
Finding Race Conditions in Erlang with QuickCheck and PULSE

Koen Claessen Michał Pałka
Nicholas Smallbone

Chalmers University of Technology,
Gothenburg, Sweden
koen@chalmers.se

michal.palka@chalmers.se
nicsma@chalmers.se

John Hughes Hans Svensson
Thomas Arts

Chalmers University of Technology and
Quviq AB

rjmh@chalmers.se
hans.svensson@ituniv.se
thomas.arts@ituniv.se

Ulf Wiger
Erlang Training and Consulting

ulf.wiger@erlang-consulting.com

Abstract
We address the problem of testing and debugging concurrent, dis-
tributed Erlang applications. In concurrent programs, race condi-
tions are a common class of bugs and are very hard to find in prac-
tice. Traditional unit testing is normally unable to help finding all
race conditions, because their occurrence depends so much on tim-
ing. Therefore, race conditions are often found during system test-
ing, where due to the vast amount of code under test, it is often hard
to diagnose the error resulting from race conditions. We present
three tools (QuickCheck, PULSE, and a visualizer) that in combi-
nation can be used to test and debug concurrent programs in unit
testing with a much better possibility of detecting race conditions.
We evaluate our method on an industrial concurrent case study and
illustrate how we find and analyze the race conditions.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Distributed debugging

General Terms Verification

Keywords QuickCheck, Race Conditions, Erlang

1. Introduction
Concurrent programming is notoriously difficult, because the non-
deterministic interleaving of events in concurrent processes can
lead software to work most of the time, but fail in rare and hard-
to-reproduce circumstances when an unfortunate order of events
occurs. Such failures are called race conditions. In particular, con-
current software may work perfectly well during unit testing, when
individual modules (or “software units”) are tested in isolation, but
fail later on during system testing. Even if unit tests cover all as-
pects of the units, we still can detect concurrency errors when all
components of a software system are tested together. Timing de-
lays caused by other components lead to new, previously untested,
schedules of actions performed by the individual units. In the worst
case, bugs may not appear until the system is put under heavy load
in production. Errors discovered in these late stages are far more
expensive to diagnose and correct, than errors found during unit
testing. Another cause of concurrency errors showing up at a late
stage is when well-tested software is ported from a single-core to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

a multi-core processor. In that case, one would really benefit from
a hierarchical approach to testing legacy code in order to simplify
debugging of faults encountered.

The Erlang programming language (Armstrong 2007) is de-
signed to simplify concurrent programming. Erlang processes do
not share memory, and Erlang data structures are immutable, so
the kind of data races which plague imperative programs, in which
concurrent processes race to read and write the same memory lo-
cation, simply cannot occur. However, this does not mean that Er-
lang programs are immune to race conditions. For example, the
order in which messages are delivered to a process may be non-
deterministic, and an unexpected order may lead to failure. Like-
wise, Erlang processes can share data, even if they do not share
memory—the file store is one good example of shared mutable
data, but there are also shared data-structures managed by the Er-
lang virtual machine, which processes can race to read and write.

Industrial experience is that the late discovery of race conditions
is a real problem for Erlang developers too (Cronqvist 2004). More-
over, these race conditions are often caused by design errors, which
are particularly expensive to repair. If these race conditions could
be found during unit testing instead, then this would definitely re-
duce the cost of software development.

In this paper, we describe tools we have developed for finding
race conditions in Erlang code during unit testing. Our approach is
based on property-based testing using QuickCheck (Claessen and
Hughes 2000), in a commercial version for Erlang developed by
Quviq AB (Hughes 2007; Arts et al. 2006). Its salient features are
described in section 3. We develop a suitable property for testing
parallel code, and a method for generating parallel test cases, in
section 4. To test a wide variety of schedules, we developed a
randomizing scheduler for Erlang called PULSE, which we explain
in section 5. PULSE records a trace during each test, but interpreting
the traces is difficult, so we developed a trace visualizer which is
described in section 6. We evaluate our tools by applying them
to an industrial case study, which is introduced in section 2, then
used as a running example throughout the paper. This code was
already known to contain bugs (thanks to earlier experiments with
QuickCheck in 2005), but we were previously unable to diagnose
the problems. Using the tools described here, we were able to find
and fix two race conditions, and identify a fundamental flaw in the
API.

2. Introducing our case study: the process
registry

We begin by introducing the industrial case that we apply our
tools and techniques to. In Erlang, each process has a unique,
dynamically-assigned identifier (“pid”), and to send a message to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70585219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a process, one must know its pid. To enable processes to discover
the pids of central services, such as error logging, Erlang provides
a process registry—a kind of local name server—which associates
static names with pids. The Erlang VM provides operations to reg-
ister a pid with a name, to look up the pid associated with a name,
and to unregister a name, removing any association with that name
from the registry. The registry holds only live processes; when reg-
istered processes crash, then they are automatically unregistered.
The registry is heavily used to provide access to system services: a
newly started Erlang node already contains 13 registered processes.

However, the built-in process registry imposes several, some-
times unwelcome, limitations: registered names are restricted to be
atoms, the same process cannot be registered with multiple names,
and there is no efficient way to search the registry (other than by
name lookup). This motivated Ulf Wiger (who was working for
Ericsson at the time) to develop an extended process registry in
Erlang, which could be modified and extended much more easily
than the one in the virtual machine. Wiger’s process registry soft-
ware has been in use in Ericsson products for several years (Wiger
2007).

In our case study we consider an earlier prototype of this soft-
ware, called proc_reg, incorporating an optimization that proved
not to work. The API supported is just: reg(Name,Pid) to register
a pid, where(Name) to look up a pid, unreg(Name) to remove a
registration, and send(Name,Msg) to send a message to a regis-
tered process. Like the production code, proc_reg stores the as-
sociation between names and pids in Erlang Term Storage (“ETS
tables”)—hash tables, managed by the virtual machine, that hold
a set of tuples and support tuple-lookup using the first component
as a key (cf. Armstrong 2007, chap 15). It also creates a moni-
tor for each registered process, whose effect is to send proc_reg
a “DOWN” message if the registered process crashes, so it can be
removed from the registry. Two ETS table entries are created for
each registration: a “forward” entry that maps names to pids, and a
“reverse” entry that maps registered pids to the monitor reference.
The monitor reference is needed to turn off monitoring again, if the
process should later be unregistered.

Also like the production code, proc_reg is implemented as a
server process using Erlang’s generic server library (cf. Armstrong
2007, chap 16). This library provides a robust way to build client-
server systems, in which clients make “synchronous calls” to the
server by sending a call message, and awaiting a matching reply1.
Each operation—reg, where, unreg and send—is supported by
a different call message. The operations are actually executed by
the server, one at a time, and so no race conditions can arise.

At least, this is the theory. In practice there is a small cost to
the generic server approach: each request sends two messages and
requires two context switches, and although these are cheap in Er-
lang, they are not free, and turn out to be a bottleneck in system
start-up times, for example. The prototype proc_reg attempts to
optimize this, by moving the creation of the first “forward” ETS
table entry into the clients. If this succeeds (because there is no
previous entry with that name), then clients just make an “asyn-
chronous” call to the server (a so-called cast message, with no re-
ply) to inform it that it should complete the registration later. This
avoids a context switch, and reduces two messages to one. If there
is already a registered process with the same name, then the reg
operation fails (with an exception)—unless, of course, the process
is dead. In this case, the process will soon be removed from the reg-
istry by the server; clients ask the server to “audit” the dead process
to hurry this along, then complete their registration as before.

1 Unique identifiers are generated for each call, and returned in the reply, so
that no message confusion can occur.

This prototype was one of the first pieces of software to be
tested using QuickCheck at Ericsson. At the time, in late 2005, it
was believed to work, and indeed was accompanied by quite an
extensive suite of unit tests—including cases designed specifically
to test for race conditions. We used QuickCheck to generate and
run random sequences of API calls in two concurrent processes,
and instrumented the proc_reg code with calls to yield() (which
cedes control to the scheduler) to cause fine-grain interleaving of
concurrent operations. By so doing, we could show that proc_reg
was incorrect, since our tests failed. But the failing test cases we
found were large, complex, and very hard to understand, and we
were unable to use them to diagnose the problem. As a result,
this version of proc_reg was abandoned, and development of the
production version continued without the optimization.

While we were pleased that QuickCheck was able to reveal
bugs in proc_reg, we were unsatisfied that it could not help us
to find them. Moreover, the QuickCheck property we used to test it
was hard-to-define and ad hoc—and not easily reusable to test any
other software. This paper is the story of how we addressed these
problems—and returned to apply our new methods successfully to
the example that defeated us before.

3. An Overview of Quviq QuickCheck
QuickCheck (Claessen and Hughes 2000) is a tool that tests univer-
sally quantified properties, instead of single test cases. QuickCheck
generates random test cases from each property, tests whether the
property is true in that case, and reports cases for which the prop-
erty fails. Recent versions also “shrink” failing test cases automat-
ically, by searching for similar, but smaller test cases that also fail.
The result of shrinking is a “minimal”2 failing case, which often
makes the root cause of the problem very easy to find.

Quviq QuickCheck is a commercial version that includes sup-
port for model-based testing using a state machine model (Hughes
2007). This means that it has standard support for generating se-
quences of API calls using this state machine model. It has been
used to test a wide variety of industrial software, such as Ericsson’s
Media Proxy (Arts et al. 2006) among others. State machine models
are tested using an additional library, eqc_statem, which invokes
call-backs supplied by the user to generate and test random, well-
formed sequences of calls to the software under test. We illustrate
eqc_statem by giving fragments of a (sequential) specification of
proc_reg.

Let us begin with an example of a generated test case (a se-
quence of API calls).

[{set,{var,1},{call,proc_reg_eqc,spawn,[]}},
{set,{var,2},{call,proc_reg,where,[c]}},
{set,{var,3},{call,proc_reg_eqc,spawn,[]}},
{set,{var,4},{call,proc_reg_eqc,kill,[{var,1}]}},
{set,{var,5},{call,proc_reg,where,[d]}},
{set,{var,6},{call,proc_reg_eqc,reg,[a,{var,1}]}},
{set,{var,7},{call,proc_reg_eqc,spawn,[]}}]

eqc_statem test cases are lists of symbolic commands represented
by Erlang terms, each of which binds a symbolic variable (such as
{var,1}) to the result of a function call, where {call,M,F,Args}
represents a call of function F in module M with arguments Args3.
Note that previously bound variables can be used in later calls. Test
cases for proc_reg in particular randomly spawn processes (to use
as test data), kill them (to simulate crashes at random times), or pass
them to proc_reg operations. Here proc_reg_eqc is the module
containing the specification of proc_reg, in which we define local

2 In the sense that it cannot shrink to a failing test with the shrinking
algorithm used.
3 In Erlang, variables start with an uppercase character, whereas atoms
(constants) start with a lowercase character.

versions of reg and unreg which just call proc_reg and catch any
exceptions. This allows us to write properties that test whether an
exception is raised correctly or not. (An uncaught exception in a
test is interpreted as a failure of the entire test).

We model the state of a test case as a list of processes spawned,
processes killed, and the {Name,Pid} pairs currently in the reg-
istry. We normally encapsulate the state in a record:

-record(state,{pids=[],regs=[],killed=[]}).

eqc_statem generates random calls using the call-back function
command that we supply as part of the state machine model, with
the test case state as its argument:

command(S) ->
oneof(

[{call,?MODULE,spawn,[]}] ++
[{call,?MODULE,kill, [elements(S#state.pids)]}

|| S#state.pids/=[]] ++
[{call,?MODULE,reg,[name(),elements(S#state.pids)]}

|| S#state.pids/=[]] ++
[{call,?MODULE,unreg,[name()]}] ++
[{call,proc_reg,where,[name()]}]).

name() -> elements([a,b,c,d]).

The function oneof is a QuickCheck generator that randomly uses
one element from a list of generators; in this case, the list of
candidates to choose from depends on the test case state. ([X||P]
is a degenerate list comprehension, that evaluates to the empty list if
P is false, and [X] if P is true—so reg and kill can be generated
only if there are pids available to pass to them.) We decided not
to include send in test cases, because its implementation is quite
trivial. The macro ?MODULE expands to the name of the module
that it appears in, proc_reg_eqc in this case.

The next_state function specifies how each call is supposed
to change the state:

next_state(S,V,{call,_,spawn,_}) ->
S#state{pids=[V|S#state.pids]};

next_state(S,V,{call,_,kill,[Pid]}) ->
S#state{killed=[Pid|S#state.killed],

regs=[{Name,P} ||
{Name,P} <- S#state.regs, Pid /= P]};

next_state(S,_V,{call,_,reg,[Name,Pid]}) ->
case register_ok(S,Name,Pid) andalso

not lists:member(Pid,S#state.killed) of
true ->

S#state{regs=[{Name,Pid}|S#state.regs]};
false ->

S
end;

next_state(S,_V,{call,_,unreg,[Name]}) ->
S#state{regs=lists:keydelete(Name,1,S#state.regs)};

next_state(S,_V,{call,_,where,[_]}) ->
S.

register_ok(S,Name,Pid) ->
not lists:keymember(Name,1,S#state.regs).

Note that the new state can depend on the result of the call (the
second argument V), as in the first clause above. Note also that
killing a process removes it from the registry (in the model), and
that registering a dead process, or a name that is already registered
(see register_ok), should not change the registry state. We do
allow the same pid to be registered with several names, however.

When running tests, eqc_statem checks the postcondition of
each call, specified via another call-back that is given the state be-
fore the call, and the actual result returned, as arguments. Since
we catch exceptions in each call, which converts them into val-
ues of the form {’EXIT’,Reason}, our proc_reg postconditions
can test that exceptions are raised under precisely the right circum-
stances:

postcondition(S,{call,_,reg,[Name,Pid]},Res) ->
case Res of

true ->
register_ok(S,Name,Pid);

{’EXIT’,_} ->
not register_ok(S,Name,Pid)

end;
postcondition(S,{call,_,unreg,[Name]},Res) ->

case Res of
true ->

unregister_ok(S,Name);
{’EXIT’,_} ->

not unregister_ok(S,Name)
end;

postcondition(S,{call,_,where,[Name]},Res) ->
lists:member({Name,Res},S#state.regs);

postcondition(_S,{call,_,_,_},_Res) ->
true.

unregister_ok(S,Name) ->
lists:keymember(Name,1,S#state.regs).

Note that reg(Name,Pid) and unreg(Name) are required to re-
turn exceptions if Name is already used/not used respectively, but
that reg always returns true if Pid is dead, even though no reg-
istration is performed! This may perhaps seem a surprising design
decision, but it is consistent. As a comparison, the built-in process
registry sometimes returns true and sometimes raises an excep-
tion when registering dead processes. This is due to the fact that a
context switch is required to clean up.

State machine models can also specify a precondition for each
call, which restricts test cases to those in which all preconditions
hold. In this example, we could have used preconditions to exclude
test cases that we expect to raise exceptions—but we prefer to allow
any test case, and check that exceptions are raised correctly, so we
define all preconditions to be true.

With these four call-backs, plus another call-back specifying the
initial state, our specification is almost complete. It only remains to
define the top-level property which generates and runs tests:

prop_proc_reg() ->
?FORALL(Cmds,commands(?MODULE),

begin
{ok,ETSTabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
{H,S,Res} = run_commands(?MODULE,Cmds),
cleanup(ETSTabs,Server),
Res == ok

end).

Here ?FORALL binds Cmds to a random list of commands generated
by commands, then we initialize the registry, run the commands,
clean up, and check that the result of the run (Res) was a success.
Here commands and run_commands are provided by eqc_statem,
and take the current module name as an argument in order to
find the right call-backs. The other components of run_commands’
result, H and S, record information about the test run, and are
of interest primarily when a test fails. This is not the case here:
sequential testing of proc_reg does not fail.

4. Parallel Testing with QuickCheck
4.1 A Parallel Correctness Criterion
In order to test for race conditions, we need to generate test cases
that are executed in parallel, and we also need a specification of the
correct parallel behavior. We have chosen, in this paper, to use a
specification that just says that the API operations we are testing
should behave atomically.

How can we tell from test results whether or not each operation
“behaved atomically”? Following Lamport (1979) and Herlihy and

Wing (1987), we consider a test to have passed if the observed
results are the same as some possible sequential execution of the
operations in the test—that is, a possible interleaving of the parallel
processes in the test.

Of course, testing for atomic behavior is just a special case,
and in general we may need to test other properties of concurrent
code too—but we believe that this is a very important special case.
Indeed, Herlihy and Wing claim that their notion of linearizability
“focuses exclusively on a subset of concurrent computations that
we believe to be the most interesting and useful”; we agree. In
particular, atomicity is of great interest for the process registry.

One great advantage of this approach is that we can reuse the
same specification of the sequential behavior of an API, to test its
behavior when invocations take place in parallel. We need only find
the right linearization of the API calls in the test, and then use the
sequential specification to determine whether or not the test has
passed. We have implemented this idea in a new QuickCheck mod-
ule, eqc_par_statem, which takes the same state-machine specifi-
cations as eqc_statem, but tests the API in parallel instead. While
state machine specifications require some investment to produce in
real situations, this means that we can test for race conditions with
no further investment in developing a parallel specification. It also
means that, as the code under test evolves, we can switch freely to-
and-fro between sequential testing to ensure the basic behavior still
works, and race condition testing using eqc_par_statem.

The difficulty with this approach is that, when we run a test, then
there is no way to observe the sequence in which the API operations
take effect. (For example, a server is under no obligation to service
requests in the order in which they are made, so observing this or-
der would tell us nothing.) In general, the only way to tell whether
there is a possible sequentialization of a test case which can explain
the observed test results, is to enumerate all possible sequentializa-
tions. This is prohibitively expensive unless care is taken when test
cases are generated.

4.2 Generating Parallel Test Cases
Our first approach to parallel test case generation was to use the
standard Quviq QuickCheck library eqc_statem to generate se-
quential test cases, then execute all the calls in the test case in
parallel, constrained only by the data dependencies between them
(which arise from symbolic variables, bound in one command, be-
ing used in a later one). This generates a great deal of parallelism,
but sadly also an enormous number of possible serializations—in
the worst case in which there are no data dependencies, a sequence
of n commands generates n! possible serializations. It is not prac-
tically feasible to implement a test oracle for parallel tests of this
sort.

Instead, we decided to generate parallel test cases of a more re-
stricted form. They consist of an initial sequential prefix, to put
the system under test into a random state, followed by exactly
two sequences of calls which are performed in parallel. Thus the
possible serializations consist of the initial prefix, followed by
an interleaving of the two parallel sequences. (Lu et al. (2008)
gives clear evidence that it is possible to discover a large frac-
tion of the concurrency related bugs by using only two parallel
threads/processes.) We generate parallel test cases by parallelizing
a suffix of an eqc_statem test case, separating it into two lists
of commands of roughly equal length, with no mutual data de-
pendencies, which are non-interfering according to the sequential
specification. By non-interference, we mean that all command pre-
conditions are satisfied in any interleaving of the two lists, which
is necessary to prevent tests from failing because a precondition
was unsatisfied—not an interesting failure. We avoid parallelizing
too long a suffix (longer than 16 commands), to keep the num-
ber of possible interleavings feasible to enumerate (about 10,000

in the worst case). Finally, we run tests by first running the prefix,
then spawning two processes to run the two command-lists in par-
allel, and collecting their results, which will be non-deterministic
depending on the actual parallel scheduling of events.

We decide whether a test has passed, by attempting to construct
a sequentialization of the test case which explains the results ob-
served. We begin with the sequential prefix of the test case, and
use the next_state function of the eqc_statem model to com-
pute the test case state after this prefix is completed. Then we try to
extend the sequential prefix, one command at a time, by choosing
the first command from one of the parallel branches, and moving it
into the prefix. This is allowed only if the postcondition speci-
fied in the eqc_statem model accepts the actual result returned by
the command when we ran the test. If so, we use the next_state
function to compute the state after this command, and continue. If
the first commands of both branches fulfilled their postconditions,
then we cannot yet determine which command took effect first, and
we must explore both possibilities further. If we succeed in moving
all commands from the parallel branches into the sequential pre-
fix, such that all postconditions are satisfied, then we have found a
possible sequentialization of the test case explaining the results we
observed. If our search fails, then there is no such sequence, and
the test failed.

This is a greedy algorithm: as soon as a postcondition fails,
then we can discard all potential sequentializations with the fail-
ing command as the next one in the sequence. This happens often
enough to make the search reasonably fast in practice. As a further
optimization, we memoize the search function on the remaining
parallel branches and the test case state. This is useful, for exam-
ple, when searching for a sequentialization of [A,B] and [C,D], if
both [A,C] and [C,A] are possible prefixes, and they lead to the
same test state—for then we need only try to sequentialize [B] and
[D] once. We memoize the non-interference test in a similar way,
and these optimizations give an appreciable, though not dramatic,
speed-up in our experiments—of about 20%. With these optimiza-
tions, generating and running parallel tests is acceptably fast.

4.3 Shrinking Parallel Test Cases
When a test fails, QuickCheck attempts to shrink the failing test
by searching for a similar, but smaller test case which also fails.
QuickCheck can often report minimal failing examples, which is
a great help in fault diagnosis. eqc_statem already has built-in
shrinking methods, of which the most important tries to delete un-
necessary commands from the test case, and eqc_par_statem in-
herits these methods. But we also implement an additional shrink-
ing method for parallel test cases: if it is possible to move a com-
mand from one of the parallel suffixes into the sequential prefix,
then we do so. Thus the minimal test cases we find are “minimally
parallel”—we know that the parallel branches in the failing tests
reported really do race, because everything that can be made se-
quential, is sequential. This also assists fault diagnosis.

4.4 Testing proc reg for Race Conditions
To test the process registry using eqc_par_statem, it is only nec-
essary to modify the property in Section 2 to use eqc_par_statem
rather than eqc_statem to generate and run test cases.

prop_proc_reg_parallel() ->
?FORALL(Cmds,eqc_par_statem:commands(?MODULE),

begin
{ok,ETSTabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
{H,{A,B},Res} =

eqc_par_statem:run_commands(?MODULE,Cmds),
cleanup(ETSTabs,Server),
Res == ok

end).

The type returned by run_commands is slightly different (A and B
are lists of the calls made in each parallel branch, paired with the
results returned), but otherwise no change to the property is needed.

When this property is tested on a single-core processor, all tests
pass. However, as soon as it is tested on a dual-core, tests begin to
fail. Interestingly, just running on two cores gives us enough fine-
grain interleaving of concurrent processes to demonstrate the pres-
ence of race conditions, something we had to achieve by instru-
menting the code with calls to yield() to control the scheduler
when we first tested this code in 2005. However, just as in 2005,
the reported failing test cases are large, and do not shrink to small
examples. This makes the race condition very hard indeed to diag-
nose.

The problem is that the test outcome is not determined solely
by the test case: depending on the actual interleaving of mem-
ory operations on the dual core, the same test may sometimes
pass and sometimes fail. This is devastating for QuickCheck’s
shrinking, which works by repeatedly replacing the failed test
case by a smaller one which still fails. If the smaller test hap-
pens to succeed—by sheer chance, as a result of non-deterministic
execution—then the shrinking process stops. This leads Quick-
Check to report failed tests which are far from minimal.

Our solution to this is almost embarrassing in its simplicity:
instead of running each test only once, we run it many times, and
consider a test case to have passed only if it passes every time we
run it. We express this concisely using a new form of QuickCheck
property, ?ALWAYS(N,Prop), which passes if Prop passes N times
in a row4. Now, provided the race condition we are looking for is
reasonably likely to be provoked by test cases in which it is present,
then ?ALWAYS(10,...) is very likely to provoke it—and so tests
are unlikely to succeed “by chance” during the shrinking process.
This dramatically improves the effectiveness of shrinking, even for
quite small values of N. While we do not always obtain minimal
failing tests with this approach, we find we can usually obtain a
minimal example by running QuickCheck a few times.

When testing the proc_reg property above, we find the follow-
ing simple counterexample:

{[{set,{var,5},{call,proc_reg_eqc,spawn,[]}},
{set,{var,9},{call,proc_reg_eqc,kill,[{var,5}]}},
{set,{var,15},{call,proc_reg_eqc,reg,[a,{var,5}]}}],

{[{set,{var,19},{call,proc_reg_eqc,reg,[a,{var,5}]}}],
[{set,{var,18},{call,proc_reg_eqc,reg,[a,{var,5}]}}]}}

This test case first creates and kills a process, then tries to regis-
ter it (which should have no effect, because it is already dead), and
finally tries to register it again twice, in parallel. Printing the diag-
nostic output from run_commands, we see:

Sequential:
[{{state,[],[],[]},<0.5576.2>},
{{state,[<0.5576.2>],[],[]},ok},
{{state,[<0.5576.2>],[],[<0.5576.2>]},true}]

Parallel:
{[{{call,proc_reg_eqc,reg,[a,<0.5576.2>]},

{’EXIT’,{badarg,[{proc_reg,reg,2},...]}}}],
[{{call,proc_reg_eqc,reg,[a,<0.5576.2>]},true}]}

Res: no_possible_interleaving

(where the ellipses replace an uninteresting stack trace). The values
displayed under “Parallel:” are the results A and B from the two
parallel branches—they reveal that one of the parallel calls to reg
raised an exception, even though trying to register a dead process
should always just return true! How this happened, though, is still
quite mysterious—but will be explained in the following sections.

4 In fact we need only repeat tests during shrinking.

5. PULSE: A User-level Scheduler
At this point, we have found a simple test case that fails, but we do
not know why it failed—we need to debug it. A natural next step
would be to turn on Erlang’s tracing features and rerun the test. But
when the bug is caused by a race condition, then turning on tracing
is likely to change the timing properties of the code, and thus
interfere with the test failure! Even simply repeating the test may
lead to a different result, because of the non-determinism inherent
in running on a multi-core. This is devastating for debugging.

What we need is to be able to repeat the test as many times as
we like, with deterministic results, and to observe what happens
during the test, so that we can analyze how the race condition
was provoked. With this in mind, we have implemented a new
Erlang module that can control the execution of designated Erlang
processes and records a trace of all relevant events. Our module
can be thought of as a user-level scheduler, sitting on top of the
normal Erlang scheduler. Its aim is to take control over all sources
of non-determinism in Erlang programs, and instead take those
scheduling decisions randomly. This means that we can repeat a
test using exactly the same schedule by supplying the same random
number seed: this makes tests repeatable. We have named the
module PULSE, short for ProTest User-Level Scheduler for Erlang.

The Erlang virtual machine (VM) runs processes for relatively
long time-slices, in order to minimize the time spent on context
switching—but as a result, it is very unlikely to provoke race con-
ditions in small tests. It is possible to tune the VM to perform more
context switches, but even then the scheduling decisions are en-
tierly deterministic. This is one reason why tricky concurrency bugs
are rarely found during unit testing; it is not until later stages of a
project, when many components are tested together, that the stan-
dard scheduler begins to preempt processes and trigger race condi-
tions. In the worst case, bugs don’t appear until the system is put
under heavy load in production! In these later stages, such errors
are expensive to debug. One other advantage (apart from repeata-
bility) of PULSE is that it generates much more fine-grain interleav-
ing than the built-in scheduler in the Erlang virtual machine (VM),
because it randomly chooses the next process to run at each point.
Therefore, we can provoke race conditions even in very small tests.

Erlang’s scheduler is built into its virtual machine—and we did
not want to modify the virtual machine itself. Not only would
this be difficult—it is a low-level, fairly large and complex C
program—but we would need to repeat the modifications every
time a new version of the virtual machine was released. We de-
cided, therefore, to implement PULSE in Erlang, as a user-level
scheduler, and to instrument the code of the processes that it con-
trols so that they cooperate with it. As a consequence, PULSE can
even be used in conjunction with legacy or customized versions of
the Erlang VM (which are used in some products). The user level
scheduler also allows us to restrict our debugging effort to a few
processes, whereas we are guaranteed that the rest of the processes
are executed normally.

5.1 Overall Design
The central idea behind developing PULSE was to provide absolute
control over the order of relevant events. The first natural question
that arises is: What are the relevant events? We define a side-effect
to be any interaction of a process with its environment. Of particu-
lar interest in Erlang is the way processes interact by message pass-
ing, which is asynchronous. Message channels, containing mes-
sages that have been sent but not yet delivered, are thus part of the
environment and explicitly modelled as such in PULSE. It makes
sense to separate side-effects into two kinds: outward side-effects,
that influence only the environment (such as sending a message
over a channel, which does not block and cannot fail, or printing
a message), and inward side-effects, that allow the environment to

influence the behavior of the process (such as receiving a message
from a channel, or asking for the system time).

We do not want to take control over purely functional code, or
side-effecting code that only influences processes locally. PULSE
takes control over some basic features of the Erlang RTS (such as
spawning processes, message sending, linking, etc.), but it knows
very little about standard library functions – it would be too much
work to deal with each of these separately! Therefore, the user of
PULSE can specify which library functions should be dealt with as
(inward) side-effecting functions, and PULSE has a generic way of
dealing with these (see subsection 5.3).

A process is only under the control of PULSE if its code has
been properly instrumented. All other processes run as normal. In
instrumentation, occurrences of side-effecting actions are replaced
by indirections that communicate with PULSE instead. In particular,
outward side-effects (such as sending a message to another process)
are replaced by simply sending a message to PULSE with the details
of the side-effect, and inward side-effects (such as receiving a mes-
sage) are replaced by sending a request to PULSE for performing
that side-effect, and subsequently waiting for permission. To ease
the instrumentation process, we provide an automatic instrumenter,
described in subsection 5.4.

5.2 Inner Workings
The PULSE scheduler controls its processes by allowing only one
of them to run at a time. It employs a cooperative scheduling
method: At each decision point, PULSE randomly picks one of
its waiting processes to proceed, and wakes it up. The process
may now perform a number of outward side-effects, which are
all recorded and taken care of by PULSE, until the process wants
to perform an inward side-effect. At this point, the process is put
back into the set of waiting processes, and a new decision point is
reached.

The (multi-node) Erlang semantics (Svensson and Fredlund
2007) provides only one guarantee for message delivery order: that
messages between a pair of processes arrive in the same order as
they were sent. So as to adhere to this, PULSE’s state also maintains
a message queue between each pair of processes. When process P
performs an outward side-effect by sending a message M to the
process Q, then M is added to the queue 〈P,Q〉. When PULSE
wants to wake up a waiting process Q, it does so by randomly
picking a non-empty queue 〈P ′, Q〉 with Q as its destination, and
delivering the first message in that queue to Q. Special care needs
to be taken for the Erlang construct receive . . . after n -> . . .
end, which allows a receiving process to only wait for an incoming
message for n milliseconds before continuing, but the details of
this are beyond the scope of this paper.

As an additional benefit, this design allows PULSE to detect
deadlocks when it sees that all processes are blocked, and there
exist no message queues with the blocked processes as destination.

As a clarification, the message queues maintained by PULSE
for each pair of processes should not be confused with the internal
mailbox that each process in Erlang has. In our model, sending a
message M from P to Q goes in four steps: (1) P asynchronously
sends off M , (2) M is on its way to Q, (3) M is delivered to Q’s
mailbox, (4) Q performs a receive statement and M is selected
and removed from the mailbox. The only two events in this process
that we consider side-effects are (1) P sending of M , and (3)
delivering M to Q’s mailbox. In what order a process decides to
process the messages in its mailbox is not considered a side-effect,
because no interaction with the environment takes place.

5.3 External Side-effects
In addition to sending and receiving messages between themselves,
the processes under test can also interact with uninstrumented code.

PULSE needs to be able to control the order in which those inter-
actions take place. Since we are not interested in controlling the
order in which pure functions are called we allow the programmer
to specify which external functions have side-effects. Each call of a
side-effecting function is then instrumented with code that yields
before performing the real call and PULSE is free to run another
process at that point.

Side-effecting functions are treated as atomic which is also
an important feature that aids in testing systems built of multiple
components. Once we establish that a component contains no race
conditions we can remove the instrumentation from it and mark
its operations as atomic side-effects. We will then be able to test
other components that use it and each operation marked as side-
effecting will show up as a single event in a trace. Therefore, it is
possible to test a component for race conditions independently of
the components that it relies on.

5.4 Instrumentation
The program under test has to cooperate with PULSE, and the rel-
evant processes should use PULSE’s API to send and receive mes-
sages, spawn processes, etc., instead of Erlang’s built-in function-
ality. Manually altering an Erlang program so that it does this is te-
dious and error-prone, so we developed an instrumenting compiler
that does this automatically. The instrumenter is used in exactly the
same way as the normal compiler, which makes it easy to switch
between PULSE and the normal Erlang scheduler. It’s possible to
instrument and load a module at runtime by typing in a single com-
mand at the Erlang shell.

Let us show the instrumentation of the four most important
constructs: sending a message, yielding, spawning a process, and
receiving a message.

5.4.1 Sending
If a process wants to send a message, the instrumenter will redirect
this as a request to the PULSE scheduler. Thus, Pid ! Msg is
replaced by

scheduler ! {send, Pid, Msg},
Msg

The result value of sending a message is always the message that
was sent. Since we want the instrumented send to yield the same
result value as the original one, we add the second line.

5.4.2 Yielding
A process yields when it wants to give up control to the scheduler.
Yields are also introduced just before each user-specified side-
effecting external function.

After instrumentation, a yielding process will instead give up
control to PULSE. This is done by telling it that the process yields,
and waiting for permission to continue. Thus, yield() is replaced
by

scheduler ! yield,
receive

{scheduler, go} -> ok
end

In other words, the process notifies PULSE and then waits for the
message go from the scheduler before it continues. All control
messages sent by PULSE to the controlled processes are tagged with
{scheduler, _} in order to avoid mixing them up with ”real”
messages.

5.4.3 Spawning
A process P spawning a process Q is considered an outward side-
effect for P , and thus P does not have to block. However, PULSE
must be informed of the existence of the new process Q, and Q

needs to be brought under its control. The spawned process Q must
therefore wait for PULSE to allow it to run. Thus, spawn(Fun) is
replaced by

Pid = spawn(fun() -> receive
{scheduler, go} -> Fun()

end
end),

scheduler ! {spawned, Pid},
Pid

In other words, the process spawns an altered process that waits
for the message go from the scheduler before it does anything. The
scheduler is then informed of the existence of the spawned process,
and we continue.

5.4.4 Receiving
Receiving in Erlang works by pattern matching on the messages
in the process’ mailbox. When a process is ready to receive a new
message, it will have to ask PULSE for permission. However, it is
possible that an appropriate message already exists in its mailbox,
and receiving this message would not be a side-effect. Therefore,
an instrumented process will first check if it is possible to receive
a message with the desired pattern, and proceed if this is possible.
If not, it will tell the scheduler that it expects a new message in its
mailbox, and blocks. When woken up again on the delivery of a
new message, this whole process is repeated if necessary.

We need a helper function that implements this checking-
waiting-checking loop. It is called receiving:

receiving(Receiver) ->
Receiver(fun() ->

scheduler ! block,
receive

{scheduler, go} -> receiving(Receiver)
end

end).

receiving gets a receiver function as an argument. A receiver
function is a function that checks if a certain message is in its
mailbox, and if not, executes its argument function. The function
receiving turns this into a loop that only terminates once PULSE
has delivered the right message. When the receiver function fails,
PULSE is notified by the block message, and the process waits for
permission to try again.

Code of the form

receive Pat -> Exp end

is then replaced by

receiving(fun (Failed) ->
receive

Pat -> Exp
after 0 -> Failed()

end
end)

In the above, we use the standard Erlang idiom (receive . . .
after 0 -> . . . end) for checking if a message of a certain type
exists. It is easy to see how receive statements with more than one
pattern can be adapted to work with the above scheme.

5.5 Testing proc reg with PULSE

To test the proc reg module using both QuickCheck and PULSE,
we need to make a few modifications to the QuickCheck property
in Section 4.4.

prop_proc_reg_scheduled() ->
?FORALL(Cmds,eqc_par_statem:commands(?MODULE),
?ALWAYS(10,?FORALL(Seed,seed(),

begin

SRes =
scheduler:start([{seed,Seed}],

fun() ->
{ok,ETSTabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
eqc_par_statem:run_commands(?MODULE,Cmds),
cleanup(ETSTabs,Server),

end),
{H,AB,Res} = scheduler:get_result(SRes),
Res == ok

end))).

PULSE uses a random seed, generated by seed(). It also takes a
function as an argument, so we create a lambda-function which ini-
tializes and runs the tests. The result of running the scheduler is
a list of things, thus we need to call scheduler:get result to
retrieve the actual result from run commands. We should also re-
member to instrument rather than compile all the involved modules.
Note that we still use ?ALWAYS in order to run the same test data
with different random seeds, which helps the shrinking process in
finding smaller failing test cases that would otherwise be less likely
to fail.

When testing this modified property, we find the following
counterexample, which is in fact simpler than the one we found
in Section 4.4:

{[{set,{var,9},{call,proc_reg_eqc,spawn,[]}},
{set,{var,10},{call,proc_reg_eqc,kill,[{var,9}]}}],

{[{set,{var,15},{call,proc_reg_eqc,reg,[c,{var,9}]}}],
[{set,{var,12},{call,proc_reg_eqc,reg,[c,{var,9}]}}]}}

When prompted, PULSE provides quite a lot of information
about the test case run and the scheduling decisions taken. Below
we show an example of such information. However, it is still not
easy to explain the counterexample; in the next section we present
a method that makes it easier to understand the scheduler output.

-> <’start_link.Pid1’> calls
scheduler:process_flag [priority,high]
returning normal.

-> <’start_link.Pid1’> sends
’{call,{attach,<0.31626.0>},

<0.31626.0>,#Ref<0.0.0.13087>}’
to <’start_link.Pid’>.

-> <’start_link.Pid1’> blocks.
*** unblocking <’start_link.Pid’>

by delivering ’{call,{attach,<0.31626.0>},
<0.31626.0>,
#Ref<0.0.0.13087>}’

sent by <’start_link.Pid1’>.
...

6. Visualizing Traces
PULSE records a complete trace of the interesting events during
test execution, but these traces are long, and tedious to understand.
To help us interpret them, we have, utilizing the popular GraphViz
package (Gansner and North 1999), built a trace visualizer that
draws the trace as a graph. For example, Figure 1 shows the graph
drawn for one possible trace of the following program:

procA() ->
PidB = spawn(fun procB/0),
PidB ! a,
process_flag(trap_exit, true),
link(PidB),
receive

{’EXIT’,_,Why} -> Why
end.

procB() ->
receive

a -> exit(kill)
end.

root

procA.PidB

kill

kill

{EXIT,_,kill}

link

a
scheduler:process_flag(trap_exit,true)

= false

Figure 1. A simple trace visualization.

The function procA starts by spawning a process, and subsequently
sends it a message a. Later, procA links to the process it spawned,
which means that it will get notified when that process dies. The
default behavior of a process when such a notification happens is
to also die (in this way, one can build hierarchies of processes).
Setting the process flag trap exit to true changes this behaviour,
and the notification is delivered as a regular message of the form
{EXIT,_,_} instead.

In the figure, each process is drawn as a sequence of state tran-
sitions, from a start state drawn as a triangle, to a final state drawn
as an inverted triangle, all enclosed in a box and assigned a unique
color. (Since the printed version of the diagrams may lack these
colors, we reference diagram details by location and not by color.
However, the diagrams are even more clear in color.) The diagram
shows the two processes, procA (called root) which is shown to
the left (in red), and procB (called procA.PidB, a name automat-
ically derived by PULSE from the point at which it was spawned)
shown to the right (in blue). Message delivery is shown by gray ar-
rows, as is the return of a result by the root process. As explained
in the previous section, processes make transitions when receiving
a message5, or when calling a function that the instrumenter knows
has a side-effect. From the figure, we can see that the root process
spawned PidB and sent the message a to it, but before the message
was delivered then the root process managed to set its trap_exit
process flag, and linked to PidB. PidB then received its message,
and killed itself, terminating with reason kill. A message was sent
back to root, which then returned the exit reason as its result.

Figure 2 shows an alternative trace, in which PidB dies before
root creates a link to it, which generates an exit message with a
different exit reason. The existence of these two different traces
indicates a race condition when using spawn and link separately
(which is the reason for the existence of an atomic spawn_link
function in Erlang).

The diagrams help us to understand traces by gathering together
all the events that affect one process into one box; in the original
traces, these events may be scattered throughout the entire trace.
But notice that the diagrams also abstract away from irrelevant
information—specifically, the order in which messages are deliv-

5 If messages are consumed from a process mailbox out-of-order, then we
show the delivery of a message to the mailbox, and its later consumption,
as separate transitions.

root procA.PidB

kill

noproc

{EXIT,_,noproc}

link

a

scheduler:process_flag(trap_exit,true)
= false

Figure 2. An alternative possible execution.

root

write_race.Pid

ok

file:write_file("a.txt",_)
= ok

file:write_file("a.txt",_)
= ok

Figure 3. A race between two side-effects.

ered to different processes, which is insignificant in Erlang. This
abstraction is one strong reason why the diagrams are easier to un-
derstand than the traces they are generated from.

However, we do need to know the order in which calls to
functions with side-effects occur, even if they are made in different
processes. To make this order visible, we add dotted black arrows
to our diagrams, from one side-effecting call to the next. Figure
3 illustrates one possible execution of this program, in which two
processes race to write to the same file:

write_race() ->
Pid = spawn(fun() ->

file:write_file("a.txt","a")
end),

file:write_file("a.txt","b").

In this diagram, we can see that the write_file in the root pro-
cess preceded the one in the spawned process write_race.Pid.

If we draw these arrows between every side-effect and its suc-
cessor, then our diagrams rapidly become very cluttered. However,

it is only necessary to indicate the sequencing of side-effects ex-
plicitly if their sequence is not already determined. For each pair
of successive side-effect transitions, we thus compute Lamport’s
“happens before” relation (Lamport 1978) between them, and if
this already implies that the first precedes the second, then we draw
no arrow in the diagram. Interestingly, in our examples then this
eliminates the majority of such arrows, and those that remain tend
to surround possible race conditions—where the message pass-
ing (synchronization) does not enforce a particular order of side-
effects. Thus black dotted arrows are often a sign of trouble.

6.1 Analyzing the proc reg race conditions
Interestingly, as we saw in Section 5.5, when we instrumented
proc_reg and tested it using PULSE and QuickCheck, we obtained
a different—even simpler—minimal failing test case, than the one
we had previously discovered using QuickCheck with the built-in
Erlang scheduler. Since we need to use PULSE in order to obtain
a trace to analyze, then we must fix this bug first, and see whether
that also fixes the first problem we discovered. The failing test we
find using PULSE is this one:

{[{set,{var,9},{call,proc_reg_eqc,spawn,[]}},
{set,{var,10},{call,proc_reg_eqc,kill,[{var,9}]}}],

{[{set,{var,15},{call,proc_reg_eqc,reg,[c,{var,9}]}}],
[{set,{var,12},{call,proc_reg_eqc,reg,[c,{var,9}]}}]}}

In this test case, we simply create a dead process (by spawning a
process and then immediately killing it), and try to register it twice
in parallel, and as it happens the first call to reg raises an exception.
The diagram we generate is too large to include in full, but in Figure
4 we reproduce the part showing the problem.

In this diagram fragment, the processes are, from left to right,
the proc_reg server, the second parallel fork (BPid), and the first
parallel fork (APid). We can see that BPid first inserted its argu-
ment into the ETS table, recording that the name c is now taken,
then sent an asynchronous message to the server ({cast,{..}}) to
inform it of the new entry. Thereafter APid tried to insert an ETS
entry with the same name—but failed. After discovering that the
process being registered is actually dead, APid sent a message to
the server asking it to “audit” its entry ({call,{..},_,_})—that
is, clean up the table by deleting the entry for a dead process. But
this message was delivered before the message from BPid! As a
result, the server could not find the dead process in its table, and
failed to delete the entry created by BPid, leading APid’s second
attempt to create an ETS entry to fail also—which is not expected
to happen. When BPid’s message is finally received and processed
by the server, it is already too late.

The problem arises because, while the clients create “forward”
ETS entries linking the registered name to a pid, it is the server
which creates a “reverse” entry linking the pid to its monitoring
reference (created by the server). It is this reverse entry that is
used by the server when asked to remove a dead process from its
tables. We corrected the bug by letting clients (atomically) insert
two ETS entries into the same table: the usual forward entry, and a
dummy reverse entry (lacking a monitoring reference) that is later
overwritten by the server. This dummy reverse entry enables the
server to find and delete both entries in the test case above, thus
solving the problem.

In fact, the current Erlang virtual machine happens to deliver
messages to local mailboxes instantaneously, which means that one
message cannot actually overtake another message sent earlier—
the cause of the problem in this case. This is why this minimal
failing test was not discovered when we ran tests on a multi-core,
using the built-in scheduler. However, this behavior is not guar-
anteed by the language definition, and indeed, messages between
nodes in a distributed system can overtake each other in this way.
It is expected that future versions of the virtual machine may allow

message overtaking even on a single “many-core” processor; thus
we consider it an advantage that our scheduler allows this behavior,
and can provoke race conditions that it causes.

It should be noted that exactly the same scenario can be trig-
gered in an alternative way (without parallel processes and multi-
core!); namely if the BPid above is preempted between its call to
ets:insert new and sending the cast-message. However, the
likelihood for this is almost negligible, since the Erlang sched-
uler prefers running processes for relatively long time-slices. Us-
ing PULSE does not help triggering the scenario in this way either.
PULSE is not in control at any point between ets:insert new and
sending the cast-message, meaning that only the Erlang scheduler
controls the execution. Therefore, the only feasible way to repeat-
edly trigger this faulty scenario is by delaying the cast-message
by using PULSE (or a similar tool).

6.2 A second race condition in proc reg

Having corrected the bug in proc regwe repeated the QuickCheck
test. The property still fails, with the same minimal failing case that
we first discovered (which is not so surprising since the problem
that we fixed in the previous section cannot actually occur with
today’s VM). However, we were now able to reproduce the failure
with PULSE, as well as the built-in scheduler. As a result, we could
now analyze and debug the race condition. The failing case is:

{[{set,{var,4},{call,proc_reg_eqc,spawn,[]}},
{set,{var,7},{call,proc_reg_eqc,kill,[{var,4}]}},
{set,{var,12},{call,proc_reg_eqc,reg,[b,{var,4}]}}],

{[{set,{var,18},{call,proc_reg_eqc,reg,[b,{var,4}]}}],
[{set,{var,21},{call,proc_reg_eqc,reg,[b,{var,4}]}}]}}

In this test case we also create a dead process, but we try to register
it once in the sequential prefix, before trying to register it twice in
parallel. Once again, one of the calls to reg in the parallel branches
raised an exception.

Turning again to the generated diagram, which is not included in
the paper for space reasons, we observed that both parallel branches
(APid and BPid) fail to insert b into the ETS table. They fail since
the name b was already registered in the sequential part of the
test case, and the server has not yet processed the DOWN message
generated by the monitor. Both processes then call where(b) to
see if b is really registered, which returns undefined since the
process is dead. Both APid and BPid then request an “audit” by the
server, to clean out the dead process. After the audit, both processes
assume that it is now ok to register b, there is a race condition
between the two processes, and one of the registrations fails. Since
this is not expected, an exception is raised. (Note that if b were
alive then this would be a perfectly valid race condition, where one
of the two processes successfully registers the name and the other
fails, but the specification says that the registration should always
return true for dead processes).

This far into our analysis of the error it became clear that it
is an altogether rather unwise idea ever to insert a dead process
into the process registry. To fix the error we added a simple check
(is_process_alive(Pid)) before inserting into the registry. The
effect of this change on the performance turned out to be negligible,
because is_process_alive is very efficient for local processes.
After this change the module passed 20 000 tests, and we were
satisfied.

7. Discussion and Related Work
Actually, the “fix” just described does not really remove all pos-
sible race conditions. Since the diagrams made us understand the
algorithm much better, we can spot another possible race condition:
If APid and BPid try to register the same pid at the same time, and
that process dies just after APid and BPid have checked that it is
alive, then the same problem we have just fixed, will arise. The rea-

run_pcommands.APid

run_pcommands.BPid

ets:insert_new(proc_reg,[{...}])
= true

ets:insert_new(proc_reg,[{...}])
= false

ets:lookup(proc_reg,{reg,c})
= [{...}]

ets:is_process_alive(_)
= false

ets:insert_new(proc_reg,[{...}])
= false

ets:lookup(proc_reg,{reg,c})
= [{...}]

ets:is_process_alive(_)
= false

ets:match_object(proc_reg,{{...},_,_})
= ""

ets:monitor(process,_)
= _

ets:insert_new(proc_reg,{{...},_,{...}})
= true

link

{cast,{...}}

{_,ok}

{call,{...},_,_}

ets:match_delete(proc_reg,{{...},_,_})
= true

Figure 4. A problem caused by message overtaking.

son that our tests succeeded even so, is that a test must contain three
parallel branches to provoke the race condition in its new form—
two processes making simultaneous attempts to register, and a third
process to kill the pid concerned at the right moment. Because our
parallel test cases only run two concurrent branches, then they can
never provoke this behavior.

The best way to fix the last race condition problem in proc_reg
would seem to be to simplify its API, by restricting reg so that a
process may only register itself. This, at a stroke, eliminates the
risk of two processes trying to register the same process at the
same time, and guarantees that we can never try to register a dead
process. This simplification was actually made in the production
version of the code.

Parallelism in test cases
We could, of course, generate test cases with three, four, or even
more concurrent branches, to test for this kind of race condition
too. The problem is, as we explained in section 4.2, that the number
of possible interleavings grows extremely fast with the number of
parallel branches. The number of interleavings of K sequences of
length N are as presented in Figure 5.

The practical consequence is that, if we allow more parallel
branches in test cases, then we must restrict the length of each
branch correspondingly. The bold entries in the table show the last
“feasible” entry in each column—with three parallel branches, we
would need to restrict each branch to just three commands; with

K
2 3 4 5

1 2 6 24 120
2 6 90 2520 113400
3 20 1680 369600 108

N 4 70 34650 6× 107 3× 1011

5 252 756756 1010 6× 1014

.
8 12870 1010 1017 8× 1024

Figure 5. Possible interleavings of parallel branches

four branches, we could only allow two; with five or more branches,
we could allow only one command per branch. This is in itself
a restriction that will make some race conditions impossible to
detect. Moreover, with more parallel branches, there will be even
more possible schedules for PULSE to explore, so race conditions
depending on a precise schedule will be correspondingly harder to
find.

There is thus an engineering trade-off to be made here: allowing
greater parallelism in test cases may in theory allow more race con-
ditions to be discovered, but in practice may reduce the probability
of finding a bug with each test, while at the same time increasing
the cost of each test. We decided to prioritize longer sequences over
more parallelism in the test case, and so we chose K = 2. How-

ever, in the future we plan to experiment with letting QuickCheck
randomly choose K and N from the set of feasible combinations.
To be clear, note that K only refers to the parallelism in the test
case, that is, the number of processes that make calls to the API.
The system under test may have hundreds of processes running,
many of them controlled by PULSE, independently of K.

The problem of detecting race conditions is well studied and
can be divided in runtime detection, also referred to as dynamic
detection, and analyzing the source code, so called static detec-
tion. Most results refer to race conditions in which two threads or
processes write to shared memory (data race condition), which in
Erlang cannot happen. For us, a race condition appears if there are
two schedules of occurring side effects (sending a message, writing
to a file, trapping exits, linking to a process, etc) such that in one
schedule our model of the system is violated and in the other sched-
ule it is not. Of course, writing to a shared ETS table and writing
in shared memory is related, but in our example it is allowed that
two processes call ETS insert in parallel. By the atomicity of in-
sert, one will succeed, the other will fail. Thus, there is a valid race
condition that we do not want to detect, since it does not lead to a
failure. Even in this slightly different setting, known results on race
conditions still indicate that we are dealing with a hard problem.
For example, Netzer and Miller (1990) show for a number of rela-
tions on traces of events that ordering these events on ‘could have
been a valid execution’ is an NP-hard problem (for a shared mem-
ory model). Klein et al. (2003) show that statically detecting race
conditions is NP-complete if more than one semaphore is used.

Thus, restricting eqc par statem to execute only two pro-
cesses in parallel is a pragmatic choice. Three processes may be
feasible, but real scalability is not in sight. This pragmatic choice
is also supported by recent studies (Lu et al. 2008), where it is
concluded that: “Almost all (96%) of the examined concurrency
bugs are guaranteed to manifest if certain partial order between 2
threads is enforced.”

Hierarchical approach
Note that our tools support a hierarchical approach to testing larger
systems. We test proc_reg under the assumption that the underly-
ing ets operations are atomic; PULSE does not attempt to (indeed,
cannot) interleave the executions of single ETS operations, which
are implemented by C code in the virtual machine. Once we have
established that the proc_reg operations behave atomically, then
we can make the same assumption about them when testing code
that makes use of them. When testing for race conditions in mod-
ules that use proc_reg, then we need not, and do not want to,
test for race conditions in proc_reg itself. As a result, the PULSE
schedules remain short, and the simple random scheduling that we
use suffices to find schedules that cause failures.

Model Checking
One could argue that the optimal solution to finding race conditions
problem would be to use a model checker to explore all possible
interleavings. The usual objections are nevertheless valid, and the
rapidly growing state space for concurrent systems makes model
checking totally infeasible, even with a model checker optimized
for Erlang programs, such as McErlang (Fredlund and Svensson
2007). Further it is not obvious what would be the property to
model check, since the atomicity violations that we search for can
not be directly translated into an LTL model checking property.

Input non-determinism
PULSE provides deterministic scheduling. However, in order for
tests to be repeatable we also need the external functions to behave
consistently across repeated runs. While marking them as side-
effects will ensure that they are only called serially, PULSE does

nothing to guarantee that functions called in the same sequence
will return the same values in different runs. The user still has to
make sure that the state of the system is reset properly before each
run. Note that the same arguments apply to QuickCheck testing; it
is crucial for shrinking and re-testing that input is deterministic and
thus it works well to combine QuickCheck and PULSE.

False positives
In contrast to many race finding methods, that try to spot common
patterns leading to concurrency bugs, our approach does not pro-
duce false positives and not even does it show races that result
in correct execution of the program. This is because we employ
property-based testing and classify test cases based on whether the
results satisfy correctness properties and report a bug only when a
property is violated.

Related tools
Park and Sen (2008) study atomicity in Java. Their approach is sim-
ilar to ours in that they use a random scheduler both for repeatabil-
ity and increased probability of finding atomicity violations. How-
ever, since Java communication is done with shared objects and
locks, the analysis is rather different.

It is quite surprising that our simple randomized scheduler—and
even just running tests on a multi-core—coupled with repetition
of tests to reduce non-determinism, should work so well for us.
After all, this can only work if the probability of provoking the
race condition in each test that contains one is reasonably high. In
contrast, race conditions are often regarded as very hard to provoke
because they occur so rarely. For example, Sen used very carefully
constructed schedules to provoke race conditions in Java programs
(Sen 2008)—so how can we reasonably expect to find them just by
running the same test a few times on a multi-core?

We believe two factors make our simple approach to race detec-
tion feasible.

• Firstly, Erlang is not Java. While there is shared data in Erlang
programs, there is much less of it than in a concurrent Java
program. Thus there are many fewer potential race conditions,
and a simpler approach suffices to find them.

• Secondly, we are searching for race conditions during unit test-
ing, where each test runs for a short time using only a relatively
small amount of code. During such short runs, there is a fair
chance of provoking race conditions with any schedule. Finding
race conditions during whole-program testing is a much harder
problem.

Chess, developed by Musuvathi et al. (2008), is a system that
shares many similarities with PULSE. Its main component is a
scheduler capable of running the program deterministically and re-
playing schedules. The key difference between Chess and PULSE
is that the former attempts to do an exhaustive search and enumer-
ate all the possible schedules instead of randomly probing them.
Several interesting techniques are employed, including prioritizing
schedules that are more likely to trigger bugs, making sure that only
fair schedules are enumerated and avoiding exercising schedules
that differ insignificantly from already visited ones.

Visualization
Visualization is a common technique used to aid understanding
software. Information is extracted statically from source code or
dynamically from execution and displayed in graphical form. Of
many software visualization tools a number are related to our work.
Topol et al. (1995) developed a tool that visualizes executions
of parallel programs and shows, among other things, a trace of
messages sent between processes indicating the happened-before
relationships. Work of Jerding et al. (1997) is able to show dynamic

call-graphs of object-oriented programs and interaction patterns
between their components. Arts and Fredlund (2002) describe a
tool that visualizes traces of Erlang programs in form of abstract
state transition diagrams. Artho et al. (2007) develop a notation
that extends UML diagrams to also show traces of concurrent
executions of threads, Maoz et al. (2007) create event sequence
charts that can express which events “must happen” in all possible
scenarios.

8. Conclusions
Concurrent code is hard to debug and therefore hard to get correct.
In this paper we present an extension to QuickCheck, a user level
scheduler for Erlang (PULSE), and a tool for visualizing concurrent
executions that together help in debugging concurrent programs.
The tools allow us to find concurrency errors on a module test-
ing level, whereas industrial experience is that most of them slip
through to system level testing, because the standard scheduler is
deterministic, but behaves differently in different timing contexts.

We contributed eqc par statem, an extension of the state ma-
chine library for QuickCheck that enables parallel execution of a
sequence of commands. We generate a sequential prefix to bring
the system into a certain state and continue with parallel execution
of a suffix of independent commands. As a result we can provoke
concurrency errors and at the same time get good shrinking behav-
ior from the test cases.

We contributed with PULSE, a user level scheduler that enables
scheduling of any concurrent Erlang program in such a way that an
execution can be repeated deterministically. By randomly choosing
different schedules, we are able to explore more execution paths
than without such a scheduler. In combination with QuickCheck
we get in addition an even better shrinking behavior, because of the
repeatability of test cases.

We contributed with a graph visualization method and tool
that enabled us to analyze concurrency faults more easily than
when we had to stare at the produced traces. The visualization
tool depends on the output produced by PULSE, but the use of
computing the “happens before” relation to simplify the graph is
a general principle.

We evaluated the tools on a real industrial case study and
we detected two race conditions. The first one by only using
eqc par statem; the fault had been noticed before, but now we
did not need to instrument the code under test with yield() com-
mands. The first and second race condition could easily be pro-
voked by using PULSE. The traces recorded by PULSE were visual-
ized and helped us in clearly identifying the sources of the two race
conditions. By analyzing the graphs we could even identify a third
possible race condition, which we could provoke if we allowed
three instead of two parallel processes in eqc par statem.

Our contributions help Erlang software developers to get their
concurrent code right and enables them to ship technologically
more advanced solutions. Products that otherwise might have re-
mained a prototype, because they were neither fully understood nor
tested enough, can now make it into production. The tool PULSE
and the visualization tool are available under the Simplified BSD
License and have a commercially supported version as part of
Quviq QuickCheck.

Acknowledgments
This research was sponsored by EU FP7 Collaborative project
ProTest, grant number 215868.

References
Joe Armstrong. Programming Erlang: Software for a Concurrent World.

Pragmatic Bookshelf, July 2007.

Cyrille Artho, Klaus Havelund, and Shinichi Honiden. Visualization of
concurrent program executions. In COMPSAC ’07: Proc. of the 31st
Annual International Computer Software and Applications Conference,
pages 541–546, Washington, DC, USA, 2007. IEEE Computer Society.

Thomas Arts and Lars-Åke Fredlund. Trace analysis of Erlang programs.
SIGPLAN Notices, 37(12):18–24, 2002.

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing
Telecoms Software with Quviq QuickCheck. In ERLANG ’06: Proc. of
the 2006 ACM SIGPLAN workshop on Erlang. ACM, 2006.

Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In ICFP ’00: Proc. of the fifth
ACM SIGPLAN international conference on Functional programming,
pages 268–279, New York, NY, USA, 2000. ACM.

Mats Cronqvist. Troubleshooting a large Erlang system. In ERLANG ’04:
Proc. of the 2004 ACM SIGPLAN workshop on Erlang, pages 11–15,
New York, NY, USA, 2004. ACM.

Lars-Åke Fredlund and Hans Svensson. McErlang: a model checker for
a distributed functional programming language. SIGPLAN Not., 42(9):
125–136, 2007.

Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications. Software - Practice and Experience, 30:
1203–1233, 1999.

M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In POPL
’87: Proc. of the 14th ACM SIGACT-SIGPLAN symposium on Principles
of Prog. Lang., pages 13–26, New York, NY, USA, 1987. ACM.

John Hughes. QuickCheck Testing for Fun and Profit. In 9th Int. Symp. on
Practical Aspects of Declarative Languages. Springer, 2007.

Dean F. Jerding, John T. Stasko, and Thomas Ball. Visualizing interactions
in program executions. In In Proc. of the 19th International Conference
on Software Engineering, pages 360–370, 1997.

Klein, Lu, and Netzer. Detecting race conditions in parallel programs that
use semaphores. Algorithmica, 35:321–345, 2003.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers, 28
(9):690–691, 1979.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from
mistakes: a comprehensive study on real world concurrency bug charac-
teristics. SIGARCH Comput. Archit. News, 36(1):329–339, 2008.

Shahar Maoz, Asaf Kleinbort, and David Harel. Towards trace visualization
and exploration for reactive systems. In VLHCC ’07: Proc. of the IEEE
Symposium on Visual Languages and Human-Centric Computing, pages
153–156, Washington, DC, USA, 2007. IEEE Computer Society.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and repro-
ducing heisenbugs in concurrent programs. In OSDI, pages 267–280,
2008.

Robert H. B. Netzer and Barton P. Miller. On the complexity of event
ordering for shared-memory parallel program executions. In In Proc.
of the 1990 Int. Conf. on Parallel Processing, pages 93–97, 1990.

Chang-Seo Park and Koushik Sen. Randomized active atomicity violation
detection in concurrent programs. In SIGSOFT ’08/FSE-16: Proc. of the
16th ACM SIGSOFT International Symposium on Foundations of soft-
ware engineering, pages 135–145, New York, NY, USA, 2008. ACM.

Koushik Sen. Race directed random testing of concurrent programs. SIG-
PLAN Not., 43(6):11–21, 2008.

H. Svensson and L.-Å. Fredlund. A more accurate semantics for distributed
Erlang. In Erlang ’07: Proc. of the 2007 SIGPLAN Erlang Workshop,
pages 43–54, New York, NY, USA, 2007. ACM.

B. Topol, J.T. Stasko, and V. Sunderam. Integrating visualization support
into distributed computing systems. Proc. of the 15th Int. Conf. on:
Distributed Computing Systems, pages 19–26, May-Jun 1995.

Ulf T. Wiger. Extended process registry for Erlang. In ERLANG ’07: Proc.
of the 2007 SIGPLAN workshop on ERLANG Workshop, pages 1–10,
New York, NY, USA, 2007. ACM.

