
Chalmers Publication Library

Dynamic equations for fluid-loaded porous plates using approximate boundary
conditions

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Journal of the Acoustical Society of America (ISSN: 0001-4966)

Citation for the published paper:
Folkow, P. ; Johansson, M. (2009) "Dynamic equations for fluid-loaded porous plates using
approximate boundary conditions". Journal of the Acoustical Society of America, vol.
125(5),  pp. 2954-66.

http://dx.doi.org/10.1121/1.3086267

Downloaded from: http://publications.lib.chalmers.se/publication/104186

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1121/1.3086267
http://publications.lib.chalmers.se/publication/104186


Dynamic equations for a fluid-loaded porous plate using approximate

boundary conditions

Peter D. Folkowa) and Martin Johansson

Department of Applied Mechanics,

Chalmers University of Technology,

SE-412 96 Göteborg,
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Abstract

Approximate boundary equations for fluid-loaded thin poroelastic lay-

ers are derived for time harmonic conditions. The layer is modeled

according to Biot theory and both open and closed pores conditions

at the fluid-porous interfaces are considered. Series expansions in the

thickness variable are used to replace the porous field variables at the

boundaries by their values at the center-plane of the layer. When

truncated, this yields a system of equations with the fluid pressures

at the surfaces and the porous field variables at the center-plane as

unknowns. The problem is split into separate symmetric and antisym-

metric cases and is solved by utilizing the governing equations for the

porous medium. The result is two 2D differential equations in the plane

of the layer which relates the fluid pressures to their normal derivatives

at the surfaces. Numerical comparisons are made with 3D Biot theory

for two material configurations and two thicknesses. The agreement

was found to be better than expected. A thin porous layer may then in

some cases be replaced by the approximate boundary conditions and

thereby simplify the analysis of fluid-porous coupled problems.

PACS numbers:
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I. INTRODUCTION

In this paper approximate boundary conditions for fluid-loaded saturated porous plates

are derived. Their intended use is as replacement for the porous layer in acoustic-poroelastic

coupled problems.

Porous layers are found in several disciplines; biomechanics, seismology, geomechanics

and acoustics. In reality the structure of porous media is very complex and irregular. For

macroscopic scales, i.e. when the relevant length scales are much larger than the pore sizes, a

widely used theory was formulated by Biot1. It is a linear theory that treats the poroelastic

material as a continuum with averaged macroscopic displacement fields and is formulated

with a set of effective parameters. Much work has been devoted to the determination of

these parameters since the theory was first presented. This theory is, however, still fairly

complicated and in many situations simplifications may be justified.

The complexity of porous materials has motivated much work on approximations and

simplified methods. One approach is to use a simplified material model such as the rigid

frame model2,3. In many situations the geometries of the porous structures are such that

there is room for other simplifying approximations. Several authors such as Taber4, Theodor-

akopoulos and Beskos5, and Leclaire et al.6, have derived approximate plate equations for

porous plates. They rely on the Kirchhoff hypothesis combined with the Biot theory and

in some cases assume predominant transverse fluid flow. Numerical solutions to these equa-

tions for clamped porous plates were obtained, applying Galerkin’s variational method, by

Leclaire et al.7 for acoustical excitation and Etchessahar et al.8 for a concentrated force. The

case of in-plane fluid flow only was treated by Li.et al.9. Another possibility is to develop

semi-empirical equations, e.g. Lee et al.10 and Bliss11.

This paper focuses on deriving approximate boundary conditions for fluid-loaded thin

porous plates. The main object is to replace the porous layer by two differential equations

in the surface plane, expressed in terms of the exterior fluid variables. These differential

a)Electronic address: peter.folkow@chalmers.se
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equations constitute the approximate boundary conditions and account for the effect of the

porous layer. It is thus not necessary to model the porous medium, which may greatly

simplify the analysis of porous-fluid coupled problems. The approach is based on series

expansions in the thickness coordinate and the result is a two-dimensional representation of

the porous layer, much like plate theories. The present method applies for the derivation of

porous plate equations as well. This will be the subject of a future paper.

Effective boundary conditions to first order in the thickness was studied by Bövik12,13 for

various configurations of fluids and elastic layers. The method was generalized by Johansson

et al.? where approximate boundary conditions for a fluid-loaded elastic plate were given up

to order five in the thickness. This method is closely related to those presented by Boström

et al.? and Losin14,15 who used series expansions to derive plate equations for isotropic

elastic plates. An other example is the work of Johansson and Niklasson? who treated

piezoelectric anisotropic elastic media. In the present paper the results of Johansson et al.?

are generalized to poroelastic media.

When deriving the equations it is assumed that linear theory is valid and that the

layer thickness is, at most, of the order of a typical wavelength. As the porous layer is

modeled using Biot theory, it is also assumed that the characteristic pore size is much

smaller than the thickness so that the porous medium may be considered as a continuum.

No further assumptions regarding the behavior of the porous variables are made. Since

the approximate boundary conditions are given in terms of Biot parameters it is possible

to adapt the approximate boundary conditions to the problem at hand and, if justified,

simplify them further.

The paper is organized as follows: The relevant equations of the Biot theory are first

presented in Sec. II. In Sec. ?? an outline of the derivation method is given, followed by the

derivation of the approximate boundary equations for the cases of closed and open pores.

Numerical results are presented in Sec. IV, where the reflection coefficient is calculated for

an incident plane wave at various angles of incidence by means of the approximate boundary

equations. The results are compared to the full three dimensional Biot theory. The paper
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is sumarized in Sec. V.

II. ASSUMPTIONS AND GOVERNING EQUATIONS

Consider an infinite, isotropic porous plate of thickness h immersed in a fluid, see Fig.

(1). The saturated plate is modelled according to the Biot theory1, where the densitities of

the solid and fluid parts are ρs and ρf , respectively. The state of the plate may be expressed

through the solid macroscopic displacement u together with the average displacement U

and the pressure p of the liquid phase. The state of the surrounding fluid, density ρ0, is

modelled through the pressure p0 and the displacement U0. Viscous effects are neglected in

the exterior fluid, but they are important in the porous domain.

For a thin layer approximation, the plate thickness is assumed to be smaller than the

shortest wavelength considered. However, for the continuum theory to hold, the plate thick-

ness is large when compared to the pore size. These assumptions are in line with the low-

frequency theory presented in1 where the flow in the pores are considered to obey Poiseuille

flow.

The pores at the plate boundaries are either closed or fully open; the intermediary

states are not considered here. With closed pores it is understood that a thin, impermeable

massless layer separates the exterior fluid from the fluid in the plate. The properties of the

saturating fluid and the surrounding fluid may in such a case differ. In the case of open

pores, fluid may flow between the plate and the surroundings through the boundaries. It is

then understood that the saturating fluid is identical to the surrounding fluid.

Biot theory supports three bulk wave types. One shear wave (wave speed cs) and two

compressional waves referred to as the fast and slow compressional waves (wave speeds cp1

and cp2 respectively). Here, it is the slowest wave that is the critical one for thin layer

approximations. Which of the three waves that is the slowest depends on the frame and

saturating fluid materials as well as the frequency, but in most cases cp2 < cs < cp1.
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A. Governing Equations

Considering time harmonic conditions, the equations of motion governing the displace-

ments in porous media may be written as1

N∇2u + ∇∇ · ((N + A)u + QU) = −ω2(ρ11u + ρ12U),

∇∇ · (Qu + RU) = −ω2(ρ12u + ρ22U),

(1)

where the factor e−iωt has been omitted. Here N is the shear modulus of the frame and Q, A,

and R are generalized elastic coefficients. These latter factors are related to the measurable

quantities the porosity Φ, the bulk modulus of the frame Kb, the bulk modulus of the solid

material Ks, and the bulk modulus of the fluid Kf , see Allard2:

A =
(1 − Φ) (1 − Φ − Kb/Ks) Ks + ΦKsKb/Kf

CK

− 2

3
N,

Q =
Φ(1 − Φ − Kb/Ks)Ks

CK

, R =
Φ2Ks

CK

.

(2)

where

CK = 1 − Φ − Kb/Ks + ΦKs/Kf . (3)

The densities ρij , are defined by

ρ12 = (1 − α)Φρf , ρ11 = (1 − Φ)ρs − ρ12, ρ22 = Φρf − ρ12, (4)

where the density ρ12 represents added mass due to coupling of the solid and fluid motions.

Here α is the dynamic tortuosity, related to both the porosity and the geometry of the

interconnected pores. For viscous flow in the pores causing damping, α is complex and

frequency dependent according to the model by Johnson et al.16

α = α∞ +
iηΦ

ρfκ0ω

(
1 − 4iα2

∞κ2
0ρfω

ηΦ2Λ2

)1/2

, (5)

where η is the viscosity, κ0 is the static permeability and Λ is a characteristic length of the

pore size. For non-viscous fluids the tortuosity is given by the constant value α = α∞. This

choice of notation is due to the limit ω → ∞ for α in the viscous case. Due to the beavior of

α for viscous flow the densities ρij are hereby also complex and frequency dependent. Note
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that when the saturating fluid is a gas, thermal effects should be considered as the thermal

conduction modifies the bulk modulus of the fluid. Such effects are included in the model

through the complex and frequency dependent Kf by2

Kf =
γhpatm

γh − (γh − 1)(1 + iω0

ω
(1 − iω

2ω0
)1/2)−1

, ω0 =
σ

ρfα∞c2Pr
. (6)

Here, Pr denotes the Prantl-number, patm is the atmospheric pressure, γh is the ratio of

specific heats, σ is the flow resistivity and c is a form factor which depends on the shape of

the pores.

The constitutive equations for the stresses in the porous plate are

σs =N(∇u + (∇u)T ) + I∇ · (Au + QU), (7)

σf =(−IΦp) = I∇ · (Qu + RU), (8)

where I is the 3 × 3 identity tensor. The stresses are the averaged stress of the solid frame

σs and the averaged stress of the fluid portion σf . The sum of these stresses forms the total

macroscopic stress σ = σs + σf .

In the exterior fluid the governing equation for the pressure is according to the simple

wave equation

(∇2 + k2
0)p0 = 0, k0 = ω/c0, (9)

where c0 is the wave velocity and k0 is the wave number for waves in the fluid. The relation

between the pressure p0 and the displacement U0 in the surrounding fluid is given by the

momentum equation

∇p0 = ρ0ω
2U0. (10)

B. Boundary Conditions

The boundary conditions at z = ±h/2 for a porous-fluid interface stem from continuity

of traction, continuity of filtration velocity as well as Darcy’s law17. The continuity require-

ments for the surface tractions in tangential and normal directions are obtained using Eqs.
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(7) and (8)

N(∂xuz+∂zux) = 0 (11)

N(∂yuz+∂zuy) = 0 (12)

2N∂zuz + ∇ · ((A + Q)u+(Q + R)U) = −p0. (13)

Here, the partial derivatives are expressed ∂x = ∂/∂x and so on. The fluid flow across

the interfaces z = ±h/2 are governed by continuity of the normal component of the filtration

vector and by Darcy’s law. Under time harmonic conditions these relations are

Φ(Uz − uz) = U0
z − uz, (14)

±iωΦ(Uz − uz) = κs(p0 − p), (15)

where the parameter κs characterizes the permeability of the interface.

The state of the porous plate at the boundaries may be given in terms of either the fields

{u,U} or {u, p}, while for the surrounding fluid the boundary conditions are given by either

U0 or p0. The choice is a matter of convenience and here the {u,U, p0}-formulation is used

in conformity with the governing equations for the porous plate Eq. (1) and the surrounding

fluid Eq. (9). Thus, the pressure of the liquid phase p appearing in Darcy’s law Eq. (15)

may be rewritten using Eq. (8). In a similar manner, the surrounding fluid displacement U0
z

in Eq. (14) may be written in terms of the pressure field p0 adopting Eq. (10). Since the

results of the fluid flow boundary conditions Eqs. (14) and (15) are fundamentally different

for closed and open pores, these cases are discussed separately below.

For closed pores the permeability κs is zero as no mass transport is allowed between

the exterior fluid and the fluid of the porous medium. Darcy’s law Eq. (15) then reduces

to Uz = uz at the surfaces. This simplifies the filtration condition Eq. (14) to U0
z = uz as

expected. By using Eq. (10), the interface fluid flow relations become

∂zp0 = ρ0ω
2uz, (16)

0 = Uz − uz. (17)

8



In the case of open pores the permeability κs is infinite. Due to finiteness of the flow,

Darcy’s law Eq. (15) gives p = p0 at the boundaries. Adopting Eqs. (10) and (8) gives the

interface fluid flow relations

∂zp0 = ρ0ω
2((1 − Φ)uz + ΦUz), (18)

p0 = − Φ−1∇ · (Qu + RU) (19)

Here, ρf = ρ0 as the same fluid is assumed inside and outside the plate.

III. PLATE EQUATIONS

A. Series expansions

There are different ways to obtain plate theories; either based on different kinemati-

cal assumptions in line with the classical theories for elastic plates, or in a more rigorous

fashion adopting the three dimensional equations of motion. Here, a systematic approach

will be used based on the three dimensional equations of motion together with power series

expansions of the physical fields with respect to the thickness coordinate z. This method

is believed to be asymptotically correct without any ad hoc assumptions, resulting in a

hierarchy of higher order plate theories that can (in principle) be truncated to any order.

One such expansion method is to expand the plate displacement fields around the midplane

z = 0, which has been done for an isotropic elastic plate, see Boström et al.18. Another

method is to expand the boundary conditions around the midplane z = 0. This approach

has been adopted by Johansson et al.19 for a fluid-loaded elastic plate, where the results are

expressed in terms of so called approximate boundary conditions. These two methods seem

to be analogous, which is discussed in the case of an elastic plate19.

In the present case for fluid-loaded porous plates, the latter approach is used in order to

benefit from the results from fluid-loaded elastic plate. Hence, the plate equations are ex-

pressed in terms of approximate boundary conditions, where the plate fields are eliminated

so as to obtain differential equations in terms of the fluid pressure p0 and its normal deriva-
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tive ∂zp0 at the boundaries. By doing this, the influence from the porous plate is present

implicitly in the differential equations, without the need of solving the plate equations ex-

plicitly in term of the plate fields. For clarity, the plate equations will also be expressed

So, when using series expansion of the boundary conditions in order to eliminate the plate

fields, it is convenient to proceed in terms of the differences and sums of the boundary fields

Δf = f(x, y, h/2)− f(x, y,−h/2), Σf = f(x, y, h/2) + f(x, y,−h/2), (20)

where f = {u,U, p0} and their spatial derivatives. For the plate fields u and U and their

spatial derivatives, the sums and differences are expanded in Maclaurin series in the thickness

coordinate z

Δf =2
n−1∑
j=0

∂2j+1
z fc

(2j + 1)!

(
h

2

)2j+1

+ O(h2n+1), (21)

Σf =2

n−1∑
jk=0

∂2j
z fc

(2j)!

(
h

2

)2j

+ O(h2n), (22)

where ∂m
z fc = ∂m

z f(x, y, z)|z=0. The sums and differences of the boundary conditions for the

tractions Eqs. (11)–(13) and the fluid flow Eqs. (16)–(17) (closed pores) or Eqs. (18)–(19)

(open pores) may then be written in terms of the sums and differences of the exterior fluid

pressure p0 and ∂zp0, together with the porous field variables at the center plane uc and Uc.

In conformity with Johansson et al.19, two separate cases are identified due to the dif-

ferential orders in the normal direction of the plate displacements. For Δp0 and Σ∂zp0,

even order z-derivatives ∂2m
z act on the fields {uz,c, Uz,c} and their derivatives in the (xy)-

plane, while odd order z-derivatives ∂2m+1
z act on the fields {ux,c, uy,c, Ux,c, Uy,c} and their

derivatives in the (xy)-plane. Considering Σp0 and Δ∂zp0 the opposite situation holds. The

explicit representation of the plate fields {uc,Uc} and their spatial derivatives may then be

eliminated in order to give separate differential equations in terms of Δp0 and Σ∂zp0 (anti-

symmetric case) and Σp0 and Δ∂zp0 (symmetric case). For each such case, 8m+7 equations

must be solved if the expansions in the plate thickness h are to involve terms up to and

including h2m+1. Since there are only five boundary conditions, the remaining equations are
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found through the governing equations Eq. (1). By performing normal derivatives of these

equations evaluated at the center plane, 8m+2 additional equations are obtained.

The solutions of the equation systems discussed above resulting in the approximate

boundary conditions, may be written in terms of differential operators. For closed pores

these boundary conditions are expressed

(
n−1∑
j=0

h2jω2C1,j

)
Δp0 =

(
n∑

j=1

h2j−1C2,j

)
Σ∂zp0 + O(h2n), (23)

(
n∑

j=2

h2jω2C3,j

)
Σp0 =

(
n∑

j=2

h2j−1C4,j

)
Δ∂zp0 + O(h2n+1), (24)

for the antisymmetric and symmetric cases, respectively while for open pores the equations

are

(
n−1∑
j=1

h2jC5,j

)
Δp0 =

(
n−1∑
j=1

h2j+1C6,j

)
Σ∂zp0 + O(h2n), (25)

(
n∑

j=2

h2jC7,j

)
Σp0 =

(
n−1∑
j=1

h2j+1C8,j

)
Δ∂zp0 + O(h2n+1), (26)

in the antisymmetric and symmetric cases, respectively. The differential operators Ci,j gen-

erally involve ∇2p
s ω2j−2p for p = 0, ..., j with ∇2

s = ∂2
x + ∂2

y . Closed form representations of

Ci,j involve a substantial number of different terms even at low order. It should be noted

that for a series expansion involving terms up to and including order h2m+1 in Eqs. (21) and

(22), even higher order terms appear in the elimination process. However, as these higher

order terms are not stable when using even more terms in the series expansion, the equa-

tions are truncated. Thus, only terms up to and including order h2m+1 are present in the

final result given above. In the present work, series expressions involving terms up to and

including order h5 are used in the numerical results. These lengthy closed form expressions,

obtained through tedious calculations using the mathematical software MATHEMATICA,

are not presented here. The explicit representations given below involve terms up to and

including order h3.
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B. Closed pores

Expressing the relations (23) and (24) explicitly for terms up to and including h3, the

approximate boundary condition for the antisymmetric case becomes

β1k
2
t

{
1 − 1

2

(
h

2

)2 [
3∇2

s + 3k2
av

]}
Δp0

=

{
h

2
k2

t −
1

6

(
h

2

)3 [
8(1 − γ1)∇4

s + (16k2
s + 7k2

t − 24k2
av − 8k2

1 + 8k2
p1k

2
p2/k

2
s)∇2

s

+ (2k2
s + 3k2

av)k
2
t + 2γ2k

2
p1k

2
p2

]}
Σ∂zp0,

(27)

while the approximate boundary condition for the symmetric case is

β1k
2
t (∇2

s + k2
p1)(∇2

s + k2
p2)

{
h

2
− 1

6

(
h

2

)3 [
3∇2

s + 3k2
av

]}
Σp0

=

{[−4(1 − γ1)∇4
s − (k2

t − 4k2
1)∇2

s − γ2k
2
p1k

2
p2

]
+

1

6

(
h

2

)2 [
12(1 − γ1)∇6

s + (5k2
t + 12(1 − γ1)k

2
av − 12k2

1)∇4
s

+ ((9k2
av − 2k2

s)k
2
t − 12k2

1k
2
av + 3γ2k

2
p1k

2
p2)∇2

s + (2k2
t + 3γ2k

2
av)k

2
p1k

2
p2

]}
Δ∂zp0.

(28)

Here ks, kp1, and kp2 are the bulk wave numbers of the shear wave, the fast compressional

wave, and the slow compressional wave, respectively. They are given by

k2
p1,p2 =

ω2

c2
p1,p2

=
2a1ω

2

a2 ∓
√

a2
2 − 4a1a3

, k2
s =

ω2

c2
s

=
a1ω

2

Nρ22

, (29)

where the constants ai are

a1 = ρ11ρ22 − ρ2
12, a2 = Rρ11 − 2Qρ12 + Sρ22, a3 = RS − Q2, (30)

using S = 2N +A. The wave number kt is a generalized shear wave number, kav is the mean

square of the bulk wave numbers, and k1 is an auxiliary wave number. They are defined by

k2
t =

ρtω
2

N
, k2

av =
k2

p1 + k2
p2 + k2

s

3
, k2

1 =
((Q + R)ρ12 − (Q + S − N)ρ22) ω2

a3
. (31)

The density ρt is the total density of the saturated porous body, according to

ρt = ρ11 + 2ρ12 + ρ22 = (1 − Φ)ρs + Φρf . (32)
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All the squared wave numbers in Eqs. (27) and (28) have a positive real part. The symbols

β1, γ1 and γ2 are non-dimensional numbers (with positive real part for the porous materials

studied numerically in this paper) expressed in terms of densities and generalized elastic

coefficients according to

β1 =
ρ0

ρt

, γ1 =
NR

a3

, γ2 =
R + 2Q + S

N
. (33)

Comparing Eqs. (27) and (28) with the corresponding approximate boundary equations

for an elastic layer reported by Johansson et al.19, it is seen that the expressions are quite

similar. The differences are most pronounced for the symmetric case, where the derivatives

in the porous case are two orders higher than in the elastic case. This has to do with the

fact that Biot’s theory supports three bulk waves, and evidently all of these are important

to order h3 in Eq. (28). In conformity with Johansson et al.19, it is possible to factorize

the compressional bulk wave operator in the symmetric case. As there are two such waves

in the porous case, the factorized operator is (∇2
s + k2

p1)(∇2
s + k2

p2) on the left hand side of

Eq. (28). This implies that when the surface component of the wave number of the fluid

loading coincides with the wave numbers of any of the compressional bulk waves in the

porous medium, no symmetric normal motion of the fluid-porous boundary is generated. In

the porous layer a guided pressure wave may propagate with the wave speed of any of the

compressional bulk wave speeds as if the porous domain occupied the full three dimensional

space. Moreover, the symmetrical part of the fluid loading behaves as if the fluid-porous

interfaces were rigid walls. It should be noted, though, that the compressional bulk wave

numbers are complex when losses are included in the porous medium. This coincidence

phenomenon thus does not occur since viscosity is neglected in the exterior fluid.

It is not difficult to generalize Eqs. (27) and (28) to the case of different exterior fluids

as this only influences the normal displacement continuity condition, Eq. (16). The right

hand side of this equation may still be expressed in terms of either the sum or the difference

of the normal displacement of the porous solid. Denoting the density of the exterior fluids

on the positive and negative z by ρ0 and ρ′
0, respectively, this is done by substituting the

13



right hand sides of Eqs. (28) and (27) according to

Σ∂zp0 → 1

2
((1 + ρ0/ρ

′
0)Σ∂zp0 + (1 − ρ0/ρ

′
0)Δ∂zp0),

Δ∂zp0 → 1

2
((1 − ρ0/ρ

′
0)Σ∂zp0 + (1 + ρ0/ρ

′
0)Δ∂zp0).

It is instructive to see whether the results for a homogeneous plate derived by Johansson

et al.19 are retrieved when the porosity tends to zero, Φ → 0. Starting with the generalized

elastic coefficients Eq. (2) and the densities Eq. (4), these become N = μ, A = λ, ρ11 = ρs

while Q = R = 0 and ρ12 = ρ22 = 0 in the limit. Here, μ and λ are the Lamé constants for

a homogeneous plate. The bulk wave numbers in (29) are hereby k2
p1 = ω2/c2

p, k2
s = ω2/c2

s

and k2
p2 = 0, where now c2

p = μ/ρs and c2
s = (λ + 2μ)/ρs. Moreover, the auxiliary wave

number in (31) becomes k1 = 0 while the constants in (33) become γ1 = 1/γ2 = γ where

γ = μ/(λ + 2μ). Comparing these equations to the ones given in Johansson et al.19, a few

terms differ. However, by closer inspection of the resulting non-truncated porous equations

using a h3 series expansion, some operators may actually be exactly factorized when the

porosity tends to zero. Such factorized operators stem from the procedure of reducing the

number of porous plate parameters to the homogeneous case. Hence, by eliminating these

common operators, identical results are obtained when the porosity tends to zero as for the

homogeneous plate19. The factorized operators in question are(
1 − 1

2

(
h

2

)2

∇2
s

)
, ∇2

s

(
1 − 1

6

(
h

2

)2

∇2
s

)
, (34)

in the antisymmetric and symmetric case, respectively.

β1k
2
t

{
∇2

s + k2
2

}
Δp0

=

{
h

2

[
k2

s(∇2
s + k2

2)
]− 1

6

(
h

2

)3 [
8(1 − γ1)∇6

s

+ (8(1 − 2γ1)(k
2
s(1 + γ1) − 3k2

av) − 8k2
p1k

2
p2/k

2
s)∇4

s

]}
Σ∂zp0,

(35)

where wave numbers and constants are defined by Eqs. (29)–(33). This equation has

the same structure as for the case of an elastic layer. It is noted that to order h this is the
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momentum equation for an incompressible layer of density ρt, with zero shear stiffness, as

it may be written as Δpf = hρtω
2Σuz/2, i.e. only the inertial effect is included.

C. Open pores

Expressing the relations (25) and (26) explicitly for terms up to and including h3, the

approximate boundary condition for the antisymmetric case becomes

β2

{
k2

2 −
1

6

(
h

2

)2 [
8(1 − γ1)Φ

2∇4
s + (16Φ2k2

s + 7k2
2 − 24Φ2k2

av − 8k2
3 + 8Φ2k2

p1k
2
p2/k

2
s)∇2

s

+ (2k2
s + 3k2

av)k
2
2 + 2γ3k

2
p1k

2
p2

]}
Δp0

=

{
h

2
k2

s −
1

6

(
h

2

)3 [
8(1 − γ1)∇4

s + (13 − 8γ1)k
2
s∇2

s + (2k2
s + 3k2

av)k
2
s

]}
Σ∂zp0,

(36)

while the approximate boundary condition for the symmetric case is

β2

{(
h

2

)[
4(1 − γ1)Φ

2∇4
s + (k2

2 − 4k2
3)∇2

s + γ3k
2
p1k

2
p2

]
− 1

6

(
h

2

)3 [
12(1 − γ1)Φ

2∇6
s + (5k2

2 + 12(1 − γ1)Φ
2k2

av − 12k2
3)∇4

s

+ ((9k2
av − 2k2

s)k
2
2 − 12k2

3k
2
av + 3γ3k

2
p1k

2
p2)∇2

s + (2k2
2 + 3γ3k

2
av)k

2
p1k

2
p2

]}
Σp0

=

{[−4(1 − γ1)∇4
s − k2

s

]
+

1

6

(
h

2

)2 [
20(1 − γ1)∇4

s + (12(3 − γ1)k
2
av − (1 + 8γ1)k

2
s − 8k2

p1k
2
p2/k

2
s)∇4

s

+ (9k2
av − 2k2

s)k
2
s)
]}

Δ∂zp0.

(37)

Some new auxiliary wave numbers and non-dimensional numbers enter here, in addition to

those defined by Eqs. (29)–(33),

β2 =
ρ0

ρ22
, γ3 =

R − 2Φ(Q + R)

N
+ Φ2γ2,

k2
2 =

(ρ22 − 2Φ2ρf )ω
2

N
+ Φ2k2

t , k2
3 = Φk2

4 + Φ2k2
1, k2

4 =
(Qρ22 − Rρ12)ω

2

a3

.

As in the closed pore case these terms have a positive real part. By inspection of Eqs. (36)–

(37) it is seen that the same type of differential operators appear as in the closed pore case

15



Eqs. (27)–(28), albeit in a somewhat more complicated way. Moreover, some of the left-

hand side operators in the open pore case happen to be generalizations of the corresponding

operators appearing on the right-hand side in the closed pore case. Contrary to Eq. (28),

it is not possible to make factorization of the left-hand side of the symmetric equation Eq.

(37), due to the filtration effects at the surfaces of the porous layer.

β1k
2
t

(
1 − Φ2β3

){
(k2

t + 2Φβ4k
2
4)∇2

s + k2
t k

2
2

}
Δp0

=

{
h

2

[ (
(1 − Φ2β2)k

2
s + 2Φβ2(1 − Φ2β3)k

2
4

)∇2
s + (1 − Φ2β2)k

2
sk

2
2

]
− 1

6

(
h

2

)3 (
1 − Φ2β2)[8(1 − γ1)∇6

s + (8(1 − 2γ1)k
2
2 − 8k2

p1k
2
p2/k

2
s)∇4

s

]}
Σ∂zp0,

(38)

where β4 = ρt/ρ22.

IV. NUMERICAL RESULTS

The asymptotic approximate boundary conditions are to be compared to the three-

dimensional Biot theory as well as to the plate theory according to Theodorakopoulos and

Beskos5, see Eq .... Two material combinations are considered: water and QF-20, a quartz-

fiber studied by Johnson et al.20, and air in combination with a plastic foam studied by

Allard et al.2,21. The material data of importance for these combinations are given in Table

I. For both material combinations the saturating and the exterior fluids are hereafter

assumed to be the same, but viscous effects are accounted for only in the saturating fluid.

In the foam–air case also thermal effects are considered for the saturating fluid, as well as

damping in the plastic foam.

Due to the viscous effects resulting in frequency dependent material parameters, all three

bulk waves are dispersive; the higher the frequency, the higher the velocity. Dispersion is

particularly important for the slow compressional wave, whereas the other two modes are

virtually unaffected. This is manifested in Fig. 2 where curves are presented for the three

waves when the real part of the wavelengths equal 2h. For the plastic foam case, the slow
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compressional wave velocity actually becomes higher than the shear wave for higher frequen-

cies. The choice of wavelength used in Fig. 2 corresponds to the first positive interference

maximum for normal incidence, which could be seen as a reference upper frequency limit

for the shortest wavelength according to the approximate theories. Besides being disper-

sive, the considered porous media are also dissipative. The damping is most pronounced for

the slow compressional wave in the low-frequency region; the other waves show dissipation

that generally increase with frequency. Due to these frequency dependent effects, it is thus

not possible to introduce a nondimensional frequency variable so that the results are inde-

pendent of the thickness. Therefore two different thicknesses, h = 0.4 m and h = 0.04 m

corresponding to different frequency intervals, have been chosen in the numerical results22.

Hereby both the low frequency dissipative regime and the high frequency propagating regime

of the slow compressional wave are investigated. These thicknesses are also indicated in Fig.

2 as solid lines.

To validate the approximate plate equations presented above, the transmission and

absorption coefficients are calculated. Consider z < −h/2 and let plane waves propagate

in the (xz)-plane towards z = −h/2, giving rise to reflected and transmitted plane waves.

Thus, the incident, reflected and transmitted waves may be expressed as

p0,i = ei(k0(ζx+
√

1−ζ2 z)−ωt) z < −h/2,

p0,r =Rei(k0(ζx−
√

1−ζ2 z)−ωt) z < −h/2,

p0,t =T ei(k0(ζx+
√

1−ζ2 z)−ωt) z > h/2,

where ζ = sin φ; φ being the angle measured from the normal to the plate boundaries.

It is now straightforward to solve for R and T using the exact three-dimensional equa-

tions of motion Eq. (1) with pertinent boundary conditions. For the asymptotic equations,

either Eqs. (27)–(28) or Eqs. (36)–(37) are to be used. As the loading is such that purely

antisymmetric or symmetric modes will not be generated in the general case, the anti-

symmetric and symmetric equations are solved as a system. The numerical results involve

solutions based on the asymptotic h and h3 expansions, respectively. The range of appli-
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cability for each truncation level is hereby clearly visible. As for the T-B theory Eq. ???,

these equations are solved postulating only antisymmetric motion, resulting in a simple re-

lation between R and T . The reflection and transmission coefficients are used to derive the

absorption coefficient Ad = 1 − |R|2 − |T |2.
It is convenient to introduce the nondimensional frequency Ω = ks,∞h where ks = ω/cs,∞.

Here cs,∞ is the limit ω → ∞ for cs which corresponds to the case of a non-viscous fluid.

Note that the real part of cs,∞ is considered in the plastic foam case, as the complex shear

modulus N results in a complex velocity.

A. Quartz-fiber and water

In the case of QF-20 and water cs,∞ ≈ 2036 m s−1. From Fig. 2(a) it is seen that for the

slow compressional wave the limit kp2h = π occurs for h = 0.4 m when ω ≈ 2250 rad s−1

which corresponds to Ω ≈ 0.44 , and for h = 0.04 m when ω ≈ 70000 rad s−1 corresponding

to Ω ≈ 1.38. For the shear wave ksh = π occurs when Ω ≈ 2.96 for both thicknesses.

1. Closed pores

The results for closed pores are presented in Figure 3. The first two Figs. 3(a) and

3(b) show the modulus of T when the angle of incidence is φ = 45◦. The results using

the h3 expansion are more accurate than the asymptotic h theory as expected. It is more

surprising that the h theory is superior to the T–B theory which involves terms of order h3.

This probably stems from the importance of the symmetric modes not modelled in the T–B

flexural plate theory. Considering the curves for the h3 expansion, they deviate from the

exact curves around Ω ≈ 1 for h = 0.04 m and around Ω ≈ 1.5 for h = 0.4 m, respectively.

This latter case is far beyond the upper limit for the slow compressional wave discussed

above. This accuracy may be connected to the fact that in this low frequency interval the

slow wave is much attenuated. It should also be stated that the slow compressional wave

generally is not much excited when the pores are closed23. For other angles of incidence,
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similar results as depicted in Figs. 3(a) and 3(b) are obtained.

The dependence of |T | upon the angle of incidence is presented in Fig. 3(c) for the

frequency Ω = 0.8 when h = 0.04 m. The accuracy of the different approximations show

a similar behavior as in the previous figures. Note the rapid transition of the transmission

coefficient around ζ ≈ 0.45, that is φ ≈ 27◦. This is associated with the first compressional

mode closely related to the zeroth symmetric Lamb mode; a similar behavior is reported

by Johansson et al.19 for a fluid-loaded elastic plate. The phenomenon is not captured

by the T–B theory since it does not take symmetric motion into account. Another minor

incorrectness with the T–B equation is that |T | = 1 for the grazing angle, ζ = 1. The exact

and asymptotic equations predict that the transmission modulus falls quickly to zero as ζ

approaches unity. Similar plots are obtained for h = 0.4 m and for other frequencies, albeit

the lower frequencies Ω < 0.5 result in pronounced transmission for most angles as expected.

Note that the angle of incidence corresponding to the rapid transition of the transmission

coefficient varies little with frequency as this symmetric wave guide mode exhibits small

dispersion.

In Fig. 3(d) the absorption coefficient is plotted against the angle of incidence when

Ω = 0.8 and h = 0.04 m. Here the influence of the zeroth symmetrical mode is clearly

visible, showing its significant influence on layer absorption. As for the transmission coef-

ficient the T–B theory does not identify this behavior. Note here that the h-expansion is

actually slightly superior to the asymptotic h3 theory; a situation that also appear for other

frequencies. Similar plots are obtained for other frequencies as well as for h = 0.4 m where

in the latter case the absorption coefficient is slightly more pronounced.

2. Open pores

The results for open pores are presented in Figure 4. Here the first two Figs. 4(a) and

4(b) show the modulus of T when the angle of incidence is φ = 15◦ and φ = 45◦, respectively,

for h = 0.04 m. As for closed pores, the h3 expansion is more accurate than the asymptotic
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h and the T–B theories. All approximate theories deviate from the exact curves at lower

frequencies when compared to the closed pore case. The main reason for this is probably due

to that the slow compressional wave is more excited when the pores are open23. According to

the h3 expansion for φ = 15◦ no transmission occurs at Ω ≈ 1.5, whereas the exact solution

shows almost zero transmission at Ω ≈ 2.2. Such behavior are also present for φ = 45◦. A

similar situation appeared for heavy loading on an elastic plate19. However, this does not

imply total reflection in the porous case as absorption is present. For thicker plates, less

dramatic curves are obtained. Here the transmission coefficient is generally larger, and the

T–B theory is more accurate; sometimes even better than the asymptotic h3 theory.

The dependence of |T | upon the angle of incidence is presented in Fig. 4(c) for the

frequency Ω = 0.8 when h = 0.04 m. The accuracy of the different approximations and the

rapid transition show a similar behavior as for closed pores, clearly resembling the results for

heavy loading on an elastic plate19. It is noted that the transition jump is more pronounced

while there is less variation with the angle of incidence in the open pore case.

In Fig. 4(d) the absorption coefficient is plotted against the angle of incidence when

Ω = 0.8 and h = 0.04 m. Here the h3 expansion theory is visibly superior to the h theory.

When compared to the closed pore case, the absorption is more pronounced here, which

probably is due to that the slow compressional wave is much less excited in the former case.

Similar plots are obtained for h = 0.4 m as well as for other frequencies where in the latter

case the absorption coefficient is larger for higher frequencies.

Note from the results in Figs. 3 and 4 that the T–B solutions scarcely depend on the

boundary conditions; virtually the same results are obtained for closed and open pores, seen

fro Eq. ????

B. Plastic foam and air

Consider next the material configuration where the frame is made of a plastic foam of

high flow resistivity saturated with air. This combination is studied by Allard et al.21. In
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addition to viscous effects, viscoelastic and thermal effects are included as well. In this case,

the material parameters in Eq (2) may be simplified as Kf/Ks � 1 and Kb/Ks � 1. Hence,

the parameters may be approximated by2

Q = Kf (1 − Φ), A = Kb +
(1 − Φ)2

Φ
Kf − 2

3
N, R = ΦKf , (39)

where Kf is according to (6). The bulk modulus of the frame is assumed to be modeled in

line with an isotropic elastic material

Kb =
2N(1 + ν)

3(1 − 2ν)
, (40)

where ν the Poisson’s ratio. The dynamic tortousity (5) is obtained from the material

constants in Table I using2

Λ2 =
8α∞η

Φσc2
, κ0 = η/σ. (41)

For this material combination cs,∞ ≈ 76 m s−1. From Fig. 2(b) it is seen that for the

slow compressional wave the limit kp2h = π occurs for h = 0.4 m when ω ≈ 70 rad s−1

which corresponds to Ω ≈ 0.91 , and for h = 0.04 m when ω ≈ 6000 rad s−1 corresponding

to Ω ≈ 3.13. For the shear wave ksh = π occurs when Ω ≈ 3.13 for both thicknesses. By

inspection, all three bulk wave speeds in the porous material are here lower than the speed

of sound in the surrounding air. Moreover, the shear wave is now slower than the slow

compressional wave for high frequencies.

1. Closed pores

The results for closed pores are presented in Figure 5. Fig. 5(a) shows the modulus of

T when the angle of incidence is φ = 45◦ and h = 0.04. All approximate theories render

good results; the T–B theory being superior in the interval Ω ≈ 2 to Ω ≈ 3, after which

the asymptotic theories are more accurate. For low frequencies, the h3 expansion theory

is the most accurate. Almost identical curves are obtained for the thicker layer h = 0.4,

implying that the influence of the slow compressional wave is limited, see discussion in the

quartz-fiber case IV.A.1. For other angles of incidence, similar results are obtained.
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The dependence of |T | upon the angle of incidence is presented in Fig. 5(b) for the

frequency Ω = 3 when h = 0.04 m. The accuracy of the different approximations show

a similar behavior as in the previous figures. Contrary to the quartz-fiber case there is no

rapid transition of the transmission coefficient. The reason for this is that such a coincidence

phenomenon with the zeroth symmetrical mode does not correspond to a real-valued angle of

incidence; ζ ≈ 2.45. Similar plots are obtained for h = 0.4 m and for other frequencies, albeit

the lower frequencies Ω < 0.2 result in pronounced transmission for most angles as expected.

When comparing the transmission coefficient presented in Fig. 5(b) to the quartz-fiber case

3(c), it is clear that considerably less is transmitted in the foam-air case.

When studying the quite modest absorption coefficient in Fig. 5(c) when h = 0.04

m and Fig. 5(d) when h = 0.4 m for Ω = 3, it is clear that much of the wave is reflected

considering the magnitude of |T |, see Fig. 5(b). Here, the T–B curves are hard to distinguish

being placed almost on the horizontal coordinate line. Similar plots are obtained for other

frequencies, where the magnitude of the absorption coefficient increases with frequency.

2. Open pores

The results for open pores are presented in Figure 6. Here the first Fig. 6(a) shows

the modulus of T when the angle of incidence is φ = 45◦ for h = 0.04 m. Contrary to the

closed pores case, the asymptotic expansion theories are more accurate than the T–B theory

in the interval considered. As for the material combination quartz-fiber and water, the

approximate curves deviate from the exact curve at lower frequencies when compared to the

closed pores case due to the more pronounced excitation of the slow compressional wave.

Therefore a more narrow frequency interval is studied in 6(a) compared to 5(a). Similar

curves are obtained for other angles and frequencies. For thicker plates the T–B theory is

more accurate and sometimes even better than the asymptotic h3 theory; compare similar

situation for the case with QF-20 and water.

The dependence of |T | upon the angle of incidence is presented in Fig. 6(b) for the
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frequency Ω = 1.5 when h = 0.04 m. The accuracies of the different approximations show a

similar behavior as in Fig. 6(a). It is noted that slightly more is transmitted when compared

to the closed pores case Fig. 5(b).

The last two Figures 6(c) and 6(d) present the absorption coefficient against the angle

of incidence when Ω = 1.5 for h = 0.04 m and h = 0.4 m, respectively. When compared to

the closed pore case, the absorption is more pronounced here mainly due to the influence

of the slow compressional wave. As the absorption coefficient increases with frequency, the

thin layer case depicted in Fig. 6(c) show less absorption than thick layer case in Fig. 6(d).

Note that the T–B curves are almost on the horizontal coordinate line.

As for the quartz-fiber case, the T–B solutions scarcely depend on the boundary condi-

tions (closed or open pores) for the porous foam and air case.

V. CONCLUSIONS

The approximate boundary conditions may be transformed into a space-time partial

differential equations when frequency dependent viscous, viscoelastic, and thermal effects

are neglible. In the general case the space-time domain approximate boundary conditions

are partial integro-differential equations.

Approximate boundary conditions for a thin fluid-loaded porous layer are derived for

open and closed pores under time-harmonic conditions. Series expansions in the thickness

coordinate are utilized and boundary conditions up to order three in the thickness are

presented. In both cases separate symmetric and antisymmetric equations are obtained

when the surrounding fluids are the same. The closed pores case is generalized to different

surrounding fluids, where the equations couple.

The equations have the same structure as the corresponding approximate boundary con-

ditions for an elastic layer. However, sixth order tangential derivatives appear in the sym-

metric equations. A further similarity with the elastic case is that the differential operator

for the symmetric pressure term for closed pores may be factorized so that the symmetric

23



load term vanishes when the surface component of the wave number of the fluid loading

coincides with the wave numbers of the compressional bulk waves.

Numerical results are compared with 3D Biot theory for two material configurations:

quartz-fiber saturated with water and plastic foam saturated with air. The performances

of the approximate boundary conditions are surprisingly good at wave-number-thickness

products of order one. In many cases acceptable approximations are provided even by the

much simpler h1-theory. This is probably due to the damping of the slow compressional wave,

which would otherwise limit the range of applicability as its wave speed is comparably low.

Another explanation is that the influence from flexural plate motions here is less pronounced

than for the case of an elastic layer, which in the latter case drastically limited the validity

of the h1-theory? . The agreement is better for closed pores. Again, this is believed to be

due to the slow compressional wave, which is less excited when the pores are closed.

ACKNOWLEDGMENT

This work has been supported in part by the Swedish Research Council (VR) and in

part by the Volvo-Chalmers Vehicle Research Program.

APPENDIX: PARAMETERS OF POROUS MEDIA

1

2N

{
1 − 1

2

(
h

2

)2 [
2(2 − γ1)∇2

s + (k2
s − k2

s + k2
p1k

2
p2/k

2
s)
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where

γ4 =
N(ΦQ − (1 − Φ)R)

a3(1 − Φβ3)
.
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TABLE I. Material data for QF-20 and water and plastic foam and air

Symbol Unit QF-20 and water Foam and air

ρf kg/m3 1000 1.213

ρs kg/m3 2759 429

Φ - 0.402 0.93

α∞ - 1.89 3.2

N MPa 7.63 1.8(10 − i)

Kf MPa 2.22 -

Ks MPa 36.6 -

Kb MPa 9.47 -

Λ μm 19.0 -

η Pa s 1.14 × 10−3 1.84 × 10−5

κ0 m2 1.68 × 10−11 -

σ Nm−4s - 55 × 103

c - - 3.37

ν - - 0.4

Pr - - 0.71

patm Mpa - 0.10

γh - - 1.4
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FIG. 2. Curves for kh = π, where k is the real part of the wave numbers kp1 (solid), ks

(dashed) and kp2 (dotted). The horizontal solid lines indicate the chosen thicknesses.
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(d) Ω = 0.8, h = 0.04 m.

FIG. 3. Closed pores for QF-20 and water. —— Exact, −−− h3, · · · h, − · − T–B.
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(d) Ω = 0.8, h = 0.04 m.

FIG. 4. Open pores for QF-20 and water. —— Exact, −−− h3, · · · h, − · − T–B.
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(d) Ω = 3, h = 0.4 m.

FIG. 5. Closed pores for foam and air. —— Exact, −−− h3, · · · h, − · − T–B.
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(d) Ω = 1.5, h = 0.4 m.

FIG. 6. Open pores for foam and air. —— Exact, −−− h3, · · · h, − · − T–B.
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