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Abstract
Background: Some upstream open reading frames (uORFs) regulate gene expression (i.e., they
are functional) and can play key roles in keeping organisms healthy. However, how uORFs are
involved in gene regulation is not yet fully understood. In order to get a complete view of how
uORFs are involved in gene regulation, it is expected that a large number of experimentally verified
functional uORFs are needed. Unfortunately, wet-experiments to verify that uORFs are functional
are expensive.

Results: In this paper, a new computational approach to predicting functional uORFs in the yeast
Saccharomyces cerevisiae is presented. Our approach is based on inductive logic programming and
makes use of a novel combination of knowledge about biological conservation, Gene Ontology
annotations and genes' responses to different conditions. Our method results in a set of simple and
informative hypotheses with an estimated sensitivity of 76%. The hypotheses predict 301 further
genes to have 398 novel functional uORFs. Three (RPC11, TPK1, and FOL1) of these 301 genes have
been hypothesised, following wet-experiments, by a related study to have functional uORFs. A
comparison with another related study suggests that eleven of the predicted functional uORFs from
genes LDB17, HEM3, CIN8, BCK2, PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are strong
candidates for wet-lab experimental studies.

Conclusions: Learning based prediction of functional uORFs can be done with a high sensitivity.
The predictions made in this study can serve as a list of candidates for subsequent wet-lab
verification and might help to elucidate the regulatory roles of uORFs.

Background
Different genes are expressed differently in different
places, at different times and in different amounts. Mis-
regulation of gene expression can cause an abnormality,

leading to disease(s) or even cancer [1]. Therefore, a com-
plete understanding of gene regulation is important; one
step towards this is to elucidate the roles of post-transcrip-
tional regulatory elements.
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Upstream open reading frames (uORFs) are among the
post-transcriptional regulatory elements that may be
present in the 5' untranslated region (UTR) of mRNA [2]
(Figure 1). A 5' UTR region is the region between tran-
scription start site and the main coding sequence (CDS).
A uORF is identified by the presence of both a start codon
before (i.e., upstream of) the start codon of the CDS, and
an in-frame stop codon. Research has revealed that the fre-
quency of transcribed uORFs is higher in genes with criti-
cal roles, such as homeobox (development-controlling)
genes, proto-oncogenes (whose mutation or over-expres-
sion can lead to cancer), growth factors, and transcription
factors [3]. Furthermore, it has been shown that some
transcribed uORFs regulate the translation process (i.e.,
the uORFs are functional) [4-8], while a few others do not
(i.e., the uORFs are non-functional) [9,10].

Functional uORFs have been shown to play important
roles in keeping organisms healthy, usually by controlling
the synthesis of certain proteins which are harmful if over-
synthesised [11,12]. One example of this is the condition
thrombocythaemia [[13], accessed on 12 September 2007]
where blood contains too many platelets, a type of blood
cell involved in blood clotting. People with this condition
have a higher risk of developing a blood clot, a stroke or
heart attack. The production of platelets is controlled by
the hormone expressed from the gene thrombopoietin.
According to a review [14], based on [15], under normal
conditions, the uORFs of thrombopoietin mRNA act to
limit the translation of the thrombopoietin gene and thus
limit the production of the platelets in the blood cells.
When uORFs are somehow eliminated from the throm-
bopoietin mRNA, the translation of thrombopoietin gene
is increased and thus the amount of the platelets, causing
thrombocythaemia.

To date, transcribed uORFs have only been verified in a
small number of genes in several organisms. From these

data, a partial understanding of how uORFs can regulate
protein expression has been achieved. However, as more
and more uORFs have been found in the mRNA of genes
with critical roles, it has become important to get a com-
plete understanding of how uORFs are involved in gene
regulation. To be able to draw a complete understanding
of the mechanism, we expect that a large number of exper-
imentally verified functional uORFs will be needed.

Until recently, studies on uORFs have been largely limited
to lab-based experiments. The most direct test to verify
that uORFs are transcribed and whether they are func-
tional is by comparing the amount of mRNA and the
amount of protein produced from the main gene in its
proper chromosomal context with and without site-spe-
cific mutation(s) on the uORF(s) of interest. The site-spe-
cific mutation is usually done on one of the bases of a
uORF's start codon to remove the uORF. In general, these
experiments to verify that uORFs are transcribed and
whether they are functional, are costly and time-consum-
ing (≈ 4 man-months per gene). As a result, the simplest
approach to searching for functional uORFs, i.e., by sam-
pling genes at random and testing their uORFs in the lab-
oratory, is not effective, even for the simplest eukaryotic
(the yeast Saccharomyces cerevisiae) genome. It has been
suggested that no more than 10% of the 6000 yeast genes
will have one or more functional uORFs and each of these
genes will on average have two functional uORFs. Thus, if
one searched for functional uORFs by selecting genes at
random and testing them in the lab, then on average it
would take ≈ 20 man-months to find a single functional
uORF. Therefore, an in silico prediction method which can
help in selecting sets of candidate functional uORFs for
lab experimental studies is essential.

This study sets out to develop such a method using a
machine learning technique and the yeast Saccharomyces
cerevisiae as the model organism. Given relevant data, the

Schematic representation of mRNA primary structureFigure 1
Schematic representation of mRNA primary structure. AUG is start codon. A stop codon can be UAA, UAG, or 
UGA. A 5' UTR may have zero or more uORFs.
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method should automatically generate hypotheses which
can then be used to predict novel functional uORFs.

Although a large number of genomic (DNA) sequences
are now available, the task of computationally identifying
functional uORFs is still very challenging. As explained
earlier, a functional uORF is a transcribed uORF which
can regulate the translation of the main gene (the associ-
ated CDS). Thus, in order to find functional uORF(s), one
should ideally look for uORF(s) in the 5' UTR sequences.
However, until recently, the start of 5' UTRs were only
known for a small number of genes. Therefore, previous
genome-wide computation studies trying to identify func-
tional uORFs used intergenic sequences (sequences
between two genes) instead [16,17]. Determining the start
of 5' UTRs computationally becomes even more difficult
due to the fact that some genes have multiple transcrip-
tion start sites [18]. This situation makes the task of deter-
mining which genes contain uORF(s) in their 5'UTRs very
challenging, not to mention identifying which of these
uORFs are functional.

In this paper, a new approach to predicting functional
uORFs is presented. There are three main differences
between this work and the work described in [17]. First,
we employ a different machine learning system, Aleph
[19]. Second, instead of intergenic sequences, we use 5'
UTR sequences. Third, in addition to the knowledge from
S. cerevisiae's sequences, knowledge derived from
sequences of other yeast species, an analysis of expression
data sets, and Gene Ontology annotations are also used to
form the background knowledge for Aleph. Why we think
these heterogeneous data could be useful for this study
and how we transform them into a suitable format for
Aleph are discussed in the methods section.

Methods
Learning method
Among many machine learning techniques, we chose
inductive logic programming (ILP) [20] for the following
reasons. First, ILP provides a richer representation than
other machine learning techniques which are based on an
attribute-value representation that cannot concisely repre-
sent the relationships between attributes in the uORF
domain. For example, the attribute-value representation
cannot concisely represent relationships between uORFs
and UTRs because a UTR may have an arbitrary number of
uORFs. Second, unlike other machine learning tech-
niques, ILP has a beneficial feature in that it is able to bias
inference to take into account background (domain)
knowledge from domain experts and/or the literature
[21,22]. Third, ILP's input (examples and background
knowledge) and output (hypotheses/rules) are all repre-
sented in predicate logic. This representation can be easily
translated into English. Consequently domain experts can

help with the selection and integration of potentially
helpful knowledge and the final dissemination of discov-
eries to the wider scientific community. Lastly, ILP has
been successfully applied to a diverse range of real-world
problems, such as those reviewed in [23-25], and has been
shown to have the potential to help in selecting sets of
candidate functional uORFs for lab experimental studies
[17].

Knowledge from 5'UTR sequences of S. cerevisiae
The 5' UTR sequences were extracted from upstream
sequences of protein coding genes of S. cerevisiae. The
lengths of 5' UTRs were derived from tiling microarray
data presented in [26]. The upstream sequences were
downloaded from ENSEMBL database at BioMart [[27],
accessed on 15 March 2007] and 5' UTRs longer than
1000 bases were excluded. 1000 bases were chosen
because 5' UTR lengths in S. cerevisiae are mainly distrib-
uted below 500 bases, with a small percentage between
500 and 1000 bases, and only very rarely are they above
1000 bases [18,26]. In total, we used 4,938 5' UTR
sequences. uORFs, with minimum length 3 codons
(including start codon and stop codon), were extracted
from the 5' UTR sequences using getorf of the EMBOSS
package [28]. The result is 3,647 (21+2+3,624) uORFs
from 1,493 S. cerevisiae genes (Table 1). 18 of these 1,493
genes had previously been studied in detail and are docu-
mented to have uORFs transcribed within their mRNAs, as
summarised in [4] and [29]. The detailed composition of
the data used for our experiments here is summarised in
Table 2.

Features that can determine the impact of a uORF on gene
regulation, as suggested in [4] and [29], were extracted
from the 5' UTR sequences. These include distance from
the uORF to the start of the CDS in bases, frequency of AU
and GC base pairs immediately upstream and down-
stream of each uORF, the length of the uORF in codons,
number of uORFs found in the UTR, and the length of the
UTR. The bases in positions -3 and +4 relative to each
uORF were also extracted. Through experiments with

Table 1: Detailed composition of uORFs obtained using getorf of 
the EMBOSS package.

Number of Genes uORFs

Functional Non-functional Unlabelled

18 studied 9 21 - -
genes 2 - 2 -

7 - - 8

1,475 other genes - - 3,616

1,493 genes 21 2 3,624
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mammalian sequences, these positions were found to give
an optimum context for an AUG to be recognised by
ribosome [30,31]. All of this information was represented
as ILP background knowledge [see Additional file 1: Table
S-1].

Beside listing the instances of the background predicates,
background knowledge in ILP can also be represented as
rules. Here, some declarative rules, that are potentially
useful for helping to identify functional uORFs, were cre-
ated to examine uORF's and UTR's features and their rela-
tionships. These include rules that examine the
abundance of AU and GC base pairs immediately
upstream and downstream of each uORF, whether the
base in position +4 relative to the uORF's start codon is G
and whether the base A or G is present at position -3 rela-
tive to the uORF's start codon. These rules are given in
[Additional file 1: Table S-2].

Knowledge from sequences of other yeast species
Most functional genomic elements are needed to preserve
fitness and thus are conserved between closely related spe-
cies. This insight may also apply to functional uORFs, that
is to say, uORFs which are functional are likely to be con-
served in closely related species; this has been demon-
strated by the uORFs of GCN4 and CPA1 which are
conserved in multiple fungal species [[32], Supplemen-
tary Material 1], [[16], Figure 1]. Therefore, information

about uORFs in closely related species to S. cerevisiae
could be beneficial for this study. Saccharomyces phylog-
eny is given in [Additional file 1: Figure S-1].

5' UTR sequences of several other species in the genus Sac-
charomyces would be ideal sources, but these are not avail-
able. However, upstream sequences of six other
Saccharomyces species i.e., S. bayanus, S. castellii, S. kluyveri,
S. kudriavzevii, S. mikatae and S. paradoxus are available. S.
castellii and S. kluyveri are considered quite far from S. cer-
evisiae [33], and thus would be expected to have lesser
degree of conservation to S. cerevisiae. Of the four closer to
S. cerevisiae, S. paradoxus, S. mikatae and S. bayanus were
studied recently in [34]. It was found that the order of
genes in these three genomes and S. cerevisiae is well con-
served. It was also suggested that the three genomes and S.
cerevisiae have diverged enough to allow functional ele-
ments to be recognised. Therefore, we chose to use these
three species.

For each S. cerevisiae gene, the upstream sequences of 500
bases of the orthologs from S. paradoxus [[35], accessed on
3 May 2007], S. mikatae [[36], accessed on 3 May 2007]
and S. bayanus [[37], accessed on 2 May 2007] were down-
loaded from Saccharomyces Genome Database (SGD)
[38]. 500 bases was chosen because 5' UTR lengths in S.
cerevisiae are mainly distributed below 500 bases [18,26].
Furthermore, according to [33], the mean length of inter-

Table 2: Detailed uORF composition from 18 studied genes within the collection obtained using getorf of the EMBOSS package.

Gene Name Systematic Name uORFs

Functional Non-functional Unlabelled

CLN3 YAL040C 1 - -
GCN4 YEL009C 4 - -
HAP4 YKL109W 2 - -
TIF4631 YGR162W 5 - -
YAP1 YML007W 1 - -
YAP2 YDR423C 2 - -
HOL1 YNR055C 1 - -
PET111 YMR257C 4 - -
CPA1 YOR303W 1 - -

SCO1 YBR037C - 1 -
CBS1 YDL069C - 1 -

INO2 YDR123C - - 1
PPR1 YLR014C - - 1
URA1 YKL216W - - 1
LEU4 YNL104C - - 1
RCK1 YGL158W - - 2
DCD1 YHR144C - - 1
SCH9 YHR205W - - 1

18 Genes 21 2 8
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genic regions in the Saccharomyces family is around 500
bases. From these upstream sequences, uORFs with mini-
mum length 3 codons as well as their features were
extracted. This information, which is similar to that of S.
cerevisiae, was represented as background knowledge [see
Additional file 1: Table S-3].

Conservation testing
In determining whether a uORF is conserved in ortholog
genes from different species, we looked for the presence of
uORFs of approximately the same length (i.e., the differ-
ence in the lengths is not more than three codons; this cri-
terion was used in [32] and [16]) at the same position in
the sequence of uORFs relative to the CDS. This was done
in preference to using a conventional sequence compari-
son approach that considers nucleotide sequences in a
base-by-base manner. Our new method of testing for con-
servation is particularly useful for finding regulatory
motifs in distantly related species where sequence similar-
ity between the species can be low but the presence of reg-
ulatory motifs remains. We implemented this by defining
several rules [see Additional file 1: Table S-4].

Knowledge from Gene Ontology annotations
To facilitate the application of knowledge about one
organism when reasoning about another, there has been
community effort to create common vocabularies, the
Gene Ontology (GO) [39], for describing gene and gene
product attributes in any organism. The idea of using GO
annotations here is to allow ILP to examine uORFs associ-
ated with genes which share the same or related annota-
tion(s). The basis for this is that one may wonder whether
uORFs tend to be functional in the UTRs of genes whose
products are involved in a specific function(s), or in a spe-
cific process(es), or expressed in a specific cellular compo-
nent(s). As of 12 April 2007, GO contains a total of
22,968 terms (13,464 for biological process, 7,657 for
molecular function and 1,937 for cellular component).
The terms are arranged in a directed acyclic graph accord-
ing to the GO hierarchies, i.e., process, function and com-
ponent ontologies. The three ontologies, were
downloaded from GO website [[40], version 26:03:2007].
The ontology for category molecular function consists of
15 levels, for biological process 18 levels and for cellular
component 16 levels. The number of nodes in the first five
levels in each ontology are shown in Table 3.

In this work, we used the GO annotations for yeast genes
[[41], version 24 March 2007] provided by SGD [42].
Although not all of the GO terms are used for annotating
yeast genes, the GO annotations for yeast can be very spe-
cific. There are some annotations that only cover one
gene. For the purpose of our study, terms as specific as this
are not useful. We want more general annotations for
yeast genes, so that each used annotation covers more
genes. GO slim [[43], accessed on 11 April 2007] provides

such mapping. However, this mapping is too general for
our study. Therefore, for each of the GO categories, we
mapped the yeast genes to the third level terms of their
GO annotations (if the original level of GO annotation is
fourth, fifth and so on). The new mapping was given to
ILP as background knowledge [see Additional file 1: Table
S-5]. Several rules [see Additional file 1: Table S-6] were
defined to allow ILP to relate a uORF with one or more
function/process/component-annotation(s) of the main
gene associated to that uORF.

Knowledge from expression data
Microarray data can be viewed as a gene expression matrix
where each row represents a gene and each column repre-
sents a condition, and the value of each position in the
matrix represents the expression of a certain gene in a cer-
tain condition. Such data allow us not only to study the
expression of individual genes under different conditions
in a genome-scale, but also allow us to group genes which
respond similarly to a set of conditions. With regard to
predicting functional uORFs, it has been suggested that
the polysomal association study integrating microarray
data sets from several different stress conditions can pro-
vide an efficient way to experimentally verify the predic-
tions of functional uORFs [16].

Here, derived knowledge from an analysis of four micro-
array data sets measuring translational activity under
rapamycin stress [44], oxidative (H2O2) stress [45], buta-
nol stress and amino acid starvation [46] were included as
background knowledge for ILP. This was done to investi-
gate whether functional uORFs could be explained in
terms of how genes respond to different stress conditions.
The polysome-to-monosome log-fold change between
stressed and normal condition was used to determine
whether the expression of a gene is up/down/not-regu-
lated under each stress. The latter information was given
to ILP as background knowledge [see Additional file 1:
Table S-7]. We also defined two rules [see Additional file
1: Table S-8] to relate a uORF with information on
whether the main gene associated to that uORF is regu-
lated (either up or down) or not regulated under certain
stress. A more detailed description of how the microarray
data were analysed is given in [Additional file 1: Part III].

Table 3: Number of nodes in the first five levels in each of the 
GO categories.

Level

GO category 1 2 3 4 5

Molecular Function 1 20 730 737 1531
Biological Process 1 20 677 1892 6149
Cellular Component 1 17 279 902 2125
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Results
Leave-one-out cross-validation
Since our goal is to learn how to recognise which uORFs
regulate gene expression, we can consider this learning
task to be a classification problem. Ideally, a typical clas-
sification system in ILP (or machine learning in general)
learns from a mixture of positive and negative examples.
In this domain, positive examples would be uORFs that
are transcribed and regulate gene expression (i.e., func-
tional) and negative examples would be uORFs that are
transcribed but do not regulate gene expression (i.e., non-
functional). The uORF data from 1,475 genes (Table 1)
are all unlabelled. Hence, for the training stage in this
study, only the uORF data of the 18 studied genes were
used.

As summarised in Table 2, among the uORF data of the 18
studied genes, 21 uORFs have been verified experimen-
tally as functional [4]. These were used as positive exam-
ples. [[29], p. 32] pointed out that there are only two
uORFs from two genes which have been verified to be
non-functional and the 5' UTR of each of these genes does
not contain any other uORFs known to be functional.
Therefore, there were only two negative examples in our
data set. Given the characteristics of the data, we explored
the positive-only setting [47] of an ILP system Aleph [19].
The positive-only setting of Aleph allows induction of
hypotheses in the absence of negative examples.

We investigated whether our new approach could gener-
ate hypotheses with good performance. Only the positive
examples of the 18 studied genes were used. Aleph's
parameter settings and the definition of hypotheses space
are given in [Additional file 1: Tables S-9 and S-10]. Since
there were only 21 positive examples, evaluation was
done using leave-one-out cross-validation. This means
that each example in turn is used as a test set, while the
other 20 examples are used as a training set. Thus in total,
we did 21 executions.

Since we only used positive examples, the performance of
the hypotheses was measured using sensitivity (or recall),
which measures the fraction of positives which are recog-

nised by the hypotheses as positives. In 16 executions,
from a total of 21, the hypotheses can correctly recognise
the test set. Thus, the estimate of how well our hypotheses
can correctly identify functional uORFs is 76%.

Predicting novel functional uORFs
Having achieved reasonably high sensitivity from the
experiment detailed in the previous subsection, we con-
ducted a further experiment in which the same back-
ground knowledge and ILP settings were used, but this
time all of the 21 positive examples were used to generate
a set of hypotheses. The English translations of the
hypotheses are shown in Table 4.

The fact that negative examples were not used during
training raises a suspicion that the hypotheses that have
been generated could have been overly general. Further-
more, the performance measure used (sensitivity) does
not penalise over-generalisation and so will not indicate if
over-generalisation has arisen. Note that a hypothesis
which simply states that any uORF is a functional uORF
would have a sensitivity of 100%. Hence there was a need
for an additional test to determine whether this set of
hypotheses were overly general i.e., tend to clasify any
example as functional uORF.

The uORF data on these 18 studied genes is precious due
to its scarcity and therefore it made sense to utilise every
part of the limited data available. The set of hypotheses
shown in Table 4 was used to classify the negative (2) and
unlabelled (8) examples within the 18 studied genes.
Only 2 of 10 examples were classified as positives; one
from the negative set and one from the unlabelled set.
Thus, we believe that the high sensitivity is not because
the hypotheses tend to classify any example as positive.

When the same set of hypotheses was used to clasify 3,616
unlabelled examples from 1,475 genes, they predict 398
uORFs from 301 genes as functional. The 398 predicted
functional uORFs are listed in additional file 1: Table S-
11. Generally, more precise mapping of transcription start
sites in yeast will in some cases help confirm whether
these uORFs are real or not, and some of these predicted

Table 4: The English translations of the hypotheses generated from the set of 21 positive examples.

A uORF has functional role if it satisfies at least one of the following rules.
1. the main gene is regulated under butanol stress and the product of the main gene is involved in nucleic acid binding;
2. the uORF is conserved in two other species, the main gene is localised in intracellular (or protoplasm), and the UTR length > = 463;
3. the uORF is conserved in three other species and the main gene is localised in intracellular (or protoplasm);
4. its length < = 7 and the product of the main gene is involved in nucleic acid binding;
5. the base in position +4 relative to the uORF's start codon is 'G' and the main gene is involved in regulation of biological process;
6. its length < = 6, the main gene is localised in intracellular (or protoplasm), and the main gene is involved in regulation of biological process;
7. the uORF is conserved in two other species, the main gene is not regulated under low concentration of H2O2, the main gene is localised in 

intracellular (or protoplasm), and the UTR length > = 244;
8. the product of the main gene is involved in translation regulator activity.
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functional uORFs may turn out to be artifact due to errors
in the transcription start site prediction. Thus, extensive
lab work would be required to verify whether these 398
uORFs from 301 genes are indeed functional. However,
there are other observations that provide support for our
predictions (see discussion section).

Discussion
The novel approach to predicting functional uORFs in the
yeast S. cerevisiae presented here makes use of knowledge
about biological conservation, GO annotations, and
genes' response to different stress conditions; while there
have been several studies involving machine learning
which make use of expression data and/or GO annota-
tions (e.g. [48-51]), such a combination of knowledge has
not been explored previously for learning yeast functional
uORFs.

To date, there are very few computational studies on
uORFs. The most closely related work are the studies by
[16] and [32], and these are discussed in detail below.
[52] Studied uORFs in the genome of fungal pathogen
Cryptococcus neoformans with the aim of finding the pro-
portion of uORFs conserved in four strains of C. neoform-
ans. Similar to [52][53] looked for conserved uORFs
between human and mouse genomes.

As in our work, the overall goal of the study in [32] is to
find additional genes that are potentially regulated by
uORF(s). Both [32] and [16] inspired us to consider uORF
conservation in our work, although the way in which con-
servation is tested here is different, focusing on the relative
positions and lengths of uORFs, rather than sequence sim-
ilarity. Further to their computational work, [32] investi-
gated seven genes experimentally. Of the five genes
(RPC11, TPK1, FOL1, WSC3, and MKK1) that [32]
hypothesised may have functional uORFs, three genes,
which have one uORF each, were predicted by our

hypotheses to have functional uORFs (Table 5). WSC3
was excluded from our data, since its UTR length was pre-
dicted to be well over 1000 bases based on [26]. The
uORFs of ECM7 and IMD4, which were found by [32] to
have little effect on translation, were predicted as non-
functional by our hypotheses.

The work described here provides some improvements
compared to [16], and in the remainder of this section we
discuss the differences in the methodology, hypotheses
and predictions. Concerning methodology, the computa-
tional system used in [16] was an expert system shell with
a certainty factor model for representing uncertainty in
both the data and the rules/hypotheses. To generate the
initial hypotheses, a rule base is constructed manually.
The final set of hypotheses was generated after several
cycles of running the expert system with the input data,
analysing the results, and manually modifying the rule
base for better classification. In contrast, in the work
described here, the hypotheses are generated automati-
cally by the ILP system. Thus, when applying the method
for learning functional uORFs in other organisms, apply-
ing the method described here will be more practical than
the one described in [16].

In [16], each rule for inferring whether a uORF was likely
to affect gene expression was assigned a certainty factor
representing the confidence in a consequent of the rule
being true if all of the antecedents are true. If a uORF was
predicted to be functional using two or more different
lines of inference, then the certainty factors associated
with these were combined, and the resulting combined
certainty factor was used to score the uORF. The highest
certainty factor value for any one of a gene's uORFs was
used as the score for the gene itself, and those genes with
a score above a selected threshold were classified as hav-
ing a functional uORF. In that work, genes could be
ranked according to their scores. In contrast, the ILP

Table 5: Comparison between predictions made by our hypotheses (Table 4) and by [32] for the seven genes that they wet-
experimentally tested.

Gene Name Systematic Name uORF's Position uORF's Length Predicted as functional in

Z&D This study

RPC11 YDR045C -60 4 Yes Yes
TPK1 YJL164C -42 5 Yes Yes
FOL1 YNL256W -65 4 Yes Yes
WSC3 YOL105C -50 7 Yes a
MKK1 YOR231W -71 10 Yes No

ECM7 YLR443W -15 5 Nob No
IMD4 YML056C -99 14 Nob No

a5' UTR length was predicted to be well over 1000 bases and thus this gene is not included in this study.
bZhang and Dietrich found these uORFs have little effect on translation; we consider them as non-functional.
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approach used in this paper gives a boolean "yes or no"
prediction for whether each uORF has a functional role,
and there are no scores that can be used for ranking. Thus,
unlike in [16], there is no notion of having "strongly pre-
dicted" genes in the present work. The fact that one
approach produced a ranked list of predictions while the
other resulted in an unordered set of predictions makes a
direct comparison of their results difficult.

While it is plausible that collectively, the rules listed in
Table 4 will have a relation to the probability of uORFs
having a functional role, it is uncertain at this point how
the specific combinations of criteria that make up the
rules relate to a biological context. This is primarily due to
the small number of examples underlying each rule. Sev-
eral of the derived criteria are generally in agreement with
previously identified properties of genes with functional
uORFs. Thus, two of the rules require the 5' UTR length to
be over a certain value (Rules 2 and 7), which is consistent
with uORFs generally being placed in genes with long
untranslated regions. Rule 5 suggested that the base G in
position +4 relative to the uORF's start codon is a favour-
able context for yeast. Previous research on mammals
[30,31] have shown that AUG context has influence on
the recognition of AUG by the ribosome. The optimum
AUG context for mammalian genes was found to be A or
G in position -3 and G in position +4, where the A of
uORF's AUG is position +1. A or G in position -3 have also
been shown as favourable context in yeast too [54]. A
requirement for short uORFs has been marked in two
rules (Rules 4 and 6). This is in agreement with the finding
in [16] that uORFs conserved in evolution between Sac-
charomyces species are shorter than non-conserved (and
presumably non-functional) uORFs. It is also interesting
to note that several of the rules (Rules 1, 4, 5, 6, and 8)
imply a role in regulation of transcription for the gene
product. In [16], among genes with predicted functional
uORFs, an overrepresentation with products implicated in
transcription was found by analysis of GO terms.

By comparing the hypotheses in Table 4 with those
described in [16] further, the following observation was
made. Although 50 to 250 nucleotides was considered as
the optimal distance between a functional uORF and the
CDS in [16], this feature does not appear in the hypothe-
ses in Table 4, indicating that the learning system used
here considers this feature to be less important. This is due
to the use of 5' UTR sequences; around 88% of the 5' UTR
sequences of S. cerevisiae used here are not more than 250
nucleotides, whereas the intergenic regions used in [16]
are generally much longer than 5' UTRs.

There are differences in the predictions described in [16]
and those described here. In [16], 245 additional genes
were predicted to have 367 new functional uORFs.

Among these, 34 uORFs from 32 genes were strongly pre-
dicted to be functional. Among the strongly predicted
ones, 24 uORFs from 23 genes lie within the 5'UTRs based
on calculation from [26]. When we checked how many of
these 24 uORFs from 23 genes were also predicted as func-
tional by the hypotheses in Table 4, we found eleven
uORFs from genes LDB17, HEM3, CIN8, BCK2, PMC1,
FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 [see Addi-
tional file 1: Table S-12]. This suggests that these eleven
genes are strong candidates for lab experimental studies.
Moreover, HEM3 has been investigated by [32] and has
been confirmed to have one real uORF.

Conclusions
We have taken a new approach to learning functional
uORFs in the yeast S. cerevisiae. The method, which can
help to select sets of candidate functional uORFs for lab
experimental studies, uses the positive-only setting of an
ILP system called Aleph and makes use of knowledge
derived from biological sequences of several different
yeast species, an analysis of several publicly available
expression data sets, and Gene Ontology annotations; this
is the first time such a combination of knowledge has
been explored for learning yeast functional uORFs. With
only a little adjustment and provided the relevant data are
available, our method can be applied to the task of learn-
ing functional uORFs in other organisms. The heterogene-
ous knowledge used here allows Aleph to generate a set of
hypotheses with reasonably high sensitivity (76%). While
the idea of using conservation for learning functional
uORFs is not new, the way in which conservation is tested
here is new.

Our hypotheses are simple and informative. They are
quite specific yet general enough to cover different types
of functional uORFs. The hypotheses provide provisional
insights into biological characteristics of functional
uORFs. These may include being conserved in at least two
other yeast species, the main gene's product being
involved in regulation of biological process, translation
regulator activity, and in nucleic acid binding, as well as
the main gene being regulated or not regulated under cer-
tain stress.

When the hypotheses were used to predict novel func-
tional uORFs from a set of unlabelled uORFs within the
genome of S. cerevisiae, they predict 301 further genes to
have 398 novel functional uORFs. Three (RPC11, TPK1,
and FOL1) of these 301 genes have been hypothesised,
following wet-experiments, to have functional uORFs
[32]. Finally, a comparison of our predictions here and
those in [16] suggests that a set of eleven predicted func-
tional uORFs from genes LDB17, HEM3, CIN8, BCK2,
PMC1, FAS1, APP1, ACC1, CKA2, SUR1, and ATH1 are
strong candidates for lab experimental studies. The pre-
Page 8 of 10
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dicted functional uORFs have yet to be tested biologically.
Positive results are certainly hoped for. However, what-
ever the biological test results would be, we believe these
could be used to improve the computational research on
uORFs as well as to advance the current knowledge in
biology.
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