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Abstract—In this contribution, time varying threshold sequen-
tial detectors are employed for energy detection-based spectrum
sensing in low-SNR regimes. Sequential detection is provento be
faster (on average) than any other multi-sample detector for a set
of given probabilities of detection and false-alarm. In this report,
exact performance of a sequential detector for spectrum sensing
is analyzed using the direct method. The theoretical results
presented herein are verified with Monte-Carlo simulations. It
is shown that for a SNR of−10 dB, among tests with Wald and
triangular thresholds with similar probabilities of mis-d etection
and false-alarm, triangular performs 54% faster in terms of
maximum detection time (90 percentile).

Index Terms—Spectrum Sensing, Cognitive Radio, Sequential
Analysis, Sequential Probability Ratio Test, UWB and DAA.

I. I NTRODUCTION

Early work by Abraham Wald [1] in statistics introduced a
special class of sequential tests called sequential probability
ratio test (SPRT), which addressed several different problems
involving samples from two or more statistical distributions,
e.g., abrupt change detection [2]. This test (and its variants)
was deemed useful in several fields such as when addressing
detection problems with low signal to noise ratio (SNR) or at-
tempting signal detection with few samples. It was also shown
that SPRT is optimum in the sense of probability of detection
and false alarm, Bayesian risk and detection time, which is
the average sample number (ASN) needed for detecting the
target [3]. Further, it was shown that SPRT is optimum when
the distribution of signal and noise is known a-priori. Also, in
comparison to the fixed sample size (FSS) detector, it performs
much faster in terms of the ASN, especially when only noise
is present. However, when the target signal fluctuates from
design distribution or has very low power in comparison to
the noise power, the ASN will be very large and it will need
to be truncated.

The above characteristics of SPRT are particularly appealing
in the context of cognitive radio research, where a primary
goal is to make use of under-utilized radio spectrum. Cognitive
radios sense the spectrum to detect any activities of the legacy
systems in the bands they have license to operate. In many
cognitive radio applications, such as ultra wide-band (UWB)
detect and avoid (DAA), the key issue is spectrum sensing.
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Spectrum sensing is performed by a normally non-coherent
receiver in the designated band [4]. In spectrum sensing, there
exist several problems dependent on the setup, which include
but are not limited to

• Low-SNR or wide-bandwidth scenarios [5]
• No information about transmission type for the primary

users (PUs) of the band
• Hidden or exposed terminal cases
• Bursty and hopping primary transmissions.

These challenges are very similar to the ones addressed by
sequential tools, which thus became good candidates for
employment in the context of spectrum sensing. Note that
SPRT has attracted a lot of attention due to its optimality in
ASN [6]-[14].

Even though Wald SPRT is widely used in spectrum sensing
literature, when there exists a mismatch between design and
actual parameters of the distributions or when there is a change
of distribution in the middle of the test, the maximum number
of samples needed by SPRT to reach a decision could be
prohibitively high [15]-[19]. In this paper we are introducing
a certain class of truncated SPRT in spectrum sensing to
ensure that the test would be terminated at a certain number
of samples.

Performance of different detectors is one of the most
important issues for the design and optimization of the proper
scheme for a certain environment. However, there have been
few attempts to compute the exact probabilities of false-alarm
PF and mis-detectionPM and the distribution of the sample
number. Knowledge of these measures can provide insight as
to the selection, design and optimization of the best schemefor
any detection problem. Aroian and Robison [20] introduced a
method for calculating the exactPF and PM of a sequential
detector based on the distribution of samples and thresholds.

In this contribution, sequential detectors with varying
thresholds are used for energy-based spectrum sensing. The
performance of this class of sequential spectrum sensors is
evaluated in terms of the probabilities of false-alarm, mis-
detection and sample number distributions. This performance
is compared with the standard fixed thresholds introduced by
Wald [1].

In the next section, a system model and the design of
a simple sequential detector is outlined. Then, Section III



demonstrates the mathematical derivation for the exact calcu-
lation of performance measures for any detector. In Section
IV the results for the performances of different sequential
detectors are presented. The last section concludes the paper
and outlines, in brief, our main contributions.

II. SYSTEM MODEL AND SEQUENTIAL DETECTOR

In spectrum sensing, the target is to detect the existence
or absence of primary users (PUs) of a frequency band or
another cognitive transmitter in the designated band. Here, the
existence of a PU transmission is denoted by hypothesisH1

and its absence is denoted byH0.

A. Signal and noise models

In order to model the two hypotheses, an additive white
noise model is assumed. In this model,H0 is modeled as noise
only andH1 is modeled as signal plus noise. The receiver is
an energy detector which generatesxk = r2

k for each received
signal samplerk. The following is a review of the assumptions
that this model is based on.

1) Noise only: This model assumes that the noisen(t)
is Gaussian with varianceσ2

n (n(t) ∼ N(0, σ2
n)), and the

received signal will berk = n(kts) ∼ N(0, σ2
n), where ts

is the sampling interval. The probability density functionof
xkis

p0(x) =
1

σn21/2Γ(1
2 )

x−1/2e−x/2σ2

n , x ≥ 0, (1)

where p0 is the Chi-square distribution with one degree of
freedom.

2) Signal plus noise: This model assumes that the noise
is Gaussian with varianceσ2

n, the signal is Gaussian with
varianceσ2

s , andrk = s(kts)+n(kts), rk ∼ N(0, σ2
r), where

σ2
r = σ2

s + σ2
n. The PDF ofxk is

p1(x) =
1

σr21/2Γ(1
2 )

x−1/2e−x/2σ2

r , x ≥ 0. (2)

It should be noted that, assuming a Gaussian signal where
there exists no information about PU transmission is a valid
choice [7]. Additionally, for an AWGN channel, a Gaussian
transmission is shown to be capacity achieving.

B. Log-Likelihood ratio calculation and sequential observa-
tions

According to Wald [1], in order to perform sequential
analysis, one should calculate the cumulative sum of log
likelihood ratios (LLRs). The LLRzk for an energy sample
will be

zk = log
p{xk|H1}

p{xk|H0}
= log

p1(xk)

p0(xk)

= log
σne−xk/2σ2

r

σre−xk/2σ2
n

= log
σn

σr
+

xk

2
(

1

σ2
n

−
1

σ2
r

). (3)

It should be noted thatσ2
s and σ2

n are decided based on the
requirements of the sensing. However, the actual values will
be different from the design values.

Normally, it is assumed that the processxk is i.i.d. Based
on the i.i.d. assumption, the cumulative LLR for sequential
measurements may be rewritten as

Zk = log
p1(x1)p1(x2)...

p0(x1)p0(x2)...
=

k
∑

i=1

zi

= k log
σn

σr
+

1

2
(

1

σ2
n

−
1

σ2
r

)

k
∑

i=1

xi. (4)

Thus, the sequential observation becomes a summation of
measurements (xk). The measurements from each sensing
period are observed sequentially until the cumulative LLR
reach one of the thresholds.

III. D IRECT METHOD FOR PERFORMANCE EVALUATION

In this section, Aroian’s method [20] is adapted for char-
acterizing the exact performance of energy-based sequential
spectrum sensing.

A. Distribution of test statistic

The single sample energy of a Gaussian signal (or noise) is
Chi-square distributed with with one degree of freedom (and
Gaussian variance ofσ2

r or σ2
n). We denote the PDF ofxk

with f(x) and cumulative density function (CDF) withF (x),
where f (and F ) is the PDF (and CDF) of the Chi-square
distribution with one degree of freedom.

The test statistic at thekth observation,Wk = W T
k−1 + xk,

in a sequential test is compared with a lower (Rk) and an
upper (Ak) threshold, whereW T

k−1 is the truncated version of
Wk−1 after a comparison withRk−1 andAk−1, and T denotes
this truncation. This comparison will introduce three regions

• Accepting hypothesis ifWk ≥ Ak (with probability
Pk(A))

• Continuation of the test ifRk < Wk < Ak (with
probabilityPk(C))

• Rejecting hypothesis ifWk ≤ Rk (with probability
Pk(R)).

The PDF (or CDF) ofWk andW T
k are denoted bŷfk (F̂k)

and fk (Fk) respectively. The truncated CDF of a random
variable (W T

k ) can be calculated from the original̂Fk as

Fk(xk) =















0, if xk < Rk;
F̂k(xk)−F̂k(Rk)

F̂k(Ak)−F̂k(Rk)
, if Rk ≤ xk ≤ Ak;

1, if xk > Ak.

(5)

Hence,xk andW T
k−1 are independent of each other. Thus,

the PDF of the sumWk = W T
k−1 + xk is the convolution of

each one PDF aŝfk(x) = f(x) ∗ fk−1(x). It is essential to
have the truncated CDF ofWk (Fk) here. To determine this
one may start from the PDF

fk(x) =

{

ζk

∫ Ak−1

Rk−1

f(x − t)fk−1(t)dt, if k ≥ 2;

f(x) , R1 < x < A1, if k = 1.
(6)

for Rk < x < Ak

whereζk = 1
F̂k(Ak−1)−F̂k(Rk−1)

. Thus, CDF may be used for
calculatingPF andPM .



B. Expressions for PF and PM

To characterize the performance of a sequential detector, a
measure called the operating characteristic function (OCF) is
calculated for each hypothesis as

OCF(σ2) =

∞
∑

k=1

Pk(R)

k−1
∏

i=1

Pi(C), (7)

whereσ2 = σ2
n or σ2

r . The probability of mis-detection and
false alarm can be written as

PF = 1 − OCF(σ2
n) (8)

PM = OCF(σ2
r ) (9)

The other performance measure is the detection time distribu-
tion

Pk(T ) = Pr{T ≤ k} = 1 −

m−1
∏

i=1

Pi(C), (10)

where T is the detection time (in samples). It should be
noted that equation (7) is different from the one presented by
Aroian [20]. First, the upper bound in the summation could be
extended to infinity to be suitable for all kinds of thresholding
methods (including the non-truncating ones). Second,Pk(A)
has been changed toPk(R) because in this context the interest
is in acceptance or rejection of hypothesisH1 and notH0. In
order to calculatePF and PM , Pk(R) and Pk(C) are thus
needed. They can be calculated from the distributionsfk(x)
andFk(x)as

Pk(R) = ζk

∫ Ak−1

Rk−1

F (Rk − t)fk−1(t)dt (11)

= ζkF̂k(Rk)

Pk(A) = 1 − ζk

∫ Ak−1

Rk−1

F (Ak − t)fk−1(t)dt (12)

= 1 − ζkF̂k(Ak)

Pk(C) = 1 − Pk(R) − Pk(A). (13)

Hence, the calculation of all properties of a sequential
detector amounts to calculating the CDF of the test statistic
F̂k(x).

The next section introduces three different sets of thresholds
for evaluating the above expressions.

IV. T HRESHOLDS FOR SEQUENTIAL SPECTRUM SENSING

In this section, three sets of thresholds will be compared
in the spectrum sensing setup. In the first set, Wald’s fixed
thresholds based on desiredPF and PM will be examined.
Wald’s thresholds are lines parallel to x-axis in the plane of
LLR vs. sample number. The next two sets of thresholds are
time-varying and will finish the test at a finite number.

A. Wald’s thresholds for simulation of the theory

In order to calculatePk(A) and Pk(R), upper and lower
thresholdsAk andRk, respectively, are needed. Wald’s thresh-
olds comprise a set of the thresholds for LLRs, which are given
by [1]

γ0k
= log

β

1 − α
(14)

γ1k
= log

1 − β

α
, (15)

where α and β represent the desired probabilities of false-
alarm and mis-detection, respectively. However, there is a
linear transformation between LLRs and energy samples pre-
sented in expression (4). Based on Wald’s thresholds (14) and
(15) and the transformation (4), the transformation presented
in the following expressions may be used to find the thresholds
for energy.

Rk =
γ0k

− klog(σn

σr

)
1
2 ( 1

σ2
n

− 1
σ2

r

)
(16)

Ak =
γ1k

− klog(σn

σr

)
1
2 ( 1

σ2
n

− 1
σ2

r

)
. (17)

B. Varying thresholds

Wald’s thresholds have been proven to be optimum in the
sense of ASN. However, in certain situations such as low-
SNR scenarios or when the actual signal variance is smaller
than the design variance, the maximum detection time for
Wald’s thresholds could be very large. Such a high value is
not appropriate for spectrum sensing. This issue attracts some
attention for a certain class of thresholds which ends the test
(truncate). Sequential tests (thresholds) other than Wald’s may
not be optimum in ASN. However, they may be optimum
in terms of minimax [15], [19]. In this paper, two of these
thresholds are modified for the spectrum sensing problem. The
first set, which is known as triangular (trapezoidal) thresholds,
was originally proposed by Anderson [15]. In this work we
use modified triangular thresholds as

γ0k
= α′(1 −

k

kt
) (18)

γ1k
= β′(1 −

k

kt
), (19)

where α′ and β′ are two design parameters andkt is the
truncation point. It should be noted that theseα′ and β′ do
not correspond to the desired probabilities of false-alarmand
mis-detection.

The second set of varying thresholds, known as reversed
parabolic, was originally introduced by Ferebee [19]. The
modified version is

γ0k
=

1

kt − 1
α′

√

kt − k (20)

γ1k
=

1

kt − 1
β′

√

kt − k. (21)
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Figure 1. Wald and varying thresholds forα = 0.01, β = 0.1, andkt = 100.

These thresholds are for LLR values and (16) and (17) can be
used to make them suitable for energy samples.
Figure 1 presents a comparison between shapes of varying
thresholds and Wald’s thresholds. The performance of each of
these thresholds is evaluated and compared with Wald’s in the
next section.

V. PERFORMANCE EVALUATION AND RESULTS

This section, first, discusses the evaluation setup by which
the sequential detectors are assessed. Then, some results and
a comparison are presented.

A. Evaluation setup

In simulating the performance of a spectrum sensing algo-
rithm, the ratio of primary transmission signal to cognitive
receiver noise is important. In this paper we are dealing
with non-coherent detector and for such a detector detection
is hard at negative SNR= σ2

s/σ2
n (in dB). The results

presented hereafter are obtained with the SNR ranging from
−20 to 10 dB. Different thresholds are evaluated with different
parameters under different SNRs. The results of each test are
compared in terms of probabilities of false alarm and mis-
detection, and detection timesT0 and T1 under hypothesis
H0 and H1 respectively. CDFs ofT0 and T1 are computed
due to the fact that they are random variables. To make the
comparison betweenT0 and T1 easier,50 percentile and90
percentile values are found from their CDFs. Here, design
parameters for triangular thresholds and reversed parabolic
thresholds are optimized numerically by simulations.

B. Results

Figure 2 presentsΨk = Pk(A)
∏k−1

i=1 Pi(C) estimated from
simulations and calculated by the direct method described in
secion III for Wald’s thesholds whenσ2 = 1.1 and1.5. These
results show that the theory agrees well with the simulations. A
small integration interval is involved in evaluating the convo-
lution and CDF of test statistics in (12) and (13) numerically.
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Figure 2. Theory vs. Monte-Carlo methods forΨk = Pk(A)
Q

m−1

i=1
Pi(C)

for σ2 = 1.1 , 1.5 and Wald’s thresholds presented in Figure 1.

The smaller this interval, the higher the accuracy of integration
will be.

For creating figure 3, first, tests having similar (with pre-
cision of 0.1%) PFs or similar PMs are selected and then
minimum and maximum of90 percentile of the total detection
times (T0 + T1) of those tests are presented vs. SNR. It is
observed that, in the low-SNR regimes, the detector with
the triangular thresholds performs faster than the one with
Wald’s thresholds for the same probabilities of mis-detection
and false-alarm. At an SNR of−10 dB, the detector with
triangular threshold performs54% faster than the detector
with Wald’s thresholds on maximum total detection time. This
smaller detection time translates directly to faster detection
of PUs and hence less interference and more reutilization of
vacant spectrum for the CR. This advantage of the detector
with triangular threshold disappears at higher SNRs.

Figure 4 showsPF vs. PM for detectors with Wald and
triangular thresholds with exactly the same90 percentile
detection timesT0 and T1 when the SNR is−3 dB. In
cognitive radio, where the amount of interference and hence
PM is constrained to lower values, triangular thresholds are
preferable forPMs lower than certain values. However, if
the detector design is constrained on lowerPFs then Wald
thresholds are beneficial.

Varying thresholds have slightly more complex structure.
However, for one setup, the thresholds are calculated once.
In fact, in comparison with considerable detection speed gain,
this complexity is negligible.

VI. CONCLUSION

This paper evaluates the exact performance of sequential
detectors for energy based spectrum sensing. Sequential de-
tectors with both fixed and varying thresholds are investigated.
It is shown that Wald’s thresholds are not the best choice
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for all applications, e.g. spectrum sensing. In the low-SNR
regime in spectrum sensing, we are not only interested in
minimizing the average detection time (ASN) but also in
minimizing the maximum detection time. It is shown that
thresholds that limit the maximum detection time, like the
triangular method, will perform better than Wald’s in terms
of detection time. Detectors with triangular thresholds have
54% and17% smaller maximum and minimum total detection
time, respectively, than detectors with Wald thresholds for an

SNR of −10dB. Lower detection times in spectrum sensing
applications such as UWB DAA achieve higher spectrum
reutilization.
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