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A NEW TYPE OF THE QUASI-TEM EIGENMODES IN
A RECTANGULAR WAVEGUIDE WITH ONE CORRU-
GATED HARD WALL
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Abstract—The problem of determining the eigenmodes of a
rectangular waveguide with one hard wall formed by longitudinal
corrugations with grooves filled with dielectric is considered. The
characteristic equation is derived by using the asymptotic boundary
conditions for corrugated surfaces. It is shown analytically that if the
groove depth is equal to the value 0.25λ/(ε − 1)1/2 corresponding to
the hard wall condition, the TE eigenmode spectrum of the waveguide
contains an infinite set of new non-uniform quasi-TEM modes with
different transverse propagation constants in the empty part and
identical longitudinal propagation constants equal to the wavenumber
k. Analytical solution for the case of excitation of the waveguide by a
specified source is given, and an example of forming local quasi-TEM
waves is considered and discussed.

1. INTRODUCTION

The concept of artificial electromagnetic hard and soft surfaces or
walls [1, 2], that can be realized by corrugations with grooves filled with
dielectric or by strips on a grounded dielectric layer, find important
applications in design of conical horn antennas [3–8] and pyramidal
horn antennas [9–11]. The studies of the hard and soft surfaces in [12]
and [13] also show that they can support wave propagation along the
grooves or strips and prohibit wave propagation across them. Such
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properties have allowed the hard and soft surfaces to find a new
application associated with design of slot array antennas based on
parallel plate waveguides or on rectangular waveguides oversized in one
of the transverse directions. Normally, such waveguides have smooth
walls as described, for instance, in [14–16] and other references given
there. However, it is very difficult to avoid excitation of propagating
higher-order modes in the indicated waveguides, and, as a consequence,
to achieve high array radiating performance. Another difficulty in such
arrays is associated with realizing the phase-steering of the beam in the
transverse direction.

To overcome the difficulties indicated above, the authors of [17]
have proposed a new type of an oversized rectangular waveguide as an
exciter of an array of slots on its upper broad wall. The lower broad
wall of the waveguide is loaded with longitudinal corrugations, the
grooves of which are filled with dielectric for forming a hard surface
structure. Possessing the property of supporting wave propagation
in the longitudinal direction along the grooves, such a structure
prohibits propagation in the transverse directions, that, according
to [17], eliminates reflections of waves from the side walls and thereby
eliminates the undesirable propagating modes of higher-order, like
those existing in an ordinary rectangular waveguide of oversized width.

Numerical analysis of the fields excited by a single-standing probe
and by an array of probes in the waveguide with one hard wall
presented in [17] has shown that, if the height of the waveguide is small
enough, it can support only one propagating quasi-TEM wave. This
useful feature stimulated further studies reported in [18–20]. Numerical
analysis of the quasi-TEM wave interaction with linear and planar
arrays of slots in the upper wall is presented in [18]. Along with
conventional frequency beam-steering in the longitudinal plane, the
results of work [19] demonstrate ability of the waveguide to provide
the phase-steering of the beam in the transverse plane as well. In
paper [20], the authors propose to characterize the quality of the
waveguide performance using local quasi-TEM waves similar to those
detected earlier in open hard and soft corrugated and strip-loaded
planar structures [12]. The detection of the local waves have resulted
in invention of more general local gap waveguides [21].

The results of [17–20] have shown good promise of the waveguide
with one hard wall for its application in the slot array technology.
However, they have been obtained by purely numerical methods
without involving the waveguide eigenmodes since, as noted in [20],
no solution for them has been obtained. Meanwhile, the knowledge of
the waveguide eigenmodes including their structure and propagation
constants is useful for better understanding of the features of the
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local quasi-TEM wave excitation by the sources in the waveguide and
elimination of the other undesirable propagating modes, as well as for
more accurate selection of the appropriate design parameters of the
waveguide.

The present paper includes Section 2 where derivation and solution
of the characteristic equation for the waveguide eigenmodes reported
recently in [22] is considered. It also contains analysis of the field
structure for the new quasi-TEM eigenmode solutions obtained. The
indicated eigenmodes are used in Section 3 for treating the local quasi-
TEM waves [20] excited by a vertical electric dipole.

2. DETERMINATION OF THE EIGENMODES

2.1. Waveguide Geometry and Some Assumptions

Consider a waveguide having a rectangular cross section and arranged
in a Cartesian rectangular system of coordinates 0xyz as shown in
Figure 1. The waveguide is assumed to be infinite (regular) along
the z axis. The waveguide width along the x axis is equal to a.
The cross section has an empty region 1 of height b, and a region
2 containing longitudinal corrugations with grooves of depth d and
fins of zero thickness. The grooves are filled with dielectric material
of relative permittivity ε. It is assumed that the waveguide walls and
corrugation fins are perfectly conducting, and the corrugation period
(and the groove width, respectively) is much less than the operating
wavelength λ.

The corrugated surface with period approaching zero may be
characterized by the asymptotic boundary conditions [23]. Using
them, it is possible to show that, similarly to circular longitudinally
corrugated waveguides considered in [24] and [25], the eigenmode
spectrum of the rectangular waveguide under consideration may be

Figure 1. Geometry of the waveguide.
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split into independent subsystems of TE and TM modes. The latter
in this case correspond to those in an ordinary rectangular waveguide
of width a and height b. If the height is small enough (b ≤ λ/2), as
suggested in [17], all the TM modes will be evanescent.

2.2. Characteristic Equation for the TE Modes

Assuming that the time dependence suppressed below is taken in
the form exp(iωt), we can determine the electric and magnetic field
strengths of the TE modes in regions 1 and 2 by formulas [26]

E1,2(x, y, z) = −iωµ0∇× (Π1,2ez) (1)

H1,2(x, y, z) = ∇∇ · (Π1,2ez) + k2ε1,2Π1,2ez (2)

where µ0 is the magnetic constant for the free space, k = 2π/λ is the
wavenumber, ez is the unit vector along the z axis, ε1 = 1 for the
empty region 1, ε2 = ε for the groove region 2, and Π1,2(x, y, z) is
the longitudinal component of the Hertz vector which must satisfy the
uniform Helmholtz equation for the appropriate region. The solution
of that equation for the empty region may be written as

Π1(x, y, z) = A1e
−iγz cos

mπx

a
cosα(b− y) (3)

where A1 is an unknown amplitude coefficient,

γ =
√

k2 − (mπ/a)2 − α2 (4)

is the longitudinal propagation constant, α is the transverse
propagation constant along the y axis, and m is an integer number
determining the transverse propagation constant mπ/a along the x
axis.

Substituting (3) in (1) and (2), we obtain

E1x = −iωµ0αA1e
−iγ z cos

mπx

a
sinα(b− y) (5)

E1y = −iωµ0
mπ

a
A1e

−iγ z sin
mπx

a
cosα(b− y) (6)

H1x = iγ
mπ

a
A1e

−iγ z sin
mπx

a
cosα(b− y) (7)

H1y = −iγαA1e
−iγ z cos

mπx

a
sinα(b− y) (8)

H1z = (k2 − γ2)A1e
−iγ z cos

mπx

a
cosα(b− y) (9)

and E1z = 0. As we can see, the electric field components (5) and (6)
vanish on the upper and side walls, respectively, as it just must be for
the perfectly conducting walls.
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Figure 2. Electric field strength lines of the quasi-TEM modes for
m = 1 (a) and m = 2 (b).
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Figure 3. Distributions of the normalized magnetic field component
Hx in dB across the upper wall for different dipole positions x0.

Since the width of each groove is close to zero, the function
Π2(x, y, z) satisfying the uniform Helmholtz equation in one of the
grooves may be represented in the form

Π2(x, y, z) = A2e
−iγ z cosβ(d + y) (10)

where β is the transverse propagation constant related to the
longitudinal one by formula

γ =
√

k2ε− β2 (11)
taking into account the fact that the longitudinal propagation constant
must be identical for both regions of the cross section, and A2 is an
amplitude coefficient depending on the position of the groove.
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Substitution of (10) in (1) and (2) yields the expression for the
fields in the groove

E2x = iωµ0βA2e
−iγ z sinβ(d + y) (12)

H2y = iγβA2e
−iγ z sinβ(d + y) (13)

H2z = (k2ε− γ2)A2e
−iγ z cosβ(d + y) (14)

while E2y = E2z = H2x = 0. Note that formula (12) accounts for
satisfaction of the boundary conditions for the groove bottom and
E2y = 0 on the groove walls formed by the fins.

According to the asymptotic boundary conditions [23] for the
corrugated surface, the transverse electric field strength component
Ex and longitudinal magnetic field strength component Hz must be
continuous on the boundary. Therefore, equating (5) and (12) as well
as (9) and (14) at y = 0, we obtain the equations

αA1 cos
mπx

a
sinαb + βA2 sinβd = 0 (15)

(k2 − γ2)A1 cos
mπx

a
cosαb− (k2ε− γ2)A2 cosβd = 0 (16)

Determining the amplitude A2 from (15) by formula

A2 = −A1
α sinαb

β sinβd
cos

mπx

a
(17)

and substituting it in (16), we obtain the characteristic equation

[β2 − k2(ε− 1)]
cosαb

α sinαb
+

β cosβd

sinβd
= 0 (18)

where we have taken into account formulas (4) and (11). The
characteristic Equation (18) may be solved with respect to β and
accounting for relation

α =
√

β2 − (mπ/a)2 − k2(ε− 1) (19)

obtained with using (4) and (11).

2.3. The Quasi-TEM Modes

In case of m = 0, when the fields in the waveguide do not depend on
x, we, accounting for (19), may rewrite Equation (18) in the form

cosαb sinβd

β
+

sinαb cosβd

α
= 0. (20)

The Equation (20) corresponds to the horizontally polarized TE0n

modes (n = 1, 2, . . .) of a rectangular waveguide partially filled with
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a dielectric layer of thickness d (without the metal fins) lying on the
lower wall [26, 27]. Propagation of these modes is undesirable for the
purposes considered in [17–20]. Therefore, the parameters b and d
should be chosen small enough to keep all the TE0n modes below cutoff
at specified permittivity ε of the groove filling.

Both Equation (20) and Equation (18) at m > 0 can in general
case be solved only numerically. However, there is an exception. If the
depth d and permittivity ε of the grooves satisfy the well known hard
wall condition [9]

d =
λ

4
√

ε− 1
, (21)

the first root of (18) at m > 0 is determined analytically as

βm1 = k
√

ε− 1 (22)

independently of m and transverse constant α. The latter is then
determined from (19) by formula

αm1 = i
mπ

a
(23)

while the longitudinal propagation constant (4) or (11) is exactly equal
to the wavenumber, i.e.,

γm1 = k. (24)

The transverse electric and magnetic fields corresponding to the
solution found above may be written in the form

E±m1(x, y, z) = Φm1(x, y)e∓ikz (25)

H±
τm1(x, y, z) = ± 1

η0
[ez ×E±m1(x, y, z)] (26)

where the common amplitude coefficient is omitted, the upper and
lower signs in superscripts correspond to the waves propagating in the
positive and negative direction along the z axis, respectively, η0 is the
wave impedance for the free space, and

Φm1(x, y) =
1

Nm1





− ex cos
mπx

a
sinh

mπ(b− y)
a

+ ey sin
mπx

a
cosh

mπ(b− y)
a

,

0 ≤ y ≤ b,

− exBm cos
mπx

a
sin[βm1(d + y)],

− d ≤ y ≤ 0,

(27)
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is the orthonormalized transverse wave function where Bm =
sinh(mπb/a) and

Nm1 =
a

2

√
1

mπ
sinh

2mπb

a
+

d

a
sinh2 mπb

a
(28)

is a normalizing coefficient, at which the orthogonality relation for (27)
takes the form

a∫

0

b∫

−d

Φm′1(x, y) ·Φm1(x, y)dxdy = δm′m (29)

with δm′m being the Kronecker symbol.
The non-zero longitudinal component of the magnetic field in the

grooves is

H±
2zm1(x, y, z) =

i
√

ε− 1
η0

Bme∓iγz cos
mπx

a
cosβm1(d + y). (30)

The solutions represented by (25) through (30) correspond to the
quasi-TEM eigenmodes whose fields are purely transverse in the empty
region 1 only. The equations of the electric field strength lines there
are solutions of the differential equation dy/dx = Ey/Ex. For the first
harmonic (m = 1), the solution for a line going between the upper wall
and the plane of corrugations at y = 0 may be expressed as

x(y) =
a

π
arcsin

√
1− cos2(πxb/a)

cosh2[π(b− y)/a]
(31)

where 0 ≤ xb = x(b) ≤ a/2 corresponds to a specified initial point on
the upper wall. The solution for a line going between the left side wall
and the plane of corrugations may be represented as

y(x) = b− a

π
ln

(√
u2 − 1 + u

)
(32)

where
u(x) =

cosh[π(b− y0)/a]
cos(πx/a)

and 0 ≤ y0 = y(0) ≤ b corresponds to a specified initial point on
the left side wall. The strength lines in the right half of the waveguide
cross section are mirror images of the lines described by Equations (31)
and (32). A picture of the strength lines in the empty region for
a = 0.5λ and b = 0.1λ is shown in Figure 2(a). This structure is
basic for constructing the strength lines for arbitrary m > 1. Like
for an ordinary rectangular waveguide, the cross section in this case is
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divided by rectangular cells of dimensions (a/m) × b, and each cell is
filled in with the basic structure appropriately compressed along the
x axis, while the directions of the lines in the adjacent cells must be
opposite. An example of the strength lines for m = 2 is presented in
Figure 2(b).

Note, that the non-uniform quasi-TEM waves described above
represent a new type of the eigenmodes different from the well known
uniform quasi-TEM modes existing in the waveguides and horns of
rectangular (or square) cross section considered in [9–11]. The new
solution obtained above allows us to refine some claims made in [17–
20] regarding “killing” of higher order modes. The spectrum of
the propagating eigenmodes in an ordinary rectangular waveguide of
small height and oversized (of a few wavelengths) width comprises
the dominant TE10 mode and a few next TEm0 modes of higher
order. All the other modes are evanescent. The remarkable property
of the longitudinally corrugated hard surface on one waveguide wall
detected above consists in transforming all the propagating and
evanescent TEm0 modes, which are non-degenerate, into an infinite set
of degenerate quasi-TEM modes with different transverse propagation
constants and identical longitudinal propagation constants equal to
the wavenumber k. Note, that this case of degeneracy with respect
to the longitudinal constants only differs from the classical case where
different degenerate modes have both identical transverse constants
and identical longitudinal constants, as, for instance, it takes place for
a TEmn mode and a TMmn mode in an ordinary rectangular waveguide.

2.4. Other Modes and Frequencies

To provide the situation when the quasi-TEM modes are propagating
while all the other modes are evanescent as required in the waveguide
slot arrays, it is necessary to select an appropriate value for the
height b of the empty part of the waveguide cross section. This
is done here by analyzing the numerical solutions obtained for the
characteristic Equation (18) and its partial case (20) under the hard
wall condition (21). The analysis has shown that when the height
b increases from zero, the next propagating mode after the quasi-
TEM modes is the TE01 mode with propagation constants determined
from solution of Equation (20). For instance, maximum b at which
that mode is still evanescent are 0.1191λ, 0.1868λ, and 0.2079λ for
permittivity of groove filling in the hard wall ε = 2, 5, and 10,
respectively. The groove depths determined by (21) at the indicated
values of the permittivity are equal to λ/4, λ/8, and λ/12, respectively.

The cut-off values of b for the TE12 mode (corresponding to the
2nd root of (18) at m = 1) at large waveguide width a only slightly
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exceed the values indicated above for the TE01 mode. For instance,
the indicated values for ε = 2, 5, and 10 are equal to 0.1218λ, 0.1894λ,
and 0.2105λ, respectively. Thus, if the TE01 mode is evanescent at a
selected value of b, all the other higher order modes will be evanescent
as well.

One more issue of importance is behavior of the TEm1 eigenmodes
at frequencies f different from the TEM frequency fTEM at which
the hard wall condition (21) is satisfied. To show the degree of
changing the propagation constants, let’s consider an example of
the waveguide with parameters a = 4λ, b = 0.15λ, t = 0.125λ,
and ε = 5, where λ corresponds to fTEM . The first root βm1 of
Equation (18) determined numerically at frequency f = 0.95fTEM ,
as well as the corresponding longitudinal propagation constant γm1

are equal to βm1 = 2.000530k and γm1 = 0.998939k for m = 1, and
βm1 = 2.029457k and γm1 = 0.938778k for m = 10. Similar results at
frequency f = 1.05fTEM are βm1 = 1.999356k and γm1 = 1.001287k
for m = 1, and βm1 = 1.971536k and γm1 = 1.055010k for m = 10.
Note, that the corresponding values at the TEM frequency are equal
to βm1 = 2k and γm1 = k for any m > 0. Thus, the propagation
constants of the operating TEm1 modes at frequencies different from
fTEM become different, and this is just the reason of some spraying of
the local modes in the process of their propagation along the waveguide
demonstrated in [20].

3. EXCITATION OF THE LOCAL QUASI-TEM WAVES

A remarkable property of the waveguide with one corrugated hard wall
shown in Figure 1 is its ability of forming localized quasi-TEM waves
as shown in [17–20]. The problem of excitation of them by specified
sources has been solved in the indicated papers by numerical methods.
We consider here an analytical solution based on a general approach
considered in a number of text books. We will follow the technique
described in [28]. Let E and H are strengths of electric and magnetic
fields excited in the waveguide by, for instance, an elementary vertical
electric dipole arranged in the point {x0, y0, z0} with 0 < x0 < a,
0 < y0 < b, and z0 = 0. The current density of this source is given by
formula

j(x, y, z) = Ileyδ(x− x0)δ(y − y0)δ(z) (33)

where I is the current and l is the length of the dipole (l ¿ λ).
To determine the indicated fields E and H, we apply the Lorentz
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reciprocity theorem [26], page 325, or [28], page 290:∮

S

(E×H−
p −E−p ×H) · ndS =

∫

V

j ·E−p dV (34)

where E−p and H−
p are the orthonormalized fields of a pth waveguide

eigenmode propagating or evanescent in the negative direction of the
z axis, p is its ordinal number depending on appropriate indices, and
V is a volume of an interior part of the waveguide bounded by surface
S with outer unit normal n. The surface consists of two cross sections
S+ and S− situated at distance ±L from the origin, as well as a part
of the waveguide walls Swall between the indicated cross sections.

Since the tangential electric field vanishes on the waveguide wall,
the integral over Swall in (34) is equal to zero. The fields on the surfaces
S± are superpositions of the waveguide eigenmodes

E(x, y,±L) =
∑

q

B±
q E±q (x, y,±L) (35)

H(x, y,±L) =
∑

q

B±
q H±

q (x, y,±L) (36)

going from the source with unknown amplitudes B±
q . Substituting

(33), (35), and (36) in (34) and using the orthogonality of the
waveguide eigenmodes, we find

B+
p = −η0I l

2
E−

yp(x0, y0, 0) (37)

while the amplitude B−
p is determined similarly by replacing the

auxiliary fields E−p and H−
p in (34) by E+

p and H+
p , respectively.

Using (37), we can now determine the x-component of the total
magnetic field of the quasi-TEM waves excited on upper waveguide
wall by the specified source (33). The indicated component is of
interest because it corresponds to the longitudinal current exciting the
transverse slots on the upper wall as considered in [17–20]. Extracting
the quasi-TEM part from (36) and accounting for (25)–(27), we obtain

H±
x,TEM (x, b, z) =

±Il

2
e∓ikz ×

∞∑

m=1

1
N2

m1

sin
mπx0

a
cosh

mπ(b− y0)
a

sin
mπx

a
(38)

Some examples of distributions of the field (38) across the wall
in the waveguide with a = 4λ, b = 0.15λ, d = 0.125λ, and ε = 5 are
presented in Figure 3 where different curves correspond to different
positions of the dipole over x for constant y0 = 0.07λ. The curves
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have been normalized on the maximum of the field formed by the
dipole arranged at x0 = 2λ. These curves obtained from the explicit
expression (38) confirm the results [17–20] on forming the quasi-TEM
waves localized at longitudinal lines corresponding to specified sources.
We can also see that the local waves are effectively excited almost for
any position of the source with respect to the side walls. The amplitude
only decreases if the source is arranged very close to the side wall. This
feature allows one to manage without special means for equalizing the
amplitude distributions of the local waves excited by a transverse linear
array of sources as considered in [19].

4. CONCLUSION

The paper presents an analytical study of eigenmodes in a rectangular
waveguide with one hard wall formed by longitudinal corrugations with
grooves filled with dielectric. The study has been based on application
of the asymptotic boundary conditions for corrugated surfaces valid
when the period of corrugations is much less than the operating
wavelength.

The assumption indicated above allowed derivation of a character-
istic equation for propagation constants of the TE eigenmodes. Anal-
ysis of the characteristic equation has shown that if the groove depth
satisfies the hard wall condition, the TE mode spectrum of the waveg-
uide contains an infinite set of non-uniform quasi-TEM modes with
different transverse propagation constants in the empty part of the
cross section and identical longitudinal propagation constants equal to
the wavenumber.

The new solution found as a result of the analysis allows refining
the claim made in [20] regarding killing the higher order modes. In fact,
the longitudinally corrugated hard wall transforms all the propagating
and evanescent TEm0 eigenmodes of an ordinary oversized rectangular
waveguide into an infinite set of the quasi-TEM eigenmodes having
identical longitudinal propagation constants. A superposition of such
modes can form quasi-TEM waves localized at a longitudinal line
corresponding to a specified source as was shown numerically in [17–20]
and analytically in the present study.

The solution of the characteristic equation derived in the paper
allows making correct choice of the waveguide dimensions to provide
the absence of the propagating modes of higher order undesirable when
using the waveguide as an exciter of array of slot radiators.

Finally, it should be noted that the hard wall can also be realized
by a dielectric layer screened at one side and loaded with longitudinal
strips at another one. However, analysis of a characteristic equation for



Progress In Electromagnetics Research, PIER 102, 2010 155

such a case has shown that the waveguide with one hard strip-loaded
wall has no TE eigenmodes with identical longitudinal propagation
constants similar to those detected as a result of the study carried out
above.
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M. Rodrigo-Peñarrocha, “Slot array fed by an oversized TEM
waveguide,” Proc. of the 1st European Conference on Antennas
and Propagation: EuCAP 2006, Nice, France, November 6–10,
2006.

19. Valero-Nogueira, A., E. Alfonso, J. I. Herranz, and M. Baquero,
“Planar slot-array antenna fed by an oversized quasi-TEM
waveguide,” Microwave and Optical Technology Letters, Vol. 49,
1875–1877, 2007.

20. Alfonso, E., P.-S. Kildal, A. Valero, and J. I. Herranz, “Study of
local quasi-TEM waves in oversized waveguides with one hard wall
for killing higher order global modes,” Proc of 2008. IEEE AP-S
Symposium, San Diego, CA, July 2008.

21. Kildal, P.-S., E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias,
“Local metamaterial-based waveguides in gaps between parallel
metal plates,” Antennas and Wireless Propagation Letters, Vol. 8,



Progress In Electromagnetics Research, PIER 102, 2010 157

84–87, 2009.
22. Skobelev, S. P. and P.-S. Kildal, “Analysis of global eigenmodes

in an oversized rectangular waveguide with a hard surface on one
broad wall for planar slot array antenna applications,” Proc. of the
3rd European Conference on Antennas and Propagation: EuCAP
2009, Berlin, Germany, March 23–27, 2009.

23. Kildal, P.-S., A. Kishk, and Z. Sipus, “Asymptotic boundary
conditions for strip-loaded and corrugated surfaces,” Microwave
and Optical Technology Letters, Vol. 14, 99–101, 1997.

24. Scharten, T., J. Nellen, and F. van den Bogaart, “Longitudinally
slotted conical horn antenna with small flare angle,” IEE Proc. H,
Vol. 128, 117–123, 1981.

25. Aly, M. S. and S. F. Mahmoud, “Propagation and radiation
behaviour of a longitudinally slotted horn with dielectric-filled
slots,” IEE Proc. H, Vol. 132, 477–479, 1985.

26. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley,
New York, 1989.

27. Yegorov, Y. V., Partially Filled Rectangular Waveguides, Soviet
Radio Press, Moscow, 1967 (Russian).

28. Vainshtein, L. A., Electromagnetic Waves, 2nd edition, Radio and
Communications Press, Moscow, 1988 (Russian).


