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~ Abstract—In this contribution, time varying threshold sequen- ~ Spectrum sensing is performed by a normally non-coherent
tial detectors are employed for energy detection-based speum  receiver in the designated band [4]. In spectrum sensirgeth

sensing in low-SNR regimes. Sequential detection is provéd be  gyiqt several problems dependent on the setup, which iaclud
faster (on average) than any other multi-sample detector foa set but are not limited to ’

of given probabilities of detection and false-alarm. In this report,
exact performance of a sequential detector for spectrum seing « Low-SNR or wide-bandwidth scenarios [5]

is analyzed using the direct method. The theoretical resust « No information about transmission type for the primary
presented herein are verified with Monte-Carlo simulations It
users (PUs) of the band

is shown that for a SNR of —10 dB, among tests with Wald and ’ ]
triangular thresholds with similar probabilities of mis-d etection « Hidden or exposed terminal cases

and false-alarm, triangular performs 54% faster in terms of o Bursty and hopping primary transmissions.
maximum detection time Q0 percentile).

Index Terms—Spectrum Sensing, Cognitive Radio, Sequential These challenges are very similar to the ones addressed by

Analysis, Sequential Probability Ratio Test, UWB and DAA. sequential tools, which thus became good candidates for
employment in the context of spectrum sensing. Note that
|. INTRODUCTION SPRT has attracted a lot of attention due to its optimality in

) o ASN [6]-[14].
Early work by Abraham Wald [1] in statistics introduced a Even though Wald SPRT is widely used in spectrum sensing

special class of sequential tests called sequential pid§ab | atyre, when there exists a mismatch between design and
ratio test (SPRT), which addressed several different RrOBl 4¢q,a) parameters of the distributions or when there is agha

involving samples from two or more statistical distribuiso ¢ gistribution in the middle of the test, the maximum number

e.g., abrupt change detection [2]. This test (and its v&8)anyt samples needed by SPRT to reach a decision could be
was deemed useful in several fields such as when addres -Flgnibitively high [15]-[19]. In this paper we are introdag
detection problems with low signal to noise ratio (SNR) or al, ~artain class of truncated SPRT in spectrum sensing to

tempting signal detection with few samples. It was also $howg e that the test would be terminated at a certain number
that SPRT is optimum in the sense of probability of detectiq samples.

and false alarm, Bayesian risk and detection time, which ISperformance of different detectors is one of the most

:he a;/egagFe stﬁmpl_? numbﬁr (Astrll\l)t gepes-?q for tqletectm% ‘Pr?portant issues for the design and optimization of the prop
arget [3]. Further, it was shown tha IS opimum WNEheme for a certain environment. However, there have been

the d's“f'b““"” of s!gnal and NoISe 1S known a-prio. Also few attempts to compute the exact probabilities of falseral
comparison tp the fixed sample size (FSS) detector, it paEfo.rPF and mis-detectionPy and the distribution of the sample
much faster in terms of the ASN, especially when only NOISfumber. Knowledge of these measures can provide insight as

is present. However, when the target signal fluctuates fro[@the selection, design and optimization of the best scHeme

de5|gn_ distribution or has very low power in comparison t ny detection problem. Aroian and Robison [20] introduced a
the noise power, the ASN will be very large and it will nee

ethod for calculating the exadt- and Py of a sequential
to be truncated. g ¢t M q

L i detector based on the distribution of samples and threshold
: The above characten_s_t IcS OfSPRT are particularly amah In this contribution, sequential detectors with varying
n th? context of cognitive rao_ll_o resea_rch, where a PMALY esholds are used for energy-based spectrum sensing. The
goal is to make use of under-utilized radio spectrum. Cognit

. e performance of this class of sequential spectrum sensors is
radios sense the spectrum to detec_t any activities of tIﬁm:iegevaluated in terms of the probabilities of false-alarm, -mis
systems in the bands they have license to operate. In m

ection and sample number distributions. This perfoaan

cognitive radio _apphcatlons, such as uItr_a wide-band (UW is compared with the standard fixed thresholds introduced by
detect and avoid (DAA), the key issue is spectrum sensing,.q [1]

Research supported by the High Speed Wireless Commumnic&imter, lr? the next segtlon, a SySt?m quel and the de§|gn of
Lund and the Swedish Foundation for Strategic Researchd@we a simple sequential detector is outlined. Then, Section Il



demonstrates the mathematical derivation for the exacueal Normally, it is assumed that the processis i.i.d. Based
lation of performance measures for any detector. In Section the i.i.d. assumption, the cumulative LLR for sequential
IV the results for the performances of different sequentialeasurements may be rewritten as

detectors are presented. The last section concludes the pap

k
and outlines, in brief, our main contributions. Zi, = log M — Zzi
po(z1)po(z2)... =1
Il. SYSTEM MODEL AND SEQUENTIAL DETECTOR K
In spectrum sensing, the target is to detect the existence =k log In 4 l(% - %)in. (4)
or absence of primary users (PUs) of a frequency band or or 20, OF i=1

another cognitive transmitter in the designated band. Heee  Thus, the sequential observation becomes a summation of
existence of a PU transmission is denoted by hypothHsis measurementszf,). The measurements from each sensing
and its absence is denoted B. period are observed sequentially until the cumulative LLR

A Signal and noise models reach one of the thresholds.

In order to model the two hypotheses, an additive white”l' DIRECT METHOD FOR PERFORMANCE EVALUATION
noise model is assumed. In this mod#}, is modeled as noise  In this section, Aroian’s method [20] is adapted for char-
only and H, is modeled as signal plus noise. The receiver gCterizing the exact performance of energy-based seqlient
an energy detector which generaigs= r? for each received SPectrum sensing.
signal sample,. The following is a review of the assumptionsa. Distribution of test statistic
that this model is based on.

1) Noise only: This model assumes that the noigét)
is Gaussian with variance? (n(t) ~ N(0,02)), and the
received signal will ber, = n(kts) ~ N(0,02), wheret,
is the sampling interval. The probability density functioh

The single sample energy of a Gaussian signal (or noise) is
Chi-square distributed with with one degree of freedom (and
Gaussian variance af? or ¢2). We denote the PDF afy,
with f(z) and cumulative density function (CDF) withi(x),
where f (and F') is the PDF (and CDF) of the Chi-square

Tkl distribution with one degree of freedom.
1 ~1/2 /202 The test statistic at theth observation\/V, = W, . + xx
e —— xjaoy, > O 1 . . . : k—1 I
Po(®) an21/21“(%)z c = @) in a sequential test is compared with a lowdt,] and an
L i
where pg is the Chi-square distribution with one degree o‘Lﬂ‘Eper @) threshold,_wheréikal is the truncated version of
freedom. r—1 after a comparison witl;_; andA;_;, and T denotes

. . . ._this truncation. This comparison will introduce three et
2) Sgnal plus noise: This model assumes that the noise . Accepting hypothesis ifiv; > A, (with probability

is Gaussian with variance?, the signal is Gaussian with =

i By, (A)
varianceo?, andry, = s(kts) +n(kts), re ~ N(0,02), where LA : .
02 = 02 + 02. The PDF ofzy is » Continuation of the test ifR, < W, < A (with

probability P (C))
1 s 20-/207 L5 . @) « Rejecting hypothesis i, < Ry (with probability
o, 21721 (1) 2 Pu(R)).
; o
It should be noted that, assuming a Gaussian signal wherd "€ PDF (or CDF) oV, and W, are denoted by (£})
there exists no information about PU transmission is a vaff'd fr (£%) respectively. The truncated CDF of a random

. T . . -
choice [7]. Additionally, for an AWGN channel, a Gaussiayariable (V) can be calculated from the origina}. as

pi(z) =

transmission is shown to be capacity achieving. 0, if 25 < Rp:
B. Log-Likelihood ratio calculation and sequential observa- F(zr) = %, if R, <xp <A, (5)
tions 1 if x> Ap.

According to Wald [1], in order to perform sequential
analysis, one should calculate the cumulative sum of |?H
likelihood ratios (LLRs). The LLRz; for an energy sample

Hence,r; and W), are independent of each other. Thus,
e PDF of the sumW;, = W,I,l + x;. is the convolution of
each one PDF ag.(x) = f(x) * fr—1(z). It is essential to

will be
have the truncated CDF d¥}, (F}) here. To determine this
2= 1o ploe[Hi} lo p1(zk) one may start from the PDF
k g g
p{xr|Ho} po(w) Aps :
—xy,/2 C flx =) fe—1(t)dt, if k>2;
B ope T2 on T, 1 1 3 fr(x) = Ri-1 , (6)
= log p—e = log 0_T+7(E_U_Z)' 3) f(z), Ry <z < A, if k=1.

It should be noted that? and¢2 are decided based on the for By <a < A

requirements of the sensing. However, the actual valuds wilhere¢, = Fk(Akfl)iFk(kal)' Thus, CDF may be used for

be different from the design values. calculating P and Py.




B. Expressions for Pr and Py A. Wald’'s thresholds for simulation of the theory

To characterize the performance of a sequential detector, an order to calculateP’.(A) and P;.([2), upper and lower
measure called the operating characteristic function (QE€F thresholdsd,. and Ry, respectively, are needed. Wald's thresh-

calculated for each hypothesis as olds comprise a set of the thresholds for LLRs, which arergive
by [1]
0o k—1
OCF(e*) = > _ P(R) [T P:(O), W) Y0, = logT— (14)
- - —1og 7 (15)
whereo? = o2 or o2. The probability of mis-detection and The =08

false alarm can be written as where o and 3 represent the desired probabilities of false-
alarm and mis-detection, respectively. However, there is a
Pr=1-OCF(o}) (8) linear transformation between LLRs and energy samples pre-
Pu = OCF(0?) (9) sented in expression (4). Based on Wald's thresholds (1d) an
(15) and the transformation (4), the transformation preskn
The other performance measure is the detection time distrilin the following expressions may be used to find the threshold

tion for energy.
m—1
P(T)=Pr{T <k} =1- ][ P(0O), 10 Yo, — klog(Z)
k() I‘{ —} 1:! () ( ) . = ’;1 17‘ (16)
= 20z = %)
where T is the detection time (in samples). It should be A4 — klog(2*) 17
noted that equation (7) is different from the one presented b k= %(L R (17)

Aroian [20]. First, the upper bound in the summation could be _
extended to infinity to be suitable for all kinds of threstiotgd B. Varying thresholds

methods (including the non-truncating ones). SecdddA)  wald's thresholds have been proven to be optimum in the
has been changed f0.(R) because in this context the interestense of ASN. However, in certain situations such as low-
is in acceptance or rejection of hypothesis and notHy. I SNR scenarios or when the actual signal variance is smaller
order to calculateP: and Py, Px(R) and P;(C) are thus than the design variance, the maximum detection time for
needed. They can be calculated from the distributif(®) wald's thresholds could be very large. Such a high value is

and Fy (z)as not appropriate for spectrum sensing. This issue attractes
Ay attention for a certain class of thresholds which ends the te
Py(R) = Ck/ F(Ry — ) far (t)dt (11) (truncate). Sequential tests (thresholds) other than 8vaidy
Rio_1 not be optimum in ASN. However, they may be optimum
— Cka(Rk) in terms of minimax [15], [19]. In this paper, two of these
Ay thresholds are modified for the spectrum sensing problem. Th
Py(A)=1-( / F(Ap —t) fo_1(t)dt (12) first set, which is known as triangular (trapezoidal) thoedh,
Ri—1 was originally proposed by Anderson [15]. In this work we
=1 — G Ex(Ag) use modified triangular thresholds as
P =1-—PF — P(A). 13
w(C) k(R) — Pr(A) (13) o, = /(1 - gt) (18)
Hence, the calculation of all properties of a sequential , k
detector amounts to calculating the CDF of the test statisti My =01 = E)’ (19)
The next section introduces three different sets of thrieisho"/¢" 9‘1 and_ f are two design parameters ag 'S, the
for evaluating the above expressions. truncation point. It should be noted that thegeand 5’ do

not correspond to the desired probabilities of false-aland
mis-detection.
The second set of varying thresholds, known as reversed

In this section, three sets of thresholds will be comparggrapp“c’ was o.r|g|nally introduced by Ferebee [19]. The
odified version is

in the spectrum sensing setup. In the first set, Wald’s fixg&

IV. THRESHOLDS FOR SEQUENTIAL SPECTRUM SENSING

thresholds based on d_esiréﬁk and Py will _be_ examined. Yo, = L o'k —k (20)
Wald’s thresholds are lines parallel to x-axis in the plafie o ki 1— 1
LLR vs. sample number. The next two sets of thresholds are ", 3k — k. (21)

time-varying and will finish the test at a finite number. k-1
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Figure 1. Wald and varying thresholds fer= 0.01, 8 = 0.1, andk: = 100. k

Figure 2. Theory vs. Monte-Carlo methods fBf, = P, (A) ]_[;*;11 P;(C)

for 02 = 1.1 , 1.5 and Wald’s thresholds presented in Figure 1.
These thresholds are for LLR values and (16) and (17) can be P 9

used to make them suitable for energy samples.

Figure 1 presents a comparison between shapes of varyifig smaller this interval, the higher the accuracy of iraéign
thresholds and Wald's thresholds. The performance of ebich@) pe.

these thresholds is evaluated and compared with Wald'sein th g creating figure 3, first, tests having similar (with pre-

next section. cision of 0.1%) Pes or similar Pys are selected and then
V. PERFORMANCE EVALUATION AND RESULTS minimum and maximum o0 percentile of the total detection
This section, first, discusses the evaluation setup by WhiEEes o + Th) .Of those tests are p_resented vs. SNR. It s
the sequential detectors are assessed. Then, some reglits) seryed that, in the low-SNR regimes, the detector W'.th
a comparison are presented. the triangular thresholds performs fast_gr_ than the one with
Wald’s thresholds for the same probabilities of mis-détect
A. Evaluation setup and false-alarm. At an SNR of10 dB, the detector with
In simulating the performance of a spectrum sensing algéiangular threshold performs4% faster than the detector
rithm, the ratio of primary transmission Signa| to Cogm“leth Wald'’s thresholds on maximum total detection time.sThi
receiver noise is important_ In this paper we are dea“r%na”er detection time translates directly to faster deinac
with non-coherent detector and for such a detector detecti®f PUs and hence less interference and more reutilization of
is hard at negative SNR= 02/02 (in dB). The results vacant spectrum for the CR. This advantage of the detector
presented hereafter are obtained with the SNR ranging fraih triangular threshold disappears at higher SNRs.
—20 to 10 dB. Different thresholds are evaluated with different Figure 4 showsP vs. Py for detectors with Wald and
parameters under different SNRs. The results of each test #fangular thresholds with exactly the san% percentile
compared in terms of probabilities of false alarm and migletection timesT, and 7; when the SNR is—3 dB. In
detection, and detection time&, and 7; under hypothesis cognitive radio, where the amount of interference and hence
H, and H, respectively. CDFs ofl, and 7} are computed I is constrained to lower values, triangular thresholds are
due to the fact that they are random variables. To make tReeferable forPys lower than certain values. However, if
comparison betweeff, and 7} easier,50 percentile and)0 the detector design is constrained on lowgs then Wald
percentile values are found from their CDFs. Here, desigresholds are beneficial.

parameters for triangular thresholds and reversed pdcabol Varying thresholds have slightly more complex structure.
thresholds are optimized numerically by simulations. However, for one setup, the thresholds are calculated once.
In fact, in comparison with considerable detection speed,ga
B. Results this complexity is negligible.
Figure 2 presentd;, = P,(A) Hf;ll P;(C) estimated from
simulations and calculated by the direct method described i
secion Il for Wald's thesholds whes? = 1.1 and1.5. These  This paper evaluates the exact performance of sequential
results show that the theory agrees well with the simulatidn detectors for energy based spectrum sensing. Sequential de
small integration interval is involved in evaluating thengo- tectors with both fixed and varying thresholds are investiga

lution and CDF of test statistics in (12) and (13) numericalllt is shown that Wald's thresholds are not the best choice

VI. CONCLUSION



Time

1400 ' SNR of —10dB. Lower detection times in spectrum sensing
applications such as UWB DAA achieve higher spectrum
1200} 4 reutilization.
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