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141 57 Huddinge, Sweden

Torbjörn Lundh and Bernt Wennberg1

Mathematical Sciences
Chalmers University of Technology

and
Mathematical Sciences

University of Gothenburg
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Abstract. Sympatric speciation, i.e. the evolutionary split of one species into
two in the same environment, has been a highly troublesome concept. It has
been a questioned if it is actually possible. Even though there have been a
number of reported results both in the wild and from controlled experiments
in laboratories, those findings are both hard to get and hard to analyze, or even
repeat. In the current study we propose a mathematical model which addresses
the question of sympatric speciation and the evolution of reinforcement. Our
aim has been to capture some of the essential features such as: phenotype,

resources, competition, heritage, mutation, and reinforcement, in as simple a
way as possible. Still, the resulting model is not too easy to grasp with purely
analytical tools, so we have also complemented those studies with stochastic
simulations. We present a few results that both illustrates the usefulness of
such a model, but also rises new biological questions about sympatric speciation
and reinforcement in particular.

1. Introduction. In the year 1707 two boys were born who both turned out to
ponder on the concept of species. Carl Nilsson was born in the spring in Sweden and
Georges-Louis Leclerc was born in the fall in France. Later, they became known as
Comte de Buffon and Linnaeus. They did not come to the same conclusion regarding
the possibility for species to evolve and they did not came to respect each others
work particularly high. Linnaeus created a hierarchical order of the different, by
God given, species, while Buffon had a more dynamical view on species and defined
that two animals — of different gender — belong to the same species if they can
produce a fertile offspring. Buffon2 turned out to be an important inspiration to
Charles Darwin, who on the other hand obviously used the linnaean system in
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2Buffon is also known for his probabilistic works such as the so called Buffon’s needle problem,

see for example [26].
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his studies. In “The Origins of Species” Darwin calls speciation “the mystery of
mysteries”.

1.1. Speciation. In [2, p. 110] the question “How does speciation occur?” (with
its underlying question: “Can organisms speciate in sympatry?”) is listed among
the five “big questions” in evolutionary biology.

Good introductions to the speciation problem is given in van Dooren’s thesis [33]
and in [25, Chapter 14].

Speciation is a delicate interplay between selection, mutations, genetic drift and
environmental effects. All these processes are highly demanding to study separately.
Together, the challenge is breathtaking. We have therefore chosen to study a math-
ematical model of a highly simplified situation. Even though we try to make the
mathematical model as simple as possible, it turned out that including the ingre-
dients of sexual selection with reinforcement, niched food sources and evolutionary
dynamics, makes the model rather hard to analytically grasp, and we have therefore
added a number of simulation results.

1.2. Sympatric speciation. It was long debated if sympatric speciation, i.e. the
split of one species into two separate in the same environment, was possible at all,
or in other words, was it necessary that two populations of the species be physically
separated (allopatric), e.g. on two different islands, in order to evolve into two
different species? However, since Bush’s experiment on flies [8], there is a more
general acceptance for the possibility of sympatric speciation. The main barrier for
splitting a species into two in a common environment is how to avoid hybrids.

1.3. Reinforcement. To obtain speciation in sympatry, one need reinforcement,
i.e. enhancement of prezygotic3 isolation. Reinforcement is also called “The Wallace
effect” after the co-discoverer of evolution. However, the very term “reinforcement”
was coined by Blair [7]. In [32] there is an interesting simulation on how plants
can diverge from each other using separate flowering times as reinforcement. See
also the simulations performed in [27]. Recent work on bird song as reinforcement
mechanism for flycatchers are given in [24]. In [29] the so called gene flow was
studied as a force behind reinforcement, and in [13] and [21] other models are
presented to study reinforcement using PDE:s. In order to investigate the effect of
reinforcement, besides observation from nature (e.g. the above mentioned [24]), a
series of experiments have been set up starting from the Drosophila “Destroy-The-
Hybrids” experiment by Koopman [20] which showed that reinforcement evolved
so that instead of a hybrid rate around 50%, it decreased to 5% within only six
generations. The intriguing history of reinforcement is described in [11, Chapter
10]. A short introduction to reinforcement can also be found in [28]. Here we would
like to mention [3], [22], [34], and the books [16, especially Chapters 1,6, and 7],
[18, especially Chapter 10 by R. Bürger and C. Krall], and [12, where Chapter 10 is
devoted to reinforcement, see especially Figures 10.3 and 10.4] as inspiring sources.
See also the many interesting articles in [1]. Another study that is highly relevant to
our approach is Dieckmann and Doebelie’s [15]. However their approach is different
in several aspects.

Let us point out the comparative study performed by Coyne and Orr, [10] which
considered prezygotic isolation between species in both sympatry and allopatry. As
expected, the reinforcement is stronger in the sympatric case.

3before fertilization



SYMPATRIC SPECIATION THROUGH REINFORCEMENT 145

1.4. Introduction of the model. This paper addresses the question of sympatric

speciation in combination with reinforcement dynamics. By sympatric speciation
we mean that a population of one species through mutations, competition, mating
etc. may break up into two or more distinct species sharing the same habitat. A
species can be defined in different ways, but here we mean a sub-population such
that essentially all (sexual) reproduction takes place within that sub-population.
Reinforcement is then defined as a process by which natural selection strengthens
the separation of the sub-populations.

In our model, the population is described via a phenotype distribution u = u(z, t),
where z is the phenotype of an individual. The phenotype has several components,
some of which are related to the adaptation to the environment (such as the beak
length of a bird), and some have no connection with the environment, but are
important for the way in which the individuals recognize each other. This could be
for example the color of the bird, e.g. if an individual prefers mating partners of a
certain color. Initially, we assume that all individuals in the species share a common
such “color”, but both those can evolve through mutations to form reinforcement,
i.e. pre-zygotic barriers. It is this unguided process that we are mainly interested
to study.

The environment is modeled as a function f(x) or f(x, t), which describes the
availability of some resource, e.g. food, that limits the population size. In our
examples, x is also one of the components of the phenotype z, and in this way it is
possible to measure an individual’s adaptation to the environment.

It is reasonable to assume that speciation occurs on a time scale that is very
slow compared to variations in the population size, and therefore we assume that
the population is constant at the carrying capacity of the habitat, and hence all
the reproduction will achieve is a modification of the phenotype distribution. Since
we are interested in sympatric speciation, each pair of individuals has potentially
the same probability of meeting. However, the mating rate of a given couple is
computed as a function of the attraction between the individuals in the couple (as
given by their phenotype), and the number of offspring in the litter depends on the
parents’ adaption to the environment (expressed in terms of the phenotype value
x).

The phenotype of the offspring is simply computed as the average of the parents’
phenotype. This may be a good model for phenotypic traits such as body length
or weight, but certainly in other cases a better model would be that the offspring
chooses the phenotype of one of the parents. In either case we add a random
component to the phenotype of the offspring. And although this is a model for
sexual reproduction, gender is not taken into account here. The real biological
process behind the result of the mixing of the parents’ genotypes is highly complex.

Since our focus is to study the evolution of reinforcement leading to a decreased
number of “hybrids”, we are interested in laws on phenotypic trait that is hybrid-
prone. The law we picked – taking the average of the parents – is indeed such a
law. Another possibility is to randomly pick the genotype from one of the parents,
plus a possible mutation, as the offspring’s genotype. See for example [17, 15],
where a model of multilocus genetics is considered: for each locus there are two
possible alleles, 0 and 1, and the phenotype is determined by the number of 1-alleles.
Our model could be obtained as a scaling limit when the number of loci becomes
infinitely large: the offspring would get the average of the parents’ phenotype as a
result of the law of large numbers, and the central limit theorem could justify the
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normally distributed variation around the mean. Note that Figure 5 in[15] shows
that an increase in the number of loci gives longer time until branching, which is
an indication that our average model, is indeed hybrid-prone.

The dynamics can then be modeled as a (time discrete) Markov process, which
will be described in detail in Section 2. The model is first described for a population
with a finite number of individuals, and all simulations are carried out for that case.
We then rescale the problem by letting the number of individuals approach infinity,
to obtain a limiting Markov process (still time discrete).

Finally, we will need a mathematical definition of speciation: we say that speci-
ation has occurred if when fitting a bimodal distribution to the phenotype distri-
bution, the two means are significantly different.

There are many mathematical questions that need to be addressed, and these
are only touched on in this paper; the mathematical theory is work in progression,
and will be the topic of a future paper.

The question of speciation has been addressed also from a more mathematical
point of view by several authors. Typically then competition is a driving force for
speciation, and modeled by variations of logistic equations. This is the case of [15]
where results similar to ours are presented, although the basic models are different.
Two papers where a more complete mathematical analysis is given are [14], and [23]
(see also [31]).

The rest of the paper is organized as follows:

• First, the basics of the time-discrete model is introduced.
• In Section 2.3 we analyze the asymptotic situation when the population size

increases to infinity.
• In Section 2.4 we compare our evolutionary dynamical model with earlier

results from a few different fields where an averaging principle governs the
updating dynamics. The examples are taken from aligning rods and schools
of fish.

• Results are presented with graphs of simulations in Section 3 both for the
discrete and continuous food source cases.

• The question on time to speciation is illustrated in Section 3.1.4.
• In Section 4 we discuss the model, its results and possible future work.

2. The model.

2.1. A time discrete model. We think of a population living in an environment,
where some essential resource (which will be called “food”) whose distribution in a
space X is given by a (positive) measure f .

In the population, an individual is characterized by its phenotype z = (x, y, y∗).
The first component x tells where in the space X an individual is best adapted to
gather food. The beak length of a bird and the distribution of different size flowers
in an environment could be one example. In our model X is R or some subset
thereof.

The remaining components of the phenotype, y, y∗ ∈ Y, are related to the mating
of individuals: y describes the appearance (looks) of an individual, and y∗ is the
appearance it prefers to see in a potential mating partner. One could have X =
Y, but here we think of a phenotype independent of the adaptation to the food
resources. With birds, y could be the pitch of an individual’s song, and y∗ the pitch
it likes its partner to sing.
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In the dynamic model time is discrete, and the whole population is replaced from
one generation to the next. The population phenotype at a given time t is then
given by ZN ≡ (z1, ..., zN ) ∈ (X ×Y×Y∗)N ≡ ZN , whose evolution is modeled as a
Markov chain, {ZN

t }t∈N. The size of the population N = Nt is itself time dependent,

and we write Zt = ZNt
t for the configuration of the population at time t.

These individuals are polygamous, because there is no absolute limit as to with
how many other individuals they may produce offspring. Each individual chooses
one mating partner in the population, but it can itself be chosen many times, and
hence the number of mating partners for a given individual depends on how often it
is chosen by another individual. Once a pair is formed, the number of their offspring
depends on their joint ability to collect food.

More precisely, a population that at generation t has N = Nt individuals, pro-
duces a population at generation t + 1 according to the following description:

• The population at generation t is given as Zt = {zj}
Nt

j=1 = {(xj , yj , y
∗
j )}Nt

j=1.
The status of an individual is determined by its phenotype, but also by cj =
cj(Zt), which is the fraction of the total food resource, ‖f‖ =

∫

X
f(dx), it is

able to collect. The value of cj depends on the resource distribution f(x), and
on the population phenotype, and is given as

cj(Zt) =

∫

X

e−(xj−x)2/2γ2
x

∑Nt

k=1 e−(xk−x)2/2γ2
x

f(dx)

‖f‖
. (1)

The interpretation is that each individual succeeds in collecting a fraction
of the food at position x according to its relative competitive strength at that
point; the food source is depleted by the population. The parameter γx is
constant, the same for all individuals in the population. It determines how
the competitive strength of an individual decreases away from the optimal
point x of its phenotype.

• Each individual, j, chooses a mating partner k = kj 6= j according to a proba-
bility distribution Pj(k) = Pj(k ; ZN ) which is determined by the appearance
parameter yj , and the preference parameters y∗

k of the other individuals:

Pj(k; ZN ) =















e
−(|yk−y∗

j |2+|y∗
j −yk|2)/2γ2

m

∑

i6=k e−(|y∗
k
−yi|

2+|y∗
i
−yk|2)/2γ2

m
(j 6= k)

0 (k = j) .

(2)

Here γm is an additional parameter, the same for the entire population, that
determines how selective individuals are about choosing their partners.

• The couple (j, kj) then produces an offspring of size nj = nj,kj which is a

Poisson distribution with a parameter λj,k = λj,k(ZN ) that is determined by
the two parents’ common ability to find sources to provide for the children:

λj,k =
cj + ck

2

∫

X

f(dx) . (3)

The new population size Nt+1 =
∑Nt

j nj is therefore a Poisson distributed
random variable.

• The phenotype of each child is given as an average of the phenotypes of the
parents plus a random perturbation. In our simulations, we assume that the
phenotype belongs to a (convex) subset of R

m, and the random perturbations
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are independent and normally distributed. The phenotype of a child is then

(x, y, y∗)child =
(xj , yj, y

∗
j ) + (xk, yk, y∗

k)

2
+ (ξ, η, η∗) , (4)

where ξ, η and η∗ are normally distributed with mean zero and variance σ2
x,

σ2
y and σ2

y∗ respectively. With shorter notation

(x, y, y∗)child = zchild =
zj + zk

2
+ ζ , (5)

where the law of ζ is given by a Gaussian function M(ζ).

The process is described in the following diagram:

Ztz1 z2 zk zj zN

z1 z2 zk zj zN

Zt+1

Choice of partner depending on pref-
erence and appearance trait

Offspring depending on access to resource

Note that the precise form of cj , Pj(k) and λj,k depends on Nt, but this depen-
dence is suppressed from the notation. When needed, the argument Zt is written
out.

The reproduction procedure is repeated for each individual in every generation.
This means that the whole population is replaced, and that every individual gets
one choice of a partner for mating. By the way the model is constructed, the
reproduction of an individual is independent of the other individuals in a generation,
in the sense that all random variables involved in the reproduction of one individual
are independent of the random variables that determine the reproduction of the
other individuals. The competition between the individuals, which determines the
variables cj , is deterministic, and expressed uniquely in terms of the population
phenotype at time t.

This also means that the total size of the population at time t + 1 is the sum of
N independent Poisson distributed random variables, and therefore is also Poisson
distributed. Hence it may happen that none of the individuals produce an offspring,
and in fact, there is always a positive probability that the population will die out
from one generation to the next, and with probability one, the population will die
out in finite time; however, the expected time for this to happen will at least grow
exponentially with ‖f‖.

Even though there is competition, there is no absolute limitation of the number of
individuals, and although this does not generally happen, it is possible to construct
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situations where the population grows exponentially fast; this will be discussed
later.

The input parameters to the model are the initial distribution of the population,
the measure f(dx) which defines the distribution of the resource X , the variance
parameters σ2

x, σ2
y and σ2

y∗ that give the variance of the random mutations, and γm

and γx, where γ−1
m and γ−1

x measure the choosiness with mating partner and food
respectively.

Remark 1. In e.g. [31] and [23] competition is modeled as a binary interaction
and acts on the mortality rate; here competition is mediated via the food resource,
and influences the number of children.

2.2. A time discrete master equation. In this section we give a more precise
mathematical definition of the model. The notation is similar to the one used e.g.
in [19, 23].

A population with N individuals, Zt = {z1, ..., zN} can be identified with a finite
point measure,

Zt =

〈Zt,1〉
∑

j=1

δzj . (6)

Here 〈Zt, φ〉 =
∫

Z
φ(z)Zt(dz), so 〈Zt, 1〉 = Nt just counts the size of the population

at time t. A direct advantage of this is that there is no need for explicitly stating
that the numbering of the individuals is arbitrary (so that all formulas should be
invariant under permutations of the indices).

The next generation, Zt+1 then consists of the children of all individuals in the
population:

Zt+1 =

〈Zt,1〉
∑

j=1

Γ(·, zj) =

∫

Z

Γ(·, z)Zt(dz), (7)

where Γ(·, zj) is a (random) point measure with one Dirac measure for each child
of individual j (to avoid double counting, the children are said to belong to the
parent that chooses its partner, not to the chosen partner). The distribution of
the random measures Γ(·, zj) depends on the whole population, Zt, because of the
random choice of partners, and the competition of food resources.

The function cj(Zt) defined in (1) states how the total food resource, ‖f‖ =
∫

X
f(dx) is distributed over the population. In the new notation, this can conve-

niently be expressed as a point measure c(z, Zt)Zt(dz), where c(z, Zt) is the contin-
uous (with respect to z) function

c(z, Zt) =

∫

X

exp(−|x′ − x|2/2γ2
x)

∫

Z
exp(−|x′ − x′′|2/2γ2

x)Zt(dz′′)

f(dx′)

‖f‖
, (8)

which is a probability density with respect to the measure Zt (here and elsewhere
x denotes the projection of z = (x, y, y∗) on X ).

With c(z, Zt), we may now formulate the distribution of the offspring Γ(·, zj) =
∑NΓ

n=1 δzn of an individual zj , conditioned on its choice of mating partner zk, where
NΓ = 〈Γ(·, zj |zk), 1〉 is a Poisson distributed random number with parameter
λ(zj , zk; Zt) = ‖f‖(c(zj, Zt) + c(zk, Zt))/2, and the zn are i.i.d. with density
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M(z − (zj + zk)/2). In other words,

Γ(·, zj | zj chooses zk) =

∫

Z

δz−(zj+zk)/2NΓ(dz) , (9)

where NΓ(dz) is a Poisson point measure with intensity measure λ(zj , zk; Zt)M(z).
Hence

E

[
∫

Z

φ(z)Γ(dz, zj|zj chooses zk)

]

=

∞
∑

m=0

λ(zj , zk; Zt)
me−λ(zj ,zk;Zt)

m!
m

∫

Z

φ(z)M(z − (zj + zk)/2) dz

= λ(zj , zk; Zt)

∫

Z

φ(z)M(z − (zj + zk)/2) dz . (10)

Similarly, expressed in this notation, the probability that an individual with
phenotype zj chooses a partner with phenotype zk is

Pzj (zk)Zt(dzk) =
e−(|y∗

k−yj|
2+|y∗

j −yk|
2)/2γ2

m11zk 6=zj
∫

z′ 6=zj

e−(|y′∗−yj |
2+|y∗

j −y′|2)/2γ2
mZt(dz′)

Zt(dzk) . (11)

The function Pzj (zk) is a continuous function (zj , zk) 7→ [0, 1], but it is only evalu-
ated on the support of Zt.

To find the distribution of the offspring of an individual zj it is now enough to
multiply (10) with Pzj (zk)Zt(dzk) and integrate over xk. The full population at
generation t + 1 satisfies, for any φ ∈ C(Z),

E

[
∫

Z

φ(z)Zt+1(dz)

]

(12)

=

∫

Z

φ(z)

∫ ∫

Z×Z

M(z − (zj + zk)/2)λ(zk, zj)Pzj (zk)Zt(dzj)Zt(dzk)dz .

This expression does not fully characterize the measure Zt+1, but it gives some useful

information. Taking φ ≡ 1, and using that
∫

Z
λ(zj , zk)Pzj (dzk) ≤ ‖f‖max

cj+ck

2 ≤
‖f‖/2 we find

E〈Zt+1, 1〉 ≤

∫

Z

max
zk

λ(zj , zk)Zt(dzj) ≤
‖f‖

2
〈Zt, 1〉 , (13)

which means that the population will at most grow exponentially fast. This could
potentially happen if each individual has knowledge about the food distribution in
the population and is able to choose the best possible partner, and in addition there
are individuals who are able to collect a fraction of the food that is independent
of 〈Zt, 1〉. Of course exponential growth is not realistic over a longer time period,
but the model could rather easily be modified to limit the population size. On the
other hand λ(zj , zk) ≥ ‖f‖

cj

2 (i.e., the worst case is when the chosen partner does
not bring any resources), and so

E〈Zt+1, 1〉 ≥

∫

Z

min
zk

λ(zj , zk)Zt(dzj)

≥
1

2

∫

X

f(dx)

∫

Z

c(zj , Zt)Zt(dzj) ≥
1

2

∫

X

f(dx), (14)
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and therefore the population is not expected to decrease below a fixed level, de-
fined only by the amount of available food. The simulations indicate that in most
reasonable cases, the population size stabilizes on

∫

X
f(dx). From equation (14)

we may also deduce that the expected number of generations before the population
dies out is at least e‖f‖/2, so that for practical purposes, this never happens (in our
simulations ‖f‖ ≥ 60).

The simulations results that are presented in Section 3 show that in general we
cannot expect a unique stationary state, even when the size of the population is
stable. However, there may be quantities, functions of Zt, that do converge to

unique limits when t → ∞. Two candidates are E

[
∫

Z

c(z) log (〈Zt, 1〉c(z))Zt(dz)

]

and E[〈Zt, 1〉]. The first of these is, of course, the expected population size, and the
second is the relative entropy of the food distribution with respect to the probability
measure Zt/|Zt|. We let

Wc(Zt) =

∫

Z

c(z) log (〈Zt, 1〉c(z))Zt(dz). (15)

Then Wc(Zt) ≥ 0 and equal to zero if and only if the food resource is equally
distributed among the 〈Zt, 1〉 individuals in the population.

2.3. The limit of infinitely many individuals. The notation used here follows
rather closely that of [19], and consider measures of the form

νn =
1

n

n〈νn,1〉
∑

j=1

δzj . (16)

The set of all such measures is denoted Mn(Z). We now wish to move the process
described in Section 2.2 to Mn, by taking the initial data Zn

0 ∈ Mn(Z). To
rescale the dynamics, note first that c(·, Zn

t ) from (8) and Pzj (·) (j = 1, ..., n〈Zn
t , 1〉)

from (11) still are probability densities with respect to the measure Zn
t (n.b. the

number of individuals in the population will be n〈Zt, 1〉). The offspring measures
Γ(·, zj) conditioned on the choice of mating partner are still defined as in (9), where
the Poisson measure is replaced by n−1NΓ(dz) and the intensity measure for NΓ

is changed to nλ(zj , zk; Zn
t )M(z). The rest essentially remains unchanged, and

in particular the estimates (13) and (14) hold. Therefore the process is still well
defined for any n ≥ 1.

Suppose now that Zn
t (dz) ⇀ ut(z)dz weakly as measures when n → ∞. Then

c(z; Zn
t ) → c(z; u) =

∫

X

exp(−|x′ − x|2/2γ2
x)

∫

Z
exp(−|x′ − x′′|2/2γ2

x)ut(z′′)dz′′
f(dx′) , (17)

pointwise in z, and similarly

Pzj (zk; Zn
t ) → Pzj (zk; ut) =

e−(|y∗
k−yj |

2+|y∗
j −yk|

2)/2γ2
m

∫

Z

e−(|y′∗−yj|
2+|y∗

j −y′|2)/2γ2
mut(z

′)dz′
. (18)

In the limit, this expression is defined for almost all (zj , zk) ∈ Z × Z, and because
the set {zj = zk} is a set of measure zero (with respect to ut(zj)ut(zk)dzjdzk), the
diagonal may be included in the definition of P . Moreover, c( · ; u) and Pzj ( · ; u)
are probability measures with respect to u.

And, at least formally, the random offspring measures converge to deterministic
(absolutely continuous) measures:
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Γ(·, zj | zj chooses zk; Zn
t ) ⇀ λ(zj , zk; u)M(z − (zj + zk)/2)dz ,

(19)

where λ(zj , zk; u) = ‖f‖ (c(zj ; u) + c(zk; u)) /2. In the limit, the right hand side is
defined for (almost) all zj , zk ∈ Z.

The total population is in this case represented by
∫

Z u(z) dz, and the resource
entropy Wc by

Wc(u) =

∫

Z

c(z) log (‖u‖c(z)) u(z) dz , (20)

and because u is the density of a deterministic measure, there is no need to evaluate
the expectation Wc in this case.

Finally we may write the master equation for the limiting densities un, which
corresponds to equation (12):
∫

Z

φ(z)ut+1(z) dz (21)

=

∫

Z

∫

Z

∫

Z

ut(z
′)ut(z

′′)λ(z′, z′′; u)Pz′(z′′; u)M(z)φ

(

z′ + z′′

2
+ z

)

dz′dz′′dz

=

∫

Z

[
∫

Z

∫

Z

ut(z
′)ut(z

′′)λ(z′, z′′; u) ×

Pz′(z′′; u)M

(

z −
z′ + z′′

2

)

dwdz′′
]

φ(z) dz .

In the change of variables used to obtain the last line, it is assumed that Z = R
d.

To conclude, ut+1 can be expressed in terms of ut using the expression in brackets
in the last member of (21).

This derivation is strictly formal, in that we have passed to the limit in each
factor separately.

2.4. Related models. The mechanism for reproduction in our model is very sim-
ple: choose two parents, compute the number of their offspring, and generate chil-
dren with a phenotype that is the average of the parent’s phenotype plus a random
noise term. If all parent pairs are chosen with equal probability, and that each
reproduction results in a pair of children, the model becomes much simpler, and
indeed very similar to stochastic particle models that have been studied in other
contexts.

One such example is a model for the alignment of rods [5]. It is a model in
continuous time, where the basic state space is not R

d but the circle S1. Their
starting point is the limiting equation, which is similar to the Boltzmann equation:

∂tf(θ, t) = D∂2
θθf(θ, t) +

∫ π

−π

f(θ + φ, t)f(θ − φ, t) dφ − f(θ, t) . (22)

The main results of their paper is a rather explicit expression of the stationary
states, and a qualitative result: for large values of D the uniform distribution is the
only stationary solution, but for smaller values of the diffusion there is (at least) a
second stationary solution, and the uniform state becomes unstable.

An equation similar to (22) has been studied, first in [6], as a model for the
collective motion of self-propelled particles (e.g. fish schools). This model is ana-
lyzed in further detail in [9], where the master equation for a finite system is taken
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as a starting point, and the aim is to make a rigorous derivation of a Boltzmann
equations similar to (22), e.g.

∂tf(θ, t) =

∫ π

−π

∫ θ′+π

θ′−π

f(θ′, t)f(θ′′, t)M

(

θ −
θ′ + θ′′

2

)

dθ′dθ′′ − f(θ, t) .

A key issue is the question of propagation of chaos, which in this case essentially
implies that the two particles that interact can be chosen independently: the joint
pair distribution is given as a product, f(θ′, t)f(θ′′, t). This is what Boltzmann
called the Stosszahlansatz.

Note that the noise terms are introduced in different ways in (22) and (23), and
this gives a different expression for the stationary states. The simplest case is where
the state space is R, and the added noise comes from a Gaussian distribution. The
dynamics then consists in drawing two particles with states x1 and x2 independently,
and modify the state of this pair according to

(x1, x2) 7→

(

x1 + x2

2
+ ξ1,

x1 + x2

2
+ ξ2

)

. (23)

where ξ1, and ξ2 are two independent Gaussian random variables. This is very
similar to (4), but the dynamics is much simpler, and in this case it is possible to
compute the stationary distribution of x (assuming the propagation of chaos). With
a Gaussian noise term, also x has a Gaussian distribution, but with a variance that
is twice that of ξ. The analysis is carried out in detail in [9] (see also [4]).

3. Results. In this section we present results from computer simulations. These
are carried out according to the explicit description in Section 2.1. There are many
parameters in the model, but here we show some examples with different food
distributions, noise in the offspring distribution, selectivity in the choice of partner
and choice of food. The remaining parameters are left unchanged.

In all simulation results that are presented here, the population size remains
very close to the total amount of food in the system. By particular methods of the
selection of mating partner, the population may grow exponentially, as indicated in
equation (13), but no such results are presented here. Thus, varying the amount of
food is the same as varying the size of the population, and this has a strong impact
on the long time behavior of the system.

In one series of simulations, the food resource is concentrated in two or three
positions in the space X = R. This means that the state space is already prepared
for a predetermined number of niches that can carry independent populations. This
kind of extreme distribution is used to illustrate the importance of reinforcement.
It turns out that even in the case where the food is distributed in two equal Dirac
masses, speciation does not take place without the reinforcement mechanism. Fur-
thermore, the speciation is realized more rapidly with a higher dimension d of the
spaces available for reinforcement, Y = R

d and Y∗ = R
d.

The graphs that represent the simulations may show very distinctly when specia-
tion takes place, i.e. when the population splits into two sub-populations. However,
to really compare the time needed for speciation to take place in different situations,
an unambiguous definition is needed. We do this by fitting the population to a sum
of two Gaussian distributions, with different means and masses, but with the same
variance, using a maximum likelihood method with
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MLE =
∏

[
c

σ
e−(xi−µ1)2/σ2

+
1 − c

σ
e−(xi−µ2)2/σ2

] . (24)

We have used only the x-component of the phenotype for this, but we might as well

have included the y and y∗-components. Then we say that speciation has taken
place when the means of the two Gaussian are significantly different. We have only
implemented this for the split into two sub-populations.

In a another series of experiments, the food distribution is Gaussian, and so there
is no a priori defined positions where subspecies would be expected to appear. In
this case the species may split into many different species, the number depending
on the population size (or total amount of food), and on the size of the noise terms.

3.1. A discrete food distribution. Here the food distribution f(dx) is a sum of
Dirac measures:

f =
∑

mnδxm . (25)

In the examples there are either two or three terms in this sum. In the case
of only one term, f = mδx1 , one would expect the population average of x in the
phenotype z = (x, y, y∗) to approach x0 as time increases; taking the average of
the parents’ phenotype tends to concentrate the distribution, but the part of the
population phenotype distribution that is closest to x0 is favored in the competition.
This is indeed what happens. The case were f consists of several point masses is
more interesting: depending on the parameters, the population will either keep
together as one population, but with a population average of x that converges to
some average optimum; or else the population may split in several sub populations
with sub population averages of x that converge to the different point masses of f .

3.1.1. Reinforcement. The effect of reinforcement is seen in Figure 1(a), where re-
inforcement has been inhibited by setting the mutation rate for y and y∗ to zero,
compared to Figure 1(b), where y and y∗ may change (in both cases the initial
values are y = y∗ = 0, so initially the there is no selection depending on appear-
ance and preference). Without reinforcement the population will not branch but by
mutations the population mean of x moves towards the center of mass of the food
distribution.

In 1(d) we also show the distribution of the appearance trait, y. In this case the
distribution of y∗, the preference trait, is almost identical to that of y, and is not
shown. In this case the entropy Wc is decaying as expected (see fig 1(c)).

3.1.2. Several food sites. The case of three food sources starting off equilibrium
phenotype is seen in figure 2. The main population moves towards the equilibrium
which is the center. Eventually all three sources will have its own sub-population.
The random evolution can take rather different paths, but the end result is the
same. The figures 2(a) and 2(b) show the evolution of the distribution of the x and
y trait for one simulation run, and 2(c) and 2(d) for another run, using identical
simulation parameters.

To look at the trait distribution in this way is not quite enough to conclude that
a speciation has taken place. One really needs to verify that mating takes place
(almost) only within the sub-populations. One way of illustrating this is to make a
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(a) (b)

(c) (d)

Figure 1: (a) and (b) shows the evolution of the x-trait without and with reinforce-
ment. (c) and (d) refer to the same simulation as (b), and show the decay of the
c-entropy, Wc, and the evolution of the appearance trait y.

scatter plot of the x-trait of an individual against the x-trait of her mating partner.
This has been done in figure 3 for four different times. The graphs support our
claim that speciation has taken place.

3.1.3. Concentrated food sources of different size. When most of the food resource
is concentrated at one point, with a smaller amount at another point, most of the
population will have an x trait that is close to the large food resource. However,
groups of individuals will try to exploit also the smaller sources. This is illustrated
in figure 4, which also shows another result: In 4(a) the food resource has the form
53δ−1 + 7δ1, and in 4(b), the food resource is exactly twice as large as in 4(a) (see
also table 1). In the first case, the groups of individuals that move towards the small
food resource are not large enough to survive, whereas in 4(b) a strong subgroup of
individuals move towards the smaller source, and forms a smaller group that uses
the small food resource. In 4(c), the evolution of the y corresponding to the larger
population is shown, and 4(d) shows the evolution of Wc, the c-entropy.
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(a) (b)

(c) (d)

Figure 2: Two simulations with identical parameters. (a) and (c) show the evolution
of the distribution of trait x in the population, and (b) and (d) show the evolu-
tion of trait y. Here the food distribution is 20.0 (δ−1 + δ0 + δ1). The remaining
parameters can be found in Table 1.

3.1.4. Effect of preference space dimensionality and population size: The number of
generations until the population splits into two species decreases when the dimension
d of the appearance-preference space Y = R

d increases (see figure 5(a)). In other
words, when there are more traits to consider, specialization occurs faster. Although
we have no precise mathematical argument to support this simulation result, it
is plausible, because with more details to recognize in a partner, it is easier for
individuals to identify a subgroup.

Another argument is that the y traits follow a random motion, and in a higher
dimension it is less likely that the y traits of subgroups collide, and hence the
subgroups are more stable. Comparing figure 4(a) and figure 4(b) we see that that
speciation occurs faster and with greater stability when the amount of food (and
hence the population) is larger. This is is further investigated in figure 5(b), where
the time to the first speciation is plotted as a function of the total amount of food.
A possible explanation for this is that a small isolated sub-population is likely to
die out rather soon because the size of the offspring is Poisson distributed with a
small rate in this case.
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(a) (b)

(c) (d)

Figure 3: Each point is of the form (xj , xkj ), where xj is the x-trait of individual
number j, and xkj is the x-trait of the chosen partner. (a), (b), (c) and (d) represent
the generations at time 40, 100, 130 and 160 in the same simulation as depicted in
Fig. 2(a) and (b).

3.2. A continuous food distribution. With discrete food distributions as the
ones used in Section 3.1, the environment is prepared for sub-populations special-
izing in the food located at one place. In this section the food distribution is
continuous:

f(x) = Ce−x2

, (26)

where the constant C is changed to modify the total amount of food. Also in this
case speciation takes place, as can be seen the graphs. In figure 8, the total amount
of food is set to 100, and the total population stays around the same number, but
split in four sub-populations. Because there are no a priori positions for the x-trait
of the sub-populations, it is interesting to carry out the simulation over a very large
number of generations, to evaluate the stability of the new species.

The next two graphs show how the behavior changes with increasing population
size. Figure 7 shows a simulation where the total amount of food was 1000 (which
was also approximately the size of the population), and in Figure 8, the amount of
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(a) (b)

(c) (d)

Figure 4: The food distribution is 53δ−1+7δ1 in (a) and 106δ−1+14δ1 in (b). With
the smaller amount of food, the attempts to exploit the small source fail, whereas
in (b) the one try succeeds. (c) shows the c entropy corresponding to (b), and (d)
the evolution of the y-distribution.

food was 20000. In both cases, panel (a) shows the evolution of trait x, and panel
(b) trait y.

4. Discussion. In the paper we have presented a mathematical model for sym-

patric speciation through reinforcement. The sexual reproduction is modeled at
phenotypic level: the offspring of a couple inherits the average of the parents’ phe-
notypes, but with some random variation. The size of the offspring depends on the
parents’ common ability to compete for food, which is given by one component of
the phenotype. This ability, however, is not important in the selection of mating
partners, which is done on the basis of appearance and preference, which are the
remaining components of the phenotype in our model. This is then combined to
construct a Markov chain.

From a mathematical point of view, much remains to be done, and in subsequent
works, we hope to solve some of the following problems:

• to characterize the conditions under which speciation occurs;
• to characterize the long time behavior;
• to make the infinite population limit rigorous;
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(a) (b)

Figure 5: In (a) the time needed for speciation is plotted as a function of the number
of degrees of freedom in the y-trait. The instant of speciation is defined as the time
when the fitting of a bimodal distribution is significantly better than the fitting
of a unimodal distriubtion, as described in the text. In (b) the time needed for
speciation is plotted as a function of the amount of food (and hence the size of the
total population). We can see that the time required for speciation decreases with
higher dimension of y, and with increasing population. All simulation parameters
are given in Table 1.

• to give a mathematically solid argument to explain that the time to speciation
decreases with increasing dimensionality of the appearance-preference space.

It would also be natural to make the model continuous in time.
The computer simulations show that, with this model, speciation typically will

take place. The random variation in the offspring phenotype makes the population
explore the food resources, and the reinforcement dynamics may help the population
to split into sub-populations that reproduce essentially within the group.

And in our simulations, the reinforcement is essential, without it the popula-
tion does not split. Even more so: when the reinforcement dynamics has more
components, it evolves quicker and thus the speciation happens faster.

From a biological point of view, the model is simplified. For example, the compe-
tition for food resources only has an influence on the reproduction rate, and not on
the survival. This means that under certain conditions, the population may grow
exponentially (although we have only seen this in the simulations for very special
kinds of selection models).

In Buffon’s definition, two individuals belong to the same species if they are
able to produce a fertile offspring4. In this sense we do not have speciation in
our model, because all pairs of individuals can produce fertile offspring if they
wish to. However, it is very plausible that in the real world, this separation of
a population into sub-populations that prefer to mate within the sub-population,

4Buffon’s definition is today outdated, since it only makes sense if the relationship ’to have
fertile offsprings’ is a transitive relation. However, this is not always the case, see for example
[30]. Furthermore, the situation is not always symmetric as the fertility of the offspring can vary
considerable depending on in which of the two populations, the female is picked.
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(a) (b)

(c) (d)

Figure 6: The food distribution is Ce−x2

with C such that the total food amount
is 100. In (a) and (b), the distribution of the x and y traits are shown, and (c)
shows the correlation between the x-trait of an individual and its mating partner
at generation 8000. The histogram in (c) shows the distribution of x at time 8000.

is what happens first. Then, after many generations, the phenotypes of the sub-
populations are so different, including post-zygotic barriers, that they are different
species even according to Buffon.
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162 JOHAN HENRIKSSON, TORBJÖRN LUNDH AND BERNT WENNBERG

(a) (b)

(c) (d)

Figure 8: The food distribution here is Ce−x2

with C such that the total amount
of food is 20000. In (a) and (b), the distribution of the x and y traits are shown,
and (c) shows a correlation plot of x in an individual and its partner at time 1500.
(d) shows a histogram of x at time 1500. It is striking how well this follows the
Gaussian food distribution.

[6] E. Bertin, M. Droz and G. Grgoire, Boltzmann and hydrodynamic description for self-

propelled particles, Phys. Rev. E, 74 (2006).
[7] W. F. Blair, Mating call and stage of speciation in the microhyla olivacea m. carolinensis

complex, Evolution, 9 (1955), 469–480.
[8] G. L. Bush, Sympatric speciation in animals—new wine in old bottles, Trends Ecol. Evol., 9

(1994), 285–288.
[9] E. Carlen, P. Degond and B. Wennberg, Work in preparation, (2009).

[10] J. A. Coyne and H. A. Orr, “Patterns of speciation in drosophila” revisited, Evolution, 51

(1997), 295–303.
[11] J. A. Coyne and H. A. Orr, “The Origin of Species Revisited,” Sinauer Associates, Inc., 2004.
[12] J. A. Coyne and H. A. Orr, “Speciation,” Sinauer Associates, Inc., 2004.
[13] T. Day, Sexual selection and the evolution of costly female preferences: Spatial effects, Evo-

lution, 54 (2000), 715–730.
[14] Laurent Desvillettes, Pierre-Emmanuel Jabin, Stéphane Mischler, and Gaël Raoul, On selec-

tion dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729–747.
[15] U. Dieckmann and M. Doebeli, On the origin of species by sympatric speciation, Nature, 400

(1999), 354–357.
[16] U. Dieckmann, M. Doebeli, J. A. J. Metz and D. Tautz, “Adaptive Speciation,” Cambridge

University Press, 2004.

http://www.ams.org/mathscinet-getitem?mr=MR2455473&return=pdf


SYMPATRIC SPECIATION THROUGH REINFORCEMENT 163

[17] M. Doebeli, A quantitative genetic competition model for sympatric speciation, J. Evol. Biol.,
9 (1996), 893–909.

[18] R. Ferrière, U. Dieckmann and D. Couvet, “Evolutionary Conservation Biology,” Cambridge
Studies in Adaptive Dynamics, 2004.
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et pour L’approximation de Solutions Statistiques,” Phd thesis, Universit Paris X - Nanterre,
(2006).

[32] P. van Dijk and R. Bijlsma, Simulations of flowering time displacement between two cytocypes

that form inviable hybrids, Heredity, 72 (1994), 522–535.
[33] G. S. van Dooren, “Sexual Selection & Sympatric Speciation,” Ph.D. thesis, The university

of Groningen, Netherlands (2004).
[34] P. H. van Tienderen, Generalists, specialists, and the evolution of phenotypic plasticity in

sympatric populations of distinct species, Evolution, 51 (1997), 1372–1380.

Received September 2009; revised December 2009.

E-mail address: johan.henriksson@ki.se

E-mail address: torbjorn.lundh@chalmers.se

E-mail address: wennberg@chalmers.se

http://www.ams.org/mathscinet-getitem?mr=MR2495555&return=pdf

	1. Introduction
	1.1. Speciation
	1.2. Sympatric speciation
	1.3. Reinforcement
	1.4. Introduction of the model

	2. The model
	2.1. A time discrete model
	2.2. A time discrete master equation
	2.3. The limit of infinitely many individuals
	2.4. Related models

	3. Results
	3.1. A discrete food distribution
	3.2. A continuous food distribution

	4. Discussion
	Acknowledgments
	REFERENCES

