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We develop a theoretical description of nonadiabatic Josephson dynamics in superconducting junctions

containing low energy quasiparticles. Within this approach we investigate the effects of midgap states in

junctions of unconventional d-wave superconductors. We identify a reentrance effect in the transition

between thermal activation and macroscopic quantum tunneling, and connect this phenomenon to the

experimental observations in Phys. Rev. Lett. 94, 087003 (2005). It is also shown that nonlinear Josephson
dynamics can be defined by resonant interaction with midgap states reminiscent of nonlinear optical

phenomena in media of two-level atoms.
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With the advent of superconducting qubits [1–3] a gen-
eral interest has grown towards realization of macroscopic
quantum dynamics in superconducting weak links. The
superconducting qubits developed so far are based on
Josephson tunnel junctions of conventional superconduc-
tors. A conceptually interesting and practically important
question is whether other types of Josephson weak links,
such as junctions of high temperature superconductors, and
mesoscopic metallic or semiconducting weak links can be
employed in qubit circuits. The central aspect of this
problem is to understand the role of low energy electronic
states usually present in such junctions. The low energy
quasiparticles are driven away from equilibrium by tem-
poral variation of the superconducting phase across the
junction and produce a nonadiabatic contribution to the
Josephson current. This effect is commonly considered to
result in dissipation and decoherence of qubit states.
However, examples from nonlinear optics show that reso-
nant interaction with localized electronic states (two-level
atoms) may generate a nonlinear dispersion of electromag-
netic modes leading to a variety of nonlinear phenomena
involving coherent energy exchange between macroscopic
and microscopic variables [4]. This kind of nonlinear
phenomena, whose origin differs from the nonlinearity of
the adiabatic Josephson potential, has never been studied in
the context of macroscopic Josephson dynamics.

In this Letter we investigate the nonadiabatic Josephson
dynamics in artificial grain boundary junctions of high
temperature superconductors [5], which is caused by inter-
action with superconducting surface bound states [midgap
states (MGS)]. The MGS situate at zero energy in the
middle of the superconducting energy gap [6] and are
fundamentally connected to the unconventional d-wave
superconducting order parameter in these materials [7,8].
We find that interaction with the MGS has implications in
both the imaginary time dynamics (tunneling) and the real
time nonlinear dynamics of the junction. First, we show
that the MGS are capable of significantly affecting the
transition between the thermal activation and macroscopic

quantum tunneling (MQT) decay of Josephson current
state inducing multiple, forward and backward, transitions
between the two regimes. We suggest that such a reen-
trance phenomenon underlines the experimentally ob-
served [9] anomaly of the switching current rates.
Secondly, we show that the nonlinear resonant response
of d-wave junctions may be entirely caused by the non-
linear dynamics of the MGS and lead to a bifurcation
regime with an explosive growth of the response ampli-
tude. These findings are made within the framework of a
general theoretical description of the nonadiabatic
Josephson dynamics in junctions containing low energy
quasiparticles developed in this Letter.
The special role of the MGS is explained by their dis-

crete energy spectrum and pairwise coupling to the tem-
poral variation of the superconducting phase. Tunneling
spectroscopy data [10] as well as observation of a
!-junction transition [11] provide experimental evidence
for the MGS existence. The equilibrium properties of MGS
and their role in the dc Josephson effect are well studied in
the literature (see reviews [12,13] and references therein).
The multiple degenerate zero energy level of the MGS
splits into a narrow band under the effects of tunneling
and anisotropy of the d-wave order parameter, !ðkFÞ ¼
!0 cosð2"Þ. Because of the small bandwidth a thermal
saturation of the MGS occurs at relatively low tempera-
tures that may be comparable to the MQT transition tem-
perature. This saturation effect accompanied by the
decrease of the MGS-induced dissipation underlines, as
we show, the reentrance effect in the MQT transition. In
junctions with atomically smooth interfaces, a large frac-
tion of tunneling electron trajectories contains hybridized
MGS pairs. The two-state Rabi dynamics and the MGS
saturation at large driving amplitudes define the nonlinear
property of real time Josephson dynamics.
MQT transition temperature.—We start with the discus-

sion of the effect of MGS on the MQT transition tempera-
ture. We follow the method of Ref. [14], based on the
analysis of the imaginary time dynamics of phase fluctua-

PRL 105, 127001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 SEPTEMBER 2010

0031-9007=10=105(12)=127001(4) 127001-1 ! 2010 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70586033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.94.087003
http://dx.doi.org/10.1103/PhysRevLett.105.127001


tions, #’ð$Þ, around the steady phase difference across the
junction, ’ ¼ ’b, at the top of the barrier of the tilted
Josephson potential. In this method, the MQT transition is
manifested by an instability of the phase fluctuations de-
scribed with an effective Euclidian action, Seff½’& '
Seff½’b& þ

P
n"ð’b; i%nÞ#’n#’!n, %n ¼ 2!nT (kB ¼@ ¼ 1). The transition corresponds to the change of the

sign of the kernel,"ð’b; i%1Þ, and the temperature is given
by the equation "ð’b; i%1Þ ¼ 0.

To derive the effective action for the superconducting
phase, we consider the partition function of d-wave junc-
tion, Z ¼ R

D’D2c e!ðS’½’&þSc ½’;c &Þ, and perform inte-
gration over fermionic variables c [15]. Here,
S’ ¼ R

d$½ðC=8e2Þ _’2 ! Ie’=2e& is the macroscopic part
of the action contributed by the charging energy of the
junction capacitance C and the inductive energy of the
biasing current Ie. Furthermore, Sc ¼ R

d$
R
dr #c ½@$ þ

H þ ði=4Þ sgnðxÞ _’&c is the microscopic part of the ac-
tion, associated with the mean-field Hamiltonian of the
superconducting electrons H , where the last term pro-
vides electroneutrality within the electrodes [16].

We perform the integration by choosing a general
method suitable for all kinds of junctions regardless of
their transparencies or presence of localized surface
states. We separate the spatial problem from the tem-
poral one by introducing a basis of instantaneous eigen-
states of electronic Hamiltonian,H&i ¼ Ei&i, c ðr; $Þ ¼P

i&iðr;’Þaið$Þ. The fermionic action then becomes Sc ¼R
d$

P
ij #aiG

!1
ij aj, where G!1

ij ¼ @$ þHijð’; _’Þ is the in-

verse Green function of the effective Hamiltonian,

Hij ¼ Ei#ij ! i _’Aij; (1)

A ij ¼ ð&i; i@’&jÞ ! ð1=4Þð&i; sgnðxÞ'z&jÞ (2)

is the matrix element of quasiparticle transitions induced
by temporal variation of the phase. The effective action has
the form Seff½’& ¼ S’ ! Sp lnĜ!1.

The saddle point solution is given by the equation
#Seff ¼ 0. For the fermionic contribution we have
#Sp lnG!1 ¼ ð1=2eÞSpðÎJĜ#’Þ, where

Î J ¼ 2eð@’Êþ i½Ê;Â&Þ (3)

is the Josephson current operator [16,17]. At the static
saddle point,!Ĝ0ð$; $Þ ¼ n̂0ðÊÞ is the equilibrium density
matrix commuting with Ê; therefore, only the diagonal
(adiabatic) part of the current operator contributes to the
Josephson current, IadJ ð’Þ ¼ 2e

P
i@’Ein

0
i , that defines ’b,

IadJ ð’bÞ ! Ie ¼ 0.
The nonadiabatic effect is described by the second

functional derivative of the fermionic action,
ð1=2eÞ2Spð#’ÎJĜ0ÎJĜ

0#’Þ, and the fluctuation kernel
reads [17] "ði%nÞ ¼ ðC=8e2Þ½%2

n !!2
b ! i%n(0ði%nÞ&.

Here, !2
b ¼ !ð2e=CÞ@’IadJ is the plasma frequency at

the barrier and

(0ði%nÞ ¼
4e2

C

X

ij

"ijjAijj2ðn0i ! n0j Þ
"ij ! i%n

(4)

is the quasiparticle response; "ij ¼ Ei ! Ej, n
0
i ¼ nFðEiÞ

is the Fermi filling factor, all functions are taken at
’ ¼ ’b.
Up to this point the derivation is general, and Eq. (4)

applies to all the quasiparticles. At small frequencies,
however, only the MGS and itinerant nodal quasiparticles
[18] are relevant. Furthermore, the MGS contribution has
more pronounced temperature dependence compared to
the nodal states because MGS have a small bandwidth,
"m ) !0. Focusing on the more interesting effect of the
MGS, we truncate Eq. (4) to the MGS subspace. The
matrix elements Aij only connect MGS pairs of the
same electronic trajectory while transitions among the
trajectories are forbidden due to preserved translational
invariance. Parametrizing the MGS pairs with the angle "
between the incidental wave vector kF of the respective
trajectory and the interface normal (see top inset Fig. 1),
and denoting, "ð"Þ ¼ E1ð"Þ ! E2ð"Þ, Að"Þ ¼ A12, we
present the equation for the transition temperature on the
form

%2 !!2
b !

8e2S

C
%2

!
"A2ðn01 ! n02Þ

"2 þ %2

"
¼ 0; (5)

where angle brackets indicate the average over the Fermi
surface, S is the junction area, % ¼ 2!T.
The temperature dispersion of the MGS term in Eq. (5)

is primarily defined by the Fermi filling factors and the
resonant denominator, while the particular form of the
smooth functions "ð"Þ and Að"Þ plays a secondary role.
This allows us to formulate an analytical model equation

FIG. 1 (color online). Reentrance effect in MQT. Sketch of
temperature dependence of decay rate (wide shadow line) illus-
trates the effect featuring three transitions between thermal
activation and MQT regimes. Experimental transition tempera-
tures are given by zeros of function FðxÞ, defined in the text [dark
gray (blue) line] for ) ¼ 38. Lower inset shows development of
nonmonotonic feature of function FðxÞ with increasing ), at )>
25. Upper inset illustrates junction geometry and scattering
electron trajectory (dashed line).
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for the transition temperature, thus circumventing the dif-
ficulty of evaluating anisotropy of the MGS, which gen-
erally can only be done numerically. By replacing
"A2ð"Þðd"=d"Þ!1 with a constant, we get Eq. (5) on the
form FðxÞ ¼ "2mx

2½1þ )fðxÞ& !!2
b ¼ 0, where fðxÞ ¼R

1
0 dy tanhð!y=2xÞðx2 þ y2Þ!1, and x ¼ %="m; ) ¼

8a!=RnC"m is the coupling strength, Rn ¼ !=e2ShDi is
the normal junction resistance, and a* 1 is a geometry
specific constant. The latter estimate is obtained from the

scaling, "m /
ffiffiffiffi
D

p
!0, and A /

ffiffiffiffi
D

p
, in the limit of small

transparency, D ) 1, extracted from the analytical equa-
tions for the MGS spectrum and transition matrix elements
[17]. The advantageous property of this analytical model is
that it applies to junctions with interface faceting, which is
taken into account by average values of the model parame-
ters ), "m, and !b.

Numerical solutions to the modeled Eq. (5) are pre-
sented in the inset of Fig. 1. They demonstrate splitting
of a single critical point into three critical points at ) ¼ 25
and !b ¼ 3:45"m. This phenomenon can be understood as
a reentrance effect: At high temperature the thermal acti-
vation undergoes a transition to MQT in the absence of
interaction with MGS since the MGS are saturated; with
lowering temperature, the MQT rate decreases because of
increased interaction with MGS, and thermal activation
takes over; then it undergoes the second transition to
MQT in the presence of interaction. This finding consti-
tutes the first main results of this Letter.

In the experiment with a tilt yttrium barium copper oxide
(YBCO) junction [9], an anomalous temperature depen-
dence of the Josephson current decay rate has been ob-
served, which can be interpreted in terms of the reentrance
effect: transition to the MQT regime at T1 ' 135 mK is
interrupted, at T2 ' 90 mK, by reentrance of the thermal
activation, which then undergoes the second MQT transi-
tion at T3 ' 45 mK, as sketched in Fig. 1. To make a
quantitative comparison we fit the three experimental tran-
sition temperatures by adjusting the average model pa-
rameter values ), "m, and !b [17], as shown in Fig. 1.
Including the stray LC oscillator of the experimental setup
[19] does not make any qualitative difference but rather
insignificantly (within 20%) shifts the parameters’ values.
The best fit is eventually achieved for the values "m '
320 mK, !b ' 1:7 K, !p ' 2:5 K, and C ' 36 fF, as-
suming experimental values of the critical current, IC ¼
1:4 *A, and the switching current, Ie ' 0:9IC. Given the
experimental junction transparency,D* 10!4, we are able
to evaluate the maximum energy gap at the interface,!0 '
16 K.

In our discussion the temperature dependence of the
adiabatic Josephson potential has been ignored. This de-
pendence, also originating from the thermal saturation of
the MGS band, may play a role in junctions with large
capacitance where it may modify, as shown in [9], the
thermally activated decay rate and provide an alternative
explanation to the experimentally observed feature.

Consistency of our nonadiabatic reentrance scenario
with the experimental observations strongly indicates in-
volvement of the MGS pairs in the macroscopic dynamics
of the junction. Moreover, it provides us with valuable
information about the microscopic MGS parameters.
Nonlinear resonance Josephson dynamics.—To investi-

gate the real time Josephson dynamics, one needs to gen-
eralize our approach to nonequilibrium states. This is done
by considering the partition function defined through the
action on the real time Keldysh contour [20]. Then pro-
ceeding as before, by introducing the instantaneous basis,
we derive the equation for the Keldysh-Green functions,
Ĝab, ½i@t ! Ĥð’a; _’aÞ&Ĝabðt! t0Þ ¼ a#ab#ðt! t0Þ, with
the same Hamiltonian as in Eq. (1); here a; b ¼ + label
the forward and backward branches of the Keldysh con-
tour. The semiclassical dynamics of the superconducting
phase is given by the least action principle,
ð#=#+ÞSeff½’;+&+¼0 ¼ 0, formulated in terms of the
Wigner variables, ’a ¼ ’þ a+=2 [21]. Calculating the
functional derivative, we get

C

2e
€’þ TrðÎJ,̂Þ ¼ Ie: (6)

Here ,̂ðtÞ ¼ ð1=2iÞPaĜ
aaðt; tÞ is the nonequilibrium

single particle density matrix, which satisfies, by virtue
of the equation for Ĝab, the Liouville equation,

i _̂, ¼ ½Ĥ; ,̂&; Ĥ ¼ Ê! _’Â : (7)

Equations (6), (3), and (7) are exact in the semiclassical
limit and give a general description of the nonadiabatic
Josephson dynamics in all kinds of junctions. These equa-
tions constitute another main result of this Letter.
For the MGS pairs, Eq. (7) reduces to the Bloch equation

for the two-level density matrix parametrized with the
angle ". In this case, Eqs. (6) and (7) become analogous
to the ones describing electromagnetic modes in a cavity
embedded in a medium of two-level atoms [4]. The most
interesting is the case of the resonant excitation of the
MGS pairs, which corresponds to the Josephson plasma
frequency lying within the MGS band, !p < "m. Suppose
a small oscillating biasing current is applied to the junc-
tion, Ie cos!t, with frequency slightly detuned from the
plasma frequency, # ¼ !!!p ) !. The resonant dy-
namics of the superconducting phase, ’ðtÞ ¼
Reð’!e

!i!tÞ, is described by the averaged equation for
slow varying complex amplitude, ’!ðtÞ,

! 2i _’! þ ½!2#þ (ðrÞ&’! ¼ eIe=!pC; (8)

where ( ¼ (0 þ i(00 is the nonlinear MGS response,

(0ðrÞ ¼ (0
0 þ @2’ #"

(00

%1
r2; (00ðrÞ ¼ %(00

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr #A!Þ2 þ %2

p

(9)

[the nonlinear adiabatic term is dropped from Eq. (8) to
emphasize the MGS effect]. In Eq. (9) the bar indicates the
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resonant values, r ¼ j’!j, and the quantity (0 refers to the
linear MGS response given by the analytical continuation
of Eq. (4) to real frequencies, i% ! !þ i0. The response
is calculated [17] by solving the Bloch equation (7) assum-
ing the MGS adiabatically following, in the rotating frame,
the evolution of the phase amplitude, and adding small
decoherence rates %1;%2 ) "m. The MGS decoherence is
induced, e.g., by scattering to the itinerant nodal states by
the facet edges or other rare inhomogeneities, leading to

the MGS intrinsic broadening, % ¼
ffiffiffiffiffiffiffiffiffiffiffi
%1%2

p
. The dissipative

part of the linear response is estimated,

(00
0 ð!; TÞ * !

"mRnC
tanh

!

4T
: (10)

It gives the frequency independent quality factor at zero
temperature, QMGS ¼ !=(00

0 * "mRnC. It is instructive to
compare this result to the damping effect of the nodal
quasiparticles, Qnodal * !0RnC , QMGS [17] (cf. [22–
24]).

Equation (9) provides an extension of the linear response
equation (4) to the nonlinear region, when the Rabi fre-
quency of MGS transitions exceeds the MGS intrinsic
width, r #A! * %. In this nonlinear regime relevant for
narrow MGS levels the stationary response amplitude as
a function of detuning is defined by the relation

# ¼ 1

2
(0ðrÞ + 1

2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeIe=C!pÞ2 ! ½(00ðrÞr&2

q
: (11)

The response demonstrates the bifurcation regime shown
in Fig. 2, which is typical for nonlinear oscillators, but here
is entirely controlled by MGS characteristics rather than
adiabatic Josephson potential. The bifurcation appears at
very small driving currents, ~Ie ¼ ðIe=2ICÞQMGS *
%=! #A ) 1. The most striking feature of the response is
the explosive growth of the peak amplitude, rmax ¼ ~Ie½1!
ð~Ie=I-eÞ2&!1=2, for the driving current approaching the value
I-e ¼ %=! #A. This effect is caused by the MGS saturation at
large driving amplitudes, which is manifested by decreas-
ing damping in Eq. (9). The divergency is smeared by
adding small damping, e.g., by nodal quasiparticles, and
changes to a steep dependence asymptotically approaching
the line, rmax ¼ ð~Ie ! I-eÞðQnod=QMGSÞ. The Rabi dynam-

ics of the MGS should be more clearly exposed in the time
resolved experiments.
In conclusion, we considered the effects of midgap

states on Josephson dynamics in d-wave superconducting
junctions. The analysis is based on the developed general
theoretical framework for nonadiabatic Josephson dynam-
ics in junctions containing low energy quasiparticles. We
identified a reentrance effect in MQTand connected that to
the experimental observations. We also investigated the
nonlinear dynamical response of the junction caused by
coupling to nonlinear MGS dynamics.
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FIG. 2 (color online). Effect of MGS on nonlinear resonance
response of the junction. Response amplitude as function of
detuning is shown for different amplitudes of driving current.
Inset: Maximum response amplitude as a function of driving
current, dots indicate current values in the main figure.

PRL 105, 127001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 SEPTEMBER 2010

127001-4

http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1063/1.2780165
http://dx.doi.org/10.1063/1.2780165
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1103/RevModPhys.74.485
http://dx.doi.org/10.1103/RevModPhys.74.485
http://dx.doi.org/10.1103/PhysRevLett.72.1526
http://dx.doi.org/10.1103/RevModPhys.67.515
http://dx.doi.org/10.1103/RevModPhys.72.969
http://dx.doi.org/10.1103/RevModPhys.72.969
http://dx.doi.org/10.1103/PhysRevLett.94.087003
http://dx.doi.org/10.1103/PhysRevLett.79.277
http://dx.doi.org/10.1103/PhysRevB.71.134520
http://dx.doi.org/10.1088/0953-2048/14/5/201
http://dx.doi.org/10.1088/0953-2048/14/5/201
http://dx.doi.org/10.1088/0034-4885/63/10/202
http://dx.doi.org/10.1088/0034-4885/63/10/202
http://dx.doi.org/10.1103/PhysRevLett.53.1787
http://dx.doi.org/10.1103/PhysRevLett.48.1745
http://dx.doi.org/10.1103/PhysRevLett.48.1745
http://dx.doi.org/10.1103/PhysRevB.71.214505
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.127001
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.127001
http://dx.doi.org/10.1016/0370-1573(94)00086-I
http://dx.doi.org/10.1126/science.1120793
http://dx.doi.org/10.1016/0370-1573(90)90156-V
http://arXiv.org/abs/cond-mat/0412296v2
http://dx.doi.org/10.1103/PhysRevB.51.12904
http://dx.doi.org/10.1103/PhysRevB.51.12904
http://dx.doi.org/10.1103/PhysRevB.52.665
http://dx.doi.org/10.1103/PhysRevB.52.665
http://dx.doi.org/10.1103/PhysRevB.72.052506

