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Bearing-only target localization with uncertainties
in observer position
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Abstract—In this paper, the bearing-only target localization
problem when the observer positions are subject to error is in-
vestigated. In this problem, the angle of arrival of the transmitted
signal between target and observer are used to estimate the target
position. It is assumed that not only the bearing measurements
are corrupted by noise but also the exact position of observer is
not available to the estimator. The accuracy of estimated location
of target depends on the reliability of information from the
observer position. Therefore, the previously published algorithms
considering only the bearing measurement noise do not meet the
expected performance when the observer positions are subject
to error. The maximum likelihood, the least squares and total
least square algorithms and a new method of localization based
on weighted total least squares approach are developed for this
problem. The corresponding Cramér-Rao lower bound (CRLB) is
derived for this problem. Computer simulations are performed to
evaluate the performance of the proposed algorithms. Simulation
results show that the new method can attain the CRLB for
sufficiently high SNR.

Index Terms—bearing-only, localization, maximum likelihood,
weighted total least squares.

I. INTRODUCTION

In bearing-only localization problem, a moving observer is
used to find the location of a fixed target or to track a moving
target. In this work, we concentrate on fixed target localization.
Bearing measurements are obtained from different points along
the trajectory line of moving observer. The location of target
is estimated from the intersection point of bearing lines among
different positions of observer and target [1].

A various works have been done on the bearing-only local-
ization. In [1], the performance of the Maximum Likelihood
(ML) estimator, least squares (LS) estimator, and weighted
least squares (WLS) estimator, also called Stansfield algo-
rithm, were examined. The Stansfield and ML estimators for
different observer trajectories were also indicated in [2] where
the performances of the estimators are enhanced by finding the
optimal observer trajectories.

Most of the works done in literatures are based on the
assumption that the exact position of the observer is available.
However, this assumption is not realistic in practice. Recently,
some works have been carried out into bearing-only localiza-
tion problem with uncertainties about observer position. In [3]
total least squares (TLS) and ML estimators were developed
for this kind of problem. The doppler-bearing tracking problem
in the presence of observer position error in the case of one
and two observers was also investigated in [4].

In the this paper, we assume that the exact position of
the observer is not available. ML estimator is investigated

in two cases; when the estimator does not know about the
observer position error and also when it does. In ML algo-
rithm, it is required to solve a nonlinear problem which is
computationally intensive. In addition, having a good initial
guess is inevitable to guarantee that the algorithm converges
to the global minimum of the cost function. Therefore, we
also focus on some linear algorithms. First, LS, WLS, and
TLS, an extension to LS, are applied for the problem. Then,
we apply the novel technique based on weighted TLS (WTLS)
estimator for our problem in order to improve the performance
of TLS. The Cramér-Rao lower bound (CRLB) of bearing-only
localization with uncertainties in observer position is obtained
and comparison among the proposed algorithms and CRLB is
made.

The paper is organized as follows. In Section II, the model
of bearing-only localization and the corresponding CRLB are
described. In Section III, we derive different algorithms for-
mulation for bearing-only localization. In section IV, computer
simulations are presented to evaluate the performance of the
proposed algorithms. Finally, Section V concludes the paper.

II. LOCALIZATION MODEL AND CRLB
Let so = [xo

s, y
o
s ]

T ∈ R2 be the coordinate of the target to
be estimated. The observer collects bearing measurements at
M distinct points xo

i = [xo
i , y

o
i ]

T ∈ R2, i = 1, 2, . . . ,M . In
the absence of the measurement noise, the relation between
true bearing angle (in radians) and true location of the target
is

αo
i = tan−1 yos − yoi

xo
s − xo

i

. (1)

where tan−1{·} is four-quadrant inverse tangent. Let α be
the bearing measurement vector consisting of the true bearing
corrupted by additive noise,

α = [α1, α2, . . . , αM ]T = αo + n, (2)

where n is the bearing measurement error vector modeled as
zero mean Gaussian random vector with covariance matrix
Ψα. In the current model, we assume that the exact position
of the observer is not available. Let xi = [xi, yi]

T be the
nominal value of the observer position at the ith point and
x = [xT

1 ,x
T
2 , . . . ,x

T
M ]T be the vector of nominal observer

positions available to the estimator, then,

x = xo + v, (3)

where v is observer position error vector assumed to be
zero mean Gaussian random vector with covariance matrix



of Ψx. Note that Ψx = blkdiag[Ψx1 ,Ψx2 , . . . ,ΨxM ], where
blkdiag {·} denotes the block diagonal matrix, and Ψxi is
covariance matrix of noise over ith position of observer. We
assume that the bearing measurement and observer position
errors, i.e., n and v, are statistically independent. This as-
sumption has been previously considered for similar cases in
[3], [4], but might not be valid for all bearing measurement
systems.

To compute CRLB, we consider the same approach used
in [4]. Let θ = [θT

1 ,θ
T
2 ]

T = [soT ,xoT ]T be the unknown
parameter vector to be estimated. Note that since the true po-
sition of the observer is not known for the estimator, it should
also be estimated. Let β = [αT ,xT ]T be the data vector
consisting of bearing measurements and nominal positions of
the observer. The bearing measurements and nominal positions
are statistically independent, therefore, the probability density
function (PDF) of the data vector is the product of their
individual PDFs. The CRLB of the unknown parameters is
computed by the inverse of the Fisher information matrix
[5]. Partitioning the Fisher matrix and taking the inverse of
partitioned matrix, we have [4],

CRLB(so) = X−1 +X−1YCRLB(xo)YTX−1, (4a)

CRLB(xo) = (Z−YTX−1Y)−1 = Ψx, (4b)

where X = ATΨ−1
α A, Y = ATΨ−1

α B, Z = BTΨ−1
α B +

Ψ−1
x , A = ∂αo/∂so, and B = ∂αo/∂xo. Let aTi and bT

i be
the ith row of matrix A and matrix B respectively,

aTi =
[
−yo

s−yo
i

di

xo
s−xo

i

di

]
, (5a)

bT
i = −

[
0T
(2i−2)×1 aTi 0T

(2M−2i)×1

]
, (5b)

where di = ∥so−xo
i ∥ is the Euclidian distance between target

and observer at the ith point. It can be seen from (4b) that
the CRLB of the observer position is equal to the covariance
matrix of the observer position error. Moreover, (4a) shows
that the CRLB of the target location depends on the covariance
matrix of the observer position error Ψx. By setting Ψx = 0
(i.e., the exact position of the observer is known), the CRLB
of the target location reduces to CRLB(so) = X−1 which is
the same as the CRLB derived in [1] when the exact position
of the observer is available to the estimator.

III. LOCALIZATION ALGORITHMS

In this section, we develop different algorithms for solving
the bearing-only localization problem defined in Section II. We
start with ML algorithm then we continue with introducing the
linear algorithms, i.e., LS, and TLS.

A. ML Algorithm

First, the ML estimator assumes that the exact positions
of the observer are available. Since the bearing measurement
has a Gaussian PDF, ML problem turns into the following
nonlinear minimization problem [5],

θ̂1,ML = argmin
θ1

(α− g1(θ1))
TC1(α− g1(θ1)), (6)

where C1=Ψ−1
α , g1(θ1)=[g1,1(θ1), g1,2(θ1), . . . , g1,M (θ1)]

T,
and g1,i(θ1) = tan−1(ys−yi)/(xs−xi). Above minimization
can be approximated by the Gauss-Newton (GN) method [5],

θk+1
1 = θk

1 +
(
HT

1,k C1H1,k

)−1
HT

1,k C1(α− g1(θ
k
1)), (7)

where H1,k = ∂g1(θ1)/∂θ1|θ1=θk
1
. Note that H1,k is equal

to A when so = θk
1 and xo = x. Now assume that the ML

estimator tries to estimate the observer position as well as the
target location using the joint PDF of bearing measurement
and observer position. Consequently, the ML estimate is

θ̂ML = argmin
θ

(β − g(θ))TC (β − g(θ)), (8)

where C = blkdiag[C1,C2] = blkdiag[Ψ−1
α ,Ψ−1

x ], and
g(θ) = [g1(θ)

T ,θ2]
T . Similar to (6), the minimization of

(8) can be approximated using GN method [5], therefore,

θk+1 = θk +
(
HT

k CHk

)−1
HT

k C (β − g(θk)), (9)

where Hk = ∂g(θ)/∂θ|θ=θk . Partitioning the second term of
right hand side of (9) for θ1 and θ2 yields[

X̂−1
k HT

1,kC1(α− g1(θ
k)) + X̂−1

k C2(x− θk
2)

U−1
k C2(x− θk

2)

]
, (10)

where Uk = Ẑk − ŶT
k X̂

−1
k Ŷk, and X̂k, Ŷk, and Ẑk are

equal to X, Y, and Z respectively by setting so = θk
1

and xo = θk
2 . Based on our computer simulations, for any

initialization of θ2 sufficiently close to x, θk
2 converges to

x after some iterations, therefore, the term x − θk
2 in (10)

vanishes and the final solution of (9) for θ2 would be identical
to the nominal position of observer. In addition, hereafter, the
updating terms for θ1 in (10) would be the same as given in
(7) and eventually after convergence, (9) reaches to the same
estimate for the target location as (7). It should be mentioned
that the minimization of (6) and (8) using MATLAB routine
fminsearch (a derivative-free method) also yields the same
estimate for target location. In conclusion, according to our
simulations, we think that both ML estimators ignoring and
considering observer position uncertainties achieve the same
result for target location. Furthermore, by applying the joint
PDF, we are unable to find a better estimate for the observer
position than the nominal value.

B. LS Algorithm

The LS algorithm is based on assumption that the bearing
measurement errors are sufficiently small [1]. Consider (1), it
can be written as

tan(αo
i ) =

sin(αo
i )

cos(αo
i )

=
yos − yoi
xo
s − xo

i

. (11)

By cross multiplying

xo
s sin(α

o
i )− yos cos(α

o
i ) = xo

i sin(α
o
i )− yoi cos(α

o
i ). (12)

In the presence of noise, (12) can be expressed in matrix form

Gθ1 = h, (13)



where θ1 defined earlier is location of target and

G=

 sinα1 −cosα1

...
...

sinαM −cosαM

,h=
 x1 sinα1 − y1 cosα1

...
xM sinαM−yMcosαM

. (14)

The least squares solution of (13) is (if G is full rank) [5],

θ̂1,LS = (GTG)−1GTh. (15)

Unlike the ML estimator, the LS estimator has a closed-
form solution and does not need iterative computation. The
performance of the LS algorithm can be enhanced by defining
a weighting matrix to minimization problem. The weighted
least squares solution of (13) is [5],

θ̂1,WLS = (GTWG)−1GTWh, (16)

where W is the weighting matrix which is equal to the
inverse of the covariance matrix of the residual error in
(12). By replacing true values with noisy ones in (12), ex-
panding trigonometry elements, and using the approximations
sin(ni) ≈ ni and cos(ni) ≈ 1 which are valid if the bearing
measurement noises are sufficiently small, the residual error
becomes

ϵi = nidi + niġ
T
i vi + gT

i vi, (17)

where gi = [sin(αo
i ),− cos(αo

i )]
T , ġi =

[
0 −1
1 0

]
gi, and

vi = [vx,i, vy,i]
T is the noise vector of the ith position of

the observer. Therefore, the weighting matrix would be

W = E[ϵϵT ]−1

= (B1ΨαB
T
1 +ΨαD2ΨxD

T
2 +D1ΨxD

T
1 )

−1, (18)

where B1 = diag(d1, d2, . . . , dM ) with diag {·} denoting the
diagonal matrix, D1 = blkdiag[gT

1 ,g
T
2 , . . . ,g

T
M ], and D2 =

blkdiag[ġT
1 , ġ

T
2 , . . . , ġ

T
M ]. Note that if we assume that the true

position of the observer is known (i.e., Ψx = 0), (18) reduces
to the expression given in [1] for the weighting matrix of
WLS when the exact position of the observer is available to
the estimator (the so-called Stansfield estimator).

It should be noted that the weighting matrix W depends
on the true position of the target so which is not available for
estimator. Therefore, the WLS estimator can be approxiamted
in two steps. In the first step, we use identity matrix for WLS
algorithm, i.e., W = IM×M . Indeed, WLS estimator changes
to LS estimator defined in (15). For next step, we use estimated
target location for computing the weighing matrix (18) for
WLS algorithm.

C. TLS Algorithm

The TLS is an extension to the classic least squares [6].
Consider (13), the disturbance of bearing measurement as well
as observer position affect both matrix G and vector h. The
LS algorithm only respects disturbance in vector h, while the
TLS takes errors in both vector h and matrix G into account.
The TLS solution of (13) is [6],

θ̂1,TLS = (GTG− σ2
s I)−1GTh, (19)

where σs is the smallest singular value of matrix [G h]. It has
been stated that the TLS algorithm has better performance
than LS algorithm if we have errors in both data matrix and
observation vector [6]. The TLS was developed for bearing
localization in [3] where simulation results were used to com-
pare the TLS and LS algorithms and it has been showed that
TLS has better performance than LS. In simulation section,
we will see this conclusion is not true for every situation.

D. WTLS Algorithm

In TLS algorithm, we presume that the errors in both matrix
G and vector h are independent and identically distributed
(IID). This assumption is not valid in the bearing-only local-
ization problem. Hence, we introduce WTLS estimator which
considers correlated noises with different statistical properties
for the matrix G and vector h. The classification of the WTLS
was mentioned in [6] based on the structure of the weighting
matrix. In contrast to the classic TLS, the WTLS has no
closed-form solution. Currently WTLS is formulated as an
optimization problem and solved by iterative algorithms. In
this section, for the first time we apply WTLS algorithm for
bearing-only localization model. In the WTLS algorithm, we
not only have to compute the covariance matrix of the residual
error in the vector h, but also we require the covariance matrix
of residual error in the matrix G, and the covariance between
residual errors in h and G. Consider the ith row of (13),
substituting true parameters with noisy ones and extracting
residual errors, we have

ϵg,i = [ni cos(α
o
i ), ni sin(α

o
i )]

T = niġi, (20)

which is residual error of the ith row of matrix G. The
covariance matrix of (20) would be

Ψg,i = E[ϵg,iϵ
T
g,i] = ġiΨα,iġ

T
i , (21)

where Ψα,i = [Ψα]ii. The residual error of the ith element
of vector h is

ϵh,i = niġ
T
i xi + niġ

T
i vi + gT

i vi. (22)

The covariance matrix of (22) becomes

Ψh,i = E[ϵ2h,i] = xT
i ġiΨα,iġ

T
i xi+

Ψα,iġ
T
i Ψx,iġi + gT

i Ψx,igi, (23)

where Ψx,i = Ψxi . Moreover, it is required to derive the
covariance matrix between residual errors in h and G,

Ψgh,i = E[ϵg,iϵh,i] = ġiΨα,iġ
T
i xi. (24)

It should be noted that in the above derivations we have used
the approximations applied in (17). Now, we will define the
WTLS solution based on the algorithm developed in [7]. First,
we rewrite (13) as

FΘ = 0, (25)

where Θ = [θT
1 ,−1]T , and F = [G,h]. Let Ψf ,i be the

covariance matrix of the ith row of F, then

Ψf ,i =

[
Ψg,i Ψgh,i

ΨT
gh,i Ψh,i

]
. (26)



Therefore, the WTLS problem is defined as [7],

θ̂1,WTLS = argmin
θ1,∆fi

M∑
i=1

∥Ψ−1/2
f ,i ∆fi∥22 (27a)

subject to (F+∆F)Θ = 0, (27b)

where ∆F is a correction matrix trying to compensate errors
in matrix F, ∆fi is ith row of matrix ∆F, and ∥ · ∥2 denotes
2-norm. We have assumed that residual errors in each row of
F are statistically independent. This type of WTLS problem
is classified as row-wise WTLS [6]. The problem in (27)
is an optimization problem. The full details of minimization
procedure is given in [7]. After some computations, (27) turns
into the following minimization problem

θ̂1,WTLS = argmin
θ1

f(θ1) = argmin
θ1

M∑
i=1

r2i (θ1)

qi(θ1)
, (28)

where [r1(θ1), r2(θ1), . . . , rM (θ1)]
T = Gθ1 − h, and

qi(θ1) = ΘTΨf ,iΘ. Indeed, f(θ1) is the cost function of
WTLS should be minimized. To find the minimum of the
cost function, the derivative of f(θ1) is equated to zero, i.e.,
f ′(θ1) = ∂f(θ1)/∂θ1 = 0, where

f ′(θ1) = 2

M∑
i=1

[
gi

ri(θ1)

qi(θ1)
−(Ψg,iθ1−Ψgh,i)

r2i (θ1)

q2i (θ1)

]
. (29)

(29) has probably several roots but the root corresponding
to the global minimum of (28) is the WTLS estimation
of target location. In [7] an iterative linear approximation
algorithm has been suggested for solving (29) which seems
to be inappropriate in some conditions. Effective numerical
methods for finding the roots of (29) can be found in [8].
In our computer simulations, we have employed MATLAB
routine fsolve with default settings, which uses Dogleg
algorithm. Like the ML estimator, WTLS also has convergence
problem due to the nonlinearity behavior of the cost function
[7]. Although it has been shown that for large sample size
and sufficiently close initialization, the algorithm converges
certainly to the global minimum of the cost function [7], it
is still possible that the algorithm either converges to a local
minimum or diverges.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed algorithms,
computer simulations are conducted. We consider two scenar-
ios for the simulations. In the first scenario which is the same
as the configuration in [3], the target is located at [55, 35]T ,
the observer trajectory is y = −0.2x + 14 for 5 < x < 45,
and observer obtains M bearing measurements in equal distant
points. In the second scenario, the target location remains as
the first scenario and the observer trajectory is y = 3x + 30
for 5 < x < 45. The bearing measurements and the nominal
observer position are generated by adding zero mean Gaussian
random variables with covariance matrix Ψα = σ2

αIM×M and
Ψx = σ2

xI2M×2M respectively to true values. The values of
σ2
α and σ2

x are indicated in each figure. The mean square error

(MSE) of each algorithm is computed by averaging of 10000
independent realizations. The plotted CRLB is computed as
trace[CRLB(so)] in (4a).

Fig. 1 shows the MSE of the proposed algorithms versus
the standard deviation of bearing measurement noise when
the number of observations is M = 20 and the standard
deviation of observer position noise is σx = 0.1 m. The
ML estimator is calculated using GN method [9]. We have
used the true position of target as the initialization of ML
and WTLS to increase the probability that the algorithms
converge to the global minimum. It can be seen that the WLS
algorithm performs better than LS. The TLS has remarkably
better performance than LS and WLS. Furthermore, WTLS,
and ML have very close performance and can attain the CRLB
accuracy for bearing noise standard deviation under 5◦.

The MSE of proposed algorithms as a function of the stan-
dard deviation of bearing measurement noise for the second
scenario is shown in Fig. 2. The number of observations and
observer position noise remain as Fig. 1. The WTLS and ML
show similar performance and achieve the CRLB for bearing
noise standard deviation under 5◦. In this case, the TLS has not
better MSE than the LS. The reason is that, for TLS we assume
that the errors in matrix G and vector h are independent and
equally sized, however, (20) and (22) show that the errors in G
and h depend on the observer position and since the distance
between the first and last observation in the second scenario
is almost three times more than the first scenario, the errors in
G and h of the latter will be unequally sized more severely
than the former. Consequently, the assumption in TLS is not
valid anymore and its performance will degrade.

In Fig. 3, we compare the MSE of the proposed algorithms
in the first scenario versus standard deviation of observer
position noise. The number of observations is M = 20 and the
standard deviation of the bearing noise is σα = 2◦. The MSE
of all algorithms get worse as the noise on observer position
increases. The ML and WTLS have the optimum performance
for lower noise (less than 0.2 m). However, the MSE of ML
intensifies as the noise on the observer position increases,
which is consistent with the results in [3], while the WTLS
performance stays close to the CRLB. The ML estimator is
expected to be asymptotically efficient, but efficiency is not
guaranteed for a finite number of observations [5]. Therefore,
we expect the ML gets back to an efficient estimate for
sufficiently large data records as indicated in Fig. 4.

Fig. 4 depicts the MSE of proposed algorithms for different
number of observations in the first scenario when the standard
deviation of bearing measurement and observer position noises
are 4◦ and 1 m respectively. It can be seen that when the
number of observations increases, the MSE of all algorithms
diminishes. However, the MSE decline for LS and WLS is very
slow and almost flat for the large number of observations (i.e.,
greater than 160) because they do not consider the disturbances
in the matrix G in (13). On the other hand, the WTLS
obtains the CRLB performance by increasing the number of
observations presenting asymptotically efficient behavior. The
MSE of the ML is also interesting. It has inferior performance
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Fig. 1. The MSE performance of the proposed algorithms versus standard
deviation of bearing measurement noise (the first scenario).

compared to TLS for the number of observations less than 20,
but it surpasses TLS for greater number of observations. We
can conclude that it might be optimal for large data records.

V. CONCLUSION

The bearing-only localization problem with uncertainties in
observer position was surveyed in this paper. The Cramér-Rao
lower bound (CRLB) of the proposed localization model was
derived under this assumption that the bearing measurement
noise and observer position noise are independent. The max-
imum likelihood, linear least squares, weighted least squares,
and total least squares estimators were developed for this
problem and additionally a novel method of positioning based
on the weighted total least squares was introduced. Computer
simulations were conducted to assess the performance of the
proposed algorithms. Simulation results demonstrated that the
novel method outperforms other methods and obtains the
CRLB accuracy asymptotically.
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