowledge of
the channel parameters and the agents’ positions to the
network localization information, and show that agents
and anchors can be treated in aunified way: anchors are
special agents with infinite a priori position knowledge.

• We put forth ageometric interpretationof the EFI matrix

2Commonly used signal metrics include time-of-arrival (TOA) [7], [8],
[15], [17], [32], time-difference-of-arrival (TDOA) [33], [34], angle-of-arrival
(AOA) [7], [35], and received signal strength (RSS) [7], [36], [37].

(EFIM) using eigen-decomposition, providing insights
into the network localization problem.

• We derive scaling laws for the SPEB for both dense
and extended location-aware networks, characterizing the
behavior of cooperative location-aware networks in an
asymptotic regime.

The proposed framework generalizes the existing work on non-
cooperative localization [29] to cooperative networks, provide
insights into the network localization problem, and can guide
the design and deployment of location-aware networks.

The rest of the paper is organized as follows. Section II
presents the system model and the concept of SPEB. In Section
III, we apply the notion of EFI to derive the SPEB. Then in
Section IV, we provide a geometric interpretation of EFIM
for localization and derive scaling laws for the SPEB. Finally,
numerical results are given in Section V, and conclusions are
drawn in the last section.

Notation: The notationEx{·} is the expectation operator
with respect to the random vectorsx; A ≻ B andA � B

denote that the matrixA−B is positive definite and positive
semi-definite, respectively; tr{·} denotes the trace of a square
matrix; [ · ]T denotes the transpose of its argument;[ · ]n×n,k

denotes thekth n×n submatrix that starts from elementn(k−
1)+1 on the diagonal of its argument;[ · ]r1:r2,c1:c2 denotes a
submatrix composed of the rowsr1 to r2 and the columnsc1
to c2 of its argument; and‖ · ‖ denotes the Euclidean norm of
its argument. We also denote byf(x) the probability density
function (PDF)fX(x) of the random vectorX unless specified
otherwise.

II. SYSTEM MODEL

In this section, we describe the wideband channel model
and formulate the localization problem. We briefly review the
information inequality and the performance measure called
SPEB.

A. Signal Model

Consider a synchronous network consisting ofNb anchors
(or beacons) andNa agents with fixed topology.3 Anchors have
perfect knowledge of their positions, while each agent attempts
to estimate its position based on the waveforms received
from neighboring nodes (see Fig. 1). Unlike conventional
localization techniques, we consider a cooperative setting,
where agents utilize waveforms received from neighboring
agents in addition to those from anchors. The set of agents is
denoted byNa = {1, 2, . . . , Na}, while the set of anchors is
Nb = {Na + 1, Na + 2, . . . , Na +Nb}. The position of node
k is denoted bypk , [xk yk ]

T.4 Let φkj denote the angle
from nodek to nodej, i.e.,

φkj = tan−1 yk − yj
xk − xj

,

3We consider synchronous networks for notional convenience. Our ap-
proach is also valid for asynchronous networks, where devices employ round-
trip time-of-flight measurements [25], [40].

4For convenience, we focus on two-dimensional localizationwherepk ∈
R2, and we will later mention extensions to three-dimensionallocalization.
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andqkj , [ cosφkj sinφkj ]
T denote the corresponding unit

vector.
The received waveform at thekth agent (k ∈ Na) from the

jth node (j ∈ Nb ∪ Na\{k}) can be written as [24], [41]

rkj(t) =

Lkj∑

l=1

α
(l)
kj s

(

t− τ
(l)
kj

)

+ zkj(t) , t ∈ [ 0, Tob) , (1)

where s(t) is a known wideband waveform with Fourier
transformS(f), α

(l)
kj and τ

(l)
kj are the amplitude and delay,

respectively, of thelth path,5 Lkj is the number of multipath
components,zkj(t) represents the observation noise, modeled
as additive white Gaussian processes with two-sided power
spectral densityN0/2, and[ 0, Tob) is the observation interval.
The relationship between the positions of nodes and the delays
of the propagation paths is

τ
(l)
kj =

1

c

[

‖pk − pj‖+ b
(l)
kj

]

, j ∈ Nb ∪ Na\{k} , (2)

wherec is the propagation speed of the signal, andb
(l)
kj ≥ 0

is a range bias induced by non-line-of-sight (NLOS) propaga-
tion. Line-of-sight (LOS) signals occur when the direct path
between nodesk andj is unobstructed, such thatb(1)kj = 0.

B. Error Bounds on Position Estimation

We first introduceθ as the vector of unknown parameters,

θ =
[

PT
θ̃

T
1 θ̃

T
2 · · · θ̃

T
Na

]T
,

whereP consists of all the agents’ positions

P =
[

pT
1 pT

2 · · · pT
Na

]T
,

and θ̃k is the vector of the multipath parameters associated
with the waveforms received at thekth agent6

θ̃k =
[

κ
T
k,1 · · · κ

T
k,k−1 κ

T
k,k+1 · · · κ

T
k,Na+Nb

]T
,

in which κkj is the vector of the multipath parameters asso-
ciated withrkj(t),7

κkj =
[

b
(1)
kj α

(1)
kj · · · b

(Lkj)
kj α

(Lkj)
kj

]T
.

Secondly, we introducer as the vector representation of all
the received waveforms, given byr = [ rT

1 rT
2 · · · rT

Na
]T,

where

rk =
[

rT
k,1 · · · rT

k,k−1 rT
k,k+1 · · · rT

k,Na+Nb

]T
,

5We consider the general case where the wideband channel is not neces-
sarily reciprocal. Our results can be easily specialized tothe reciprocal case,
where we haveLkj = Ljk, α(l)

kj
= α

(l)
jk

, andτ (l)
kj

= τ
(l)
jk

henceb(l)
kj

= b
(l)
jk

,
for l = 1, 2, . . . , Lkj .

6In cases where the channel is reciprocal, only half of the multipath
parameters are needed. Without loss of generality, we only use

{

α
(l)
kj

, b
(l)
kj

:

k, j ∈ Na, k > j
}

.
7The biasb(1)

kj
= 0 for LOS signals. From the perspective of Bayesian

estimation, it can be thought of as a random parameter with infinite a priori
Fisher information [29].

in which rkj is obtained from the Karhunen-Loève (KL)
expansion ofrkj(t) [42], [43]. We tacitly assume that when
nodesj andk cannot communicate directly, the corresponding
entry rkj is omitted inr.

We can now introduce an estimator̂θ of the unknown
parameterθ based on the observationr. The mean squared
error (MSE) matrix ofθ̂ satisfies the information inequality
[42]–[44]

Er,θ

{

(θ̂ − θ)(θ̂ − θ)
T
}

� J−1
θ

, (3)

whereJθ is the Fisher information matrix (FIM) forθ,8 given
by

Jθ = Er,θ

{

− ∂2

∂θ∂θT
ln f(r, θ)

}

, (4)

in which f(r, θ) is the joint PDF of the observationr and
the parameter vectorΘ. For an estimatêpk of thekth agent’s
position, equation (3) implies that

Er,θ

{
(p̂k − pk)(p̂k − pk)

T
}
�
[
J−1
θ

]

2×2,k
.

One natural measure for position accuracy is the average
squared position errorEr,θ

{
‖p̂k − pk‖2

}
, which can be

bounded below byP(pk) defined in the following.
Definition 1 (Squared Position Error Bound [29]):The

squared position error bound (SPEB) of thekth agent is
defined to be

P(pk) , tr
{[

J−1
θ

]

2×2,k

}

.

Since the error of the position estimatep̂k −pk is a vector,
it may also be of interest to know the position error in a partic-
ular direction. The directional position error along a given unit
vectoru is the position error projected on it, i.e.,uT(p̂k−pk),
and its average squared errorEr,θ

{
‖uT(p̂k − pk)‖2

}
can be

bounded below byP(pk;u) defined in the following.9

Definition 2 (Directional Position Error Bound):The
directional position error bound (DPEB) of thekth agent
with constraintuT

⊥ (p̂k − pk) = 0 is defined to be

P(pk;u) , uT
[
J−1
θ

]

2×2,k
u ,

whereu,u⊥ ∈ R
2 are unit vectors such that〈u,u⊥〉 = 0.

Proposition 1: The SPEB of thekth agent is the sum of
the DPEBs in any two orthogonal directions, i.e.,

P(pk) = P(pk;u) + P(pk;u⊥) . (5)

Proof: See Appendix A.

8With a slight abuse of notation,E
r,θ{·} in (3) and (4) will be used

for deterministic, random, and hybrid cases, with the understanding that the
expectation operation is not performed over the deterministic components of
θ [43], [44]. Note also that for the deterministic components, the lower bound
is valid for their unbiased estimates.

9In higher dimensions, this notion can be extend to the position error in
any subspaces, such as a hyperplane.



4 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. Y, MONTH 2010

C. Joint PDF of Observations and Parameters

Evaluation of (4) requires knowledge of the joint distri-
bution f(r, θ). We can writef(r, θ) = f(r|θ) f(θ), where
f(r|θ) is the likelihood function, andf(θ) is the a priori
distribution of the parameterθ.10 In this section, we describe
the structure of both functions in detail.

Since the received waveformsrkj(t) are independent con-
ditioned on the parameterθ, f(r|θ) can be expressed as [42],
[43]

f(r|θ) =
∏

k∈Na

∏

j∈Nb∪Na\{k}

f(rkj |θ) , (6)

where

f(rkj |θ) ∝ exp

{

2

N0

∫ Tob

0

rkj(t)

Lkj∑

l=1

α
(l)
kj s

(

t− τ
(l)
kj

)

dt

− 1

N0

∫ Tob

0





Lkj∑

l=1

α
(l)
kj s

(

t− τ
(l)
kj

)





2

dt

}

.

(7)

When the multipath parametersκkj are independent condi-
tioned on the nodes’ positions,11 f(θ) can be expressed as

f(θ) = f(P)
∏

k∈Na

f(θ̃k|P)

= f(P)
∏

k∈Na

∏

j∈Nb∪Na\{k}

f(κkj |P) , (8)

where f(P) is the joint PDF of all the agents’ positions,
and f(κkj |P) is the joint PDF of the multipath parameters
κkj conditioned on the agents’ positions. Based on existing
propagation models for wideband and UWB channels [14],
[25], the joint PDF of the channel parameters can be further
written as [29]:

f(κkj |P) = f(κkj |dkj) , (9)

wheredkj = ‖pk − pj‖ for k ∈ Na andj ∈ Nb ∪ Na\{k}.
Combining (8) and (6) leads to

ln f(r, θ) =
∑

k∈Na

∑

j∈Nb

[

ln f(rkj |θ) + ln f(κkj |P)
]

+
∑

k∈Na

∑

j∈Na\{k}

[

ln f(rkj |θ) + ln f(κkj |P)
]

+ ln f(P) , (10)

where the first and second groups of summation account for
the information from anchors and that from agents’ cooper-
ation, respectively, and the last term accounts for the infor-
mation from the a priori knowledge of the agents’ positions.
This implies that the FIM forθ in (4) can be written as
Jθ = JA

θ
+ JC

θ
+ JP

θ
, whereJA

θ
, JC

θ
, andJP

θ
correspond to

the localization information from anchors, agents’ cooperation,
and a priori knowledge of the agents’ positions, respectively.

10When a subset of the parameters are deterministic, they are eliminated
from f(θ).

11This is a common model for analyzing wideband communication, unless
two nodes are close to each other so that the channels from a third node
to them are correlated. Our analysis can also account for thecorrelated
channels, in which case the SPEB will be higher than that corresponding
to the independent channels.

III. E VALUATION OF FIM

In this section, we briefly review the notion of EFI [29] and
apply it to derive the SPEB for each agent. We consider both
the cases with and without a priori knowledge of the agents’
positions. We also introduce the concept of RI, which turns
out to be the basic building block for the EFIM.

A. Equivalent Fisher Information Matrix and Ranging Infor-
mation

We saw in the previous section that the SPEB can be
obtained by inverting the FIMJθ in (4). However,Jθ is a
matrix of very high dimensions, while only a much smaller
submatrix

[
J−1
θ

]

2Na×2Na
is of interest. To gain insights into

localization problem, we will employ the notions of EFIM and
RI [29]. For the completeness of the paper, we briefly review
the notions in the following.

Definition 3 (Equivalent Fisher Information Matrix):
Given a parameter vectorθ = [ θT

1 θ
T
2 ]

T and the FIMJθ of
the form

Jθ =

[

A B

BT C

]

,

where θ ∈ R
N , θ1 ∈ R

n, A ∈ R
n×n, B ∈ R

n×(N−n),
andC ∈ R

(N−n)×(N−n) with n < N , the equivalent Fisher
information matrix (EFIM) forθ1 is given by

Je(θ1) , A−BC−1BT . (11)

Note that the EFIM retains all the necessary information to
derive the information inequality for the parameterθ1, in a
sense that[J−1

θ
]n×n = [Je(θ1) ]

−1, so that the MSE matrix
of the estimates ofθ1 is “bounded” below by[Je(θ1) ]

−1. The
right-hand side of (11) is known as the Schur’s complement
of matrix A [45], and it has been used for simplifying the
CRBs [31], [32], [46].

Definition 4 (Ranging Information):The ranging informa-
tion (RI) is a2× 2 matrix of the formλJr(φ), whereλ is a
nonnegative number called the ranging information intensity
(RII) and the matrixJr(φ) is called the ranging direction
matrix (RDM) with the following structure:

Jr(φ) ,

[

cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

]

.

The RDMJr(φ) has exactly one non-zero eigenvalue equal
to 1 with corresponding eigenvectorq = [ cosφ sinφ ]

T,
i.e., Jr(φ) = qqT. Thus, the corresponding RI is “one-
dimensional” along the directionφ.

B. Fisher Information Analysis without A Priori Position
Knowledge

In this section, we consider the case in which a priori
knowledge of the agents’ positions is unavailable, i.e.,f(P)
is eliminated from (8). We first prove a general theorem,
describing the structure of the EFIM, followed by a special
case, where there is no a priori knowledge regarding the
channel parameters.
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Theorem 1:When a priori knowledge of the agents’ posi-
tions is unavailable, and the channel parameters corresponding
to different waveforms are mutually independent, the EFIM for
the agents’ positions is a2Na×2Na matrix, structured as (12)
at the bottom of the page, whereJA

e (pk) and Ckj can be
expressed in terms of the RI:

JA
e (pk) =

∑

j∈Nb

λkj Jr(φkj) ,

and

Ckj = Cjk = (λkj + λjk) Jr(φkj) ,

with λkj given by (35) in Appendix B.
Proof: See Appendix B.

Remark 1:We make the following remarks.

• To obtain the SPEB of a specific agent, we can apply
EFI analysis again and further reduceJe(P) into a 2× 2
EFIM.

• The RI is the basic building block of the EFIM for
localization, and each RI corresponds to an individual
received waveform. The RIIλkj is determined by the
power and bandwidth of the received waveform, the
multipath propagation, as well as the a priori channel
knowledge. Note that each received waveform provides
only one-dimensional information for localization along
the angleφkj .

• The EFIM Je(P) can be decomposed into localization
information from anchors and that from agents’ cooper-
ation. The former part is represented as a block-diagonal
matrix whose non-zero elements areJA

e (pk), for thekth
agent, and eachJA

e (pk) is a weighted sum of RDMs
over anchors. Hence the localization information from
anchors is not inter-related among agents. The latter
part is a highly structured matrix consisting of RIs
Ckj . Hence the localization information from agents’
cooperation is highly inter-related. This is intuitive since
the effectiveness of the localization information provided
by a particular agent depends on its position error.

Theorem 2:When a priori knowledge of the agents’ posi-
tions and the channel parameters is unavailable, the EFIM for
the agents’ positions is a2Na × 2Na matrix, structured as in
(12) shown at the bottom of the page, with the RIIλkj given
by

λkj =

{

8π2β2/c2 · (1 − χkj)SNR
(1)
kj , LOS signal,

0 , NLOS signal,

whereβ is the effective bandwidth of transmitted waveform
s(t)

β =

(∫ +∞

−∞
f2 |S(f)|2df

∫ +∞

−∞
|S(f)|2df

)1/2

,

SNR
(1)
kj is the SNR of thefirst path inrkj(t):

SNR
(1)
kj =

∣
∣α

(1)
kj

∣
∣
2 ∫ +∞

−∞ |S(f)|2df
N0

, (13)

and0 ≤ χkj ≤ 1 is called thepath-overlap coefficient, which
depends on the first contiguous-cluster12 in LOS signals.

Proof: See Appendix C.
Remark 2:We make the following remarks.

• The theorem shows that when a priori knowledge of
channel parameters is unavailable, the NLOS signals do
not contribute to localization accuracy, and hence these
signals can be discarded. This agrees with the previous
observations in [8], [31], [32] although the authors con-
sidered different models.

• For LOS signals, the RII is determined by the first
contiguous-cluster [29], implying that it is not necessary
to process the latter multipath components. In particular,
the RII is determined by the effective bandwidthβ, the
first path’s SNR, and the propagation effect characterized
by χkj .

• Since χkj ≥ 0, path-overlap always deteriorates the
accuracy unlessχkj = 0, in which the first signal compo-
nents(t− τ

(1)
kj ) does not overlap with later components

s(t− τ
(l)
kj ) for l > 1.

C. Fisher Information Analysis with A Priori Position Knowl-
edge

We now consider the case in which the a priori knowledge
of the agents’ positions, characterized byf(P), is available.
We first derive the EFIM, based on which we prove that
agents and anchors can be treated in a unified way under this
framework. We then present a special scenario in which the
a priori knowledge of the agents’ positions satisfies certain
conditions so that we can gain insights into the EFIM.

Theorem 3:When a priori knowledge of the agents’ posi-
tions is available, and the channel parameters corresponding

12The first contiguous-cluster is the first group of non-disjoint paths. Two
paths that arrive at timeτi andτj are called non-disjoint if|τi − τj | is less
than the duration ofs(t) [29].

Je(P) =













JA
e (p1) +

∑

j∈Na\{1}

C1,j −C1,2 · · · −C1,Na

−C1,2 JA
e (p2) +

∑

j∈Na\{2}

C2,j −C2,Na

...
. . .

−C1,Na −C2,Na JA
e (pNa) +

∑

j∈Na\{Na}

CNa,j













(12)
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to different waveforms are mutually independent, the EFIM
for the agents’ positions is a2Na × 2Na matrix, given by13

Je(P) = JA
e (P) + JC

e (P) +ΞP, (14)

where

[
JA

e (P)
]

2k−1:2k,2m−1:2m
=

{∑

j∈Nb
Rk(rkj) , k = m,

0 , k 6= m,

[
JC

e (P)
]

2k−1:2k,2m−1:2m

=

{∑

j∈Na\{k}
[Rk(rkj) +Rk(rjk) ] , k = m,

−[Rk(rkm) +Rk(rmk) ] , k 6= m,

and

ΞP = EP

{

− ∂2

∂P∂PT
ln f(P)

}

,

with Rk(rkj) ∈ R
2×2 given by (15) shown at the bottom of

the page. Block matrixΦkj (x,y) in (15) is defined as (27)
in Appendix B.

Proof: See Appendix D.
Remark 3:The EFIM for agents’ positions is derived in

(14) for the case when a priori knowledge of the agents’
positions is available. Compared to (12) in the Theorem 1,
the EFIM in (14) retains the same structure of the localization
information from both anchors and cooperation, except thatall
RIs in Theorem 3 are obtained by averaging the2×2 matrices
over the possible agents’ positions. In addition, the localization
information from the position knowledge is characterized in
terms of an additive componentΞP. This knowledge improves
localization becauseΞP is positive semi-definite.

Based on the result of Theorem 3, we can now treat anchors
and agents in a unified way, as will be shown in the following
theorem.

Theorem 4:Anchors are equivalent to agents with infinite
a priori position knowledge in the following sense: when the
kth agent has infinite a priori position knowledge, i.e.,Ξpk

=
limt2→∞ diag

{
t2, t2

}
, then

Je(Pk̄) = [Je(P) ]k̄ ,

13Note thatJe(P) in (14) does not depend on any particular value of the
random vectorP, whereasJe(P) in (12) is a function of the deterministic
vectorP.

wherePk̄ is the vectorP without rows 2k − 1 to 2k, and
[Je(P) ]k̄ is the matrixJe(P) without rows2k− 1 to 2k and
columns2k − 1 to 2k.

Proof: See Appendix E.
Remark 4:The theorem shows mathematically that agents

are equivalent to anchors if they have infinite a priori position
knowledge, which agrees with our intuition. As such, it is
not necessary to distinguish between agents and anchors. This
view will facilitate the analysis of location-aware networks and
the design of localization algorithms: every agent can treat the
information coming from anchors and other cooperating agents
in a unified way.

The general expression of the EFIM for the case with a
priori position knowledge is given in (14), which is much more
involved than that for the case without position knowledge in
(12). However, in the special case when

EP {g(P)} = g(EP {P}) , (16)

for the functionsg(·) involved in the derivation of the EFIM
(see Appendix D),14 we can gain insight into the structure of
the EFIM as shown by the following corollary.

Corollary 1: When the a priori distribution of the agents’
positions satisfies (16), and the channel parameters corre-
sponding to different waveforms are mutually independent,
the EFIM for the agents’ positions is a2Na × 2Na matrix,
structured as (17) shown at the bottom of the page, where
J̄A

e (pk) andC̄kj can be expressed in terms of the RI:

J̄A
e (pk) =

∑

j∈Nb

λ̄kj Jr(φ̄kj) ,

and

C̄kj = C̄jk =
(
λ̄kj + λ̄jk

)
Jr(φ̄kj) ,

whereP̄ = EP {P}, λ̄kj is the RII given in (35) evaluated at
P̄, and φ̄kj is the angle from̄pk to p̄j .

Proof: See Appendix D.

D. Discussions

We will now discuss the results derived in the previous
sections. Our discussion includes 1) the EFIM for the agents

14This occurs when every agent’s a priori position distribution is concen-
trated in a small area relative to the distance between the agent and the other
nodes, so thatg(P) is flat in that area.

Rk(rkj) = EP

{
Φkj (dkj , dkj) qkj q

T
kj

}
− EP {qkj Φkj(dkj ,pk)} EP {Φkj(κkj ,κkj)}−1

EP

{
Φkj(pk, dkj)q

T
kj

}
(15)

Je(P) =













J̄A
e (p1) +

∑

j∈Na\{1}

C̄1,j −C̄1,2 · · · −C̄1,Na

−C̄1,2 J̄A
e (p2) +

∑

j∈Na\{2}

C̄2,j −C̄2,Na

...
. ..

−C̄1,Na −C̄2,Na J̄A
e (pNa) +

∑

j∈Na\{Na}

C̄Na,j













+ΞP (17)
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in non-cooperative localization, 2) an application of the co-
operative localization to tracking, 3) a recursive method to
construct an EFIM for large networks, and 4) the extension to
three-dimensional scenarios.

1) Non-Cooperative Localization:When the agents do not
cooperate, the matrices corresponding to the agents’ coopera-
tion in (12) in Theorem 1 and (17) in Corollary 1 are discarded.
In particular, the EFIMJe(P) in Theorem 1 reverts to

Je(P) = diag
{
JA

e (p1) ,J
A
e (p2) , . . . ,J

A
e (pNa)

}
,

and hence the2 × 2 EFIM for the kth agent is equal to
Je(pk) = JA

e (pk). Similarly, the EFIMJe(P) in Corollary
1 reverts to

Je(P) = diag
{
J̄A

e (p1) , J̄
A
e (p2) , . . . , J̄

A
e (pNa)

}
+ΞP .

Furthermore, when the agents’ positions are independent a
priori, ΞP = diag

{
Ξp1 ,Ξp2 , . . . ,ΞpNa

}
and the2× 2 EFIM

for the kth agent can be written asJe(pk) = J̄A
e (pk) +Ξpk

.
2) Spatial vs. Temporal Cooperation for Localization:

Rather than multiple agents in cooperation, a single agent can
“cooperate” with itself over time. Such temporal cooperative
localization can easily be analyzed within our framework, as
follows.

Consider a single agent moving in sequence toN different
positions according to piecewise linear walk and receiving
waveforms from neighboring anchors at each position. The
N positions can be written asP =

[
pT
1 pT

2 · · · pT
N

]T
, and

we can consider the scenario asN agents in cooperation. The
likelihood of the observation is

f
(

r, d̂|Θ
)

=

N∏

k=1

∏

j∈Nb

f (rkj |pk,pj)

N−1∏

k=1

f
(

d̂k|pk,pk+1

)

,

where d̂ =
[
d̂1 d̂2 · · · d̂N−1

]T
in which d̂k is the

measurement of the distancedk = ‖pk − pk+1‖ betweenpk

andpk+1.15 By applying Theorem 1, we have the EFIM for
P asJe(P) = JA

e (P) + JC
e (P) where

JA
e (P) = diag

{
JA

e (p1),J
A
e (p2), . . . ,J

A
e (pN )

}
,

15We assume that the agent has other navigation devices, such as inertial
measurement unit (IMU), odometer, or pedometer, to measurethe distance
between positions.

andJC
e (P) is given by (18) shown at the bottom of the page,

in which Ck,k+1 = νk Jr(φk,k+1) with φk,k+1 denoting the
angle frompk to pk+1 and

νk = E
d̂

{

− ∂2

∂d2k
ln f

(

d̂k|pk,pk+1

)}

.

By further applying the notion of EFI, we can obtain the EFIM
Je(pk) for each positionpk. Note that this analysis can be
extended to cooperation among multiple mobile agents over
time, so that both cooperation over space and time are explored
simultaneously.

3) Recursive Formula for EFIM:The structure of the EFIM
in (12) and (17) enables us to extend the EFIM when agents
join or leave the cooperative network. We will develop a
recursive formula to construct the EFIM in the following.

Consider a network withn agents in cooperation without a
priori knowledge of their positions, and the EFIM for agents’
positionsJe(Pn) wherePn = [pT

1 · · · pT
n ]

T can be obtained
by (12). If a new agent enters the cooperative network, then
the EFIM for then + 1 agents is given by (19), shown at
the bottom of the page, whereJA,n+1 is the EFIM for the
(n+1)th agent corresponding to the localization information
from anchors,Mn,n+1 is the localization information from
the cooperation between the(n+ 1)th agent and the othern
agents, given by

Mn,n+1 = diag{C1,n+1 , C2,n+1 , . . . , Cn,n+1} ,

andKn ∈ R
2n×2 is given by

Kn =
[

I2×2 I2×2 · · · I2×2

]T
.

Note that when the a priori knowledge of the agents’ positions
is available, we need to consider the contribution ofΞP, and
the EFIM for then+1 agents can be constructed in a similar
way.

Similarly, when a certain agent, sayk, leaves the network,
we need to eliminate rows2k − 1 to 2k and columns2k − 1
to 2k in Je(Pn), as well as subtract all correspondingCkj for
j ∈ Na\{k} from the diagonal ofJe(Pn).

4) Extension to 3D Localization:All the results obtained
thus far can be easily extended to the three-dimensional
scenario, in whichpk = [xk yk zk ]

T. The SPEB of the
kth agent is defined asP(pk) =

[
J−1
θ

]

3×3,k
. Following the

steps leading to (12) and (17), we can obtain a corresponding

JC
e (P) =













C1,2 −C1,2

−C1,2 C1,2 +C2,3 −C2,3

−C2,3
. . .

. . .
. . . CN−2,N−1 +CN−1,N −CN−1,N

−CN−1,N CN−1,N













(18)

Je(Pn+1) =

[

Je(Pn) +Mn,n+1 −Mn,n+1Kn

−KT
nMn,n+1 JA,n+1 +KT

nMn,n+1 Kn

]

(19)
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x

x∗
y

y∗

√
µ

√
η

ϑ

Fig. 2. Geometric interpretation of the EFIM as an information ellipse. In
the rotated coordinate system (rotated over an angleϑ), the major and minor
axes of the ellipse are given by

√
µ and

√
η, respectively.

3Na×3Na EFIM involving the RDMsJr(ϕkj , φkj) for k ∈ Na

andj ∈ Nb ∪ Na, where

Jr(ϕ, φ) , qqT ,

with ϕ andφ denoting the angles in the spherical coordinates,
andq = [ cosϕ cosφ sinϕ cosφ sinφ ]

T.

IV. GEOMETRIC INTERPRETATION OFEFIM FOR

LOCALIZATION

In this section, we present a geometric interpretation of
the EFIM for localization. This interpretation not only pro-
vides insights into the essence of localization problems, but
also facilitates the analysis of localization systems, design
of localization algorithms, and deployment of location-aware
networks. We begin with the non-cooperative case, and then
extend to the cooperative case. Based on these results, we
derive scaling laws of the SPEB for both non-cooperative and
cooperative location-aware networks.

A. Interpretation for Non-Cooperative Localization

When an agent only communicates with neighboring an-
chors, the EFIM can be written as16

Je(p) =
∑

j∈Nb

λj Jr(φj) , Uϑ

[

µ 0

0 η

]

UT
ϑ , (20)

whereµ andη are the eigenvalues ofJe(p), with µ ≥ η, and
Uϑ is a rotation matrix with angleϑ, given by

Uϑ =

[

cosϑ − sinϑ

sinϑ cosϑ

]

.

The first and second columns ofUϑ are the eigenvectors
corresponding to eigenvaluesµ and η, respectively. By the
properties of eigenvalues, we have

µ+ η = tr {Je(p)} =
∑

j∈Nb

λj .

16To simplify the notation, we will suppress the agent’s indexin the
subscript.

x

y

√
µ√

η

√
µ̃

√
η̃

ϑ̃

φ′

ν

Fig. 3. Updating of the information ellipse for non-cooperative localization.
The original information ellipse of the agent is characterized byF(µ, η, 0).
The RI from an additional anchor is given byF(ν, 0, φ). The new information
ellipse of the agent then grows along the directionφ′, but not along the
orthogonal direction. The new information ellipse corresponds toF(µ̃, η̃, ϑ̃).

Note in (20) thatJe(p) depends only onµ, η, andϑ, and we
will denoteJe(p) by F(µ, η, ϑ) when needed.

Proposition 2: The SPEB is independent of the coordinate
system.

Proof: See Appendix F.
Remark 5:The proposition implies that if we rotate the

original coordinate system by an angleϑ prescribed by (20)
and denote the agent’s position in the new coordinate byp∗,
then the SPEB is

P(p) = P(p∗) = tr







[

µ 0

0 η

]−1





=

1

µ
+

1

η
.

The EFIM in the new coordinate system is diagonal, and thus
the localization information in these new axes is decoupled.
Consequently, the SPEB is also decoupled in these two or-
thogonal directions.

Definition 5 (Information Ellipse):Let J be a2×2 positive
definite matrix. The information ellipse ofJ is defined as the
sets of pointsx ∈ R

2 such that

x J−1xT = 1 .

Geometrically, the EFIM in (20) corresponds to an informa-
tion ellipse with major and minor axes equal to

√
µ and

√
η,

respectively, and a rotationϑ from the reference coordinate, as
depicted in Fig. 2. Hence, the information ellipse is completely
characterized byµ, η, andϑ. Note that the RI is expressed
as λJr(φ) = F(λ, 0, φ), and it corresponds to a degenerate
ellipse. In the following proposition, we will show how an
anchor contributes to the information ellipse of an agent.

Proposition 3: Let Je(p) = F(µ, η, ϑ) and P(p) denote
the EFIM and the SPEB of an agent, respectively. When that
agent obtains RIF(ν, 0, φ) from a new anchor, the new EFIM
for the agent will be

J̃e(p) = F(µ̃, η̃, ϑ̃)

= F(µ, η, ϑ) + F(ν, 0, φ) ,
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where the parameters for the new information ellipse are

µ̃ =
µ+ η + ν

2
+

1

2

√

[µ− η + ν cos 2φ′]
2
+ ν2 sin2 2φ′

η̃ =
µ+ η + ν

2
− 1

2

√

[µ− η + ν cos 2φ′]
2
+ ν2 sin2 2φ′

and

ϑ̃ = ϑ+
1

2
arctan

ν sin 2φ′

µ− η + ν cos 2φ′
,

with φ′ , φ− ϑ. Correspondingly, the new SPEB becomes

P̃(p) =
1

µ̃
+

1

η̃
=

µ+ η + ν

µη + ν
[
η + (µ− η) sin2 φ′

] . (21)

Remark 6:The geometric interpretation for the proposition
is depicted in Fig. 3. For a fixed RIIν, we see from (21) that
P̃(p) can be minimized throughφ′ (equivalently, throughφ)
in the denominator:

min
φ

P̃(p) =
µ+ η + ν

µ(η + ν)
,

and the minimum is achieved whenφ = ϑ ± π/2. In such
a case, the anchor is along the direction of the eigenvector
corresponding to the smallest eigenvalueη. Observe also that
the denominator in (21) is equal tõµ · η̃, which is proportional
to the squaredareaof the new information ellipse correspond-
ing to J̃e(p). Hence, for a fixedν, the minimum SPEB is
achieved when the new anchor is along the minor axis of
the information ellipse corresponding toJe(p). Equivalently,
this choice of anchor position maximizes the area of the new
information ellipse.

On the other hand, the maximum SPEB occurs when the
anchor is along the direction of the eigenvector correspond-
ing to the largest eigenvalueµ, i.e., the major axis of the
information ellipse corresponding toJe(p). Equivalently, this
minimizes the area of the new information ellipse, and thus

max
φ

P̃(p) =
µ+ η + ν

η(µ+ ν)
,

and the maximum is achieved whenφ = ϑ±π. Note also that

1

µ
< P̃(p) ≤ P(p) ,

where the left-hand side1/µ = limν→∞ minφ P̃(p), and the
right-hand sideP(p) = limν→0 P̃(p).

B. Interpretation for Cooperative Localization

The EFIM for all the agents in cooperative location-aware
network is given respectively by (17) and (12) for the cases
with and without a priori position knowledge. Further applying
the notion of EFI, one can obtain the EFIM for individual
agents. In general, the exact EFIM expression for the individ-
ual agents is complicated. However, we can find lower and
upper bounds on the individual EFIM to gain some insights
into the localization problem.

Proposition 4: Let JA
e (pk) = F(µk, ηk, ϑk) denote the

EFIM for agentk that corresponds to the localization infor-
mation from anchors, and letCkj = F(νkj , 0, φkj) denote the

Agent 1

Agent 2

C1,2

JA
e (p1)

Je(p1)

JA
e (p2)

ν

ν

φ1,2

Fig. 4. Updating of the information ellipse for cooperativelocalization.
Based on the anchors, thekth agent has informationJA

e (pk). The cooperative
information between the two agents is given byC1,2 = F(ν, 0, φ1,2). The
total EFIM for agent 1 is thenJe(p1) = JA

e (p1) + ξ1,2C1,2. The new
information ellipse grows along the line connecting the twoagents.

RI for that agent obtained from cooperation with agentj. The
EFIM Je(pk) for agentk can be bounded as follows:

JL
e(pk) � Je(pk) � JU

e (pk) ,

where

JL
e(pk) = JA

e (pk) +
∑

j∈Na\{k}

ξL
kj Ckj , (22)

JU
e (pk) = JA

e (pk) +
∑

j∈Na\{k}

ξU
kj Ckj , (23)

with coefficients0 ≤ ξL
kj ≤ ξU

kj ≤ 1 given by (44) and (46).
Proof: See Appendix F.

Remark 7:The bounds for the EFIM can be written as
weighted sums of RIs from the neighboring nodes, and such
linear forms can facilitate analysis and design of location-
aware networks. Moreover, it turns out thatξL

kj = ξU
kj when

there are only two agents in cooperation, leading to the
following corollary.

Corollary 2: Let JA
e (p1) = F(µ1, η1, ϑ1) and JA

e (p2) =
F(µ2, η2, ϑ2) denote the EFIMs for agent 1 and 2 from
anchors, respectively, and letC1,2 = F(ν1,2, 0, φ1,2) denote
the RI from their cooperation. The EFIMs for the two agents
are given, respectively, by (see also Fig. 4)

Je(p1) = JA
e (p1) + ξ1,2 ν1,2 Jr(φ1,2) ,

and

Je(p2) = JA
e (p2) + ξ2,1 ν1,2 Jr(φ1,2) ,

where

ξ1,2 =
1

1 + ν1,2 ∆2(φ1,2)
,

and

ξ2,1 =
1

1 + ν1,2 ∆1(φ1,2)
,
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with

∆k(φ1,2) = qT
12

[
JA

e (pk)
]−1

q12 ,

for k = 1, 2.
Remark 8:The results follow directly from Proposition 4.

We make the following remarks.

• Cooperation provides agent 1 with RIξ1,2 ν1,2 Jr(φ1,2)
with 0 ≤ ξ1,2 ≤ 1. Hence agent 1 obtains a RII
ξ1,2 ν1,2 from cooperation instead of the full RIIν1,2.
This degradation in RII is due to the inherent uncertainty
of the second agent’s position. We introduce theeffective
RII ν̃1,2 = ξ1,2 ν1,2.

• The effective RII has the following geometric interpreta-
tion. The value∆2(φ1,2) is the DPEB of agent 2 (based
solely on the anchors) along the angleφ1,2 between the
two agents. This implies that the larger the uncertainty
of agent 2 along the angleφ1,2, the less effective coop-
eration is. For a given∆2(φ1,2), the effective RIIν̃1,2
increases monotonically withν1,2, and has the following
asymptotic limits:

lim
ν1,2→0

ν̃1,2 = 0 ,

lim
ν1,2→∞

ν̃1,2 = 1/∆2(φ1,2) .

Hence the maximum effective RII that agent 2 can
provide to agent 1 equals the inverse of the DPEB of
agent 2 (based solely on the anchors) along the angle
φ1,2 between the two agents.

• When i) the two agents happen to be oriented such that
φ1,2 = ϑ2, and ii) agent 2 is certain about its position
along that angle (µ2 = +∞), then∆2(φ1,2) = 0 and
Je(p1) = JA

e (p1) + C1,2, i.e., agent 2 can be thought
of as an anchor from the standpoint of providing RI
to agent 1. From this perspective, anchors and agents
are equivalent for localization, where anchors are special
agents with zero SPEB, or equivalently, infiniteJA

e (pk)
in all directions.

C. Scaling Laws for Location-Aware Networks

In this section, we derive scaling laws of the SPEB for both
non-cooperative and cooperative location-aware networks.
Scaling laws give us insight into the benefit of cooperation
for localization in large networks. As we will see, agents and
anchors contribute equally to the scaling laws for cooperative
location-aware networks.

We focus on two types of random networks:densenetworks
andextendednetworks [47], [48]. In both types of networks,
we consider theNb anchors andNa agents randomly located
(uniformly distributed) in the plane. In dense networks, adding
nodes increases the node density, while the area remains
constant. In extended networks, the area increases proportional
to the number of nodes, while both the anchor and the
agent densities remain constant. Without loss of generality,
we consider one round of transmission from each node to
another. All transmission powers are the same, while large-and
small-scale fading can be arbitrary. Medium access controlis
assumed so that these signals do not interfere with one another.

Definition 6 (Scaling of SPEB):Consider a network withn
nodes randomly located in a given area. We say that the SPEB
of individual agents scales asΘ(f(n)) for some function
f(n), denoted byP(p) ∈ Θ(f(n)), if there are deterministic
constants0 < c1 < c2 < +∞ such that

P {c1f(n) ≤ P(p) ≤ c2f(n)} = 1− ǫ(n) , (24)

wherelimn→∞ ǫ(n) = 0.
Theorem 5:In dense networks, the SPEB of each agent

scales asΘ(1/Nb) for non-cooperative localization, and as
Θ(1/(Nb +Na)) for cooperative localization.

Proof: See Appendix G.
Theorem 6:In extended networks with an amplitude loss

exponentb,17 the SPEB of each agent scales as

P(p) ∈







Θ(1/ logNb) , b = 1,

Θ(1) , b > 1,

Θ(1/N b−1
b ) , 0 < b < 1,

for non-cooperative localization, and

P(p) ∈







Θ(1/ log(Nb +Na)) , b = 1,

Θ(1) , b > 1,

Θ(1/(Nb +Na)
b−1) , 0 < b < 1,

for cooperative localization.
Proof: See Appendix G.

Remark 9:We make the following remarks.
• In dense networks, the SPEB scales inversely proportional

to the number of anchors for non-cooperative localization,
and inversely proportional to the number of nodes for
cooperative localization. The gain from cooperation is
given byΘ(1 + Na/Nb), and hence the benefit is most
pronounced when the number of anchors is limited.
Moreover, it is proven in Appendix G thatǫ(n) decreases
exponentially with the number of nodes.

• In extended networks with an amplitude loss exponent
equal to 1, the SPEB scales inversely proportional to the
logarithm of the number of anchors for non-cooperative
localization, and inversely proportional to the logarithm
of the number of nodes for cooperative localization. This
implies that the SPEB in extended networks decreases
much more slowly than that in dense networks, and the
gain from cooperation is now reduced toΘ(log(Nb +
Na)/ logNb). Moreover, it is shown in Appendix G that
ǫ(n) decreases asexp(−(logn)2/8)/ logn.

• In extended networks with an amplitude loss exponent
greater than 1, the SPEB converges to a strict positive
value as the network grows. This agrees with our intu-
ition that as more nodes are added, the benefit of the
additional nodes diminishes due to the rapidly decaying
RII provided by those nodes. It can be shown that the
SPEB converges to a smaller value in the cooperative
case than that in the non-cooperative case, i.e., a constant
gain can be obtained by cooperation.

17Note that the amplitude loss exponent isb, while the corresponding power
loss exponent is2b. The amplitude loss exponentb is environment-dependent
and can range from approximately 0.8 (e.g., hallways insidebuildings) to 4
(e.g., dense urban environments) [49].
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Fig. 5. Effective RIIξ1,2 ν1,2 as a function of the RIIν1,2, for JA,2 =
F(µ2 = 2, η2 = 1, ϑ2 = 0), and different angle of arrivalφ1,2.

V. NUMERICAL RESULTS

In this section, we examine several numerical examples
pertaining to cooperative localization and illustrate practical
applications of our analytical results.

A. Effective Ranging Information

We first investigate the behavior of the effective RIIν̃1,2
from Corollary 2 when two agents cooperate. The effective
RII ν̃1,2 is plotted in Fig. 5 as a function of the RIIν1,2 for
JA

e (p2) = F(µ2 = 2, η2 = 1, ϑ2 = 0) and various values of
φ1,2. The corresponding asymptotic limits are also plotted for
large values ofν1,2. We observe that effective RII increases
from 0 to 1/∆2(φ1,2) as the RIIν1,2 increases. For a fixed
RII, the second agent will provide the maximum effective
RII at φ1,2 = ϑ2, along which angle the second agent has
the minimum DPEB (i.e.,1/µ2 = 0.5). On the other hand,
the second agent will provide the minimum effective RII at
φ1,2 = ϑ2 ± π/2, along which angle the second agent has the
maximum DPEB (i.e.,1/η2 = 1).

B. Benefit of Cooperation

We now consider the SPEB performance as a function
of the number of agents for cooperative localization. The
network configuration is shown in Fig. 6. The agents randomly
(uniformly distributed) reside in a 20 m by 20 m area. There are
two sets of anchors (shown as squares (set I) and diamonds (set
II) in Fig. 6), with a configuration determined by the parameter
D. Since fading does not affect the scaling behavior as shown
Section IV-C, we consider a network with signals that obey
the free-space path-loss model for simplicity, so that the RII
λkj ∝ 1/d2kj .

Figure 7 shows the average SPEB over all the agents as a
function of the number of agents, obtained by Monte Carlo
simulation, forD = 10. We see that as the number of agents
increases, the average SPEB decreases significantly, roughly
proportional to the number of agents. Note that the anchor

D

D

10

10

−10

−10

Fig. 6. Typical network deployment of two sets of anchors (set I: squares,
set II: diamonds) andNa = 15 agents. The agents are distributed uniformly
over the[−10, 10 ]× [−10, 10 ] map, while the locations of the anchors are
controlled byD.
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Fig. 7. The average SPEB as a function of the number of agents in the
network for various anchor configurations (D = 10).

configuration set II yields a lower SPEB. Intuitively, this is
due to the fact that the anchors in set II (distanceD from the
center) cover the area better than the anchors in set I (distance√
2D from the center).
Define the upper and lower approximations of agentk’s

SPEB as

PU(pk) , tr
{[

JL
e(pk)

]−1
}

and

PL(pk) , tr
{[

JU
e (pk)

]−1
}

,

where JL
e(pk) and JU

e (pk) are given by (22) and (23), re-
spectively, in Theorem 4. Figure 8 shows the average ratio of
the lower and upper approximations of the SPEB, obtained by
Monte Carlo simulation, for anchor set I, set II, and both sets.
When there are only two agents in cooperation, the bounds



12 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. Y, MONTH 2010

2 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

4 Anchors I
4 Anchors II
8 Anchors

Number of agents

E
{
P

L
(p

)/
P

U
(p

)}

Fig. 8. Ratio of upper and lower approximations of the SPEB,PL(p) and
PU(p), as a function of the number of agents for anchor set I, set II,and
both.

coincide, as we expect from Corollary 2. As the number of
agents increases, the ratio deviates from 1, or equivalently
the approximations become looser, due to the fact that upper
approximation ignores more cooperative information, and the
lower approximation considers more agents to be equivalent
to anchors. Nevertheless, the ratio converges to a positive
constant, implying that the upper and lower approximation
decrease at the same rate in an asymptotical regime, as shown
in the proof of Theorem 5.

C. Anchor Deployment

Finally, we investigate the effect of anchor deployment in
more detail. We consider a scenario withNa = 15 agents.
The anchor placement is controlled throughD (see Fig. 6).
Figure 9 shows the average SPEB as a function ofD for
different anchor configurations (set I, set II, and both sets).
We see that the SPEB first decreases, and then increases,
as a function ofD. WhenD is close to 0, all the anchors
are located closely in the middle of the area, and hence the
RIs from those anchors to a particular agent are nearly in
the same direction. This will greatly increase the error of
each agent’s position since everyJA

e (pk) is close to singular,
resulting in poor overall SPEB performance. As the anchors
begin to move away from the center, they provide RIs along
different directions to each agent, which lowers the average
SPEB. Then, as the distances of the anchors to the center
increase further, the anchors become far away from more and
more agents. Hence the RII decreases due to the path-loss
phenomena, and this leads to the increase in the average SPEB.
Observe also that anchor set I is better than anchor set II for
D < 7m. This is because, for a fixedD < 7m, anchor set
I can cover a larger area. ForD > 7m, anchor set I suffers
more from path-loss than anchor set II.

For the sake of comparison, we have also included the
average SPEB when 8 anchors are deployed 1) according to set
I and II simultaneously, and 2) randomly on a[−10m, 10m ]×
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Fig. 9. The mean SPEB with respective to anchor deployment. There are
Na = 15 agents.

[−10m, 10m ] area. The figure shows that intelligent anchor
deployment can be beneficial compared to random deploy-
ment, indicating the need for anchor deployment strategies.

VI. CONCLUSION

In this paper, we have investigated the fundamental limits on
the localization accuracy for wideband cooperative location-
aware networks. We have derived the squared position error
bound (SPEB) by applying the notion of equivalent Fisher
information (EFI) to characterize the localization accuracy.
Since our analysis exploits the received waveforms rather
than specific signal metrics, the SPEB incorporatesall the
localization information inherent in the received waveforms.
Our methodology unifies the localization information from
anchors and that from cooperation among agents in a canonical
form, viz. ranging information (RI), and the total localization
information is a sum of these individual RIs. We have put
forth a geometrical interpretation of the EFIM based on eigen-
decomposition, and this interpretation has facilitated the theo-
retical analysis of the localization information for cooperative
networks. We have also derived scaling laws for the SPEB
in both dense and extended networks, showing the benefit
of cooperation in an asymptotic regime. Our results provide
fundamental new insights into the essence of the localization
problem, and can be used as guidelines for localization system
design as well as benchmarks for cooperative location-aware
networks.

APPENDIX A
PROOF OFPROPOSITION1

Proof: The right-hand side of (5) can be written as

P(pk;u) + P(pk;u⊥)

= tr
{

uT
[
J−1
θ

]

2×2,k
u
}

+ tr
{

uT
⊥

[
J−1
θ

]

2×2,k
u⊥

}

= tr
{[

J−1
θ

]

2×2,k
uuT

}

+ tr
{[

J−1
θ

]

2×2,k
u⊥ uT

⊥

}

= tr
{[

J−1
θ

]

2×2,k

}

= P(pk) ,
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where we have used the factuuT + u⊥ uT
⊥ = I.

APPENDIX B
PROOF OFTHEOREM 1

We proceed in two steps: we first show that the EFIM is
structured as in (12), and then derive the details of the RI.

A. Derivation of the EFIM Structure

When a priori knowledge of the agents’ positions is unavail-
able, the log-likelihood function in (10) becomes

ln f(r,κ|P) =
∑

k∈Na

∑

j∈Nb∪Na\{k}

[

lnf(rkj |pk,pj ,κkj)

+ ln f(κkj |pk,pj)
]

, (25)

whereκ denotes the vector of the channel parameters contain-
ing all κkj with k ∈ Na andj ∈ Nb∪Na\{k}. For notational
convenience, we now introduce

Φ(x,y) , Er,κ

{

−∂2ln f(r,κ|P)

∂x∂yT

}

, (26)

Φkj(x,y) , Er,κ

{

− ∂2

∂x∂yT

[

ln f(rkj |pk,pj ,κkj)

+ ln f(κkj |pk,pj)
]}

, (27)

as well as

Υ(x,y, z) , Φ(x,y) [Φ(y,y)]
−1

Φ(y, z) ,

Υkj(x,y, z) , Φkj(x,y) [Φkj(y,y)]
−1

Φkj(y, z) .

SinceΦ(θ̃k, θ̃j) = 0 for k 6= j, the EFIM for P can be
derived as

Je(P) = Φ (P,P)−
∑

k∈Na

Υ
(

P, θ̃k,P
)

. (28)

Structure ofΦ (P,P): Due to the structure in (25), we can
expressΦ (P,P) as

Φ (P,P) =
∑

k∈Na

∑

j∈Nb

Φkj (P,P) +
∑

k∈Na

∑

j∈Na\{k}

Φkj (P,P)

, KA +KC ,

whereKA ∈ R
2Na×2Na is a block-diagonal matrix, consisting

of 2× 2 block matrices, given by

[KA ]2k−1:2k,2m−1:2m =

{∑

j∈Nb
Φkj (pk,pk) , k = m,

0 , k 6= m.

On the other hand,KC ∈ R
2Na×2Na is also a block-matrix,

consisting of2×2 block matrices, given by (29) shown at the
bottom of the page.

Structure ofΥ
(

P, θ̃k,P
)

: Since Φ (κki,κkj) = 0 for
i 6= j, we find that
∑

k∈Na

Υ
(

P, θ̃k,P
)

=
∑

k∈Na

∑

j∈Nb

Υkj (P,κkj ,P)

+
∑

k∈Na

∑

j∈Na\{k}

Υkj (P,κkj ,P)

, MA +MC ,

whereMA ∈ R
2Na×2Na is a block-diagonal matrix, consisting

of 2× 2 block matrices, given by

[MA ]2k−1:2k,2m−1:2m

=

{∑

j∈Nb
Υkj (pk,κkj ,pk) , k = m,

0 , k 6= m.

On the other hand,MC ∈ R
2Na×2Na is also a block-matrix,

consisting of2×2 block matrices, given by (30) shown at the
bottom of the page.

Structure ofJe(P): Combining these results, we find that
the EFIM in (28) can be written as

Je(P) =
{

KA −MA

}

︸ ︷︷ ︸

from anchors

+
{

KC −MC

}

︸ ︷︷ ︸

from cooperation

, (31)

from which we obtain (12). In (12), JA
e (pk) =

∑

j∈Nb
Rk(rkj) and Ckj = Cjk = Rk(rkj) + Rk(rjk) in

which we have introduced the RI:

Rk(rkj) = Φkj (pk,pk)−Υkj (pk,κkj ,pk) . (32)

Note that in the derivation, we used

Φkm (pk,pm) = −Φkm (pk,pk) ,

and

Υkm (pk,κkm,pm) = −Υkm (pk,κkm,pk) .

SinceJe(P) in (12) can be expressed in terms of the RIs
Rk(rkj), for k ∈ Na andj ∈ Nb ∪Na\{k}, we will examine
next the details of the RIs.

B. Details of the Ranging Information

We now consider the detailed expression of the RIRk (rkj)
in (32). We first introduce

Ξkj(x,y) , Eκ

{

−∂2 ln f(κkj |pk,pj)

∂x ∂yT

}

,

and

[KC ]2k−1:2k,2m−1:2m =

{∑

j∈Na\{k}
[Φkj (pk,pk) +Φjk (pk,pk) ] , k = m,

Φkm (pk,pm) +Φmk (pk,pm) , k 6= m.
(29)

[MC ]2k−1:2k,2m−1:2m =

{∑

j∈Na\{k}
[Υkj (pk,κkj ,pk) +Υjk (pk,κjk,pk) ] , k = m,

Υkm (pk,κkm,pm) +Υmk (pk,κmk,pm) , k 6= m.
(30)



14 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. Y, MONTH 2010

Ψkj , Er,κ

{

−∂2ln f(rkj |pk,pj,κkj)

∂κ̃kj ∂κ̃T
kj

}

, (33)

where κ̃kj =
[
τ
(1)
kj α̃

(1)
kj τ

(2)
kj α̃

(2)
kj · · · τ

(Lkj)
kj α̃

(Lkj)
kj

]T

with α̃
(l)
kj , α

(l)
kj /c.

From (2) and (9), we note thatdkj = ‖pk − pj‖ and that
f (rkj |pk,pj ,κkj) andf (κkj |pk,pj) only depend onpk,pj

throughdkj . Using the chain rule, we have

Φkj (pk,pk) =
∂dkj
∂pk

Φkj (dkj , dkj)
∂dkj
∂pT

k

,

and

Υkj (pk,κkj ,pk) =
∂dkj
∂pk

Υkj (dkj ,κkj , dkj)
∂dkj
∂pT

k

,

and henceRk (rkj) can be expressed as

Rk (rkj) = Φkj (dkj , dkj) qkj q
T
kj

−Υkj (dkj ,κkj , dkj) qkj q
T
kj

= λkj qkj q
T
kj , (34)

where qkj , ∂dkj/∂pk = −∂dkj/∂pj =

[ cosφkj sinφkj ]
T, and λkj is given by (35) shown at the

bottom of the page, wherelkj ,
[

1 0 · · · 1 0
]

︸ ︷︷ ︸

2Lkj

T
.

APPENDIX C
PROOF OFTHEOREM 2

Proof: When a priori channel knowledge is unavailable,
we haveΞkj(dkj , dkj) = 0, and Ξkj(dkj ,κkj) = 0. For
NLOS signals, the RII in (35) becomesλkj = 0 since
Ξkj(κkj ,κkj) = 0. For LOS signals, however, after some
algebra, the RII becomes (36) shown at the bottom of the
page, whereΞkj(κkj ,κkj) = limt2→∞ diag

{
t2,0

}
since the

Fisher information for knownb(1)kj = 0 is infinity. To simplify
(36), we partitionΨkj as

Ψkj =

[

u2
kj kT

kj

kkj Ψ̆kj

]

,

whereu2
kj = 8π2β2 SNR

(1)
kj obtained from (33) through some

algebra. Ast2 → ∞ in (36), we have

λkj =
8π2β2

c2
(1 − χkj)SNR

(1)
kj ,

where

χkj ,
kT
kj Ψ̆

−1

kj kkj

8π2β2 SNR
(1)
kj

(37)

is called path-overlap coefficient [29].
We next show that only the first contiguous-cluster contains

information for localization. Let us focus onχkj . If the length
of the first contiguous-cluster in the received waveform isL̃kj ,
where1 ≤ L̃kj ≤ Lkj , we have [29]

kkj ,

[

k̃T
kj 0T

]T
and Ψ̆kj ,

[

Ψ̃kj 0

0 ⊠

]

,

wherek̃kj ∈ R
2L̃kj−1, Ψ̃kj ∈ R

(2L̃kj−1)×(2L̃kj−1), and⊠ is
a block matrix that is irrelevant to the rest of the derivation.
Hence (37) becomes

χkj =
k̃T
kj Ψ̃

−1

kj k̃kj

8π2β2 SNR
(1)
kj

,

which depends only on the first̃Lkj paths, implying that
only the first contiguous-cluster of LOS signals contains
information for localization.

APPENDIX D
PROOF OFTHEOREM 3 AND COROLLARY 1

Proof: When the a priori knowledge of the agents’
position is available, the derivation of EFIM, equation (25)
becomes

ln f(r, θ) =
∑

k∈Na

∑

j∈Nb∪Na\{k}

[

ln f(rkj |pk,pj ,κkj)

+ ln f(κkj |pk,pj)

]

+ ln f (P) .

Following the notations and derivations in Appendix B-A, we
obtain the EFIM given by (14). This completes the proof of
Theorem 3. Note that the structure of (14) is similar to that
of (31) except the additional termΞP.

The EFIM in (14) is applicable to general case. Note that
Rk(rkj) in this case cannot be further simplified as that in (34)
since we need to take expectation over the random parameter
P in (32). However, when condition (16) holds for functions
Φkj (dkj , dkj) qkj q

T
kj , qkj Φkj(dkj ,pk), andΦkj(κkj ,κkj),

the expectations of those functions with respect toP can be

λkj ,
1

c2

[

lTkj Ψkj lkj + c2Ξkj(dkj , dkj)

−
(

lTkj Ψkj + c2Ξkj(dkj ,κkj)
)(

Ψkj + c2Ξkj(κkj ,κkj)
)−1(

lTkj Ψkj + c2Ξkj(dkj ,κkj)
)T
]

(35)

λkj =
1

c2
lTkj Ψkj

(

Ψkj +Ξkj(κkj ,κkj)
)−1

Ξkj(κkj ,κkj) lkj (36)
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replaced by the values of the functions atP̄. In such a case,
the RI in (15) can be written as

Rk(rkj) = λ̄kj Jr(φ̄kj) ,

whereλ̄kj is the RII given in (35) evaluated at̄P, andφ̄kj is
the angle fromp̄k to p̄j .

APPENDIX E
PROOF OFTHEOREM 4

Proof: Consider a cooperative network withNa agents,
whose overall EFIM is given by (14). If agentNa

has infinite a priori position knowledge, i.e.,ΞpNa
=

limt2→∞ diag
{
t2, t2

}
, then we apply the notion of EFI to

eliminate the parameter vectorpNa in (14) and have

Je(p1, . . . ,pNa−1) = [Je(P) ]2(Na−1)×2(Na−1) , (38)

where we have used (39) shown at the bottom of the page.
Note that if we letN ′

b , Nb ∪ {Na}, N ′
a , Na\{Na}, and

R′
k(rk,Na) = Rk(rNa,k) + Rk(rk,Na) for k ∈ Na

′ in (38),
the structure of (38) becomes the same as that of (14), with
a dimension decrease by 2. Therefore, the new RIR′

k(rk,Na)
is fully utilizable, i.e., agentNa with infinite a priori position
knowledge is effectively an anchor.

APPENDIX F
PROOFS FORSECTION IV

A. Proof of Proposition 2

Proof: If the current coordinate system is rotated by angle
φ and translated byp0 = [x0 y0 ]

T, then the position of
the agent in the new coordinate system isp̃ = Uφ p + p0.
Consequently, the EFIM for̃p is

Je(p̃) =

[
∂p

∂p̃

]T

Je(p)

[
∂p

∂p̃

]

= UT
φ Je(p)Uφ . (40)

Due to the cyclic property of the trace operator [45], we
immediately find that

P(p̃) = tr
{

[Je(p̃)]
−1
}

= tr
{

[Je(p)]
−1
}

= P(p) . (41)

B. Proof of Proposition 4

Proof: Without loss of generality, we focus on the first
agent.

Lower Bound: Consider the EFIMJL
e(P) shown in (42)

at the bottom of the page. It can be obtained fromJe(P)
by setting allCkj = 0 for 1 < k, j ≤ Na. This EFIM
corresponds to the situation where cooperation among agents
2 toNa is completely ignored. One can show using elementary
algebra thatJL

e(P) � Je(P), which agrees with intuition
since the cooperation information among agents 2 toNa is
not exploited. Applying the notion of EFI, we have the EFIM
for the first agent as

JL
e(p1) = JA

e (p1)

+
∑

j∈Na\{1}

[

C1,j −C1,j

(
JA

e (pj) +C1,j

)−1
C1,j

]

.

Since C1,j = ν1,j qφ1,jq
T
φ1,j

where qφ1,j ,

[ cosφ1,j sinφ1,j ]
T, we can expressJL

e(p1) as

JL
e(p1) = JA

e (p1) +
∑

j∈Na\{1}

ξL
1,j C1,j , (43)

where ξL
1,j , 1 − ν1,j q

T
φ1,j

(
JA

e (pj) +C1,j

)−1
qφ1,j . The

coefficientξL
1,j can be simplified as

ξL
1,j = 1− ν1,j q

T
ϑj−φ1,j

·
([

µj

ηj

]

+ ν1,j qϑj−φ1,jq
T
ϑj−φ1,j

)−1

qϑj−φ1,j

=
1

1 + ν1,j ∆j(φ1,j)
, (44)

where

∆j(φ1,j) =
1

µj
cos2 (ϑj − φ1,j) +

1

ηj
sin2 (ϑj − φ1,j) .

Upper Bound:Consider the EFIMJU
e (P) shown in (45) at

the bottom of the next page. It can be obtained fromJe(P)
by doubling the diagonal elementsCkj and setting the off-
diagonal elements−Ckj = 0 for 1 < k, j ≤ Na. One
can show using elementary algebra thatJU

e (P) � Je(P),
which agrees with intuition since more cooperation informa-
tion among agents 2 toNa is assumed in (45). Applying the

lim
t2→∞




∑

j∈Nb

RNa(rNa,j) +
∑

j∈Na\{Na}

[RNa(rNa,j) +RNa(rj,Na) ] +

[

t2

t2

]



−1

= 0 (39)

JL
e(P) =











JA
e (p1) +

∑

j∈Na\{1}

C1,j −C1,2 · · · −C1,Na

−C1,2 JA
e (p2) +C1,2 0

...
. . .

−C1,Na 0 JA
e (pNa) +C1,Na











(42)
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notion of EFI and following the similar analysis leading to
(43) and (44), we obtain the EFIM for agent 1 as

JU
e (p1) = JA

e (p1) +
∑

j∈Na\{1}

ξU
1,j C1,j ,

where

ξU
1,j =

1

1 + ν1,j ∆̃j(φ1,j)
, (46)

in which

∆̃j(φ1,j) =
1

µ̃j
cos2

(

ϑ̃j − φ1,j

)

+
1

η̃j
sin2

(

ϑ̃j − φ1,j

)

,

with µ̃j , η̃j , andϑ̃j satisfying

F(µ̃j , η̃j , ϑ̃j) = JA
e (pj) +

∑

k∈Na\{1,j}

2Cjk .

APPENDIX G
PROOF OF THESCALING LAWS

Lemma 1:Let φi’s be N i.i.d. random variables with uni-
form distribution over[ 0, 2π). Then, for any0 < ǫ ≤ 1, there
exist anN0 ∈ N, such that∀N > N0,

P







N∑

k=1

N∑

j=1

sin2(φk − φj) <
N2

32






< ǫ . (47)

Proof: First, we note that replacingφi with φi mod π
preserves the value ofsin2(φk −φj). Hence, we can consider
φi’s to be i.i.d. and uniformly distributed in[ 0, π).

We order theN φi’s, such that0 ≤ φ(1) ≤ φ(2) ≤ · · · ≤
φ(N) < π. Using order statistics [50], we find that the joint
PDF of theφ(i)’s is

f(φ(1), φ(2), . . . , φ(N)) =
N !

πN
1{0≤φ(1)≤φ(2)≤···≤φ(N)<π} ,

(48)

where1 is the indicator function. From (48), the marginal
PDF of φ(k) can be derived as [50]

fφ(k)
(x) =

1

πN

N !

(k − 1)! (N − k)!
xk−1(π − x)N−k

1{0≤x<π}.

Now consider a largeN = 8K for some integerK, and letδ ,

π/6. The functionfφ(K)
(x) has a maximum atx = π/8, and

is monotonically decreasing in[π/8, π) ⊃ [ δ, π). Therefore,
we have

P
{
φ(K) > δ

}
≤ (π − δ) fφ(K)

(δ) . (49)

Since limK→∞ fφ(K)
(δ) = 0, there existsK1 ∈ N such that

P
{
φ(K) > δ

}
< ǫ/4, ∀K > K1. Note also that

P
{
φ(7K+1) < π − δ

}
≤ (π − δ) fφ(7K+1)

(π − δ) ,

and hence, for the sameK1, P
{
φ(7K+1) < π − δ

}
< ǫ/4,

∀K > K1. Similar arguments show that there exists
K2 ∈ N such thatP

{
φ(3K+1) < π/2− δ

}
< ǫ/4 and

P
{
φ(5K) > π/2 + δ

}
< ǫ/4, ∀K > K2.

Combining the above results, we have with a probability
1− ǫ,

φ(j) ∈







[ 0, δ ] , j = 1, . . . ,K ,

[π/2− δ, π/2 + δ ] , j = 3K + 1, . . . , 5K ,

[π − δ, π) , j = 7K + 1, . . . , N ,

whenK > max {K1,K2}. Therefore,

N∑

k=1

N∑

j=k+1

sin2(φ(k) − φ(j))

≥
K∑

k=1

5K∑

j=3K+1

sin2(φ(k) − φ(j))

+

5K∑

k=3K+1

8K∑

j=7K+1

sin2(φ(k) − φ(j))

p

≥





K∑

k=1

5K∑

j=3K+1

1 +

5K∑

k=3K+1

8K∑

j=7K+1

1



 sin2(
π

2
− 2δ)

= K2, (50)

where
p

≥ denotes an inequality with probability approaching
one asK → ∞. SubstitutingN = 8K, and noting that the
summation in (50) considers only half the terms (withj > k),
we arrive at (47).

Moreover, the probability in (49) decreases exponentially
with K, because if lettingaK , fφ(K)

(δ),

lim
K→∞

aK+1

aK
=

(8K + 8)(8K + 7) · · · (8K + 1)

(7K + 7)(7K + 6) · · · (7K + 1)K

1

6

(
5

6

)7

< 1 , (51)

and hence one can see thatǫ in (47) decreases exponentially
with N .

Lemma 2:Let λi’s beN i.i.d. random variables with arbi-
trary distribution on the support[ 0, λmax ]. If P {λi ≤ λ0} ≤
ǫ < 1/2 for someλ0 ∈ [ 0, λmax ], then

P
{
λ(N/2+1) ≤ λ0

}
< ǫ̃N , (52)

JU
e (P) =













JA
e (p1) +

∑

j∈Na\{1}

C1,j −C1,2 · · · −C1,Na

−C1,2 JA
e (p2) +C1,2 +

∑

j∈Na\{1,2}

2C2,j 0
...

. . .

−C1,Na 0 JA
e (pNa) +C1,Na +

∑

j∈Na\{1,Na}

2CNa,j













(45)
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whereλ(i) is the order statistics ofλi such that0 ≤ λ(1) ≤
λ(2) ≤ · · · ≤ λ(N), and ǫ̃ =

√

4 ǫ (1− ǫ).
Proof: Denote the probability density and distribution of

λi by fλ andFλ, respectively. ConsiderN = 2K for some
integerK andx ∈ [ 0, λmax ] such thatFλ(x) < 1/2. Using
the order statistics, we have

Fλ(K+1)
(x) =

N∑

j=K+1

(
N

j

)

Fλ(x)
j (1− Fλ(x))

N−j

≤
N∑

j=K+1

2N Fλ(x)
j (1− Fλ(x))

N−j

< 2N (1− Fλ(x))
N

∞∑

j=K+1

(
Fλ(x)

1− Fλ(x)

)j

=
Fλ(x)

1− Fλ(x)

[

4Fλ(x) (1− Fλ(x))
]K

<
(√

4Fλ(x) (1− Fλ(x))
)N

,

where the first inequality follows from
(
N
j

)
≤ 2N , the second

inequality is due to the extension of finite summation, and the
last inequality follows fromFλ(x) < 1/2. Replacingx with
λ0 gives (52).

A. Proof of Theorem 5

Proof: We consider first the non-cooperative case, fol-
lowed by the cooperative case. In either case, without loss of
generality, we focus on the first agent at positionp1.

Non-cooperative case:We will show that P(p1) ∈
Ω(1/Nb) andP(p1) ∈ O(1/Nb), which implies thatP(p1) ∈
Θ(1/Nb).18

For an amplitude loss exponentb, signal powers decay with
the distance followingSNR(r) ∝ 1/r2b. We can express the
RII from a node at distancer as

λ(r) =
Z

r2b
1{r0≤r≤rmax} ,

wherer0 is the minimum distance between nodes determined
by the node’s physical size,rmax is the maximum distance
between nodes determined by the fixed area associated with
dense network setting, and random variableZ accounts for
the large- and small-scale fading. Since0 ≤ Z ≤ z1 for some
z1 ∈ R

+, there existsz0 ∈ (0, z1) such thatP {Z ≤ z0} ≤ ǫz
for a givenǫz ∈ (0, 1). Thus, the RII from thejth anchor is
bounded as0 < λmin ≤ λ1,j ≤ λmax with probability

P {λmin ≤ λ1,j ≤ λmax} ≤ 1− ǫz ,

whereλmin = z0/r
2b
max andλmax = z1/r

2b
0 .

On one hand, we have

Je(p1) � λmax

∑

j∈Nb

Jr(φ1,j) , (53)

18Similar to the definition of notationΘ(f(n)), the notationg(n) ∈
Ω(f(n)) and g(n) ∈ O(f(n)) denote, respectively, thatg(n) is bounded
below byc1f(n) and above byc2f(n) with probability approaching one as
n → ∞, for some constantc1 andc2.

By the Cauchy-Schwarz inequality, we have

tr
{
[Je(p1)]

−1
}
· tr {Je(p1)} ≥ 4 .

Since the inequality (53) together with the fact that
tr{Jr(φ1,j)} = 1 imply that tr{Je(p1)} ≤ λmaxNb, we have
that

P(p1) = tr {[Je(p1) ]}−1 ≥ 4/(λmaxNb) .

Therefore,P(p1) ∈ Ω(1/Nb).
On the other hand, for the lower bound, we first order the

Nb RII λ1,j ’s, and then the probability ofλ(Nb/2+1) ≤ λmin is
exponentially small by Lemma 2, i.e.,

P
{
λ(Nb/2+1) ≤ λmin

}
≤ ǫ̃Nb , (54)

for some constant̃ǫ ∈ (0, 1). Let N ′
b denote the set of anchors

with RII λ(j) such thatj ≥ Nb/2 + 1, and we have that

P






λmin

∑

j∈N ′

b

Jr(φ1,j) � Je(p1)






≥ 1− ǫ1 , (55)

where the outage probabilityǫ1 decreases exponentially with
Nb. Moreover, since

tr










∑

j∈N ′

b

Jr(φ1,j)





−1






=
2Nb/2

∑

k∈N ′

b

∑

j∈N ′

b
sin2(φ1,k − φ1,j)

,

(56)

applying Lemma 1 gives

P






1

λmin
tr










∑

j∈N ′

b

Jr(φ1,j)





−1






≤ 128

λmin Nb




 ≥ 1− ǫ2 ,

(57)

for sufficiently largeNb. The inequality in (55) implies that

P(p1) ≤
1

λmin
tr










∑

j∈N ′

b

Jr(φ1,j)





−1






,

and henceP(p1) ≤ 128/(λminNb) with probability approach-
ing one asNb → ∞. Therefore,P(p1) ∈ O(1/Nb) with
probability 1.

Note that since both the outage probabilityǫ1 in (55) andǫ2
in (57) decrease exponentially withNb, the outage probability
ǫ(Nb) of the scaling law in (24) decreases exponentially with
Nb.

Cooperative case:For the cooperative case, we will use the
lower and upper approximations of the EFIM from (22) and
(23). The upper approximation gives

JU
e (p1) = JA

e (p1) +
∑

j∈Na\{1}

ξU
1,j C1,j

�
∑

j∈Nb∪Na\{1}

λ1,j Jr(φ1,j) ,

where the inequality is obtained by treating all other agents
to be anchors, i.e.,ξU

1,j = 1 (j ∈ Na). In this case, there are
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equivalentlyNb+Na−1 anchors, and similar analysis as in the
non-cooperative case shows thatP(p1) ∈ Ω(1/(Nb +Na)).

On the other hand, from the lower approximation, we have,
with probability approaching one, that

JL
e(p1) = JA

e (p1) +
∑

j∈Na\{1}

ξL
1,j C1,j

� ν̃
∑

j∈Nb∪Na\{1}

Jr(φ1,j) , (58)

whereν̃ > 0 is a given lower bound on both the RIIλ1,j (j ∈
Nb) and the effective RIIξL

1,j ν1,j (j ∈ Na). From Lemma
2, we can find such̃ν for the dense network setting, because
there exist constants0 < c1, c2 < +∞ such thatλ1,j > c1,
ν1,j > c1, and∆j(φ1,j) < c2 with probability approaching
one; definingν̃ , c1/(1 + c1 · c2) implies λ1,j ≥ ν̃ and
ξL
1,j ν1,j ≥ ν̃ since ξL

1,j = [ 1 + ∆j(φ1,j)ν1,j ]
−1. Applying

Lemma 1 and 2, and following a similar line of reasoning as
in the non-cooperative case, we findP(p1) ∈ O(1/(Nb+Na))
with probability approaching one asNb, Na → +∞. Thus,
we conclude that the SPEB in cooperative networks scales as
Θ(1/(Nb +Na)).

B. Proof of Theorem 6

Proof: Let ρb denote the density of anchor nodes uni-
formly distributed in an extended network. Consider an area
within distanceR to agent 1, then the expected number of
anchors within that area isNb = ρb πR

2. Following a similar
analysis leading to (54), we can show that the effect of large-
and small-scale fading together with path-loss on the RII can
be bounded asc1/r2b ≤ λ(r) ≤ c2/r

2b for some constants
0 < c1 < c2 < +∞, with an outage probability exponentially
decreasing withNb andNa. This implies that, with probability
approaching one, the large- and small-scale fading will not
affect the scaling law,19 and hence we can consider the RII
from a node at distancer as

λ(r) =
1

r2b
1{r≥r0} ,

for the analysis of the scaling laws. Since each anchor is
uniformly distributed in the given area, the PDF of the RII
can be written as

f(λ) =
1

b (R2 − r20)
λ− b+1

b 1{1/R2b≤λ≤1/r2b0 } ,

with mean

E{λ} =







1
b−1

r2−2b
0 −R2−2b

R2−r20
, b > 1 ,

lnR2−ln r20
R2−r20

, b = 1 ,

1
1−b

R2−2b−r2−2b
0

R2−r20
, 0 < b < 1,

(59)

and second moment

E
{
λ2
}
=







1
2b−1

r2−4b
0 −R2−4b

R2−r20
, b > 1 ,

1
r20 R2 , b = 1 ,

1
2b−1

r2−4b
0 −R2−4b

R2−r20
, 0 < b < 1 .

(60)

19It will be shown that the overall outage is dominated by the spatial
topology for a large number of nodes, and thus we can ignore the outage
due to fading.

Note thatNb ∝ R2, we can show that the mean scales as

E{λ} ∈







Θ(1/Nb) , b > 1 ,

Θ(logNb /Nb) , b = 1 ,

Θ
(
1/N b

b

)
, 0 < b < 1,

(61)

and the variance always scales as

Var{λ} ∈ Θ(1/Nb) . (62)

When b > 1, it follows that, for fixed densities of anchors
and agents, tr{Je(p1)} ∈ Θ(1) with probability approaching
one asNb → +∞, which implies thatP(p1) ∈ Θ(1).

We will show that whenb = 1, the P(p1) scales as
Θ(1/logNb) andΘ(1/log(Nb +Na)) for the non-cooperative
case and cooperative case, respectively. Using a similar ar-
gument, we can easily show that for0 < b < 1 the SPEB
scales asΘ(1/N b−1

b ) andΘ(1/(Nb + Na)
b−1) for the non-

cooperative case and cooperative case, respectively.
Non-cooperative case (b = 1): We introduce a random

variable YNb =
∑

j∈Nb
λ1,j/ log(Nb). From (61) and (62),

we have

lim
Nb→∞

E {YNb} = C ,

for some constantC, and

lim
Nb→∞

E
{
|YNb − C|2

}

= lim
Nb→∞

Var{YNb}+ lim
Nb→∞

|E {YNb} − C|2

+ lim
Nb→∞

2 (E {YNb} − C) · E {YNb − E {YNb}}

= 0 .

This implies that
∑

j∈Nb
λ1,j scales asΘ(logNb) with prob-

ability approaching one, and hence tr{Je(p1)} ∈ Θ(logNb).
Using a similar analysis as in Appendix G-A, we can show
thatP(p1) ∈ Ω(1/logNb).

For the upper bound, using the same argument as in Lemma
1, we can show that with probability approaching one, there
areNb/8 anchors with angleφk ∈ [ 0, π/6 ] andNb/8 anchors
with angleφk ∈ [π/3, π/2 ] to the agent. We denote these two
disjoint sets of anchors byN1 andN2, and define

J̃e(p1) ,
∑

j∈N1∪N2

λ1,j Jr(φ1,j) ,

and

J̃∗
e(p1) ,




∑

j∈N1

λ1,j



Jr(π/6) +




∑

j∈N2

λ1,j



Jr(π/3) .

Then, we have

tr
{

[Je(p1)]
−1
}

≤ tr

{[

J̃e(p1)
]−1
}

≤ tr

{[

J̃∗
e(p1)

]−1
}

,

(63)

where the first inequality comes fromN1 ∪N2 ⊆ Nb, and the
second inequality is due to the fact that the SPEB increases
if we set φ1,j = π/6 for j ∈ N1 and φ1,j = π/3 for
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j ∈ N2.20 Since both
∑

j∈N1
λ1,j and

∑

j∈N2
λ1,j scale as

Θ(logNb), P(p) ∈ O(1/logNb) with probability approaching
one. Therefore, the SPEB in non-cooperative extended net-
works scales asΘ(1/logNb).

We finally check the probability of outage, i.e.,
∑

j∈Nb
λ1,j

is not in Θ(logNb). For a fixed largeNb, the distribution
of
∑

j∈Nb
λ1,j/

√
Nb can be approximated as the normal

distributionN(logNb/
√
Nb, 1/Nb), and hence21

P

(∣
∣
∣

∑

j∈Nb

λ1,j − logNb

∣
∣
∣ >

1

2
logNb

)

= 2Q

(
1

2
logNb

)

∼= 1

logNb
exp

{

−1

8
log2 Nb

}

, (64)

whereQ(·) is the tail probability function of standard normal
distribution. Approximations and bounds for the tail proba-
bility function can be found in [51]–[53]. Moreover, when
0 < b < 1 a similar argument leads to

P

(∣
∣
∣

∑

k∈Nb

λk −N1−b
b

∣
∣
∣ >

1

2
N1−b

b

)

= 2Q

(
1

2
N1−b

b

)

∼= 1

N1−b
b

exp

{

−1

8
N2−2b

b

}

. (65)

Cooperative case (b = 1): The cooperative case can be
proved similar to the above non-cooperative case in conjunc-
tion with the cooperative case of Theorem 5. It turns out that
the SPEB can be shown to scale asΩ(1/log(Nb +Na)) when
all other agents are considered to be anchors. We can also
show that, with probability approaching one, the SPEB scales
asO(1/log(Nb +Na)), using the lower approximation of the
EFIM, and an argument similar to (63).
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