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1 Introduction

The aim of this work is to make a first investigation of how atilagpfinite element
methods can be used to solve optimal control problems. Opiroagh is based on
an adaptive algorithm with error control based aposteriorierror estimates. The
work was initiated from and motivated by a need to solve oatioontrol problems
in vehicle dynamics.

The methodology oflual weighted residual&as developed in [1] in the context
of finite element methods for partial differential equatom this paper, we adapt the
methodology to optimal control problems of the form: Findtesx and controlsu
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which T
minimize ¢ (x,u) = | (x(0),x(T)) + /0 L(x,u)dt,
subjectto  x(t) = f(x(t),u(t)), O<t<T,

0X(0) =X, ITX(T) = X7.

We present an adaptive finite element method with error cbbarsed on aa poste-

riori error estimate which is the sum of dual weighted residuals.

Optimal control problems are solved numerically using twftedent approaches,
thedirect and theindirect [2]. In the direct approach, the problem is first discretized
and a finite dimensional minimization problem is solved. he tndirect approach,
the necessary conditions for optimality are determinedthede equations are then
solved numerically. Traditionally, the necessary cowdisi for optimality are derived
using variational calculus [3], and their solution can bé¢aoted using various nu-
merical methods such as finite element methods [5] or malspboting [2].

In the present work we use the finite element method, in whadeche direct
and indirect approaches coincide. We present the clasgcitional calculus in a
weak form and derive the necessary conditions for optimalthese consist of a sys-
tem of three equations: the linearized adjoint equatioriferLagrange multiplieg,
the original state equation for and a non-linear algebraic equation for the control
variableu. We approximate the equations by a finite element method ardedhna
posteriori error representation formula and an estimate of the errdrérgoal func-
tional #. The error estimate is expressed as an elementwise sum bivdigited
residuals,

(1.1)

N
0= 7 )| < 3 (Ricd + R + Ria) + R

whereR5, RX, Ry are residuals from the adjoint equation, the state equadiod the
algebraic equation for the control variable, respectivahdwy, w3, wy are weights
computed from the solutions of the respective equatioriséneld by the superscripts,
andRis a remainder which may often be neglected.

Previous work, [5],/[6], aims at controlling the error in arbdérary linear func-
tional (or a norm) of the variables and requires the solutban additional adjoint
problem of the same size as the optimality conditions. Thanradvantage of the
dual weighted residual error estimate is that it only usesatfuations introduced in
the optimality conditions and no extra dual problem has tedieed. However, it can
only be used for controlling the error in the goal functiongl.

We use the error estimate as the basis for an adaptive firetaegit method.
To simplify the implementation we use Matlab and implemdwt adaptive finite
element method for an optimal control problem with quadrgtal functional and
linear state equation. The solver is tested on an optimdtaigoroblem from vehicle
dynamics. A similar method was applied to the optimal cdmfgparabolic initial
value problems in [7].

We begin in Sectidn|2 by presenting an abstract frameworthivoptimal control
problem where we can derive the necessary conditions famafity as well as ama
posteriorirepresentation formula for the error in the goal functiop@l In Section 3
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we apply these results to the optimal control problem. Inti§eet we specialize to a
guadratic/linear optimal control problem. For this prahleve derive the posteriori
error estimate from the error representation formula andlegeribe the implemen-
tation of an adaptive finite element method based orathesteriorierror estimate.
Finally, we solve a simple model problem from vehicle dynesrin Sectioh 5.

2 An abstract framework

Following [1], we formulate the optimal control problem im @bstract way. Let
W, U,V be normed vector spaces, &t C W be a subspace, lat<’ W be fixed and
defne the affine space

VV:)‘H—W:{WGW:W—)‘(EW}.

The reason for using this affine space will be clear in Seciowhere we include
boundary conditions in the problem formulation. Furthee, imtroduce smooth func-
tionals

F WxUxV —R,
/ZWXU — R.

We assume thaf (x,u;z) is linear in the third variablez. We use the notation that
the functionals depend non-linearly on the arguments beatwe semicolon and lin-
early on the arguments after the semicolon. For example eneté the derivative of
Z (X, U; z) acting on a test functiothy by .7 (x, U; Z, ¢x) = Fy (X, U; Z) dx.
We consider optimal control problems of the form: DetermireW andu € U

which

minimize F(xu),

subjectto  F(x,u;¢)=0, V¢ eV.

The main difference with [1] is the presence of the controlalzleu, and that we need
several spaces in order to allow for a Petrov-Galerkin meétnod non-homogeneous
boundary conditions.

This is a constrained optimization problem and the necgssamdition for an
optimum is expressed in terms of the Lagrange functional

2.1)

L(Xuz2) = _Z(Xu)+.F(Xuz), (XUuz)eWxUxV.

Theorem 2.1 The necessary condition for an optimyrau, z) € W xU xV is given
by

ZL'(xuz9)=0, VdecWxUxV, (2.2)
that is,
/)é(x’ u; ¢X) + y)é(xv u; 27 ¢X) = 07 v¢X S Wv
/Lj(X7U; ¢U)+ELII(X)U;Z7 ¢U) :07 V¢U S U7 (23)
F(x,u; ¢,) =0, Y, e V.
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Proof We expand?” in partial derivatives, noting tha, (x,u; z, §;) = %, (X, U; Z,¢;) =
‘g(x7 u; ¢Z) o

Note that the third equation ih (2.3) is the equation in thiginal problem[(2.1)
and the first equation in (2.3) is the linearized adjoint diguia

In order to formulate a Petrov-Galerkin approximation af tiyjuations (2.3), we
assume that we have subspadgs- W, W, c W, Vi, € V, Up C U, and thatx’e W,
so that

Wh = X+W, C W.

The approximation of the necessary condition for optirgaliow becomes: find
(Xn, Un, Zn) € Wh x Uy, x W, such that

L (Xn UniZn, @) =0, V@ € Wh x Up x V, (2.4)
that is,
(X, Un; §x) + Fg (X0, Uni Zn, @) =0, Yy € Wh,
/L;(Xmuh; ¢U) +gl,lj(xh7uh;zhv ¢U) = Oa vd)u S Uh7 (25)
y(xhauh; ¢Z) = Oa V¢Z S Vh-

The following theorem provides aa posteriorirepresentation formula for the
error in the functional 7.

Theorem 2.2 Let (x,u,2) € W x U xV and (xn, Un, z) € W x Up, x W, be solutions
of (2.3)and (2.5), respectively. Then

/(Xa U) - /(Xmuh) = %px—i_ %p2+ %pU + R7
with the residualgy, p,, andp, defined as

Px = I (%, Un; X— Fn) + F(Xn, Un; Zn, X— Kn),
Pu=_Z4(Xn, Un;U—Gn) + ., (Xn, Un; Zn, U — Cn),
Pz = F (Xn,Un; 2~ 7).

Here (%, Gn, Z) € W, x Up x W, is arbitrary. The remainder term R is given by

R=

NI

1
/ (J’”(xh +S6,Un+ S8, €,€,€)
0 (2.6)

+ﬂ’”’(xh+se(,uh+sej;aq+sel,e7e7e))s(s— 1)ds

where e= (e, €,8,) €W xU xV, 8 =X—Xn, &, =U—Uy, and @ = 2— z,.

The remainder term is cubic in the error and can thereforendfe neglected. In
particular, we note th& = 0 in the important special case whéf\(-, -; -) is tri-linear
and_# (-,-) is bi-quadratic.
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Proof We introduce the notation

Z (X Xn, U, Un; 2,0, €) = L (X,U;2) — £ (X, Un; Zh)

Z(
1d
:/ — 2 (Xn+ S&, Up + S8, Zn + S&) ds
o ds
1
:/0 2" (X0 + S8, Un + S&; Z0 + &, ) ds
wheree = (g, 8,6,) € W x U x V. Using the third equation in (2.3) and the third
equation in[(2.6) we get
F (X U) = F (%n, Un) = £ (X,U;2) = F (X,U;2) — L (Xn, Un; Zn) + F (Xn, Un; Zn)
= Z(X,U;2) — £ (Xn, Un; Zn)
= (X,%n, U, Un; Z, 20, €) + 3.2 (%, Un; Zn, ©)
— 1.2 (%, Uni Zn,€) — 3.2 (x,U; 2, €),

where the last term is zero in view of (2.2). The last two teamsequal to an approxi-
mation of the first term by the trapezoidal rule. Hence, Rithenoting the remainder
in this approximation,

F(XU) = _Z (Xn,Up) = 5.Z" (X, Un; Zn,€) + R

2" (Xn, Un; Zn, X— Xn,U—Un, Z— Zy) + R
L' (X, Un; Zn, X — Xn,U—On, 2— Z)) + R

I
NIRRT

Here we used the orthogonality property (2.4) to repléggun, z,) by an arbitrary
(%, Gn, Xn) € Wh x U x V. By expanding?” in terms of partial derivatives we then
obtain

() = Oh, Un) = 3 (2500 Uni X ) 4+ 50 Ui 2, X))
(A4 (%0, Uni U= Tn) +.Z4 (X, Un; Zn, U — Gh))
1.7 (X, Un;Z— Zh) +R
= 3Pxt3Put 3Pz +R
The remainder term is

R=Z (X, Xn, U, Un; Z, Zn, €) — 1.2 (Xn, Un; Zn,€) — 3.2/ (X, U; Z,€)

1
= %/ L (Xn + S Un + S&:; Zn + S&, €, €, €)s(s— 1) ds
0
2.7)

1
:%/o (J’“(xh+se(,uh+sqj;e,e,e)

+ 7" (Xn + S8, Un + SQy; Zn + S&, €, €, e))s(s— 1)ds
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3 An optimal control problem

We consider optimal control problems of the form

minimize x(0),x(T)) +/ L(x t,
subjectto  x(t) = F(x(t),ut)), O<t<T, (3.1)
[0X(0) =X, ITX(T) = x7.
Here
l'RIXRI S R,

L:RIXR™ > R,
f:RIxR™—RY,
are smooth functiondp, It € R%*9 ared x d matrices, ando € R(lp), ¥t € R(IT),
whereR(A) denotes the range of a matix
In order to put this into the abstract framework of the pregicection, we need
to introduce function spaca¥,W,W,V,U and functionals # and.%. The spaces
must accommodate both the continuous functiasu and the corresponding finite
element functions. It is therefore convenient to begin bijnileg the finite element
spaces.
We defineamesh 8ty <t; <ty <...<ty=T, with stepshy =t, —ty_1 and
intervalsly = (th—1,tn). Letq > 0 and letP? denote the polynomials of degreeq.
We introduce the spaces

M:Rdx{w:whnqu(ln,Rd), n:l,...,N}de,
W, = R(1 — lo) x {w:w||n € PY(1n,RY), n:l,...,N} xR(I—I7)
:{wem:|ow5:o, |Tw§:o},

of (vector-valued) discontinuous piecewise polynomialdiions of degree< g and
the space

Vi = {ve c([0,T],RY) : V], € Pq+1(|n,Rd)},

of continuous piecewise polynomial functions of degreg-+ 1. Forw € W, we use
the notationsvi = lim, .+ w(t) for the one-sided limits ah and [w], = w —wy,

for the jump att,. Forv € \,, we write vy, = v(tp). The two factorsRY in W, contain
the boundary values;; andw;;. We also select & W, such that

loXg =Xo, 7% =X,
wherexg, x7 are the boundary values in (3.1), and define the affine space
+ W, = {wevvn:w—f(ev'w.}

X
{We\Nh t oWy = Xo, ITW :xT}.

Wh
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Finally, we define
Up = {ve C([0,T],R™) : V|, € Pq+1(|n,Rm)}.

Note that
(3.2)

wheredy = rank(lp), dr = rank(lt).
We now define the function spaces

W = RY x {w:w|.n € H(In,RY), n:l,...,N} % RY,

W =R(l — o) x {w:w||n € HY(1p,RY), n= 1,...,N} «R(I—17)

I
— X

WeEW :lowy =0, Irw :0},

W +W:{WEW:W—>‘(€W}

WeW :lgwy = Xo, ITWy =XT},
V =HY((0,T),RY),
U =HY((0,T),R™.

The spaces are equipped with the maximum norm. Note thatpbgl8v's inequal-
ity, functions inW, W are continuous on each interdalwith one-sided limits at the
endpoints, and functions M,U are continuous ofi0, T]. Boundary values are ac-
commodated i'W in the same way as iW,; of course, ifw € W happens to be
continuous, them = wg = w(0) andwy = wy = w(T) are the usual boundary val-
ues. The function spaces have been constructed sthatw, W, ¢ W, W, C W,
Wy CV, andU, C U.

The functional to be minimized is

F(w,u) :I(Wg,w,i])Jr/oTL(w,u)dt, (w,u) eW x U,

and, for the weak formulation of the state equation, we defiedunctional

F(W,u;v) = % / (W— f(wu),v)dt + N%([W}n,vn), (wu,v) € Wx U x V.

=1/1In

Here and below(-, -) denotes the scalar productli{ or R™. If x is a smooth function
which satisfies the state equation(in (3.1), then it alssfasi the weak problem: find
x € W such that

F(xu;¢)=0, V¢ eV (3.3)
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Here we used the fact th&j = x(0), x; = X(T), [X|n = 0, because is continuous.
We now find it convenient to change the notation for partiaivdgives. For a
scalar-valued function

g:RIxR™ - R,

we denote byg/(x,u) the partial derivative with respect to th# variable. It is a
linear operatoRY — R for i = 1 andR™ — R for i = 2, which we may identify with
a vector, so that

g (xu)y= (. g1(x,u)), ye R%,  gh(x,u)y = (y,gh(x,U)), y € R™.
For a vector-valued function
f:RYxR™— RY,

the partial derivatives are linear operatdé{gx, u) : RY — R and f5(x,u) : R™ — R,
which we identify with matriced] (x,u) € R9*9 and f4(x,u) € R™d.
Integration by parts gives,

F1(W,u;V, ¢)
N

" N
= n;/ln(qb —fi(w, U)¢,V)dt+n;([¢}n,vn)
N (3.4)

= 3 [ (v fwur v d (8, (85 o),
V(_w,u,v,d)) eW xU xV xW.
The Lagrange functional is
L(xuz2) = _Z(Xu)+FXuz), WuzeWxUxV.
The necessary condition for optimality is tHatu,z) € W x U x V and
ZL'(xuz9)=0, V$ecWxUxV, (3.5)
which yields

LU Z,0y) = F{(X U $) + FL(XU;Z,9y) =0, Ve €W,
L% Uz, 0u) = _Fo(XU; u) + Fo(XU;Z,¢y) =0, Véy U, (3.6)
L(X Uz, ¢;) =0+ .Z (X, u;¢,) =0, Ve, € V.

The first equation in (316) is, in view of the second form%f in (3.4),

N

)3 / (6, L4(x,U) — 2— F{(x,u)*2)dit

n=t1/In

+ (1200 ) +2n) + (B9 1100 ) —20) =0, V§ €W.
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Assuming thak,z ¢ are continuous, we may identify the strong form of this equa-
tion:
z+ f{(x,u)*z—Li(x,uy=0, 0<t<T,

(I =10) (2(0) = 11(x(0),X(T))) =0,
(I =17) (z(T) +12(x(0),X(T))) =0,

which is the linearized adjoint equation to the state eguaiti (3.1). Note the com-
plementary boundary conditions.
The second equation in (3.6) is

T
| @.Lyxu) - fxwgdt=0, vpeu,
0
or, in strong form,
Lo(x,u) — f3(x,u)'z=0, O0<t<T.

This a non-linear algebraic equation farThe third equation is the same as (3.3).
We next formulate the finite element approximation of thegqaagions. Find
(Xh, Un, Zn) € Wh x Up x V, such that

2 (X, UniZn, §) =0, V¢ € Wb x Up x (3.7)
which means that we want to determifg, un, z,) € W, x U x Vj, such that

N

5 (0L 0n, ) = 20— 14 ) 2
n=1"'n
3.8
(8514060 Xn) + 20) + (8 (%100 XEn) — 200) = O, (2.8)
Vo € W,
i
/0(¢,L’z(xh,uh)—fé(xh,uh)*zh)dt=0, V¢ € Up, (3.9)
|OXE70 = Xo, ITX;{N =XT,
(3.10)

N N
> [ 6o~ (0 h): )01 S (b ) =0, 79 €,

Using [3.2) we easily verify that these ad¢q+ 1)(2d +m) + 3d + malgebraic equa-
tions in equally many unknowns.

Sinceg, and¢;; can be chosen arbitrarily iR(I —1p) andR(l — 1), respectively,
we see thaf (3.8) implies

(I =10)" (11(%,0: X% n) — Zn0) =0,

(I —|T)*(|§(XE0’XKN)+ZHN) =0. 341

Thea posteriorierror representation formula follows from Theorem|2.2.
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Corollary 3.1 Let(x,u,z) € W x U xV and (X, Un, Zn) € W x Up x Vi, be solutions
of (3.5)and (3.7), respectively. Then

F (XU) = 7 (Xn,Un) = 3Px+ 3P+ 3Pu+ R, (3.12)
with the residualgy, p,, andpy defined as
N
Px = Z/I (X — K, L1 (Xn, Un) — Zn — f1(Xn, Un) “20) dit,
n=17'n
T
pu= [ (U= Lp(on, ) — 15000, 0) ) (3.13)
N N
Pz= Z/(Xh_f(xhauh)l_zh)dt‘f' Z}([Xh]nyzn—zh,n)y
n=1"In n=

where (%, 0, Zn) € Wh x Up x Vi, is arbitrary, and the remainder R is given (8.6).

Proof From Theorem 2]2 we have

N
pe= 3 [ (0 Ui, )~ 00, ) )t

n=1"In
+ (4 _thr,N’ Ié(XRO,XKN) +7ZnN)
+ (% — %00 I/l(XROaX;{N) —7Zno)-
Using (3.11) ando(x; — %) =0, I7 (%, — %) = 0, we find

(O = Ko 1206000 %) +20n) =0,
(% — R0/ 11 (%0 X0 1) — Zho) =0,

and we obtain the desired form pf. The other residuals, andp;, follow directly
from Theorem 2.2. O

4 A guadratic/linear optimal control problem
4.1 The continuous problem

In this section we specialize to the case when the functitmdde minimized is

guadratic and the state equation is linear. The reasonudystg this simplified case
is that it makes the formulation and implementation of arpéida algorithm easier.
It is also true that many models are formulated as quadiiaget problems. We use
the notation||v||Z = (v,SV), where(-,-) is the scalar product anflis a symmetric,

positive semidefinite matrix. The problem then reads

minimize 7 (x.u) = X(0) ~ %ol + [X(T) ~ X7/
T
[ (- p-Rg)a

subjectto  x=A(t)x+B(t)u, 0<t<T,
lox(0) =Xo, ITX(T) =X,
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where, for eaclt, Q(t), S, Sr € R9%d are symmetric positive semidefinite matrices,

R(t) € R™™ is a symmetric positive definite matrix, ardt) € R4 andB(t) €

RY*M are matrices. The matricés I € R9*9, xo, X, X0, X7, X(t), andu(t) are given.
Since we now have

f(x,u) = Ax+Bu,

fi(x.u) =A, f5(x,u) = B,

L} (x,u) = 2Q(x— ], L(x,u) = 2R(u— 1),

1100 ,3) = 2%0(xg —%0),  12(%5 %) = 25r (% — %),
the equation (3.5) is now to fingk, u, z) € W x U x V such that

ATwMZXxf@foN@dt

+ (0 25005 —%0) — ) (4.2)

+ (@ n:2ST (X —XT) +28) =0, Ve W,
Aumgmu_m_wamzq Vo €U, (4.3)
A%%Awﬂq@mhﬂ,vmev (4.4)

4.2 The finite element method

Let the finite element spaces be as in Section 3. We discttbtizetate equation (4.4)
by a discontinuous Galerkin method witty, as trial space and, as test space: Seek
Xh € WL which fulfils

IOXEO = Xo, ITXfJ{N = XT,
T N (4.5)
|| o= mon— B ¢)dt+ > (Dol #0) =0 9 € Vi

The dual equation (4.2) is discretized by the continuougf®al method: Seek, €
Vi, which fulfils

.
| (6.2Q06 -9~ 2~ Az
0
+ (90, 2%00%,0 —%0) — Zn0) (4.6)
+ (08 2Sr (X —XT) +20n) =0, Vo € Vi,

where we have used, as trial space anW, as test space. Since we can vary the
boundary values i, separately ifR(I —lp) andR(l — I1), the boundary conditions
become

(1~ 10)" (Zno — 25(X50 — 56)) = O.
(I =11)" (2N +2S7 (% — XT)) = 0.
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Equation[(4.3) for the controls is discretized by a contimiGalerkin method:
Seekun € Up

/(¢ OR(Un — ) — B*z)dt = 0, Yy € Up. 4.7)

We now have three sets of linear algebraic equations whicst beisolved simulta-
neously in order to obtain the approximate solut{gg uy, z,).

4.3 The error estimate

We begin by repeating the error representation formula fonollary[3.1 in the
context of the linear/quadratic optimal control problem.

Corollary 4.1 Let(x,u,z) € WxU xV and(xp, Up, Z) € W, x U x Vi, be solutions
of (4.2)(4.4)and (4.5)-(4.7), respectively. Then

J(%U) = 7 (Xn,Un) = 3Px+ 3P+ 3Pu, (4.8)

with py, pz, andp, defined as

T -
pe= [ (x=%0,2Q00 -0~ 2~ Az,
T
pu= [ (u= 00 2R(y— T~ Bz, 4.9)

T N
o= [ o= Ao =B 2= 2) At 3 (.20~
0 &

where (%, 0h, Z) € W, x Up x W, is arbitrary.

Proof The proof is a straightforward calculation using Coroll&cg. The remainder
Ris zero in this case, since we have a linear/quadratic pnolled the remainder is
the third derivative of the Lagrangian. O

In the following theorem we derive aam posteriorierror estimate from the er-
ror representation formula. We use the notatjdn|;, = sup, || f(t)||, where]| - ||

denotes the Euclidean normif or R™.

Theorem 4.1 Let (x,u,2) € W x U xV and (Xn, Un, z) € W, x Up, x W, be solutions
of (4.2)(4.4)and (4.5)(4.7), respectively. Then

N
AU = f 0o <3y (Ref+ Rk +RieF).  (4.10)

n=1
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where the residuals fRand weightaw, are defined by (withd= hy = 0)
RY = hnl[2Q0% — X) — 20 — A"z I,
Rn = ha[|2R(up — ) — Bz |1,
R = hnl[Xh — AXy — Bh|f1, +

hn
+m” Xnln_1]]>

hn
m” Xaln |l

and, with arbitrary (%, Gn, ) € Wh x Up x Vi,
ap = X%l o = lU="Cnlli,,  @f = (12— Z[}1,-

Proof We estimate the three contributions to the error repretienté4.8) separately.
The first term is

N
pd < 3 [ x5l 12Q00 )~ 20~ Az
n=1"'n
N ) N
< 3 IRl |2Q00 =)~ 20— Az 1o = Y R,
n=1 n=1
Similarly, for the second term we have
N N
Pl < 31U Gl |2R (U~ ) = Bzl = 5 R
n=1 n=1
Finally,
N . N
P < 3 [ n Ao Bunlz=nldt+ 3 [0~ Zn
n=1"In n=

N N
< D 1% — A% = Buh[liy1z— Znl[1,hn + Z}H Xnln 120 — Zonll-
n=1 n=

Using the continuity oz we have

20— Znnll < [12= 2010y 1120 = Zanll < 12— Z0l[1y,s

so that

=2

;H[Xh]n””Zn_zh,nH

N
N B
_n: <hn+hn+1H[Xh]n||||zn Zh,n||

h ~
+hr]+7:]rFlH[Xh]nleHzn—l_zh,nflu)
N
hn hn .

< 5 (o o+ e Nl a2 2,
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wherehy = hy = 0. This yields

N
. n
lpz| < n; (hn”Xh — Axy — Bui|fi,, + m“ Xl ||
el ) - Bl = 3 RiGE
ththfl n-1 " n—1

We note that the error estimate does not introduce any additiadjoint equa-
tion. However, the weights depend on the exact solutionsz and approximations
%h, Gn, Z, of them. In practice, we approximate the weights by comgatgbantities.
For example, whenq = 0, by standard interpolation error estimates [4], we can find
%, Uh, Zn such that

%= Sallin < hnl[X[l1s,
[lu—Ginl|1, < h3l1,, (4.11)

= 211
1Z=2n[lin < P51 Zin,

where the derivatives are approximated by difference gutdiof the discrete solu-
tions. See also [1] for other approximations of the weights.

The above estimates of the weights indicate that the ggiimthe error estimate is
O(h), while px andp, areO(h?). We therefore present the following error estimate,
where all terms are formall{p(h?). For simplicity we assume tha(t) = A and
Q(t) = Q are constant.

Theorem 4.2 Let q= 0 and assume that(® = A and Qt) = Q are constant. Then

N

7 (6 U) = Zn(h, Un)[ < (hﬁllxl\lnIIZQﬂA*'ZhHln

n=1

+ B3| A% + B [1,]12]]1,
+ hRI2R(un — @) — Bzl 1, ).

Proof We choose&,= Inzandup, = Iputo be the standard piecewise linear nodal inter-
polators, and we choosg = R,x to be the orthogonal projection onto the piecewise
constant functions.
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Then, using orthogonality, the fact that — Z,, = 0, and the error estimates
(4.11), in the error representation formula (4.8), we abtai

/(X, u)—/(xh,uh)
N

S ([ (=R 0~ P (2Q06 — %) — 20— A'z)

n=1 In

+/| (%0 — A% — B, (I — In)2) it

+/| (1~ In)u, 2R(y — ) ~ B dt)|

N
< 3 (M3, 112Q06 — 3] — 20— A,
n=1
+ 31X — A%, — Buh 1,1 2],
+ h3I2R(un — @) — Bzl 1, ).

Sincex,, = 0 andz, = 0 we obtain the desired estimate. |

4.4 An adaptive algorithm

We have implemented an adaptive finite element method evithO based on the
error estimate in the previous theorem, for the solutiomefdptimal control problem

(4.2).

Algorithm 1: An adaptive finite element method

Solve the equation on a coarse initial mesh;
Compute the error estimate in Theorem 4.1, denote if by
while n > TOLdo
Refine the mesh according to the error estimate, i.e., refaments that
give large contributions to the estimate;
Solve the equation on the refined mesh;
Compute the error estimatgon the refined mesh;
end

The refinement of the mesh is done according to the princifdgoidistribution,
that is, we want all intervals to give equally large conttibaos to the error estimate
and we insert new nodes to fulfil this criterion. The impletagion was done in
Matlab. Numerical examples are given in the next sectiore atlaptivity leads to
additional computational cost compared with a standardcguh based on standard
differential equation solvers and optimization proceduréhe advantage of the finite
element approach is the error control. Since we have notnigeid the implementa-
tion we cannot present any comparison of the efficiency ofadgwrithm with other
software.
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Fig. 5.1 The bicycle model, which is used to derive a model of the dynaofiesvehicle. The rectangles
represent the wheels of the bicycle, and the dot marks thesiceftgravity around which the angular
velocity is computed.

5 Two numerical examples

The adaptive finite element solver is tested on two quadiiager problems. They
are both based on the so-called bicycle model from vehiatanhjcs [8], see Figure
[5.1. We study two manoeuvres, a single lane change and & samgl change with a
light collision. The state variable,

X1 W
X2 r
x| | @
X = wl = v
X5 O
X6 ot

consists of the lateral velocityy, the angular velocity, the heading angl¢, the
lateral positionY, and the front and rear steering ang&sand .. The longitudinal
velocity Vx is constant. The control variable= (us,uz) consists of the inputs to the
front and rear steering angles. The differential equatames

anW +agor + b & + b &
a1V + agar + b & + brody
r
= Wy + Vo = Ax+ Bu.
—0.55[ —0.5u;

—&—W

Our problem is of the forni (411):

.

minimize /(x,u):/o <||u||§+||x||é) dt,

subjectto x=Ax+Bu 0<t<T,
lox(0) =xo, ITx(T)=xr,
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wherelg andly are diagonal matrices. The coefficiedtsB, Q, andR can be found
in the Appendix.

5.1 Single lane change

The velocity in theX-direction isVx = 25 m/s and the final time i$ =4 s. We
use the boundary conditiong(0) = x2(0) = x3(0) = x5(0) = x(0) = 0, x4(0) = 10,
andx1(T) =x2(T) =x3(T) =x4(T) = x5(T) = %x(T) = 0. This means that the dual
variables have no boundary conditions. The problem dessi@vehicle performing
a lane change starting ét= 10 m and ending at = 0 m. We minimize the controls
and all the states, but with different weights. The reswhiswn in Figure 5.2. Figure
5.2(a) shows the optimal track and Figures 5.2(b) and 5sh@) the optimal steering
angles on the rear and front wheels. The adaptively refinedhro@n be seen in Figure
5.2(d). The largest element is2%- 103 and the smallest one is of sizel3- 103,

y-position [m]
>
ring angle (deg]

(] 10 20 3 40 50 60 70 8 9 100 o 05 1

15 2 25 3 35 a
x-position [m] Time [s]

(a) Optimal track. (b) Optimal steering angle, rear.

Front steering angle [deg]

[ 05 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4 45
Time [s] Time [s]

(c) Optimal steering angle, front (d) Adaptively refined mesh.

Fig. 5.2 We see the optimal lane change manoeuvre and the optimal cotdrpérform this manoeuvre.
In the last figure we see that the adaptive algorithm insesties in the beginning and the end of the
interval.
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5.2 Lane change with collision

This manoeuvre has the same boundary conditionsawnelocity as in the previous
example, andl' = 3 s. However, whert = 0.5, x; is momentarily increased by 2
andxy is increased by 0.1. This can be described as a collisionentier vehicle
is subjected to an impulsive force and torque. This is intozdl in order to test the
adaptive solver on a more difficult problem than the previons.

The result is shown in Figufe 5.3. We see in Figure 5.3(d) tthesolver refines
the mesh mainly in the beginning of the manoeuvre and thesrtmsiodes around
t = 0.5 s where the collision occurs. The largest element is of2@®8- 102 and the
smallest one is.B7-104.

y-position [m]
o
| '
" ) s
[
|

Rear steering angle [deg]

= -2
50 60 70 80 o 05 1

(] 10 20 30 25 3 a5

40 15
x-position [m] Time [s]

(a) Optimal track. (b) Optimal steering angle, rear.

0.009
0.008

0,007
£ 0.006
y

-10 £ 0.005
g

s
0.004

Front steering angle [deg]

0.003

0.002
-30
0.001

0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
Time [s] Time [s]

(c) Optimal steering angle, front. (d) Adaptively refined mesh.

Fig. 5.3 The optimal track and steering angles for the lane change mar®where a collsion takes place
during the lane change. Compared to the results in 5.2(d) wehse the adaptive solver inserts nodes
around the time of the collisiont(= 0.5 s).
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APPENDIX
aina2 0 Oby by 00
a1 a2 0 0bp by 0 0
0 1 000 O 0 0
A=11 owoo o' B=|o ol
0 000-30 -0
0 0 00O0-1 0 -1
[0 0 O 0 0 ]
00 o0 0 0
0 0g5s O 0 0
Qiane-change= | 0 0 0 % 0 0 )
1
00 0 O (1071807 (1)
(000 O U e
[0 00 O 0 ]
000 O 0
004550 O 0
Qstavilization=6 | 9 0 0 ! 0 0 ;
1
00O OW (l)
_O 000 0 4(m/180)2 |
1 0
R— [4(107‘(/180)2 X ]
0 4(n/180)2
where
ay; = — (G +Cr)/mk, a2 = (CrLy — Grby) /m\k,
a1 = (CrLr — Crly) /12Vx, ax = —(CGL? +CL2) /1,
by =Cs/m, bfro = CiLt/lz,
b = Cr/l’ﬂ7 b = *CrLr/IZ;
and with numerical values
m= (1500+ 150) kg, I, = 3500 kg nf,
L=2755m L =120m
L =L—L;s,
C¢ = 20000 N/rad C: = 40000 N/rad

Vx =25 m/s
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