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Abstract 

The brain requires a continuous supply of oxygen and nutrients, and even 
a short period of reduced oxygen supply can cause severe and lifelong 
consequences for the affected individual. The unborn baby is fairly robust, 
but there are of course limits also for these individuals. The most sensitive 
and most important organ is the brain. When the brain is deprived of 
oxygen, a process can start that ultimately may lead to the death of brain 
cells and irreparable brain damage. This process has two phases; one more 
or less immediate and one delayed. There is a window of time of up to 24 
hours where action can be taken to prevent the delayed secondary damage. 
One recently clinically available technique is to reduce the metabolism 
and thereby stop the secondary damage in the brain by cooling the baby.  

It is important to be able to quickly diagnose hypoxic injuries and to 
follow the development of the processes in the brain. For this, the 
electroencephalogram (EEG) is an important tool. The EEG is a voltage 
signal that originates within the brain and that easily and non-invasively 
can be recorded at bedside. The signals are, however, highly complex and 
require special competence to interpret, a competence that typically is not 
available at the intensive care unit. This thesis addresses the problem of 
automatic classification of neonatal EEG and proposes methods that 
would be possible to use in bed-side monitoring equipment for neonatal 
intensive care units. 

The thesis is a compilation of six papers. The first four deal with the 
segmentation of pathological signals (burst suppression) from post-
asphyctic full term newborn babies. These studies investigate the use of 
various classification techniques, using both supervised and unsupervised 
learning. In paper V the scope is widened to include both classification of 
pathological activity versus activity found in healthy babies as well as 
application of the segmentation methods on the parts of the EEG signal 
that are found to be of the pathological type. The use of genetic 
algorithms for feature selection is also investigated. In paper VI the 
segmentation methods are applied on signals from pre-term babies to 
investigate the impact of a certain medication on the brain. 

The results of this thesis demonstrate ways to improve the monitoring of 
the brain during intensive care of newborn babies. Hopefully it will 
someday be implemented in monitoring equipment and help to prevent 
permanent brain damage in post asphyctic babies.  

Keywords: EEG, segmentation, classification, asphyxia, hypoxia, 
newborn, neonatal, cerebral 
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Chapter 1 
 
Introduction 

The brain requires a continuous supply of oxygen and nutrients, and even 
a short period without them can cause lifelong effects. During delivery 
there is always a risk of insufficient circulation or blood gas exchange to 
the baby, something that may lead to asphyxia. This condition includes 
lack of oxygen, excess of carbon dioxide and a lowered pH value which 
can lead to permanent brain damage. Babies at risk are kept under close 
observation during delivery and afterwards at a neonatal intensive care 
unit (NICU), but it is hard to determine if the babies are recovering and if 
any brain damage has occurred. Parameters such as the heart rate, blood 
pressure and oxygen saturation are monitored regularly, but they are only 
measures of general conditions. If the function of the brain itself is to be 
monitored, the most direct way is to measure the electrical signals 
produced by the brain, the electroencephalogram (EEG). 

The EEG is a voltage signal that is usually measured using metal 
electrodes placed on the scalp. It originates from electrical activity of the 
neuronal cells in the brain, and the EEG signal contains information about 



Chapter 1 ‐ Introduction 

2 
 

the health status of a patient’s brain that can be interpreted by a clinical 
neurophysiologist. Earlier studies from our group have investigated how 
certain parameters calculated from the EEG signal can be used for 
detecting hypoxia (lack of oxygen) in the brain, and even for predicting 
the outcome after an hypoxic event [1].   

In practice, most EEG recordings are evaluated through visual inspection 
of the unprocessed signal by a clinical neurophysiologist. Obviously, this 
methodology only allows for intermittent evaluations, and is not suitable 
for continuous bedside monitoring. Moreover, the expertise needed for 
this type of evaluation is typically not available at the NICU, and the 
patient cannot be transferred to a neurophysiologist for diagnosis. Even 
though methods for remote consultations have been developed [2], this 
methodology mainly allows for evaluation at distinct time instances and is 
not suitable for continuous bedside monitoring.  

One attempt to simplify long-time monitoring of brain function that can 
be used for bedside monitoring is the amplitude-integrated EEG (aEEG). 
This method, in its most commonly used format, displays a filtered 
version of a two-channel EEG on a compressed time scale. It provides the 
clinician with a simple way to monitor the brain activity of a patient, and 
the compressed time scale gives a convenient view of several hours of 
recorded brain activity. However, this method has some severe 
limitations. For instance, interference and artifacts have in some cases 
been demonstrated to be hidden in the compressed signal and mistaken for 
brain activity, and there are also examples of missed seizure activity [3]. 
Because of these limitations, neurophysiologists argue that the 
unprocessed EEG signal has to be taken into consideration when 
interpreting the aEEG. This means that the staff at the NICU need to be 
able to interpret the signal at least to the level that they recognize artifacts 
and can distinguish between these and important brain activity. The staff 
has a lot of things to keep in mind, and adding complexity to their work 
would probably be problematic. Figure 1 shows an example of how the 
equipment surrounding a patient at a NICU may look.  

To enable an improved continuous cerebral monitoring, we aim at 
developing methods for automatic classification and quantification of 
different types of activity in neonatal EEG. The input of the system should 
be a number of EEG channels and possibly additional parameters such as 
blood pressure and electrocardiogram (ECG) which normally are 
measured during these circumstances. The methods should be of a kind 
that can be implemented in a compact form suitable for use in a NICU 
environment, with easily interpreted parameters and alarms for threatening 
conditions of the brain. These parameters could serve as decision support 
for the clinician selecting the proper treatment or adjusting medication. 
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A functioning system of this kind will enable higher-quality care for high-
risk neonates by providing clinicians with the possibility to continuously 
monitor the function of the brain itself, and not just the underlying support 
functions. Continuous monitoring will make it possible to follow the 
development of the status of the child over time, and enables the clinician 
to modify treatments and to follow the results in a real-time fashion, 
instead of having to rely on intermittent evaluations made by 
neurophysiologists.  

A system like this could schematically consist of the following parts: 

 EEG amplification 

 Digitization and storage 

 Filtering of the EEG to reduce disturbances from surrounding 
devices 

 Artifact rejection that marks epochs of questionable quality and 
excludes them from further processing 

Figure 1: A newborn baby is treated after asphyxia during birth. The bed is cooled 
with circulating water to reduce further damage to the brain, and various parameters, 
e.g. aEEG (left screen), are monitored (Photo: Yxell). 
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 Activity classification algorithms that divide the data into 
different categories, pathological (indicative of disease) or 
normal. Both pathological and normal EEGs in neonates can be 
continuous or intermittent (alternating between two types of 
activity) 

 Segment classification that quantifies the proportions of different 
types of activity in intermittent EEG 

 Presentation of easily interpreted information to the attending 
staff 

Figure 2 shows the system as a flowchart, all the way from the raw EEG 
signal to some easily interpreted parameter which can be displayed to the 
attending staff. The focus of this thesis is on feature generation, feature 
selection and classification of some different types of activity that can be 
found in neonatal EEG. The shaded boxes represent processes that are 
included in the thesis, but these processes are only active during 
development and are not to be included in the bedside equipment. Good 
EEG amplifiers and systems for storage and display of the acquired signal 
are available for clinical use [4] and are outside the scope of this thesis. 
The filtering that has been done was limited to simple highpass, lowpass 
and notchfilters implemented in Matlab, with especially the lowpass filters 
manually adapted to minimize the 50 Hz components that in some EEG 
recordings were dominant even after notch filtering. 

The types of EEG under consideration consist of four behavioral states 
that are common in healthy full term neonates, one type that is typical for 
pre-term neonates (tracé discontinue) and burst suppression (BS) which is 
a type of activity sometimes found in very sick neonates. BS is 
intermittent activity characterized by a very low signal level (suppression) 
that is occasionally interrupted by sudden outbursts of higher signal levels 
(bursts). In the case that BS is detected, the automated analysis takes one 
step further and segments the pattern into burst and suppression, thus 
making it possible to calculate parameters such as the burst suppression 
ratio (BSR) and the suppression lengths which can be useful when 
arriving at a prognosis for a sick baby [5]. The tracé discontinue data was 
considered in a separate study where we applied the developed methods to 
the problem of investigating the possible presence of side-effects of a 
certain drug used to remedy a condition that sometimes can be found in 
preterm babies. 

The methods that have been used include linear classifiers such as 
Fisher’s linear discriminant as well as nonlinear ones such as support 
vector machines (using a nonlinear RBF kernel) and neural networks. As 
inputs to the classifiers a number of features of the underlying EEG have 
been used. These features are parameters that are calculated from sliding 
windows that are moved along the signal, and enhance different 
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characteristics that are useful for classification. The classifiers can handle 
many features in combination, but just using all available features, or 
adding features at random, would not give the best classification since 
features that do not add useful information to the classifier will instead 
add noise. Therefore two methods for feature selection have been used: 
exhaustive search and restricted search using genetic algorithms. The 
exhaustive search simply tries all possible combinations of features on the 
classification problem, and the best combination can be selected. When 
the number of features grows this method quickly becomes too slow 
because the number of possible combinations grows very quickly. 
Restricted search using genetic algorithms on the other hand searches the 
space of possible combinations using methods inspired by natural 
selection and will usually find a solution close to the optimal one while 
trying much fewer combinations than the exhaustive search. However, the 
number of attempted combinations is still in the range of thousands, and 
because each attempt involves training and testing the classifier the 
genetic algorithm is too slow when used with the more advanced 
classifiers, and Fishers linear discriminator is preferred over them. 

The results show that the developed methods can segment all the different 
intermittent EEG types that have been tested, and that burst suppression 
activity can be distinguished from normal EEG. If the developed methods 
were to be  implemented as parts of a monitoring system they would 
provide improved insight into the brain function of babies at the NICU by 
being able to automatically detect if the baby is having BS and being able 
to automatically measure e.g. the suppression lengths. It can also classify 
the signal as normal, and indicate if the baby is sleeping quietly by 
detecting the presence of tracé alternant. 
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Figure 2: Monitoring system flowchart. The shaded boxes represent steps that are only 
included during development of the system, and that not need to be implemented in the 
bed-side equipment. 
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1.1 Outline of the thesis 
Part I contains an introduction to the area of neonatal monitoring and 
some background to the problems that have been worked on. Part I is 
divided into the following chapters: 

Chapter 2 describes some relevant aspects of brain physiology. Neurons 
and synapses are described with emphasis on how they give rise to the 
potentials that are summed into the EEG signal. Then the major parts of 
the brain such as the cerebrum, cerebellum and brain stem are described to 
familiarize the reader with the basic structure of the brain. 

Chapter 3 describes how the EEG signal is generated and how it can be 
measured. The electrode placement system and the different montages are 
described followed by an overview of some types of activity that can be 
found in the neonatal EEG.  

Chapter 4 describes the data that has been available for experiments and 
used for training of the classifiers.  

Chapter 5 describes the various signal processing methods that have been 
used in this project, with focus on the concept of generating feature 
signals intended to be used for automatic classification of the underlying 
signal.  

Chapter 6 reviews the techniques for classification of signals that have 
been used throughout the project.  

Chapter 7 describes why feature selection is necessary. Two methods for 
feature selection, exhaustive search and restricted search using genetic 
algorithms, are described. 

Chapter 8 gives some conclusions and ideas for future work.  

Part II contains the papers that are the foundation of the thesis. 
Summaries of these papers can be found in the beginning of Part II. 
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Chapter 2 
 
The brain 

 

The chapter starts with a section dealing with the neuron, or nerve cell. 
This is the smallest unit in the construction of the wiring and logical 
system of the brain and of the entire nervous system.  Then the anatomy 
of the brain is briefly described at a higher level, focusing on the cerebral 
cortex which  is the main source of the EEG.  

Most of the information in this chapter is based on [6]. 

2.1 Neurons 
The neuron is the smallest functional unit in the brain and makes up a 
large part of the volume of the central nervous system (CNS). The rest of 
the volume consists of cells that support the neurons in various ways. A 
neuron has a very simple computational capability in itself, but by 
working together in vast neural networks they together form the complex 
system that is the human brain.  
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Figure 3: A neuron, with axon, dendrites and the cell body (soma). 

The neuron generally has several different incoming connections, called 
dendrites, and one outgoing connection, called an axon (Figure 3). The 
axon of a neuron usually connects to dendrites of other neurons through 
synapses. A neuron works by summing the inputs from all dendrites 
before initiating an impulse along the axon, towards other neurons. The 
axons can be more than a meter in length (in the peripheral nervous 
system), and are often bundled into nerves. In the CNS, these aggregations 
are often called tracts. 

 

 
Figure 4: Schematic representation of a synapse. An incoming action potential opens 
calcium channels in the synapse, and the calcium causes synaptic vesicles to release their 
contents of neurotransmitter molecules into the synaptic cleft. The molecules diffuse over 
to the post-synaptic cell, where a fraction of them bind to receptors in the cellular 
membrane. The receptors trigger in- or out-flux of ions and, when the membrane 
potential in the post-synaptic neuron reaches a certain threshold, a post-synaptic action 
potential is triggered. Afterwards, the neurotransmitters are released and may be 
recycled at the axon terminal. 

Information flows through neurons as a depolarization of the cell 
membrane that causes ion channels in neighboring parts of the membrane 
to depolarize, and thus spread as a chain reaction that form an action 
potential that propagate along the axon and dendrites. When an action 
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potential reaches a synapse (Figure 4), it triggers a number of synaptic 
vesicles to release its content of chemical neurotransmitters into the 
synaptic cleft (the space between the pre-synaptic and the post-synaptic 
cell). The neurotransmitter molecules then attach themselves to receptors 
located in the cellular membrane on the receiving neuron on the other side 
of the synapse, triggering an inrush of ions that may start a new action 
potential and/or other alterations of the cell. 

However, not all action potentials that reach a synapse trigger a new 
action potential in the receiving dendrite. The receiving neuron has 
thousands (or hundreds of thousands) of synapses. These synapses can be 
either excitatory, meaning that each synaptic activation increases the 
probability of the initiation of a post-synaptic action potential, or 
inhibitory, meaning that the synaptic activation decreases the probability 
of triggering an action potential. This increased or decreased probability 
of activation is transient; after a while the neurotransmitter molecules are 
removed from the synaptic cleft in preparation for receiving the next 
impulse. The neuron exhibits both temporal and spatial summation. 
Temporal summation means that many impulses in quick succession are 
summed and can together trigger an action potential. Spatial summation 
means that if many synapses are activated simultaneously their sum can 
trigger an action potential.  

The spatial summation corresponds to summing a number of weighted 
inputs and using a threshold to decide if a binary output signal should be 
sent. The strength of a synaptic coupling can be enhanced by repeated 
activation, something that is believed to be the basis of learning. These 
characteristics are mimicked in the artificial neural network computational 
model described in section 6.5.  

2.2 Brain anatomy 
The central nervous system (CNS) consists of the neurons described 
above, and of cells that support them. Examples of supporting cells are 
oligodendrocytes which wrap nerve fibers in fatty sheets that isolate them 
from one another and increase the signal propagation speed, or astrocytes 
which help to regulate the composition of the extracellular fluid by, for 
example, removing excessive neurotransmitter molecules that have leaked 
from the synapses.  

The CNS can be divided into the brain and the spinal cord (Figure 5). The 
spinal cord is the information highway which conducts sensory inputs 
from the body to the brain, and which also conducts commands from the 
brain to the various parts of the body but primarily to the muscles. The 
spinal cord does not contribute to the EEG and is therefore outside the 
scope of this text.  



Chapter 2 – The Brain 

12 
 

The brain can further be broken down into the cerebrum, the cerebellum 
and the brain stem. The brain controls the body through electrical 
impulses running along nerves from the brain via the spinal cord or the 
cranial nerves to different locations throughout the body, or through 
chemical messengers (hormones) that are created by various glands and 
spread to the body via the circulatory system.  

2.2.1 The cerebrum and the cerebral cortex 
The largest part of the brain is called the cerebrum and it has a layered 
structure. The outer layer, the cerebral cortex, is about 1.5-4.0 mm thick 
and consists of nerve cells, which are brownish gray in color and therefore 
called gray matter. The cortex is convoluted, which gives it a large area, 
and is itself a layered structure with six layers, numbered 1-6 from the 
surface inward. The part of the cerebrum under the cortex is called white 
matter. It consists mainly of axons wrapped in myelin, a fatty substance 
that isolates the axons from each other and increases the signaling speed.  

The cerebral cortex is involved in most high-level functions such as 
perception, the generation of voluntary movements, reasoning, learning 
and memory. Different functions are mapped to different parts of the 
cortex. It can, for example, be shown that different touch sensors 
throughout the body are mapped to different parts of the cortex. Other 
parts of the cortex receive signals from the eyes, or the ears, or are 
responsible for planning movements. Various cortical areas are highly 
interconnected and higher functions like relating a visual impression to a 
remembered name, and then pronouncing the name involve many parts of 
the cerebral cortex. 

 
Figure 5: The brain, with the cerebrum, cerebellum and brain stem. 
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2.2.2 The cerebellum 
The cerebellum is an important center for coordinating movements, 
ordered for example by conscious planning performed in the cerebrum, or 
regulating unconscious movements such as controlling posture and 
balance. The cerebellum receives information from various parts of the 
body, such as muscles, skin, eyes and the parts of the brain that are 
involved in control of movements. 

2.2.3 The brain stem 
The brain stem consists of the pons and the medulla oblongata. The brain 
stem contains all nerve fibers passing between the spinal cord, the 
cerebrum and the cerebellum, and most of the neuronal bodies of the 
cranial nerves. It also contains centers for vital functions such as 
respiration and circulation. 

2.2.4 The thalamus 
The thalamus is a part of the diencephalon (Figure 5), which together with 
the cerebrum forms the forebrain. The thalamus is believed to translate 
incoming information and relay it to the appropriate parts of the cerebral 
cortex and therefore plays an important part of the generation of EEG 
signals.  
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Chapter 3 
 
The Electroencephalogram 

The word ‘electroencephalogram’ (EEG) originally denoted the graphs 
showing the signals obtained by registering potential differences between 
electrodes placed on the scalp. Over the years, however, the term EEG has 
been used when referring to the signal itself, the technique to register the 
signal, or the printed graph. In this thesis EEG is used to denote the 
signal, unless otherwise stated. 

The potential differences between the electrodes are generally believed 
not to be caused by the action potentials that carry information between 
neurons, but rather by the postsynaptic potentials that appear in the 
synapses of the dendrites of the large pyramidal neurons [7]. These 
neurons are located in layers three and five of the cerebral cortex, but 
their dendrites stretch throughout several layers towards, and 
approximately orthogonal to, the cortical surface. The postsynaptic 
potentials are caused by the release of neurotransmitter substances into the 
synaptic clefts of the neurons, and each neuron can have tens of thousands 
of synapses. The postsynaptic potentials can be both excitatory and 
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inhibitory. The former type is associated with an extracellular surplus of 
negative ions while the latter is associated with a surplus of positive ions, 
giving them different electrical potential. There is a relative difference in 
the distribution of excitatory and inhibitory synapses between the part of 
the neuron that is close to the cortex surface and the deeper part which 
creates an electrical dipole pointed inward, as illustrated by Figure 6. For 
these signals to be large enough to make a measurable contribution to the 
electric field on the scalp, large areas of the cortex need to be 
synchronously active. This synchronicity is due to the fact that groups of 
neurons are simultaneously stimulated by impulses originating in the 
thalamus.  

The electrodes used when registering EEG can be either metal plates, 
attached to the skin with the help of a conductive paste, or needle 
electrodes, stitched through the skin. When using electrodes placed on the 
exposed surface of the cortex, the recorded signal is called an 
electrocorticogram (ECoG). The signal levels are usually in the range of 
20-100 V when measured at the scalp, but can be a few millivolts when 
measured invasively at the surface of the cortex. 

The temporal resolution of the EEG is very good, and changes in the 
activity of the brain can be detected instantly. The spatial resolution is 
however bad, because signals from different sources are mixed through 
superposition. This means that the timing of EEG activity can be 

 
Figure 6: A cortical pyramidal cell with net charges marked by + and -. A relatively 
larger amount of inhibitory synapses close to the cell body gives a surplus of positive 
ions, while a relatively larger number of excitatory synapses in the dendrites closer to 
the surface give a surplus of negative ions. The result is an electrical dipole pointed 
inwards.  
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determined very accurately, but it is more difficult to determine where in 
the brain the activity is taking place.  

3.1 The 10‐20 system 
The electrodes are often placed according to the international 10-20 
system [8] which defines a number of electrode locations by dividing the 
head into 10% and 20% intervals using the nasion and the inion as 
landmarks for the front to back direction and the preaurical points for the 
side to side direction (Figure 7), which defines 21 electrode positions. The 
first letter in the electrode name indicates which region it is placed over: F 
for frontal lobe, C for the central line dividing the head in a rear and front 
half, P for parietal lobe, O for occipital lobe, and T for temporal lobe. 
Numbers in the electrode name are odd for the left hemisphere and even 
for the right, and increase with increased distance from the midline. A Z 
refers to an electrode placed along the midline. 

 
Figure 7: Landmarks and electrode locations of the 10-20 system (Figure from [9]). 

3.2 Montages 
When measuring one voltage signal at least two electrodes are needed: an 
active electrode and a ground. However, in practice EEG signals are 
measured using differential amplifiers where the difference between two 
electrodes is amplified, and the ground electrode is separate. This is done 
because the EEG signals are very small, and interference from electrical 
appliances can cause large problems by making the potential of the patient 
vary in relation to the measuring equipment, and not involving the ground 
in the actual measurement decreases this problem. The ground electrode is 
still needed for connecting the amplifier ground to the patient ground; 
otherwise potential differences may arise that cause problems with 
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common-mode interference. It is also needed because of the small bias 
currents that enters the amplifier through the sensing electrode inputs, and 
has to return to the patient.  

When measuring multiple channels, as is usually the case when measuring 
EEG, one of the two inputs from each of the differential amplifiers can be 
connected to a single reference electrode. All the channels then have the 
same reference when measured, but when viewing the signals the channels 
can be combined in different ways. The way the channels are combined 
when displayed is called the montage. Some common montages are listed 
below.  

 The referential montage uses the designated reference electrode. 
The location of the referential electrode varies, but it is usually 
placed somewhere along the midline of the head so that no 
emphasis is placed on any one of the hemispheres. Another 
alternative is “linked ears”, where electrodes on the ears are 
connected to each other and used as reference.  

 The bipolar montage displays the difference between pairs of 
usually adjacent electrodes. 

 The common average reference (CAR) montage displays the 
difference between the sensing electrode and the average of all 
channels. 

Note that in the bipolar and CAR montages the reference input is 
mathematically eliminated when the difference of different electrodes is 
calculated. 

In this work the common average reference montage has been used. An 
advantage of this montage is that interference occurring at all channels is 
cancelled by the subtraction of the average. Another advantage is that 
each displayed channel shows the local activity compared to the total 
activity of the brain, thus improving the spatial localization of the activity 
as compared to the bipolar montage where the displayed activity is the 
difference between two adjacent electrodes.  

3.3 Types of EEG activity 
The EEG activity can be divided into different groups, of which some can 
be labeled normal and some are considered abnormal, or pathological 
(indicative of disease).  

However, normal is a very broad statement in the case of EEG. The signal 
picked up by EEG electrodes can have many different characteristics and 
still be labeled as normal, depending on for example sleep stage or age. 
Some frequency-based categories of EEG are described in Table 1. These 
designations originally arose because rhythmic activity within certain 
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frequency bands was found to have biological significance, or associated 
with certain regions of the scalp.  

Most of the cerebral activity is traditionally thought to be found in the 
range 1-20 Hz, but recent research suggests that important information can 
be found in the extremely low frequencies that most EEG amplifiers filter 
away [10]. 

Name 
Frequency 
limits Location Properties 

 (delta) 0.5 – 3.5 Hz Widespread Occur in infants and during deep 
sleep or anesthesia.  

 (theta) 3.5 – 7.5 Hz Mainly in 
parietal and 
temporal lobes 

Most prominent in small children 
and during drowsiness or sleep.  

 (alpha) 7.5 – 13 Hz Rear half of the 
head 

Occur during awake and resting 
state, high amplitude when eyes 
closed. Mostly sinusoidal shape. 

 (beta) above 13 Hz Most common 
in frontal and 
central regions 

Often divided in two sub-bands, 
of which the higher frequencies 
appear during tension and intense 
activation of the CNS and the 
lower are attenuated during 
mental activity. 

Table 1: Properties of some common EEG rhythms. The first four frequency bands are 
not overlapping and cover the whole EEG spectrum, even though the higher frequencies 
of the  band are today usually named  rhythms.  

The above-mentioned types of activity are “continuous” in the sense that 
they describe more or less rhythmic activity that goes on for some time, 
until they are changed by some change in mental state or sleep stage. 
Many of the types listed below are intermittent, meaning that one kind of 
activity is interrupted by sudden outbursts of other kinds of activity. In the 
seizure case, one type of activity (seizures) can also be superimposed on 
another (e.g. burst suppression). 

Seizures (Figure 8) are the result of abnormal synchronization of groups 
of neurons and may or may not give rise to clinical symptoms (symptoms 
that are easily noticed in the clinic). The type of symptoms depends on 
which part of the brain that is affected. If it is a motor area of the brain, 
then the result can be wild and uncontrollable motion of the body. On the 
other hand, if it is a sensory area in the brain that is affected, the result 
may be that the person experiences e.g. visual flashing or unpleasant 
odors. There may also be sub-clinical seizures that do not cause any 
detectable symptoms, but are present in the EEG. Some newborn children 
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have seizures, the majority of which are sub-clinical. Even sub-clinical 
seizures may be harmful to the brain, implying that there is a need to 
detect and classify this type of activity so that children having seizures 
which are not apparent can be given the appropriate treatment. 

Burst-suppression (BS, Figure 9) is one of several indicators of severe 
pathology in the electroencephalogram (EEG) signal that may occur after 
brain damage, caused by e.g. asphyxia (insufficient oxygen and nutrient 
supply) around the time of birth [11, 12]. Certain characteristics of this 
pattern can provide clinicians with important information about the 
prognosis of the patient, and are thus important in the adjustment of the 

Figure 8: One minute of seizure activity from an asphyctic baby. The seizure is 
concentrated to the left part of the rear of the brain, and combined with a BS pattern 
with a burst around 16:05:17. The high frequency noise in P4 and T6 is probably due to 
that the baby was lying with the right side down. The ECG signal (bottom graph) is 
included for comparison. 

Figure 9: One minute of burst suppression from an asphyctic baby, with two visually 
classified bursts marked with shading. 
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treatment. Examples of important characteristics of the BS pattern are the 
length of the burst and suppression intervals, the percentage of 
suppression activity in a recording, and the spectral contents of the bursts 
[5, 10, 13]. 

Tracé discontinue (Figure 10) is visually somewhat similar to burst 
suppression, but is normal in premature babies [14]. Periods with low 
amplitude or inactivity alternate with activity with higher amplitude and 
mixed frequency content. This type of activity dominates most recordings 
from premature babies, without depending on state, but is most marked 
during quiet sleep. The interburst durations decrease as the infant matures 
and the properties of the interburst activity change, and the activity during 
quiet sleep evolves into tracé alternant. 

Tracé alternant (Figure 11) is a pattern with alternating active and less 
active periods that is seen in healthy full-term children during quiet sleep 
[14]. Instead of the suppression or inactivity that is seen in BS or tracé 
discontinue there are low activity periods that contain low frequency 
activity. The low activity is interrupted by random high activity periods 
containing transients with higher frequency and amplitude. Tracé 
alternant usually emerges 34-36 weeks after gestation, but there is a 
significant overlap between tracé discontinue and tracé alternant before 
the baby reaches full term. 

Figure 10: One minute of tracé discontinue from a preterm baby. 
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Figure 8 - Figure 11 were produced using a notch filter at 50 Hz, a low-
pass filter at 70 Hz and a linear detrend filter. Often a high-pass filter is 
used to remove slow baseline fluctuations, but that would change the 
appearance of the low-frequency components in e.g. many of the bursts.  

 

 

 
Figure 11: One minute of tracé alternant recorded from a healthy baby during quiet 
sleep. 
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Chapter 4 
 
Data and applications 

This section describes the three categories of data that have been used in 
the project. The data were collected at the Queen Silvia Children’s 
Hospital, which is a part of the Sahlgrenska University Hospital in 
Göteborg. Details regarding the collection of the EEG signals can be 
found in the respective paper. 

4.1 Data from healthy babies 
The common denominator for all papers included in the thesis is solving 
problems that are of interest when building a monitoring device for the 
NICU. The most important function of such a monitor is to be able to 
distinguish activity recorded from a healthy baby with no brain-related 
problem from activity from a sick baby. Therefore EEG signals were 
collected from 20 healthy full term newborn babies that had uneventful 
deliveries. Data were collected during a few hours so that the four 
behavioural states active awake (AW), quiet awake (QW), active sleep 
(AS) and quiet sleep (QS) [15] could be included in most of the 
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recordings. These data were divided into the four states based on the 
observations made by the technician performing the recording and on the 
classification made by an experienced electroencephalographer. For quiet 
sleep, EEG of the tracé alternant type was chosen. Figure 12 shows a 
time-frequency plot of one of the recordings. The most prominent features 
of this plot are the red high power strips, but these are not caused by the 
actual EEG signal but are mostly due to artefacts produced by the muscles 
on the baby’s scalp during crying. 

4.2 Data from post‐asphyctic babies 
The second group of babies consists of six full-term neonates that were 
suffering the after-effects of asphyxia during birth. This condition 
includes lack of oxygen, leading to a build-up of carbon dioxide and a 
lowered pH value in the blood, and can, among other things, lead to brain 
damage. These babies all exhibited a severe burst suppression pattern in 
their EEG. Continuous EEG recordings, of between 6 and 40 minutes in 
length, were made for each of the six babies. The recordings were then 
visually classified by an electroencephalographer. The length of each 
recording was chosen to include at least 10 bursts, and all artefacts were 
visually identified and marked for later exclusion from the analysis. The 
total amount of data in this category was 77 minutes. 

For evaluation of the BS-related methods in a setting as close as possible 
to the clinical one, a 32 hour recording from one of the six babies was 
used. The baby had to be resuscitated after birth and was then intubated 
and put on a ventilator. The EEG recording was started six hours after 
birth and continued for 32 hours with a short break around 18 hours after 
start. The ventilator frequency was set to 40/min (0.7 Hz) initially and was 

 

Figure 12: Time-frequency plot of 2h of EEG from a healthy newborn baby, with the 
behavioural states marked. The unmarked high-power red strips are mainly episodes of 
crying, with the high power mainly due to muscle artefacts from the scalp. 
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changed to 30/min (0.5 Hz) 16 hours after start. At 18 hours after the start 
of the recording, a dose of Phenobarbital was given to treat seizure 
activity. The baby was later diagnosed with cerebral palsy. Figure 13 
shows a time-frequency plot of this recording, where two long BS 
episodes can be seen as depressions in the mean power of the signal. 
Some seizure episodes are also marked, but are too short compared to the 
scale of the figure to be visible in the plot. 

4.3 Data  from  preterm  babies  treated  with 
indomethacin 

While the two preceding groups of babies all where full term, the babies 
in the final group were born prematurely, between 25-33 weeks of 
gestation, and were displaying the intermittent tracé discontinue pattern 
that is normal for this patient group. These babies were all diagnosed with 
a clinically persistent ductus arteriosus, meaning that the shunt that 
allows blood in the unborn fetus to by-pass the lungs did not close, which 
it normally does autonomously shortly after birth (Figure 14 and Figure 
15). This imposes circulatory disturbances that increase the risk of brain 
damage. To induce closure of the ductus arteriosus the drug indomethacin 
can be used. There have however been concerns raised to whether this 
may have a negative effect on the brain because of the drug’s 
vasoconstricting properties, i.e. it tends to make the blood vessels 
temporarily contract and thereby reduce the blood flow. To examine this, 
seven premature neonates with clinically significant persistent ductus 
arteriosus were recruited. EEG signals were recorded before, during and 
after an intravenous infusion of indomethacin over 20 minutes, and the 
effect on the brain was estimated by automatic segmentation of the EEG 
and measuring the length of all low activity periods. 

 

 

 
Figure 13: Time-frequency plot of 32h of EEG from a post-asphyctic baby with 
episodes of BS and seizures marked. The dark blue strip around 18h is a gap in the 
recording. 
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Figure 14: The fetal circulatory system. Since all the oxygen the fetus needs is supplied by 
the mother via the placenta and the umbilical cord, the lungs are not vital for gas 
exchange before birth, and the blood is partly allowed to bypass them through the ductus 
arteriosus (figure from [16]).  
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Figure 15: Schematic of the circulatory system in adults and fetuses. The foramen ovale is 
a hole that allows passage of blood from the right to the left atria. 
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Chapter 5 
 
Signal processing methods 

In this chapter the signal processing methods used in the project are 
described. All methods mentioned are based on sampled, discrete signals 
as opposed to analog continuous signals. Many of the measures used to 
describe these signals are statistical, and related to the shape of the 
distribution of the signal. Others estimate the frequency contents, the 
power of the signal, or the information content. These measures are here 
termed features, because this term is common in classification literature, 
and because the measures are meant to describe different characteristics, 
or features, of the underlying EEG signal.   

5.1 Filtering and pre‐processing 
The amplitude of the EEG is very low when measured from the scalp, in 
the range of tens of microvolts, making it very sensitive to interference 
from surrounding electrical fields created by common electrical 
appliances. These interferences are typically common mode, meaning that 
they appear on all leads simultaneously. Using the common average 
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reference (CAR) montage described in section 3.1.2 helps to suppress this 
interference because the mean of all channels is subtracted.  

Usually 50 Hz noise caused by interference from surrounding electrical 
equipment is present in the EEG to some extent, and therefore a notch 
filter at this frequency has been used in all cases. In some cases when the 
EEG has been extremely suppressed, the 50 Hz was still dominant after 
notch filtering and a low-pass filter with cut-off frequency at 44 Hz with 
zeros that coincided with the 50 Hz peak was used. In other cases cut-off 
frequencies of 20 and 70 Hz have been used, depending on the 
application.  

The data was also high-pass filtered. It has been shown that important 
information in neonatal EEG is present in the very lowest frequencies [10, 
13], but because of interference sources, some of the sick babies were e.g. 
ventilated at a frequency of 0.3-0.7 Hz, a high-pass filter was used. In 
some cases a cut-off frequency of 0.5 Hz was enough, while others 
required a cut-off at 1.6 Hz. If information from these low frequencies is 
needed in a monitoring device, once the classification process is finished 
it would be possible to go back to the raw EEG signal and apply a 
different processing on the segments of interest using the classification 
results. 

In one of the BS patients (patient 3, Paper II and onwards), an LMS (least 
mean square) adaptive filter [17] with a separate ECG channel as 
reference was used to suppress ECG interference in the EEG signal. 

5.2 Artifact removal 
For the BS segmentation process, periods that were manually identified as 
artifacts were removed from the set after the feature extraction step, and 
were not included in the training or evaluation of the classification 
methods. The reason for including them in the feature extraction is that 
cutting a signal may introduce sudden steps in the resulting signal when 
the remaining parts are merged. These steps are of a high-frequency 
nature and would influence many of the features described in section 5.3. 
Therefore all relevant parameters should be extracted before any cutting 
of the signal is performed. 

For the classification into different states, no artifacts were removed. 
Because much longer windows were used, most artifacts were drowned in 
the real EEG activity and were therefore judged to be negligible. 

5.3 Features 
The EEG signal is not random, but it is complex enough to be described in 
stochastic terms as a random process. Medical EEG specialists mainly use 
visual inspection of the waveforms in the time domain to classify the 
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activity. However, when building a signal processing system for 
classifying signals, well-defined measurable features that can be 
implemented using mathematical functions are needed. Examples of 
features are the total power of a signal or the distribution of the power 
with respect to frequency. These two features measure two different 
properties of the underlying signal and can be independent, because two 
signals with the same total power could have totally different power 
spectra.  

All the features used here are extracted from sliding windows, because it 
is not possible to calculate spectra or statistical measures on single 
samples. A sliding window is an interval of the signal, for example one 
second long. With a sampling frequency of 200 Hz, 200 samples will fall 
into this window, giving a statistical basis for calculating different 
parameters. Each parameter yields one value for each window. When the 
parameters have been calculated for a window, it is moved a certain 
distance along the signal, for example 0.25 s, and the parameters are 
calculated for the samples that now are inside the window. Moving the 
window a distance that is smaller than the width of the window results in a 
certain overlap, in this example 0.75 s. The operation also results in a 
reduction in effective sampling frequency, from the original 200 Hz to 4 
Hz, since now four samples are used to describe one second of the signal 
instead of the original 200. This reduces the temporal resolution for 
detection, but since the quality of the parameters calculated from the data 
in the window generally increases with increasing number of samples, this 
results in a trade-off between time resolution and feature estimation 
accuracy.  

When using sliding windows, the length of the window and the distance it 
is moved in each step have to be decided. If the window is too short, there 
is too little information in each window to calculate a spectrum of 
sufficient resolution, or to calculate statistical parameters with high 
enough reliability. If it is too long, short periods of activity in the EEG 
could be drowned by other activity surrounding it. In the case of burst-
suppression, a window length of one second was chosen, determined by 
the fact that the shortest bursts in the available material were one second 
long, and in the state classification case metafeatures, i.e. features of the 
features were used, with a window length of 30 s (see section 5.4.1). The 
step length that the window is moved is not as critical as the window 
length. A short step length results in a large overlap between consecutive 
windows, and produces smooth output signals. A longer step length 
reduces the effective sample rate of the output signal, thus reducing the 
computation time for the following processing steps. 
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5.3.1 Spectral Edge Frequency 
The spectral edge frequency (SEF) [18] of a signal is the frequency under 
which a certain percentage (e.g. 95%) of the power resides. This gives a 
measure of the shape of the frequency distribution, because for an EEG 
signal there will always be power in the low frequency range. SEF is a 
common measure used in EEG monitoring, and has for example been used 
for estimating the depth of general anesthesia, when a patient is made 
unconscious for surgery. 

5.3.2 Three‐Hz power 
This feature measures the power in a 1 Hz wide band centered around 3 
Hz, and was inspired by earlier work [19] in which it was used for 
detecting BS under anesthesia. BS is often characterized by low frequency 
content [10, 13] making low frequency features simple and natural 
choices. 

5.3.3 Median 
The median [20] is the number that divides a distribution in two equal 
parts. It can be found by sorting the numbers and taking the middle one. 
For a normal distribution the median is equal to the mean, but for e.g. the 
exponential distribution it is not. When estimating parameters from a 
limited set of samples, the median is less sensitive to outliers (extreme 
values) than the mean. 

The behavior of the median for BS segmentation depends on the filtering. 
The median will act as a low-pass filter with frequency characteristics 
depending on the window length, and probably capture the low frequency 
part of the bursts. However, if the signal is high-pass filtered (by 
processing or by bad electrode coupling) the bursts would be transformed 
into zero-mean signals, and the median would not be usable as a feature. 

5.3.4 Shannon Entropy 
The Shannon Entropy [21] is a measure of uncertainty of a random 
variable, or in other words the information content. It is estimated by 
defining a set of bins that divide the amplitude range into disjoint 
intervals I1,..,IU and then estimating the probabilities p(I1)… p(IU) by 
counting the number of samples which fall into each bin. 
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In the present implementation, 20 bins distributed between +/- were 
used, where  is the standard deviation of the EEG amplitude in each 
window of the signal.  
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When applied on a BS signal the entropy decreases during the burst 
intervals. This is due to the fact that the suppression activity is mainly just 
noise, having high entropy, while the bursts are comparatively more 
ordered with a combination of low and high frequencies.  

5.3.5 Zero Crossings 
The rate of zero crossings [18] was investigated as a way to measure 
frequency contents of a signal in the era before inexpensive computer 
chips, and it is implemented by measuring how often the signal crosses 
the zero level. This is not simply related to the frequency of the signal, 
since a high-frequency component superposed on a low-frequency 
component may not cross the zero level very often. 

5.3.6 Variance 
The variance [22] is defined by 

  2)()( XEXEXVar   

where X is a random variable and E(X) is the expected value of X. The 
variance is also denoted σ2, where σ is the standard deviation of the 
probability density function of X. The standard deviation is a measure of 
the degree of spreading of the distribution around the expected value. In 
the time domain, a large standard deviation would imply that the signal 
contains a large fraction of samples with amplitudes that are far away 
from the mean, while a low standard deviation implies that the samples 
are mostly close to the mean. 

Numerically, the variance is estimated as the mean of the squared 
difference between each sample and the sample mean: 
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where μ is the sample mean. Often the signal is zero-mean, which makes 
the variance equal to the mean power of the signal (the mean of the 
squared sample values).  

Since burst periods above all are characterized by having higher power 
than suppression periods, the variance is a natural starting point for BS 
segmentation.  

5.3.7 Skewness 
The skewness [22] of a distribution is defined by 
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and is a measure of how symmetric the distribution is. In the time domain 
for a zero-mean distribution, a high skewness value would imply that most 
of the samples with amplitude deviating from the mean are positive. 

Numerically, the skewness is estimated as the cube of the sample mean of 
each sample’s deviation from the sample mean, normalized by the cube of 
the standard deviation: 
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The skewness was mainly used as a meta-feature (section 5.4.1) applied 
on the other feature signals. For example, the skewness of the residual 
energy variance was included when classifying BS from other types of 
EEG (Paper V). The skewness was also considered for BS segmentation in 
Paper I. 

5.3.8 Kurtosis 
The kurtosis [22] of a distribution is defined by 
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and is a measure of how “peaky” a distribution is. Higher kurtosis means 
that more of the variance is due to infrequent extreme deviations. 

Numerically, the kurtosis is estimated as the mean of each sample’s 
deviation from the sample mean raised to the power of four, normalized 
by the standard deviation raised to the power of four: 
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The kurtosis was mainly used in the same way as the skewness, as a meta-
feature. For example, the kurtosis of the spectral roll-off was used for 
classifying BS from other types of EEG (paper V). The skewness was also 
considered for BS segmentation in Paper I. 

5.3.9 Spectral centroid 
The spectral centroid [23] is commonly used for characterizing sound. It is 
the “centre of mass” of the spectrum, calculated as a weighted mean of the 
frequencies in the signal with their magnitudes as weights: 
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where X is the Fourier transform of the signal and K is the number of 
points in the estimated spectrum. Since the value of K is not physical 
frequency but depends on the sampling frequency and the number of 
points used for estimating the spectrum, the value of c will have to be 
scaled to get the value of the centroid in hertz. When used as a feature, the 
actual value is usually not of interest, but rather the distribution of the 
feature for the different classes that are to be classified. 

5.3.10 Residual energy variance 
The residual energy variance is a measure of how accurately the signal 
can be predicted by a filter of a given order, and is related to the entropy 
of the signal. The feature was implemented by finding the eight 
coefficients of the linear prediction filter that minimized the prediction 
error in the least squares sense. The order of the filter was determined by 
estimating the maximum number of peaks in a typical EEG signal. The 
residual was calculated as the output of filtering the signal through the 
prediction filter, and then the variance of the residual was calculated. 

5.3.11 Spectral flux 
The spectral flux [24] measures the change in the spectrum between 
consecutive windows using the squared Euclidian distance (2-norm) 
between the spectra: 
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where X1 and X2 are spectra for two consecutive windows of the signal, 
and K is the number of points in the estimated spectrum. 

5.3.12 Delta flux 
The delta flux feature measures the rate of change in the signal by taking 
the square of the Euclidian distance between consecutive windows of the 
signal in the time domain: 
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where x1 and x2 are the signals in the time domain and N is the number of 
samples in the window.  

5.3.13 Spectral flatness  
The spectral flatness [23] is a measure of how flat the spectrum is. A high 
spectral flatness indicates that the spectrum has a similar amount of power 
in all bands – like white noise. A low spectral flatness indicates a spiky 
spectrum, like a mixture of sinusoids. 
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The spectral flatness is calculated by dividing the geometric mean of the 
power spectrum with the arithmetic mean: 
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where X is the Fourier transform of the signal and K is the number of 
points in the estimated spectrum. 

5.3.14 Spectral roll‐off 
The spectral roll-off is based on the same principle as SEF95 and 
measures how wide the spectral distribution is, but uses the frequency for 
85 % of the energy instead of 95. This feature is common in sound 
processing [25], hence the different name. 

5.3.15 Cepstrum‐based coefficients 
The cepstrum is defined as the inverse Fourier transform of the logarithm 
of a spectrum and contains information about the rate of change in the 
different frequency bands. In the current implementation, ten triangular 
overlapping windows were applied on the spectrum before transformation, 
resulting in ten coefficients that each is related to a frequency band. 

5.4 Feature characteristics and post‐processing 
After feature generation some steps need to be taken to prepare the feature 
signal for the classification algorithms. Some of these steps, such as the 
normalization procedure, were chosen to reduce the differences between 
recordings from different patients that were found to be a problem when 
segmenting BS signals (5.4.2). Others, such as the channel combination 
and feature smoothing, were chosen based on prior knowledge of the 
expected characteristics of the BS activity. 

5.4.1 Meta‐features 
For the state classifier (paper V), the features were summarized by 
applying the four statistical measures mean, variance, skewness and 
kurtosis on the feature signals from each 30 s non-overlapping epoch in 
the data, resulting in 88 features based on the original 22. This was done 
because sleep-stages and BS go on for some time, at least a couple of 
minutes, while e.g. a single burst can be as short as one second. These 
measures describe different properties of the feature signals distributions. 
For example, the mean and the variance are measures of where the 
distribution is located and how wide it is, while skewness and kurtosis 
measure its shape. These measures are in this paper called metafeatures, 
because they are features of the features of the EEG. 
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5.4.2 Normalization 
The feature signals represent different properties of the EEG and have 
different amplitude ranges. For many classifiers it is an advantage to have 
features with approximately the same dynamic range, because of the way 
the thresholds or weights are adapted in multiple dimensions. A standard 
way to achieve this is to normalize all feature signals by subtracting the 
mean from the signal and dividing it with its standard deviation, 
producing signals with zero mean and unit standard deviation. This 
method works well for signals where there is approximately the same 
amount of the different classes in the different data sets, but in burst-
suppression signals this is not the case. Data from different patients 
contain different amounts of bursts, and just subtracting the mean would 
make the mean for the suppression part end up at different levels.  

To cope with this, a different normalization procedure was developed for 
the BS segmentation problem. The first and 99th percentile of the 
histogram were found, and fitted into the interval zero to one, giving all 
feature signals an equal magnitude range. The percentiles were chosen, as 
opposed to just using minimum and maximum values, to make the 
normalization procedure less sensitive to extreme values. The method has 
the drawback that if the signal to be normalized does not contain both 
classes, for example if the whole recording only contains suppression, the 
mean of the suppression will be pulled towards the value the burst part 
would have had. Therefore it must be known that a signal actually 
contains e.g. both burst and suppression before this normalization 
procedure is carried out. 

In the state classification case, the signals were not normalized because 
the signals were previously divided into short epochs of a few minutes 
each, making it hard to do a good normalization without removing the 
feature characteristics that are needed for classification. An alternative 
could have been to go back to the uncut signals and normalize it, and then 
cut the normalized signal. However, the question is how this would be 
done in a practical bed-side system. If the system is to be operational at 
the instance it is turned on, it cannot first collect data from all states 
before it starts to do classification. Because of these reasons, the 
normalization was left out. 

5.4.3 Feature smoothing 
Because of the sliding window used in the extraction of the feature values, 
the feature signals have a lower effective sampling frequency than the 
original EEG signal. The value of the features for each segment of the 
EEG varies a lot, but when detecting events that are a few seconds long it 
is better to have a smoother signal to capture trends in this time range. 
Therefore the feature signals were smoothed using a six-point triangular 
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window function. This is performed by convolving the signal with the 
window function, meaning in practice that for each sample in the signal, 
the triangular function is centered at that particular sample, and the six 
samples surrounding the centre sample are multiplied by the 
corresponding window values. The mean of the six resulting values is the 
output value for that position in the signal. This procedure smooths the 
signal by averaging over a small interval of the input signal, but with 
emphasis on the center value because of the triangular shape of the 
window function. 

 

5.4.4 Channel combination 
After feature generation, the feature signals were combined per feature by 
forming a new signal as the median value of the eight feature channels. 
This was motivated by the fact that both BS and the different behavioral 
states are considered to be global phenomena with certain characteristics 
appearing in a majority of the EEG channels. Using the median over the 
channels also removes disturbances present in one or a few of the 
channels.  

Reducing the number of channels involved in the classification also 
reduces the computational complexity for the feature selection and 
classification steps. 
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Chapter 6 
 
Classification methods 

Classification methods are algorithms that use properties of objects to 
place the objects in different classes. The objects can be of many different 
kinds, we could, for example, use the chemical composition of bones to 
determine where a murder victim comes from as in the tv-series Bones, or 
we could use a thermometer and a glance out the window as features for 
classification of the weather to be able to choose the appropriate clothes to 
wear in the morning. In this thesis the features described in the preceding 
chapter are used to classify the activity found in the EEG activity of 
newborn babies.  

Classification algorithms can be purely statistical, and apply a threshold 
on the data based on prior knowledge of the distribution of the data with 
respect to the class membership. They can also be based on machine 
learning, and iteratively learn patterns from examples. In this chapter, the 
classification algorithms known as Fisher’s linear discriminator (FLD), 
artificial neural networks (ANN), support vector machines (SVM) and 
hidden Markov models (HMM) are described. All except HMM have the 
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properties that they typically are trained using pre-classified 
multidimensional input training data, and form classifiers by trying to find 
the optimal boundary between the classes in this multidimensional space. 
The ANN does this by iteratively moving a number of linear planes based 
on the error in each step, while the SVM optimizes a nonlinear boundary 
that maximizes the margin between the classes. FLD is a linear projection 
and, based on scatter matrices for the classes, the projection onto the line 
that gives the best linear separation is found analytically. HMM on the 
other hand works in a different way, and includes information about how 
the process develops in time described as state and transition probabilities. 
The HMM classifier is described in the end of the chapter. 

All these methods are based on finding a classifier using training data, and 
then applying it to test data. The reason for choosing this type of 
algorithms is that we envision a system that is trained on a number of 
manually classified training cases, once and for all. The system could then 
be used for classifying new cases without the need of any manual 
adaptation when it is applied to a new patient, something that would be of 
great benefit in a hospital setting.  

The method of maximum likelihood for classification based on one-
dimensional inputs is presented for comparison, and because it is a part of 
the FLD method. 

6.1 Classifier accuracy estimation 
The accuracy of a classifier can be determined by dividing the data into 
two sets, one for training the classifier and one for testing it. If a very 
large data set was available it could be divided into e.g. 25% test data and 
75% training data. Because the test set is often used to find the best setup 
of the classifier and the best set of features for the task, there is often a 
need for a validation set, that is only used to evaluate the performance of 
the classifier after all parameters have been fixed. 

However, it is often the case that there is only a limited amount of data 
available and more efficient methods to estimate the accuracy are needed. 
A common way is to use m-fold cross-validation, where the data are 
divided into m sets of equal size n/m, where n is the total number of data 
samples. Then the classifier is trained m times, each time with a different 
set held out for validation, and the final accuracy is the mean of these m 
instances. When using genetic algorithms for feature selection (described 
in Chapter 7.3) this is however not practical, because the feature set is 
changing in each iteration and the result would be that different sets of 
features are used for different parts of the data.  
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6.2 Performance measures 
Different performance measures have been used during the project. 
Measures that are easy to relate to are sample sensitivity and specificity. 
Sensitivity was defined as the percentage of class 1 (e.g. the burst 
samples) that were correctly classified, and specificity as the percentage 
of class 2 (e.g. the suppression samples) that were classified as class 2.  

Based on the sensitivity and specificity measures, receiver operating 
characteristic (ROC) curves [26] were formed by taking the raw output 
from the respective algorithm and using a range of thresholds covering the 
range of the outputs. These curves show the potential of a detector, 
displaying all possible trade-offs between sensitivity and specificity. The 
area under the curve (AUC) provides a single number for comparing the 
classifiers, with the value one representing the perfect classifier. 

Because of the small number of patients, the individual performance 
measures were not averaged, but kept separate for comparison of the 
performance of the methods for the different patients in papers I-IV.  

In paper V when the genetic algorithm was used for feature selection, a 
single number performance measure was needed. Therefore, the 
probability of error was used, calculated as 

Perr=P(class 1)P(class 2|class 1)+P(class 2)P(class 1|class 2) 

where P(class 1) is the probability of class 1 and P(class 1|class 2) is the 
probability of classifying a given sample as class 1 when it does in fact 
belong to class 2, and the other way around. The formula gives a weighted 
sum of the two misclassification probabilities, where the weights are the 
proportions of the two classes in the data. 

The performance is also presented as a confusion matrix, where the 
probabilities for misclassifying each of the classes can be found. Table 2 
gives an example of how a confusion matrix can be defined. 

Table 2. Definition of the confusion matrix entries. 

 True class 

P
re

di
ct

ed
 c

la
ss

 

 BS QS QW AS AW 
BS P(BS|BS) P(BS|QS) P(BS|QW) P(BS|AS) P(BS|AW)

QS P(QS|BS) P(QS|QS) P(QS|QW) P(QS|AS) P(QS|AW)
QW P(QW|BS) P(QW|QS) P(QW|QW) P(QW|AS) P(QW|AW)
AS P(AS|BS) P(AS|QS) P(AS|QW) P(AS|AS) P(AS|AW)

AW P(AW|BS) P(AW|QS) P(AW|QW) P(AW|AS) P(AW|AW)

 

For example, P(BS|BS) is the probability of classifying a sample as BS 
when the true class really is BS, and P(BS|QS) is the probability for 
classifying a sample as BS when the true class is QS. 
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6.3 Maximum Likelihood Classification 
Maximum likelihood (ML) [27] classification is a simple method for 
classifying samples based on their probability density functions (pdfs) 
[28]. A pdf is a statistical description of a signal that shows how probable 
different values are, and can be estimated by using a histogram (Figure 
16). 

In a two-class case, the conditional probabilities are compared: 

Decide ω1 if p(x|ω1) > p(x|ω2); otherwise decide ω2 

The above decision rule is interpreted as follows: for each sample, 
examine the value and look up the probability for that value in the pdfs for 
the two classes. Then choose the class with the highest probability.  

The ML algorithm described above is equivalent to the Bayesian decision 
rule with equal prior probabilities [26]. Prior probability in this case 
means that the classification rule is weighted with the probability of each 
class, which can be estimated by calculating the proportion of the samples 
in the training data that belong to each class. This was not used in the BS 
segmentation case because bursts generally are much less likely than 
suppression, and weighting the decision rule would decrease the 
sensitivity significantly.   

The ML classifier was implemented by using training data to estimate the 
pdfs by e.g. calculating and smoothing the histograms for the two classes 
(Figure 16). The areas of the histograms were then normalized to one. 
Unseen data are classified by taking each sample and comparing it with 
the two pdfs. The one that gives the maximum probability value is chosen 
as the most likely class for the sample. The input value that produces the 

 

Figure 16: Example of pdf for the feature SEF95 divided into burst (red) and 
suppression (blue). 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

SEF95



 

43 
 

same probability value for the two classes is the threshold of the ML 
classifier.  

The ML classifier differs from the other ones in that it cannot handle 
multidimensional feature data without estimating parametric multi-
dimensional pdfs, which requires large amounts of data. A way to avoid 
this is to use a projection like Fisher’s Linear Discriminant (see next 
section) to reduce the dimensionality of the feature data. Another way is 
to use the ML classifier on the different features separately, and then 
combine the results by e.g. voting. These methods, however, have the 
drawback that any nonlinearities in the high-dimensional feature data are 
disregarded. Therefore, ANN and SVM were used for exploring the 
benefits of using classifiers that can adapt to nonlinearities in the data. 

6.4 Fisher’s Linear Discriminant 
Fisher’s linear discriminant (FLD) is an analytical way to derive a linear 
projection [29] of a multidimensional dataset onto the line that gives the 
maximum separation of two classes. This reduces the dimensionality to 
one, and ML classification can be used to calculate the final classification.  

A projection of a vector x onto a line in the direction of the vector w is 
written 

xw T
Fy   

where wF is a vector, x is d-dimensional signal and y a one-dimensional 
signal. In the present case, each vector x contains one value from each of 
the five features and represents one second of the EEG signal in feature 
space. The goal here is to find the line defined by w that gives maximum 
separation of the classes in the output one-dimensional signal y.  

It can be shown [26] that the vector w is given by  

)(1
21 mmSw  

W  
where mi is a vector in which each element is the mean of the 
corresponding feature signal for class i, and SW is the within-class scatter 
matrix which is proportional to the sample covariance matrix for the entire 
dataset (both classes).  

The projection is then applied to the test data, resulting in a mapping from 
the N-dimensional feature signal to a one-dimensional signal. Applying a 
threshold to this signal produces the detections. The threshold can for 
example be found through maximum likelihood classification. 

The FLD was used both for segmenting BS activity, segmenting tracé 
discontinue and for classification of BS versus normal activity. In the two 
latter cases it was used together with a genetic algorithm for feature 
selection. The method was found to be not quite as good as the more 
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advanced methods described later in this chapter. However, it has the 
advantage that it is much quicker to train, making it the classifier of 
choice for feature selection when many different combinations of features 
have to be evaluated. 

6.5 Artificial Neural Networks 
Artificial neural networks (ANN) is a collection of methods used for 
training a classification system using pre-classified training data [30]. The 
inspiration for the model and the names of the structures comes from 
neurology, and the model is thought to mimic the behavior of the neural 
networks in the human brain. The neural network is relatively simple to 
implement, and is represented by one matrix per layer.  

6.5.1 Multi‐layer feed‐forward neural network 
The perceptron, or artificial neuron, is the simplest type of ANN. It is a 
simplified model of a biological neuron, having a structure with any 
number of inputs and one output. There is also a bias input. The neuron 
implements a linear decision boundary in a space of the same 
dimensionality as the number of inputs. The neuron can be written 

)( by T
P  xw  

which is the output of the function φ when the input is the inner product of 
the d-dimensional input signal x and a weight vector wP, plus the bias 
term b. The weight vector describes the orientation of the plane, and the 
bias term specifies the position.  

Compared with the FLD, the neuron equation is equivalent to the FLD 
projection except for the bias term and the activation function. The bias in 
the perceptron acts like a threshold; the projected signal is offset so that 
taking the sign, or thresholding at zero, gives the detections. The bias for 
the perceptron is found through a learning rule and the threshold in the 
FLD is found by e.g. ML, but in both cases they are found using the 
training data. 

There are many alternative activation functions, for example the simple 
signum function that acts as a zero-level threshold and outputs a binary 
signal. Another common class of activation functions are the sigmoid 
functions. These functions have an S-shape that introduces a nonlinear 
property in the network. The S-shape gives the functions the property that 
they act linearly around the origin, while large inputs are compressed into 
the interval zero to one. In the implementation used in this project, the 
hyperbolic tangent function was used (Figure 17). 
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Figure 17: The hyperbolic tangent function, an example of a sigmoid function that is 
commonly used as activation function in neural networks. 

The neuron can be graphically visualized as in Figure 18. In this example, 
it has three inputs and one output, but the model allows for any number of 
inputs. Each input i is associated with a weight wi and the bias term is a 
constant unit input associated with the weight w0.  

The multilayer perceptron (Figure 19) consists of any number of layers of 
neurons, although two (or three, if the inputs are considered to be a layer) 
is the most common number of layers. The outputs from the first layer are 
connected to the inputs of the next layer in a strictly forward manner, 
hence the designation “feed-forward” network.  
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Figure 18: A neuron with N inputs, bias and one output. The S-shape symbolizes a 
sigmoid activation function. 
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Figure 19: Three-layer perceptron with input layer to the left and output to the right. The 
hidden layer has sigmoid activation functions and the output neuron has a signum 
(threshold) activation function. Each arrow, connecting one layer with the next, is 
associated with a weight. Each input value to a neuron is multiplied with its respective 
weight before all inputs to the neuron are added. The bias term can be seen as a constant 
input with value one, and the bias value is the weight of the bias input. 

The input and output layers are the only ones that need to be observed by 
the user; the layers in between are called hidden layers. Usually the 
network is designed for a two-class problem, with an output layer 
consisting of one neuron that sums and thresholds the inputs from the 
hidden layer and gives +/-1 as output. The number of neurons in the 
hidden layer depends on the nature of the problem, i.e. how complex the 
boundary is which is needed to divide the classes in feature space. 

Physically the feed-forward network can be interpreted as a combination 
of a number of linear classifiers that together form a nonlinear boundary 
in the multidimensional feature space. Each of the neurons in the hidden 
layer implements a linear hyperplane and the output neuron combines 
them into a nonlinear decision boundary. 

6.5.2 Back‐propagation training 
The network is trained by using an algorithm called error back-
propagation. During training, data are presented at the input of the 
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network, and the resulting output is compared with reference data. If the 
output is wrong, the error is propagated back through the network, and all 
weights are updated by an amount proportional to the error [26]. The 
training process can be viewed as an iterative multidimensional 
optimization, and the training algorithm searches a multidimensional error 
surface for the global minimum. During this process it is in some 
instances possible that the algorithm stops in a local minimum instead of 
the global one. The network is initialized with a set of randomly selected 
weights, and depending on the starting point the final network may 
converge to the optimum or stop in a sub-optimal state. A way to reduce 
the risk of using a sub-optimal classifier is to train a number of instances 
of the network and choose the one with the lowest training error. 

A problem that is common to all classifiers is the risk of overfitting, 
which means that the classifier is so well trained that it perfectly fits the 
training data, even with regard to noise. This leads to poor generalization: 
the classifier performs badly when presented with unseen examples. When 
training a feed-forward ANN, a common way to avoid overfitting is to use 
a separate test set that is passed through the network at certain intervals 
during the iterative training process. When the error starts to increase for 
this test set, the training is stopped, a method called early stopping. 

There are some heuristics commonly used to help the training process to 
get to the right solution more quickly and to reduce the complexity of the 
classifier. Adding a momentum factor to the training algorithm helps the 
classifier to speed up when moving along nearly planar error surfaces, and 
may help in moving out of local minima. Weight decay is a technique that 
reduces the influence of weights that do not help to reduce the training 
error, and involves the multiplication of each weight with a fraction after 
each training step. Weights that are not reinforced by the training will 
then gradually decay to zero. 

6.5.3 Using the neural network for BS segmentation 
The neural network was applied on the burst-suppression segmentation 
problem using five pre-selected features. It was implemented as a feed-
forward network with one hidden layer containing ten neurons, a number 
empirically found to be “large enough”. The output layer contained one 
neuron and the input layer contained five inputs, one per feature. The 
network was implemented in Matlab using basic operations such as for-
loops and matrix multiplications.  

The training of the network was performed using error back-propagation. 
The influence of redundant neurons was reduced using weight decay.  

Overfitting was avoided by using early stopping, meaning that the error on 
the evaluation set was monitored and a training length that resulted in a 
reasonable trade-off for all different patients was chosen. Figure 20 shows 
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an example of how the sensitivity, specificity and AUC evolve during 
training. Initially, all samples are classified as suppression, resulting in 
100% specificity and zero sensitivity. The sensitivity is then gradually 
increased while maintaining a high specificity. This relation is due to the 
uneven distribution of burst and suppression in the data: there are many 
more suppression samples than burst samples. The AUC is found by 
sweeping a threshold over the entire range of the output signal, and is very 
high except for the very first iterations. The contradiction between the 
gradual increase in sensitivity and the very quick increase in AUC arises 
because the AUC calculation does not depend on a specific threshold 
value. 

Figure 21 is a visualization of the network weights. These determine how 
large an influence the inputs have on each hidden neuron, and how much 
influence each hidden neuron has on the final summation in the output 
neuron. As can be seen in the figure, about half of the neurons have 
weights close to zero, meaning that they contribute very little to the final 
result. This effect is achieved through weight decay, and show that some 
neurons (i.e. features) could be removed to reduce the computational 
complexity. 

 

Figure 20: Sensitivity, specificity and AUC as functions of the number of training 
iterations in the ANN. 
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Figure 21: Visualization of the weights of the trained network. Each of the ten hidden 
neurons is connected to all input features via weights, and each hidden neuron is 
connected to the output neuron via another set of weights. Each training of the network 
results in a unique set of weights. In this case, weight elimination has driven six of the 
hidden neurons to very low values, meaning that they do not contribute much to the 
result. 

6.6 Support Vector Machines 
While ANNs are based on minimizing the empirical risk by iterative 
training, and use a number of heuristics to improve performance and avoid 
stopping in local error minima, the support vector machine (SVM) [31] 
has a more solid theoretical foundation. It consists of two main parts:  

 Using kernel functions to map the input data to a higher-dimensional 
space 

 Maximizing the margin of classification 

In short, the first part means that the SVM uses a function to transform the 
problem nonlinearly and then construct a nonlinear decision boundary 
using linear techniques. The second part means that while a classifier such 
as an ANN settles for any boundary that separates two classes in the 
training data from each other, the SVM finds the one that maximizes the 
margin (Figure 22), a property that often will increase the generalization 
ability of the classifier. 
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Figure 22: Two classes can be separated by many boundaries, but only one maximizes the 
margin. 

The SVM also has the property that only the samples near the decision 
boundary are involved in the computations. While the ANN is trained by 
updating its weights with an amount proportional to any randomly chosen 
misclassified training sample, the SVM can be trained by choosing the 
current worst-classified pattern. When the training is finished, these 
patterns would be the support vectors, the patterns on the margins that 
define the optimal separating hyperplane (Figure 23). This method of 
training the SVM, however, is feasible only for very small datasets, 
because it would mean that all training samples have to be searched in 
each iteration in order to find the worst-classified sample. Instead other 
more efficient algorithms are used. 

 
Figure 23: The support vectors are the training samples that fall on the margin. 

6.6.1 Kernel trick 
Kernel functions are used for transforming a classification problem 
nonlinearly into a higher-dimensional space. Theoretically, if a problem is 
not separable in the basic feature space, there exists a space of higher 
dimension where the problem is separable. This is, for example, always 
true in the extreme case where the number of dimensions is equal to the 
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number of samples. There are infinitely many possible kernel functions, 
but the one used here is the Gaussian radial basis (RBF) kernel: 

Gaussian RBF kernel:   












 


d
K

2

exp,
yx

yx  

In the Gaussian RBF kernel, d is an input parameter that sets the width of 
local Gaussian function centered at each support vector. 

The transformation is never explicitly calculated, because the transformed 
space may be of very high dimensions, and require complex computations. 
Instead, the calculations are done implicitly by using the kernel function 
with the feature values as input.   

6.6.2 Training and training parameters 
The SVM maximizes the margin between separable classes; but in reality, 
classes are rarely completely separable. The regularization parameter C 
controls how many of the samples are allowed to be misclassified, thus 
determining the smoothness and complexity of the classification 
boundary. Without regularization the algorithm could adapt a very 
complex boundary, correctly classifying all the training samples, but this 
would in many cases lead to overfitting and bad generalization ability. 

The Gaussian kernel also has a control parameter, d, that determines the 
radius of the Gaussian function, thus controlling the radius of influence 
for each training pattern.  

The SVM is a deterministic minimization problem, and has the advantage 
over e.g. neural networks that the same data and control parameters 
always produce the same result, while the randomly initiated neural 
network may stop in a sub-optimal local minimum. The kernel and 
regularization parameters are not analytically derivable, however, and 
need to be found through iteration. This can be done through a grid 
search: the performance of the classifier is measured at a number of (C, d) 
combinations, and the combination with the best performance is chosen.  

6.6.3 Using the support vector machine for BS segmentation 
When the SVM was applied to the BS classification problem, the RBF 
kernel was used with width parameter and misclassification weight 
determined by a grid search. The performance values varied significantly 
for the different patients, so the final values were chosen to give decent 
performance for all cases, rather than selecting a parameter setting that 
would have given almost perfect performance in some cases and zero 
performance in others. Figure 24 shows an example of AUC values 
plotted in a grid of parameter values. Note that the surfaces for the 
different patients are located at different heights, and that the gradients for 
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increasing performance point in different directions. This makes the 
optimization of the parameter values difficult, and it will end up as a 
trade-off that gives decent performance in all patients.  

 
Figure 24: Example of AUC plots from a grid search for an optimal (C, d) combination. 
Note that the gradients in the subplots all point in different directions, meaning that 
increasing the performance for some patients would decrease the performance for other 
patients. 

6.7 Hidden Markov models 
The previously described classification methods treat each time instance 
(feature sample) as a separate event without regard to how the sequence of 
samples evolves in time. Since each activity state in the brain goes on for 
some time and not all transitions from one state to another are equally 
likely it makes sense to include this probability of transition in a model 
used for classification of these states. A hidden Markov model (HMM) 
[32] is a collection of a number of states. Each state is associated with 
probabilities of transition to each of the other states, and a probability 
density function that specifies the probability of emitting an observable 
signal. The model has also the attractive property that it can be trained in 
an unsupervised way, without using pre-classified training data. 

The first order HMM is based on the first order Markov model (Figure 
25), a random process characterized by that it has the Markov property 
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[22]. This property states that the state of the model at time n is directly 
influenced by the state at n-1 but not by any of the earlier states:  

P(Xn=s | X0=x0, X1=x1, ... , Xn-1=xn-1) = P(Xn=s | Xn-1=xn-1)  for all n ≥ 1 

The symbol n is here used for discrete time. Even though time is 
continuous we can consider it to be discrete, especially when using 
features of sampled signals. If the features are calculated using a one-
second window with 75 % overlap, we have a time resolution of 0.25 s, 
i.e. the process can only change state four times per second. 

The Markov model is stochastic, meaning that the future state cannot be 
predicted in detail, only in probabilistic terms. Each state is associated 
with a number of transition probabilities that describes the probability that 
the process jumps to one of the other states in the next step.  

The word “hidden” in HMM refers to the property that the state in a HMM 
cannot be directly observed. Instead it emits some symbol or signal that is 
visible to the observer. For example, HMM is popular in speech 
recognition, where each word is represented by a separate HMM. Each 
state then represents a phoneme (or some other sub-word element), and 
fitting a recorded sequence of phonemes to the appropriate model gives 
the classification. The emitted signals are incorporated in the model as a 
pdf, estimated as a histogram or a parametric model, of the emission 
probabilities. 

The HMM theory can be divided into three main problems: 

 The evaluation problem. For a HMM, complete with transition and 
emission probabilities: Determine the probability that a given 
sequence of observations was generated by the model. 

 
Figure 25: A three state Markov model. axy is the probability of transition from state ωx 
to state ωy. 
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 The decoding problem. For a HMM and a sequence of observations: 
Determine the most likely sequence of hidden states that generated 
the observations. 

 The learning problem. If the structure of the model is known but not 
the transition- and emission probabilities: Estimate these parameters 
given a training set of observations. 

The evaluation problem is important in e.g. speech recognition when a 
sequence of phonemes is to be compared with models of a number of 
words, but is not of interest here. What we are interested in is the 
decoding problem: we can measure EEG and calculate features from it, 
but we want to know what the underlying states were that made the brain 
produce these signals. The learning problem is important because in order 
to get a HMM that can be used for this, we must first train it so that it 
learns the appropriate parameters. 

Training of the HMM can be done using the Baum-Welch or forward-
backward algorithm that solves the learning problem. The decoding 
problem is solved using the Viterbi algorithm.  

6.7.1 Baum‐Welch algorithm 
The Baum-Welch algorithm is a generalized expectation-maximization 
algorithm, and is used to estimate the parameters of the HMM. These 
parameters are the transition and emission probabilities, and are found 
based solely on the observed training data. The algorithm improves the 
parameters of the model by calculating the probability of the model 
producing the training data and iteratively updates the parameters until 
some stop criterion is met. 

6.7.2 Viterbi algorithm 
The Viterbi algorithm uses dynamic programming to find the sequence of 
hidden states that is most likely to have produced a sequence of observed 
events. The algorithm assumes that the state is a (time) sequence. It also 
assumes that the most likely sequence leading to the state at time n only 
depends on the observed event at time n and the most likely sequence at 
time n-1, as is the case in a first-order Markov model. 

6.7.3 Initialization 
Instead of just initializing the models randomly, the k-means clustering 
algorithm [26] was used to estimate the initial pdfs, with the number of 
clusters k = 2. For the initial “seeds” the extreme points in the data were 
chosen, with max or min set to burst and suppression using prior 
knowledge of the feature distributions. These seeds were used as initial 
cluster means. The algorithm then proceeds by comparing the distance 
between each point in the data and all the cluster means. The point is then 
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associated with the closest cluster, and the mean of that cluster is 
recomputed. The process is iterated until all points belong to a cluster and 
the cluster centres are stabilized. 

This initialization was used to reduce the risk that the training ends up in a 
local error minimum instead of a global minimum; something that random 
initialization might lead to. Another way to reduce the risk of this is to run 
the algorithms a few times and choose the best instances, but that might be 
a weakness if implemented in a real monitoring system. 

6.7.4 Using the hidden Markov model for BS segmentation 
In paper IV, a two-state HMM was used for burst suppression 
segmentation. A number of features of the EEG were used as visible 
symbols, and the two states represented burst and suppression, 
respectively (Figure 26). 

 

 

Figure 26: HMM with two states (burst and suppression). Each state is associated with an 
output vector that is observed, here illustrated by four distributions. The goal is to 
estimate the model parameters and distributions based on unmarked training data, and 
then estimate the sequence of states that is most likely to have generated an observed 
mixture. 

The same set of five features which was used as in paper III was also used 
for SVM so that the two methods could be compared. To enable the HMM 
to use more than one feature the emission probabilities were multiplied 
together. This can be done if the different emission probabilities can be 
assumed to be independent. That is probably not true in the case 
investigated here, since the features all are generated by the same EEG 
signal, but the method was nevertheless found to work satisfactorily.  

The results show that given identical input feature data, the unsupervised 
HMM classifier performs in principle just as well as the supervised SVM. 
In the present case, the only input parameter to the HMM is the number of 
states in the data, all other HMM parameters are estimated automatically 
by the algorithms. Because patients are individuals, an unsupervised 
learner that estimates a patient-specific model of EEG could be very 
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useful in a monitoring system. The method was considered for paper V, 
but because the computational complexity makes it infeasible to use 
together with feature selection using genetic algorithms the idea was 
dropped in favour of the simple FLD, and saved for future work.   

6.8 Output signal smoothing 
The output from the classification procedures was in some cases found to 
be noisy, and using knowledge of the typical length of a burst, a 
smoothing algorithm was applied that uses a five-point sliding window 
and checks if the majority of the samples in the window are burst 
detections. If they are, all samples in the window are converted to burst 
detections; if they are not, all samples in the window are converted to 
suppression. This has the result that groups of short detections are 
converted into longer continuous detections, while short isolated 
detections are removed. This increases the performance in some cases by 
reducing the number of false positives and negatives, and gives the 
detections more realistic lengths.  

6.9 Patient sample equalization 
The availability of the different types of activity differs between different 
patients, causing the chosen EEG epochs to vary in length. In paper V the 
risk of skewing the classification results because of this was reduced by 
equalizing the amount of data from the patients and classes by random 
sampling of the data. The median of the number of samples from the 
different patients was determined, and then samples were drawn from 
each patient that equalled the median. In the cases when the available 
number of samples was lower than the median, samples were drawn with 
replacement.  

The data from the different patients were then concatenated into one 
matrix, and the sample order was randomized. The resulting matrix was 
divided into three parts; one half of the data was used for training, one 
quarter for testing and one quarter for validation. The training set was 
used for calculating the FLD projection matrix and the testing set for 
selecting the best one. When all selection was finished, the resulting 
classifier was tested on the validation set, which had not been involved in 
the process. If the result from the validation set is much worse than on the 
testing set, the classifier has probably been overfitted during training, and 
will not be able to generalize to unseen data. 
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Chapter 7  
 
Feature selection 

In Chapter 5, 22 features were introduced, which together with the four 
meta-feature functions resulted in a total of 88 meta-features that 
potentially could be used for classifying EEG signals. In chapter 6 some 
different classifiers were introduced, all of which can be used with several 
features in parallel. So why not just use every feature we can think of, and 
get the optimal classification? No, it is not quite that simple. All features 
cannot be appropriate for all classification problems. When segmenting a 
burst suppression signal we need features that enhance the difference 
between the activity in the bursts and the suppressions, while if we want 
to classify behavioral states we want features that enhance the differences 
between e.g. quiet sleep and active awake. These two sets of features 
would probably be different, since the BS activity is so different from the 
activity found in a healthy baby. If we add features that are not related to 
the classification we actually want to do, they can only contribute with 
noise that makes the classification more difficult.  
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Another reason for restricting the number of features is the curse of 
dimensionality described below. 

7.1 Curse of dimensionality 
The curse of dimensionality [33] describes how the number of 
dimensions, i.e. included features, is related to the number of examples 
needed to train the classifier in a satisfactory way. When the number of 
dimensions increases, the volume of the feature space increases and if the 
number of examples is constant they will be increasingly more spread out 
in this space. Consider e.g. the example of ten samples that are evenly 
distributed over a ten-point interval in a one-dimensional space, and thus 
cover 100 % of that space. If we then increase the number of dimensions 
to two, the number of discrete points in the space increase to 100, and our 
ten samples only cover 10 % of it. In three dimensions they only cover 1 
%!   

 If, on the other hand, we use as many dimensions as we have training 
examples they could be spread out so that one example is present in each 
dimension. A classifier would for this example deteriorate into a look-up 
table and we would certainly be able to get a perfect score on the training 
data, but we would have learnt nothing about the actual distribution of the 
data and hence not be able to classify unseen data. Thus, using more 
features is not automatically better, the number of dimensions should 
always be much smaller than the number of training examples, and it is 
essential to remember to validate the classifier and the feature selection on 
unseen data as carefully as possible.  

When choosing features to include in some sort of analysis the properties 
of the activity that is being analyzed would ideally be well known, and the 
feature functions would be designed to bring out these properties. In 
reality, however, these properties are not always known; they might even 
be what are ultimately sought for. When doing research on two types of 
activity we might know that they are different because the subject behaves 
differently during each type of activity, but we might not know how this is 
reflected in the EEG. We would therefore need some blind way for feature 
selection which could help us to find these differences. 

In the present work, two main methods have been used for feature 
selection: exhaustive search and restricted search using genetic 
algorithms. Both are used as so called wrapper algorithms, i.e. the actual 
classifier is used for evaluation of the tested feature combinations. An 
alternative is the filter approach, where some other function is used for 
evaluation of the feature combinations. While being potentially quicker 
than the wrapper type, the filter has the drawback that because it does not 
test the actual classifier it is not guaranteed to return optimal solutions.  
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7.2 Exhaustive search 
The simplest and safest way to ensure that the optimum feature 
combination is selected is to make an exhaustive search. That means that 
every possible combination of features is evaluated by training and testing 
using the selected classifier. The method was used in paper III, but is only 
an alternative for small sets of features because with increasing numbers 
the computational complexity rises very quickly to impractical levels.  

The number of combinations can be calculated using the binomial 
coefficient applying the following formula, where n is the total number of 
features to choose from, and k is the number of selected features: 

ቀ
݊
݇
ቁ ൌ

݊ ∙ ሺ݊ െ 1ሻ⋯ ሺ݊ െ ݇ ൅ 1ሻ

݇ ∙ ሺ݇ െ 1ሻ⋯1
ൌ

݊!

݇! ሺ݊ െ ݇ሻ!
, 0 ൑ ݇ ൑ ݊ 

If we assume that the number of features n is 88 and calculate the 
binomial coefficient for k{1,2,…,44} we get the graph in Figure 27. 
Thus, for combinations of ten features chosen from a set of 88, our 
classifier has to be trained and evaluated more than 1012 times. If the 
classification problem that is evaluated in each step is not absolutely 
trivial, this approach will take too long.  

7.3 Restricted search using genetic algorithms 
Genetic algorithms (GA) [34] are inspired by the natural selection taking 
place in nature. Instead of methodically trying every possible combination 
without regard to performance, a random set of combinations is first tried, 

 
Figure 27: The number of feature combinations when selecting from a set of 88 features. 
Note that the y-axis is logarithmic. 
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and then the ones that seems most promising are combined in pairs to 
form new combinations. Random mutation is also allowed. The process is 
repeated until some stop condition is met, e.g. the error is below a 
threshold or the number of iterations reaches a pre-determined maximum. 
The reason for using genetic algorithms for feature selection is that it is 
faster than an exhaustive search when the number of features is large. 
Feature selection using genetic algorithms was used in paper V and VI. 

When using genetic algorithms for feature selection, the set of features 
that are selected for evaluation is encoded in a chromosome, which can 
simply be a vector with ones representing selected features and zeros 
representing features that are not selected. When the genetic algorithm is 
initialized a number of chromosomes, or individuals, are randomly 
created. This population of possible solutions is then evolved for a number 
of generations. The basic evolution functions are combination of 
promising individuals and random mutation, i.e. some of the chromosome 
entries are flipped at random. In each generation, the fitness of the 
different individuals is evaluated using some fitness function, and then a 
number of the best ones are combined in pairs into offspring that are 
passed on to the next generation.  

To reduce the probability that the search quickly stops in a local minimum 
a number of techniques are used. For example, some of the individuals 
with low fitness are kept to ensure that the search area is not reduced too 
soon. Random mutations are used to send individuals out into areas that 
may have been missed during the initialization. Some of the best 
individuals can be kept unchanged from one generation to the next one 
(so-called elitism), because combining two good individuals may not 
always produce an individual that is better than its parents.  

In feature selection it is important to be able to restrict the number of 
selected features in the chromosome, because using too many features 
may reduce the performance and also be infeasible in a practical system 
where all these features must be extracted in real time. The number of 
features was limited using the method described in [35]: If the desired 
number of features is m and the number of features chosen by the GA is p, 
the following is done in each generation: If p<m, (m-p) features are 
randomly added to the chromosome. If p>m, (p-m) features are randomly 
removed from the chromosome.  

Because the result of the GA may depend on the randomly initiated 
starting set, the algorithm was run five times for each number of included 
features, and the one with the lowest error on the test set was included in 
the evaluation. The observed differences in probability of error between 
different runs were less than one percent. 
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Chapter 8 
 
Conclusions and future work 

The presented methods for separating BS signals from activity recorded 
from healthy neonates and the BS segmentation, all work well. So far, we 
have developed methods for segmentation and classification of mainly 
intermittent activity, and we have made a preliminary test by calculating 
burst suppression ratios and mean suppression lengths on a long recording 
(paper V). A natural next step is to continue to test the methods on long 
recordings that are as close to the clinical reality as possible, and to find 
properties of the segmented BS signals that have clinical relevance. The 
next project is therefore to apply the methods on a database containing 
long recordings from a number of post-asphyctic newborns. These 
recordings are many hours long (as the example in paper V); the BS 
signals used so far are merely short typical examples of this data. One of 
the goals of the project would be to find parameters that can predict the 
outcome of the hypoxic events, much like was done in a piglet model [1], 
but this time improving the analysis by analysing the activity in the burst 
and suppressions separately.  
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The functionality developed here should also be implemented in the 
SACS system [4]. This would allow its testing by the clinicians working 
with this kind of patients, both at the NICU and at the neurophysiologic 
labs. The SACS system is developed using a modular approach that makes 
it very flexible. Implementing a classifier as a SACS module makes it 
possible for the user to combine it in any way he likes with the other 
modules and easily set up customized applications within the system.  

At the NICU the new EEG based functionality should be tested as an 
alternative or complement to the aEEG that currently is used for 
monitoring of some infants. At the lab it could be used as a tool that 
simplifies the work of the neurophysiologist by highlighting areas of 
interest that should be further studied. The quantification of different 
pathologic aspects of the EEG might also add to the diagnostic value of 
the findings presented in this study. So far, the segmentation methods 
have been tested on a database containing six patients and the 
classification has been tested on the same six patients and recordings from 
20 healthy babies. To make sure that the methods work on a broad range 
of subjects they should be verified in a much larger trial with more 
patients and longer recordings. 

An important class of pathological activity that can be found in the EEG 
of newborn babies is seizures. Seizure detection should also be included in 
the system, for instance one of the methods that have been developed 
elsewhere. This is an important part of the other main goal of the project; 
to develop methods that give information of ongoing pathological 
processes. This would enable the clinician to introduce therapy to prevent 
the negative effects of this activity, thereby probably improving the 
prognosis for the neonate. 

Some ideas have popped up during the research process that have not yet 
been tested. For example, a method that has potential to become a useful 
tool in this field is using the hidden Markov models that were tested in 
paper IV. The method proved to work well for segmenting BS signals, 
without supervised training, and produces patient specific models that 
could be of great use in other applications. The method was initially tested 
on the classification problem, because the models were thought to be 
useful for discrimination between the two intermittent classes BS and 
tracé alternant. However, since the problem could be solved using 
simpler classifiers, and because the HMM is too computationally 
demanding to be used with the feature selection using genetic algorithms, 
this idea was discarded.  

A possible application for the HMM could be to use it for classification of 
sleep states. This problem was touched upon in paper V, but satisfying 
results were only reached for the quiet sleep class (tracé alternant). 
Possibly, features derived from signals other than EEG could be included 
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in the classification process. Easily accessible examples are heart rate 
variability calculated from the heart rate signal that usually is present in 
the existing monitoring equipment, or some movement sensor added to the 
system. 
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Summary of papers 
This section summarizes the most important points of the six papers 
included in the thesis. In short, paper I-IV develops the methodology for 
burst suppression segmentation, and different classifiers and features are 
evaluated. Paper V is focussed on classification of background activity, 
where the time scale is in minutes instead of seconds as in the previous 
papers. The burst suppression segmentation is included as a tool for 
automatic analysis of the parts of the background activity that is classified 
as BS and is tested on a very long recording.  

In paper VI the developed methods are applied on a practical research 
problem: intermittent tracé discontinue signals are automatically 
segmented in order to evaluate the impact on the brain activity in preterm 
babies by a certain medication. 

Paper I: Detection of bursts in the EEG of post asphyctic newborns 

In this paper eight features were evaluated with regard to their ability to 
separate bursts from suppression in neonatal EEG. For the evaluation an 
artificial neural network (ANN) implemented using the neural network 
toolbox in Matlab was used. With the best feature as a starting point, 
additional features were added one by one. Sample-wise sensitivity, 
specificity and their sum were used as performance measures. 

It was found that different features were best for different patients, 
making an optimal selection difficult. For example, simply using the 
variance gave usable result for all but one patient. Adding more features 
increased the sensitivity for this patient up to a point where the sensitivity 
for another patient started to decrease. It was concluded that additional 
features and classification techniques should be tested. 

Paper II: Classifying burst and suppression in the EEG of post 
asphyctic newborns using a support vector machine 

In this paper a support vector machine (SVM) with a radial basis function 
(RBF) kernel was used for segmentation of burst-suppression signals. The 
data set, as well as the features, were slightly changed as compared to the 
previous paper, so the results are not directly comparable. A fixed set of 
five features was used. 

It was found that the SVM had the advantage over the ANN that it gives a 
classifier with a maximum margin, that the error on the training set can be 
controlled during training and that it is deterministic, and eliminates the 
problem of risking ending up in a local error minimum. It was also found 
that the sample-wise sensitivity and specificity measures are somewhat 
misleading, and should be complemented with a hit/miss measure that 
places more emphasis on detection of whole events instead of just 
counting the samples. 



Summary of papers 

72 
 

Paper III: Classification of burst and suppression in the neonatal 
electroencephalogram 

In this paper, the three classifiers Fisher´s linear discriminant (FLD), an 
artificial neural network and a support vector machine were compared 
with regard to their performance when separating burst from suppression. 
These classifiers all use supervised learning. For performance 
measurements, sample-wise sensitivity and specificity were used to create 
receiver operating characteristic (ROC) curves for the classifiers that 
reveal their full potential. 

The same five features were used as in paper II, but now the optimal 
subset was chosen by exhaustive search. It was found that the 
performance for this set of features started to decrease after two features. 
The SVM performed best, and could handle higher numbers of features 
best, but the ANN and FLD performed almost as well. 

Paper IV: Comparing a supervised and an unsupervised classification 
method for burst detection in neonatal EEG 

In this paper a Hidden Markov Model (HMM) and a Support Vector 
Machine (SVM) using unsupervised and supervised training, respectively, 
were compared with respect to the same problem as in the previous 
papers. The study showed that the SVM and the HMM exhibit similar 
performance, despite their fundamental differences. 

It was concluded that HMMs could be used for automatic generation of 
patient-specific models of intermittent EEG that in turn could be used for 
classifying entire signals as well, by using the model´s parameters as 
features.  

Paper V: Automatic classification of background EEG activity in 
healthy and sick neonates 

In this paper the emphasis of the analysis was moved from segmentation 
to classification. Instead of segmenting signals that are known to contain 
exclusively pathological burst suppression the analysis starts with 
deciding what type of EEG it is dealing with. Along with the BS EEG 
from the same six patients as in the previous papers, signals from twenty 
healthy babies were included, divided into four behavioural states. The 
states were active awake, quiet awake, active sleep and quiet sleep, and 
the signals were divided into these states by a combination of observation 
of the baby during recording and by off-line visual examination of the 
EEG. A FLD was used for deciding what type the EEG belonged to, using 
a feature subset chosen from a larger set using a genetic algorithm. When 
BS activity was detected the signal was segmented using the previously 
developed methods. The methods were tested on long recordings as well, 
a two-hour recording from one of the healthy babies and a 32-hour 
recording from one of the sick patients.  
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We managed to achieve 100% correct classification when separating burst 
suppression EEG from all four healthy EEG types and 93% true positive 
classification when separating quiet sleep from the other types. The other 
three states could not be classified.  

Paper VI: Does indomethacin for closure of patent ductus arteriosus 
affect the cerebral function? 

In this paper the methods developed in the previous papers were used in a 
practical application. The purpose of our investigation was to see if the 
drug indomethacin, used in conventional dose for closure of patent ductus 
arteriosus (a shunt allowing most of the blood to bypass a fetus’ lungs), 
affects brain function. This was represented by EEG evaluated by 
automatically estimated quantitative measures. 

The impact on the brain function was estimated by measuring the length 
of all low activity periods (LAP, similar to the suppressions in the 
previous papers). These lengths were automatically measured using two 
methods, one using fixed thresholds and one using Fisher´s linear 
discriminant together with a genetic algorithm for feature selection.  

Neither of the two methods identified any change of the amount of LAPs 
in the EEG after as compared to before the indomethacin infusion. It was 
concluded that indomethacin in conventional dose for closure of patent 
ductus arteriosus does not affect the brain function as evaluated by 
quantitative EEG. 
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Detection of bursts in the EEG of post asphyctic 
newborns 

J. Löfhede, N. Löfgren, M. Thordstein, A. Flisberg, I. Kjellmer, K. 
Lindecrantz 

Abstract  
Eight features inherent in the electro-encephalogram (EEG) have been 
extracted and evaluated with respect to their ability to distinguish bursts 
from suppression in burst-suppression EEG. The study is based on EEG 
from six full term infants who had suffered from lack of oxygen during 
birth. The features were used as input in a neural network, which was 
trained on reference data segmented by an experienced 
electroencephalographer. The performance was then evaluated on 
validation data for each feature separately and in combinations. The 
results show that there are significant variations in the type of activity 
found in burst-suppression EEG from different subjects, and that while 
one or a few features seem to be sufficient for most patients in this group, 
some cases require specific combinations of features for good detection to 
be possible.  

1. Introduction 
The burst-suppression (BS) pattern is one of several indicators of severe 
pathology in the electroencephalogram (EEG) signal that may occur after 
brain damage, caused by e.g. asphyxia [1, 2]. Certain characteristics of 
this pattern can provide the clinicians with important information about 
the recovery of the patient and it is thus important in the adjustment of the 
treatment. Examples of important characteristics of the BS pattern are the 
length of the burst and suppression intervals, and the spectral content of 
the bursts [3, 4]. 

In practice, most EEG recordings are evaluated by experienced 
neurophysiologists through visual inspection of the unprocessed signal 
[5]. Some attempts towards automatic detection have been made, most of 
them targeting burst-suppression induced by anesthesia [6, 7]. 

Our goal is to develop tools that can be used for automatic classification 
of BS caused by various causes, for example perinatal asphyxia 
(insufficient oxygen/dioxide ventilation around the time of birth). The 
target patient group is newborns, and a possible future application is a 
monitoring system for neonates in intensive care. 
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This paper is focused on evaluating a number of features inherent in the 
EEG signal, with respect to their ability to distinguish between burst and 
suppression activity in BS EEG. These features are then used as inputs to 
a neural network for the actual classification. 

2. Methods 
This study was performed on EEG from six full term infants having 
suffered from perinatal asphyxia. Each subject contributed with a 
continuous recording of 6-40 minutes, selected and classified by an 
experienced electroencephalographer (MT). The length was chosen to 
include at least 10 bursts. Eight channels were used, and the data was 
digitized at a sampling rate of 200 Hz. The mean of the EEG signal was 
subtracted, the signal was band pass filtered 0.5 to 20 Hz, and notch 
filtered at 50 Hz to reduce power line interference, before feature 
generation. The reference data had a time resolution of one second. 

 

 
Fig. 1. The top plot is an example of 30 seconds of burst-suppression EEG. The bottom 
plot shows ten minutes of the same signal, but only one channel. The shaded areas are 
bursts identified by an electroencephalographer. 

 

A selection of the recorded burst-suppression EEG is displayed in Fig. 1. 
Eight features, most of which have been used for detection of BS in adult 
subjects under anesthesia [7, 8],  were selected (Table I). The features 
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were calculated for overlapping segments of the raw signal. The segment 
length was one second, motivated by the fact that bursts were considered 
to be at least one second long. The overlap was 0.75 s, producing an 
output feature signal with an effective sampling rate of 4 samples per 
second. 

 

Feature Description 

Spectral 
Edge 
Frequency  
(SEF95) [6] 

Frequency under which 95% of the signal power resides, 
based on the Fourier transform (FT) calculated on rectangular 
windows of the signal 

3 Hz power Power in a one Hz wide band centered at three Hz 

Median [9] Median absolute value 

Variance 
(s2(x)) [9] 
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Where x is a time series, μ is the sample mean of x  
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 is the standard deviation of x. x and  as above 
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x,  and  as above 

Zero 
crossings [6] 

Rate of zero crossings 

Shannon 
entropy 
(HSh) [10] 

1

( ) log ( )
U

Sh u u
u

H p I p I

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p(I1)… p(IU), pU is a discrete set of probabilities, which are  
estimated by counting the samples falling in the disjoint 
amplitude intervals I1,..,IU.  
20 intervals were used evenly distributed between the 
maximum and minimum value of the signal in the window. 
HSh is a measure of uncertainty of a random variable. 

Table I: Features selected for evaluation of their ability to distinguish bursts from 
suppression in burst-suppression EEG. 
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After feature generation, the feature signals were combined per feature by 
taking the median over the eight channels. This was motivated by the fact 
that BS is considered to be a global phenomenon appearing in all EEG 
channels, and using the median over the channels removes disturbances 
present on one or a few of the channels. This also reduces the 
computational complexity as compared to feeding the network with all 
channels. 

The feature signals were used as inputs to a feed-forward neural network 
with error back-propagation training [11], which was implemented using 
the neural network toolbox in Matlab. The training of the network was 
performed using the segmented reference data. The feature signals were 
fed to the network one at a time, and then in combinations. The number of 
input nodes was set by the number of features used in each experiment. 
Ten hidden nodes were used, chosen by empirical testing, and one output 
node. Ten instances of the network were trained for each feature, and the 
best one was chosen for the evaluation. This technique was used to reduce 
the risk of using a network that failed to converge when trained. The 
training of neural networks uses a randomly initiated starting network, 
which then is trained using randomly selected samples from the training 
set. The training algorithms move in a complex landscape, trying to find a 
minimum error state. However, this landscape usually contains multiple 
local minima, and to reduce the risk of “getting stuck” in a local 
minimum, a number of separate instances of the network are trained, and 
then the instance with the lowest classification error is used. 

In order to maximize the use of the limited number of patients, the data 
was not divided into fixed training- and testing sets. Instead, leave-one-
out cross-validation was used, meaning that the data from one patient was 
used for testing, and the other five were used for training. This process 
was then repeated for all patients. In order to give each patient an equal 
chance to influence the network training, the shorter records were 
repeated so that they got the same length as the longest one. This 
equalizes the amount of data from each patient, but it does not take into 
account the number of bursts provided by the patients. 

An output sample from a neural network depends only on one input 
feature vector, and does not take previous or subsequent samples into 
consideration. The detection signal is therefore noisy, with a lot of short 
detections. Using knowledge of the typical length of a burst, an iterative 
smoothing algorithm was designed that converts groups of short 
detections into longer continuous detections, while short isolated 
detections are removed. This was found to increase the performance 
considerably.   

For performance evaluation, sample wise sensitivity and specificity were 
used as measures. Sensitivity was defined as the percentage of the burst 
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samples that were correctly classified as bursts, and specificity as the 
percentage of the remaining samples that were not classified as bursts. As 
a measure of performance for choosing which networks to keep when 
training multiple instances, the sum of the sensitivity and specificity was 
used.  

The features were ordered with the best single feature as a starting point. 
Initial experimental results showed that most patients were not affected 
very much by adding features, with the exception of patient six. 
Therefore, features were added in an order that increased the performance 
for patient six, while trying not to degrade the performance for the other 
ones. 

3. Results 
In Fig. 2 the eight feature signals are compared. The mean and standard 
deviation of the feature signals have been calculated for the burst and 
suppression parts separately. The feature signals have been normalized by 
subtracting the mean and dividing by the standard deviation to simplify 
comparison.  The figure shows that although the estimated means for burst 
and suppression of most feature signals differ, their standard deviations 
overlap considerably.  

The results in Fig. 3 show that there are large differences between the 
patients with regard to how well the features work in terms of sensitivity. 
Using these results, the best feature was used as a starting point for the 
feature order for the test shown in Fig. 4. Here, both individual and total 
sensitivity and specificity are shown for increasing numbers of features.  

Fig. 5 demonstrates the difference between sample wise sensitivity and 
burst wise sensitivity. Although the sample wise sensitivity in this case is 
merely 50%, all but two bursts have been detected. 
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Fig. 2. The triangles and stars represent the mean of the feature signals for suppression 
and burst periods respectively. The lines show the standard deviations around the means. 
Data from all six patients are included. 

 
Fig. 3. Sensitivity and specificity achieved when the feature signals have been run through 
a neural network, one at a time. In each case, five networks have been trained, and the 
best one has been chosen. The sensitivity is in many cases very low, but this is partly due 
to the way the sensitivity is calculated. See Fig. 5 for comparison. 
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Fig. 4. Sensitivity and specificity after the feature signals were run through a neural 
network. The curves show the performance for the six patients for increasing numbers of 
features. The curve with the triangles shows the total performance for the six patients. In 
each case, ten networks were trained, and the best one with regard to the training set was 
chosen. The first point along the x-axis shows the result when feeding the network with 
the best feature, the variance. The subsequent points show the results when more features 
are added one by one until all eight features are included. 

 

 
Fig. 5. Example of detection using four features on patient 5. The top plot shows the 
reference data, the plot below shows the detections. It can be seen that 9 out of 11 bursts 
in the reference data have been detected and that there was one false detection. 
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Patient Number Burst Percentage  

1 24 % 

2 13 % 

3 6 % 

4 27 % 

5 26 % 

6 4 % 

Table II: Patient BS ratio. 

 

Table II shows the burst contents in the signals from the different 
subjects. Note that the data from patient six, who has the worst detection 
performance, has a significantly lower burst content that most of the 
others. 

4. Discussion 
In all calculations of this study, all eight available channels have been 
used. However, since bursts are mainly global phenomena, it should in 
principle be possible to detect them using only one channel. The drawback 
of using fewer channels is that using less data makes the system more 
sensitive to disturbances affecting only some of the channels, like bad 
electrode-skin coupling and artifacts. As an alternative to using the 
median of the input feature signal, one network could be trained for each 
channel, and then the final decision could be made by counting the 
number of detections from the different channels. This would however 
increase the computational complexity for the network training. 

The method to calculate sensitivity and specificity used here is rather 
strict; every missed sample lowers the measured performance. The one-
second time resolution used in the reference data probably contribute to a 
lowering of the calculated performance. Alternatively, the number of 
bursts detected divided by the total number of bursts could be used to 
define sensitivity, which would lead to higher scores. However, this 
would not at all take into consideration the length of the bursts, or the 
accuracy of the detection of the start- and endpoints.  

The specificity for many of the features is very low (Fig. 3), but they still 
contribute to a higher sensitivity for patient six when used in combination 
with the variance (Fig. 4). However, adding the features in descending 
sensitivity order does not necessarily improve the result. An explanation 
for this may be that the best features share a lot of common information, 
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and that combining them does not add useful information for the burst 
detection. 

For most cases, the specificity is higher than the sensitivity. This is 
probably due to the fact that the burst periods are generally much shorter 
than the suppression periods, which means that the network has more 
examples of suppression to learn from than it has examples of bursts. The 
detections are often short, meaning that even a large number of false 
detections contribute little to a worsening of the specificity.  

Given the small amount of data available, not much can be said about the 
actual performance of the neural networks. For most patients in the data 
set the detection works well when using only one feature, but for patient 
six the performance is very low when using one feature, and increases 
drastically when adding more features. At the same time, the performance 
for patient one decreases, while all other remain almost constant, even 
though the EEG from all patients are similar with respect to presence of 
burst-suppression patterns. Apparently there are characteristics of BS as 
detected by an experienced neurophysiologist that are not captured by the 
features selected here, no matter what combination used. In order to make 
the detection work equally well for all patients, other features or different 
classification techniques are needed. 

In order to produce a complete burst-suppression detection- and 
quantization system, artifact rejection need to be included. It could also be 
useful to have a pre-classifier to first decide if the data is an example of 
burst-suppression or another type of periodic EEG activity, before the 
segmentation is made.  

When more data is obtained, it will be possible to do a more statistically 
reliable training and evaluation of the neural network. The results of this 
will hopefully provide an easily used and reliable tool for automatic 
segmentation of burst-suppression EEG in newborns that has suffered 
from asphyxia. This tool may be a part of a monitoring system for 
neonatal intensive care units, as well as a tool for segmenting burst-
suppression data used for off-line analysis.  
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Classifying burst and suppression in the EEG of 
post asphyctic newborns using a support vector 

machine 
J. Löfhede, N. Löfgren, M. Thordstein, A. Flisberg, I. Kjellmer,  

K. Lindecrantz 

Abstract 
A Support Vector Machine (SVM) was trained to distinguish bursts from 
suppression in burst-suppression EEG, using five features inherent in the 
electro-encephalogram (EEG) as input. The study was based on data from 
six full term infants who had suffered from perinatal asphyxia, and the 
machine was trained with reference classifications made by an 
experienced electroencephalographer. The results show that the method 
may be useful, but that differences between patients in the data set makes 
optimization of the system difficult. 

1. Introduction 
The burst-suppression (BS) pattern is one of several indicators of severe 
pathology in the electroencephalogram (EEG) signal that may occur after 
brain damage, caused by e.g. asphyxia (insufficient gas and nutrient 
supply around the time of birth) [1, 2]. Certain characteristics of this 
pattern can provide clinicians with important information about the 
prognosis of the patient and is thus important in the adjustment of the 
treatment. Examples of important characteristics of the BS pattern are the 
length of the burst and suppression intervals, the percentage of 
suppression activity in a recording, and the spectral content of the bursts 
[3-5]. 

In practice, most EEG recordings are evaluated by experienced 
neurophysiologists through visual inspection of the unprocessed signal 
[6]. Some attempts towards automatic detection have been made, most of 
them targeting burst-suppression induced by anesthesia [7, 8]. 

Our goal is to develop tools that can be used for automatic classification 
of BS induced by various causes, for example perinatal asphyxia. The 
target patient group is newborns, and a possible future application is a 
monitoring system for neonates under intensive care. 

This paper focuses on using a set of features derived from the EEG as 
input data to a Support Vector Machine (SVM) [9], and training it to 
classify bursts and suppressions in BS EEG. Previously a similar approach 
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was made using a Neural Network [10],  with varying results, and it 
seemed as further work was needed. The present work is based on partly 
the same data set: One patient from the old set was excluded because the 
burst activity was judged by the electroencephalographer to be “much less 
distinct” than the one seen in the others, and therefore not suitable for use 
with an algorithm that require training. Another patient has been added, 
thus producing a set of data from six patients. 

2. Method 
This study was performed on EEGs from six full term infants having 
suffered from perinatal asphyxia. Each subject contributed with a 
continuous recording of 6-40 minutes, selected and classified by an 
experienced electroencephalographer (MT). The length was chosen to 
include at least 10 bursts, and all artifacts were manually identified and 
removed from the data. A common average montage with eight channels 
was used, with electrodes placed according to the international 10-20 
system at the positions F7, F3, T5, P3, F8, F4, P4 and T6, and the data 
was digitized at a sampling rate of 200 Hz. A straight line was fitted to 
each signal and subtracted to remove any trends, the signal was band pass 
filtered between 0.5 and 20 Hz, and notch filtered at 50 Hz to reduce 
power line interference, before feature generation. In one case, a LMS 
adaptive filter [11] with a separate ECG channel as reference was used to 
suppress ECG interference in the EEG signal. The manually classified BS 
reference data had a time resolution of one second. When the start or end 
of a burst did not coincide with even seconds, the time was rounded off so 
that the entire burst was included. This meant that in many cases, up to 
two seconds of suppression activity was included with every burst. 

An example of the recorded burst-suppression EEG is displayed in Fig. 1. 
Five features, some of which have been used for classification of BS in 
adult subjects under anesthesia [8, 12] and that have shown promising 
results earlier [10],  were selected (Table I). The features were extracted 
from overlapping segments of the EEG signal. The segment length was 
one second, motivated by the fact that bursts were considered to be at 
least one second long. The overlap was 0.75 s, producing an output 
feature signal with an effective sampling rate of 4 samples per second. All 
feature signals except variance were smoothed by convolution with a 
triangular window. Finally the feature signals were normalized by fitting 
their distributions between the first and the 99th quartile into the interval 
zero to one, thus giving all features the same amplitude range. 
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Fig. 1. The top plot is an example of 30 seconds of burst-suppression EEG. The bottom 
plot shows ten minutes of the same signal, but only one channel. The shaded areas are 
bursts manually classified by an electroencephalographer. 

 

Feature Description 

Spectral Edge 
Frequency  
(SEF95) [7] 

Frequency under which 95% of the signal power 
resides, based on the Fourier transform (FT) 
calculated on Blackman-Harris windows of the 
signal. Output signal smoothed by a six-point 
triangular window. 

3 Hz power Power in a one Hz wide band centered at three 
Hz. Output signal smoothed by a six-point 
triangular window. 

Median [13] Median absolute value. Output signal smoothed 
by a six-point triangular window. 
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Shannon entropy (HSh) 
[14] 

1

( ) log ( )
U

Sh u u
u

H p I p I


  

p(I1)… p(IU), pU is a discrete set of probabilities, 
which are  estimated by counting the samples 
falling in the disjoint amplitude intervals I1,..,IU. 
20 intervals were used evenly distributed 
between +/- two standard deviations of the signal 
in the window. HSh is a measure of uncertainty 
of a random variable. Output signal smoothed by 
a six-point triangular window. 

Table I: Features used for classifying burst and suppression in bs EEG 

 

After feature generation, the feature signals were combined per feature by 
taking the median over the eight channels. This was motivated by the fact 
that BS is considered to be a global phenomenon appearing in all EEG 
channels, and using the median over the channels removes disturbances 
present in one or a few of the channels. This also reduces the 
computational complexity as compared to feeding the classifier all 
channels. 

The classification was performed using a SVM implemented using a 
freeware Matlab toolbox [15] running in Matlab 7.3. As kernel function 
the Radial Basis Function (RBF) [16] was used, with parameters set by 
optimizing the output result on the test set, using the parameter that 
produced the best total result for all patients in a leave-one-out scheme. 
The data was not divided further into a separate validation set because of 
the limited number of patients. 

In order to maximize the use of the limited number of patients, the data 
was not divided into fixed training- and testing sets. Instead, leave-one-
out cross-validation [17] was used, meaning that the data from one patient 
was used for testing, and the other six were used for training. This process 
was then repeated for all patients. To illustrate the differences found 
between the patients, individual performance measures are presented. 

An output sample from a support vector machine depends only on one 
input feature vector, and does not take previous or subsequent samples 
into consideration. The input samples are represented by points in a 
multidimensional feature space, where the time order is not considered. 
The detection signal is typically noisy, with a lot of short detections. 
Using knowledge of the typical length of a burst, a smoothing algorithm 
was applied that uses a five point sliding window and checks if the 
majority of the samples in the window are burst detections. If they are, all 
samples in the window are converted to burst detections, if they are not; 
all samples in the window are converted to suppression. This results in 



 
 

93 
 
 

that groups of short detections are converted into longer continuous 
detections, while short isolated detections are removed, and increases 
performance in most cases.   

For performance evaluation, sample sensitivity and specificity were used 
as measures. Sensitivity was defined as the percentage of the burst 
samples that were correctly classified as bursts, and specificity as the 
percentage of the remaining samples that were classified as suppression. 
As an alternative performance measure, a binary hit/miss measure was 
used, counting any burst interval that contained at least one detection as 
detected. This makes sense in a situation where the absolute burst limits 
are not so important, but rather a measure of the occurrence of bursts is 
desired. 

The percentage of a recording that consists of suppression is an important 
measure of the recovery of a post-asphyctic newborn, and was also 
calculated, both from the reference data and from the detections for 
comparison. 

3. Results 
In Fig. 2 the five feature signals are compared. The figure shows that 
although the medians for burst and suppression of the feature signals 
differ, their distributions overlap considerably.  

 

 
Fig. 2. The boxes show the median and quartiles for the feature signals and the whiskers 
show the rest of the data. The dots represent outliers. The boxes to the left show burst, 
and the ones to the right shows suppression. Data from all six patients are included. 
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Patient BSR (%) Median burst length (s) Median supp. length (s) 

1 13 5 1 

2 6 1 2 

3 27 4 3 

4 30 3.5 4 

5 1 3 5 

6 75 7 6 
 

Table II: Patient BS data 

 

Table II shows the burst contents in the signals from the different 
subjects, and Table III shows the performance achieved for the different 
subjects. Fig. 3 shows an example of what the BS signal with both manual 
and SVM classification can look like.  

 

Patient Se (%) Sp (%) H/M Hit Miss SR (%) DSR (%) 

1 74 98 95 20 1 87 89 

2 89 94 100 21 0 94 89 

3 75 99 100 15 0 72 79 

4 63 97 83 15 3 70 78 

5 97 83 100 10 0 99 81 

6 35 100 83 24 5 24 74 

Mean 72 95 94 18 2 74 82 
 

Table III: Performance measures 

Se: Sensitivity, the proportion of burst samples that are correctly classified. 
Sp: Specificity, the proportion of suppression samples that are correctly classified. 
H/M: Hit/Miss sensitivity, if at least one sample of the burst detected, the burst is 
considered to be detected. 
Hit: The number of bursts that were detected. 
Miss: The number of bursts that were not detected. 
SR: Suppression Ratio, the percentage of the recording that is classified as suppression by 
the human expert. 
DSR: Detected Suppression Ratio, the percentage of the recording that is classified as 
suppression by the algorithm. 
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Fig. 3. Four minutes of EEG data taken from Patient 1. The shaded areas show the 
reference classification made by the expert, and the bottom graph show the classifications 
made by the algorithm. All six bursts are detected by the algorithm and there are no false 
detections that are not close to the actual bursts. 

4. Discussion 
In a previous study [10] bursts were detected using a Neural Network 
(NN). An important difference between the two techniques is that SVM 
finds a maximum margin between the classes, while the NN settles for any 
solution that separates them. When the classes are non-separable, the 
SVM should also give more deterministic results, because it is possible to 
control how large error that is allowed on the training set. The SVM is 
also more deterministic in the sense that a given set of input training data 
and parameters results in a specific classifier, as compared to the 
stochastically initiated NN training that may produce sub-optimal 
classifiers depending only on the random initiation. For this paper, both 
the data set and some of the preprocessing steps have been modified as 
well as the detection algorithm, so unfortunately the results are not 
directly comparable. 

The method to calculate sensitivity and specificity used here is rather 
strict; every missed sample lowers the measured performance. The one-
second time resolution used in the reference data probably contribute to a 
lowering of the calculated performance, because the algorithm often make 
much tighter detections when compared to the reference. The hit/miss 
sensitivity measure gives a complementary measure of performance. 
Comparing the amount of suppression in the manual classification and the 
SVM classification also gives an indication of the usefulness of the 
method. Measuring the amount of suppression can be used for diagnosing 
the recovery of a sick infant, and monitoring it automatically at bedside 
could be useful. 

The optimization of the input parameters to the SVM is difficult when 
looking at the six patients separately. When adjusting a parameter, some 
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of the patients increase their performance while others decrease. The 
optimization ended up as a tradeoff that gives decent performance for all 
the patients in the group. 

In order to produce a complete burst-suppression detection- and 
quantization system, artifact rejection should be included. It could also be 
useful to have a pre-classifier to first decide if the data is an example of 
burst-suppression or another type of periodic EEG activity, before the 
segmentation is made. During this study it has become apparent that the 
characteristics of the data vary significantly between different patients, 
and as mentioned in the introduction, one patient even had to be excluded 
because the burst activity was much more indistinct than the one found in 
the others, even though it still is categorized as burst suppression. This 
could be caused by varying degrees of cerebral dysfunction or other types 
of individual variations. That the patients in this study suffer from 
different degrees of illness is indicated by Table II, the amount of bursts 
in the EEG ranges from one percent up to 75 percent. For properly 
characterizing the apparently different groups of burst-suppression, more 
data is needed, especially when using this type of algorithms that require 
lots of data for training. However, this type of data is not easily obtained.  

The results of this work will hopefully provide an easy to use and reliable 
tool for automatic segmentation of burst-suppression EEG in newborns 
that has suffered from asphyxia. This tool may be a part of a monitoring 
system for neonatal intensive care units, as well as a tool for segmenting 
burst-suppression data used for off-line analysis.  
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Abstract 
Fisher’s linear discriminant (FLD), a feed-forward artificial neural 
network (ANN) and a support vector machine (SVM) were compared with 
respect to their ability to distinguish bursts from suppressions in 
electroencephalograms (EEG) displaying a burst-suppression pattern. Five 
features extracted from the EEG were used as input. The study was based 
on EEG signals from six full term infants who had suffered from perinatal 
asphyxia, and the methods have been trained with reference data classified 
by an experienced electroencephalographer. The results are summarized 
as the area under the curve (AUC), derived from receiver operating 
characteristic (ROC) curves for the three methods. Based on this, SVM 
performs slightly better than the others. Testing the three methods with 
combinations of increasing numbers of the five features shows that the 
SVM handles the increasing amount of information better than the other 
methods. 

1. Introduction 
During delivery there is always a risk of insufficient circulation or blood 
gas exchange to the baby, something that may lead to hypoxia (lack of 
oxygen) and potentially cause brain damage. Babies at risk are kept under 
close surveillance during delivery and afterwards at a neonatal intensive 
care unit (NICU), but it is difficult to determine at an early stage if the 
babies are recovering, if there is a threat of brain damage or if it already 
has occurred [1]. Parameters such as heart rate, blood pressure and oxygen 
saturation are monitored regularly, but they are only measures of the 
general condition of the baby. If the function of the brain itself is to be 
monitored, a more direct way is to measure the electrical signals 
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spontaneously produced by the brain, the electroencephalogram (EEG). 
This offers a possibility for continuous monitoring over long time with 
high time resolution.  

Earlier studies have investigated how certain parameters calculated from 
the EEG signal can be used for detecting hypoxia in the brain, and 
predicting the outcome after a hypoxic event [2-4]. In practice, however, 
most EEG recordings are evaluated through visual inspection of the 
unprocessed signal by a clinical neurophysiologist, an expertise typically 
not available at the NICU. Even though methods for remote consultations 
have been developed [5], this methodology only allows for evaluation at 
distinct time instances and is not suitable for continuous bedside 
monitoring. 

One attempt to simplify long-time monitoring of brain function that can 
be used for bedside monitoring is the amplitude-integrated EEG (aEEG), 
for example implemented as the cerebral function monitor (CFM) [6]. 
This method displays a processed version of a usually one-channel EEG 
on a compressed time scale, and provides the clinician with a simple way 
to monitor the brain activity of a patient. However, the compressed signal 
can sometimes mask interference and artefacts and cause them to be 
mistaken for brain activity, and there are also examples of missed seizure 
activity [7]. Because of these limitations, neurophysiologists argue that 
the unprocessed EEG signal has to be taken into consideration when 
interpreting the aEEG.  

This paper addresses the problem of classifying epochs of periodic burst-
suppression (BS) EEG as burst or suppression and compares three 
different classification algorithms. Burst-suppression is intermittent 
activity, usually consisting of longer low amplitude activity segments 
(suppression) and shorter periods of high amplitude activity (bursts), 
indicating severe pathology in a newborn baby. The relative amount of 
suppression, expressed as for example  interburst interval (IBI) or burst-
suppression ratio (BSR), provides a measure of the status of the brain and 
may also give prognostic information [8]. Following trends over time in 
these parameters gives an indication of whether a baby is recovering or 
not. Some attempts towards automatic classification of burst-suppression 
have been made, most of them targeting burst-suppression induced by 
anaesthesia [9, 10], but also for monitoring neonates [11]. 

The intended setting for this classification problem is that previous 
classifiers have already decided that the EEG indeed consists of BS 
activity. The task of the present classifier is then to segment the EEG into 
burst and suppression given BS EEG. An ongoing study is addressing the 
problem of comparing BS with other types of intermittent EEG in 
neonates. 
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The methods and results presented here have been partly presented earlier 
in conference proceedings and a licentiate thesis [12-15]. The methods 
include three different classification algorithms, the feature functions that 
are used as inputs to the classifiers, and the pre-processing that has been 
used. Results are presented for a data set containing EEG data from six 
full-term babies whose EEG exhibit burst-suppression caused by asphyxia 
during birth.  

2. Methods 

2.1. Data 

All data were collected at a neonatal intensive care unit (NICU) using the 
SACS [16] system. An experienced electroencephalographer then chose 
suitable periods of EEG and exported them to the Matlab environment, 
where all subsequent processing was performed. 

The data that have been used consist of EEG recordings from six full-term 
newborn infants having suffered from perinatal asphyxia (impaired gas 
transfer and circulation around the time of birth). Eight channels were 
used, with electrodes placed according to the international 10-20 system 
[17] at positions F7, F3, T5, P3, F8, F4, P4 and T6. The number of 
electrodes used in the study is a compromise between the desire to get 
high spatial resolution and practical issues regarding the size of the babies' 
heads and the number of cables. We found that eight channels evenly 
distributed over the head gave a sufficient resolution and gained 
acceptance from parents and clinicians. The data were digitized at a 
sampling rate of 200 Hz.  

Each subject contributed with a continuous recording of 6-40 minutes, 
selected and manually classified as burst or suppression by the 
electroencephalographer. The length was chosen to include at least 10 
bursts, and all artefacts were manually identified and marked for later 
exclusion from the analysis. The number of bursts in each signal is stated 
in Table 1. Because the signals only contain burst and suppression, the 
number of suppression segments in each signal is equal to the number of 
bursts plus one (all signals start and end with suppression). 

The reference classifications were manually recorded with a resolution of 
one second. When the start or end of a burst did not coincide with even 
seconds, the time entry was rounded so that the entire burst was included. 
This meant that in some cases up to nearly two seconds of suppression 
activity were included with the burst. 

Suppression periods contain very little activity, while the bursts are short 
periods of higher activity. Figure 1 shows an example of a few very 
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pronounced bursts in a longer suppression segment. As can be seen in the 
figure, the bursts do have higher amplitude than the suppressions, but the 
whole burst would not be detected by a simple amplitude threshold. 

 
Figure 1: 2.5 minutes of BS EEG from patient 3 in a CAR montage after band-pass 
filtering and 50 Hz-interference suppression. This is an example of very pronounced 
burst-suppression activity, where the shaded intervals are bursts marked by a human 
expert. The three bottom fields show classifications made using the three methods.  

Table 1 shows some characteristics of the signals from the different 
patients, and illustrates that while the signals all comprise burst-
suppression EEG, the characteristics vary significantly. For example, 
patient 5 has a much longer median interburst interval than the other four, 
and patient 6 has lower burst-suppression ratio and higher mean power in 
the suppression parts than the others.  

Table 1: Characteristics of the raw EEG signals (after filtering) 

Pat. BSR TL (s) mBL (s) mIBI (s) mBP (μV2) mSP (μV2)  nB
1 87 775 5 32 72 9 23 
2 94 483 1 25 110 7 23 
3 73 265 4 13 162 14 15 
4 71 307 3.5 13 61 10 22 
5 99 2299 3 127 28 4 11 
6 25 329 7 2 94 23 31 
BSR: burst suppression ratio, the percentage of suppression in the record [18]. 
TL: total signal length, after removal of artefacts 
mBL: median burst length 
mIBI: median interburst interval (median suppression length) 
mBP: mean burst power 
mSP: mean suppression power 
nB: Number of bursts in signal (number of suppressions is nB plus one) 
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The long term outcome was that patient 6 had only minor damages, while 
all the others were diagnosed with different degrees of cerebral palsy. 
Patient 2 died at the age of ten months. 

2.2. Performance measures 

For performance evaluation, sample sensitivity and specificity were used 
as measures. Sensitivity was defined as the percentage of the burst 
samples that were correctly classified as bursts, and specificity as the 
percentage of the suppression samples that were classified as suppression.  

Receiver operating characteristic (ROC) curves [19] were formed by 
taking the raw output from the respective algorithm and using a range of 
thresholds covering the range of the outputs. These curves show all 
possible trade-offs between sensitivity and specificity. The area under the 
curve (AUC) provides a single number for comparing the classifiers, with 
the value one representing the perfect classifier. 

Because of the small number of patients, the individual performance 
measures were not averaged, but kept separate for comparison of the 
performance for different patients. When all different combinations of 
features were tested, the mean of the results for the different patients were 
used to enable a simple visualisation of the results. 

2.3. Training set 

Data from six patients were available, making it unfeasible to divide the 
data in fixed training- and test sets. Instead leave-one-out training was 
used in the sense that one patient was held out and used for validation 
while all the data from the remaining five were used for training. This was 
repeated for each patient, thus producing six ROC curves for each 
classifier, and no classifier instance was ever tested on data from a patient 
that was used for training it. This scheme was used to maximise the use of 
the limited dataset, while also making sure that the classifiers were tested 
in a situation that mimicked a real scenario. In a hospital setting it would 
be unpractical if the classifier would need individual training for each new 
patient it was used on. 

2.4. Pre‐processing 

The signal level of the EEG is very low when measured from the scalp, in 
the range of tens of microvolts, making it very sensitive to interference 
from surrounding electrical fields created by common electrical 
appliances. These common mode disturbances are reduced by using the 
CAR (common average reference) montage, meaning that the mean of all 
channels is subtracted from each channel.  
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The signals were also band-pass filtered between 0.5 and 20 Hz to remove 
low- and high-frequency interference before feature generation. In one 
case, an LMS (least mean square) adaptive filter [20] with a separate ECG 
channel as reference was used to suppress ECG interference in the EEG 
signal.  

2.5. Features 

Features are mathematical functions that are applied on the samples of the 
EEG signal that falls in a sliding window. The feature signal represents a 
certain characteristic of the underlying signal, and should in the 
classification case enhance the characteristics that differ between the 
classes. When multiple features are used they should complement each 
other, and be as independent as possible. 

The features that were used in this work are listed in table 2, and include 
measures of power, frequency distribution and entropy of the signal. 
These features were chosen because they were thought to complement 
each other. More advanced ways of selecting features exist, but the scope 
of this work has mainly been to evaluate the classifiers, not the features. 

Table 2: Feature functions 

Feature Description 
Spectral Edge 
Frequency  
(SEF95) [18] 

Frequency under which 95% of the signal power 
resides, based on the Fourier transform (FT) 
calculated on rectangular windows of the signal 

3 Hz power Power in a 1-Hz wide band centred at 3 Hz 
Median [21] Median absolute value 
Variance (s2(x)) [21] 







N

n

nx
N

xs
1

22 )][(
1

1
)(   

where x is a time series, and μ is the sample mean 
of x  

Shannon entropy 
(HSh) [22] 1

( ) log ( )
U

Sh u u
u

H p I p I



 

p(I1)… p(IU) is a discrete set of probabilities, 
which are  estimated by counting the samples 
falling in the disjoint amplitude intervals I1,..,IU.  
20 intervals were used evenly distributed between 
the maximum and minimum values of the signal in 
the window. HSh is a measure of uncertainty of a 
random variable. 

 

A sliding window with a length of one second, corresponding to 200 
samples, was used, with an overlap of 0.75 seconds. The window length 
was chosen to match the one-second resolution used in the reference data, 
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which in practice set the minimum burst length to one second. This 
produces feature signals with an effective sample rate of 4 Hz. The choice 
of window length results in a trade-off between time resolution and 
accuracy. All feature signals (except variance) were smoothed by 
convolution with a six-point triangular window. This was performed 
because we know that a burst is at least one second long and we want to 
suppress short spikes or dips in the feature signal to get longer continuous 
detections. Finally the feature signals were normalized by fitting their 
distributions between the first and the 99th percentile into the interval zero 
to one, thus giving all features the same amplitude range. This removes 
the bias caused by different features having different magnitudes. The 
proposed normalization method is suitable when the signal is known to 
contain both burst and suppression activity. Figure 2 gives an example of 
what the five features can look like in the time domain. 

 
Figure 2: An example of the five features used in this work. The features were extracted 
from the 2.5 minute long EEG epoch shown in figure 1. The shaded areas were marked as 
bursts by an electroencephalographer. 

In order to give all patients an equal weight in the training of the 
respective classifier, the data from each patient was repeated so that all 
records were the same length as the longest one. Since the classifiers are 
trained on data from five patients in ways that minimises the classification 
error in a statistical sense, this approach is used to make sure that the 
training does not put higher emphasis on the data from the patients with 
longer recordings. An alternative could have been to instead set the limit 
to the shortest recording and draw samples from the longer ones, but this 
was judged to be a waste of data. 

2.6. Feature selection 

When using nonlinear classifiers such as neural networks or support 
vector machines, nonlinear relationships in the feature data that are not 
obvious may be found. To find the best combination of features for a 
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given problem, exhaustive search was used. The exhaustive search 
guarantees an optimal result and is performed by testing all possible 
combinations of increasing numbers of included features and then 
choosing the best one. This is only possible when a limited number of 
features are available, since the number of combinations grows 
dramatically when more features are added.  

The results described in figure 1-4 were generated using all five described 
features in parallel, while Figure 5-8 shows results from the exhaustive 
search of all combinations of the five features. 

2.7. Classifiers 

The classification algorithms Fisher’s linear discriminator (FLD), 
artificial neural networks (ANN) and support vector machines (SVM) 
were compared in this work. They are all trained using supervised 
learning and hence require pre-classified training data. They can handle 
multidimensional input training data, i.e. several features in parallel, and 
form classifiers by trying to find the optimal boundary between the classes 
in the multidimensional space defined by the feature vectors. 

All of these methods are based on training a classifier using pre-classified 
training data, and then applying it to test data. The reason for choosing 
this type of algorithms is that we envision a system that is trained on a 
number of manually classified training cases, once and for all. Then this 
system can be used for classifying new cases without the need of any 
manual adaptation when it is applied to a new patient, something that 
would be of great benefit in a hospital setting.  

2.7.1. Fisher’s Linear Discriminant 
This method is based on scatter matrices [19, 23] formed from the training 
data from the two classes. These are used for deriving the projection of 
the multidimensional input space onto the line that gives the maximum 
ratio of between-class scatter to within-class scatter. The projection is 
then applied to the test data, resulting in a mapping from the five-
dimensional feature signal to a one-dimensional decision function. The 
detections are then acquired by applying a threshold, in this case chosen 
implicitly using maximum likelihood (ML) [19]. 

2.7.2. Artificial Neural Network 
An artificial neural network (ANN) [19, 24] adapts a decision boundary to 
the data during a training phase by iteratively moving a number of linear 
planes based on the error in each step. The network was set up as a three-
layer feed-forward network with ten neurons in the hidden layer and one 
neuron in the output layer. The number of neurons was determined to be 
large enough through empirical testing. The hidden neurons were 
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equipped with sigmoid activation functions, while a linear output neuron 
was used for enabling the generation of a smooth ROC curve. The training 
of the network was performed by error back-propagation using randomly 
selected training examples. For each set of training data, five instances of 
the network were trained and the one with the best AUC score was 
selected. This is done because the neural network is initialized randomly, 
and the training can get stuck in a sub-optimal state.  

2.7.3. Support Vector Machine 
The SVM [19, 25, 26] optimizes a nonlinear boundary that maximizes the 
margin between the classes. The system was implemented using a 
freeware Matlab toolbox [27]. As kernel a Gaussian radial basis function 
(RBF) [28] was used, with a width parameter that has to be chosen. The 
SVM setup also includes the choice of a weight for misclassified samples, 
and these two parameters were chosen by performing a grid-search over a 
suitable area and choosing the combination that produced the best AUC 
score for all patients.  

3. Results 

3.1. Performance when using all five features 

In figure 1 an example of detections from the different classification 
methods is displayed together with the EEG. The grey blocks in the 
bottom part of the figure represent the classifications made with the three 
methods, while the shading shows the reference classification made by the 
human expert. All bursts in the epoch are detected and the differences 
between the methods are small. These results are just examples of 
detections in the time domain, and represent just one point along the ROC 
curve. Specific results depend on what parameters are chosen when 
training the classifier. 

Figure 3 shows the results of the methods in the form of ROC curves, one 
plot for each method with one curve for each patient. These curves reflect 
the full potential of a method by showing all possible trade-offs between 
sensitivity and specificity.  
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Figure 3: ROC curves for the three detection methods, with separate curves for the six 
patients.  

The AUC values for the classifiers are summarized in figure 4. This 
summary shows that the patients fall into two groups: one group where the 
methods perform well, i.e. for patients 1, 2, 3 and 5, and one group where 
the methods perform less well, i.e. numbers 4 and 6. 

 
Figure 4: Comparison of the AUC results for the different methods, displayed for the six 
patients individually. The values are the areas under the curves in figure 3; with one 
representing the perfect classifier and 0.5 representing random classification (observe 
that the AUC-axis starts at 0.80). 
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The comparison also shows the tendency that the FLD performs worst in 
general, and SVM performs best. The statistical material (six patients) is 
however too small to calculate statistics or draw solid conclusions about 
the performance of the methods. 

3.2. The performance when varying the number of 
features 

The result of evaluating all possible combinations of the five features is 
shown in figures 5 to 8. The figures show the performance for the three 
methods when including increasing numbers of features in the 
classification. For each number of included features the combination that 
produced the highest individual AUC score was used. Figure 5 to 7 show 
the performance for the individual patients while figure 8 shows a 
comparison of the mean AUC for the patients in the same plot. The plots 
show that all three methods have a tendency to decrease in performance 
when more than two features are used. Figure 8 show that FLD decreases 
the most, while SVM only decreases slightly and ANN has performance 
values between the two other methods. It should be noted that the function 
of the classifier algorithm in practice is equal to determining a threshold 
in the case when only one feature (one dimension) is used, reflected by the 
essentially identical results for the three classifiers in the one-feature case. 

 

 
Figure 5: AUC performance for FLD as a function of the number of included features. 
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Figure 6: AUC performance for ANN as a function of the number of included features. 

 
Figure 7: AUC performance for SVM as a function of the number of included features. 
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Figure 8: Comparison of the mean AUC values as a function of the number of included 
features. (Note that the AUC-axis has different limits than in the previous figures).  

4. Discussion 
Three methods for detecting bursts in burst-suppression EEG have been 
compared, all of which allows for many variations in implementation. 
Fisher’s linear discriminant (FLD) is the most straight-forward of the 
three; it provides the user with a well-defined projection of the data that 
can be thresholded automatically by using maximum likelihood. The 
support vector machine (SVM) on the other hand requires the user to 
choose a kernel and to find appropriate values for the misclassification 
weight and the kernel parameter. The artificial neural network (ANN) has 
to be set up with respect to network topology and types of activation 
functions and the training can be adjusted using parameters that control 
step length, momentum and weight elimination. All these variables make 
the task of making a completely fair comparison of the methods difficult.  

The trade-off between sensitivity and specificity is determined by the way 
the final threshold is chosen. When the threshold is chosen implicitly by 
ML estimation, normalized probability density functions for the two 
classes are used, meaning that the proportion of burst and suppression in 
the training data does not matter. When using ANN, the number of 
samples matter because each time a sample of either kind is encountered 
on the “wrong side” of the border in the training process the border is 
pushed in the appropriate direction. The situation is similar in SVM, 
where (in the current implementation) equal weights are put on 
misclassified samples from both classes. This inequality is partly 
eliminated when the final thresholding is removed from the algorithms, 
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and the raw output is used for generating the ROC curves. This procedure 
moves the border generated by the respective algorithms, and is 
essentially equal to changing the penalty for misclassifying samples from 
the two classes, depending on in which direction the border is moved. 

The method to calculate sensitivity and specificity used here is rather 
strict; every missed sample lowers the measured performance. The one-
second time resolution used in the reference data probably contribute to a 
lowering of the calculated performance, because the algorithms often 
make much tighter detections when compared to the reference. It can be 
argued that exact detection of the time limits of individual bursts may not 
be the most important part of a monitoring system. Instead, parameters 
extracted from the segmented signal, for example the burst-suppression 
ratio, could be compared to the outcome of the patient, because the most 
important aspect of a monitoring device should be that it displays 
information that is relevant to the health status of the patient. This type of 
testing has not been possible so far, but field-tests at the NICU are being 
planned. 

The detection results for the different patients tend to fall into two groups, 
with results for patient 4 and 6 at a lower level than the others. These 
differences may be explained by varying degree of cerebral dysfunction, 
variations in signal quality or some other type of individual variation. For 
example, patient 6 had significantly higher power in the suppression parts 
of the signal and a lower BSR than the others (table 1). This could 
indicate a lower degree of cerebral dysfunction, corroborated by the fact 
that patient 6 only had minor injuries at the long-term follow up while all 
others were diagnosed with cerebral palsy. Other possible reasons may be 
that the electrodes can have been applied slightly different on the patients, 
giving them different frequency properties. That this factor may be at play 
here is indicated by the fact that the extremely low frequency activity that 
often is associated with bursts [29, 30] could only be found for some of 
the patients (data not shown). It could also be that the present features do 
not represent what is common in the group of patients in an optimal way. 
The patients were however chosen to be similar in terms of appearance of 
the EEG signal when analyzed visually, and all were severely ill at birth 
after a full-term pregnancy. 

The problem of different patients having different characteristics could 
possibly be solved by using the right combination of multiple features. 
The idea is to use many features, some of which provide useful 
information for some of the patients, and other features that provide this 
for other patients. The job of the classifier is then to combine the 
information so that the large amount of dependencies does not degrade the 
classification performance. 
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The exhaustive feature search in figure 5 shows a decrease in performance 
when using more than two features. The difference between the three 
classifiers also tends to increase with the number of features. This is 
probably due to that the present set of features includes a significant 
amount of redundant information, meaning that increasing the number of 
features in the classification does not add more useful information 
regarding the class membership. All data that is introduced in the system 
does however include noise, thereby reducing the signal to noise ratio. 
The fact that the SVM has a smaller decrease in performance than the 
others indicates that it is more robust with respect to noise and 
dependencies within the feature data set. 

Burst-suppression measures are commonly used in measures of the depth 
of anaesthesia in adults undergoing surgery, for example as a part of the 
bispectral index (BIS) [18], a composite parameter that is a combination 
of multiple parameters. Most published work on burst suppression 
detection has focussed in this area, and some methods that have been 
explored are the use of single features as decision functions [9] or using 
multiple neural networks with various input features [10]. When compared 
to the method described in [9], with the conditions set as equal as possible 
(the decision function was generated for all eight available channels and 
then the median was applied), the SVM was slightly better for some of 
these neonatal patients in terms of ROC curves.  

Other possible applications of classification algorithms in EEG could for 
example be recognizing short events such as artefacts and seizures, but 
they could also be used for classifying longer epochs into different types 
of ongoing activity such as burst-suppression, tracé alternant or 
continuous EEG. This could possibly be used to summarize the full EEG 
in a more detailed form than what is possible with methods such as 
aEEG/CFM, and be used as decision support in a monitoring system at the 
NICU. 

A monitoring system will have to contain functionality for detecting 
artefacts and excluding them from analysis. It should also be able to 
recognize seizures. With some further effort, this work will hopefully 
provide an easy to use and reliable tool for automatic segmentation of 
burst-suppression EEG in newborns, for example suffering the after-
effects of asphyxia. This tool may be a part of a monitoring system for 
neonatal intensive care units, as well as a tool for segmenting burst-
suppression data used for off-line analysis.  

5. Conclusion 
The AUC results in figure 4 indicate that the SVM has the best 
performance, followed by ANN and FLD. SVM and ANN are non-linear 
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methods while FLD is purely linear, something that might give FLD some 
disadvantage. However, the difference in performance is small, and 
although there are differences in the level of computational complexity, 
all methods would work on line when implemented in commonly available 
computer hardware. As shown in figure 8, SVM is the most robust method 
when dealing with multidimensional feature data. 
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Abstract 
Hidden Markov Models (HMM) and Support Vector Machines (SVM) 
using unsupervised and supervised training, respectively, were compared 
with respect to their ability to correctly classify burst and suppression in 
neonatal EEG. Each classifier was fed five feature signals extracted from 
EEG signals from six full term infants who had suffered from perinatal 
asphyxia. Visual inspection of the EEG by an experienced 
electroencephalographer was used as the gold standard when training the 
SVM, and for evaluating the performance of both methods. The results are 
presented as receiver operating characteristic (ROC) curves and quantified 
by the area under the curve (AUC). Our study show that the SVM and the 
HMM exhibit similar performance, despite their fundamental differences. 

1. Introduction 
The burst-suppression (BS) pattern is one of several indicators of severe 
pathology in the electroencephalogram (EEG) signal that may occur after 
brain damage, caused by e.g. asphyxia (insufficient gas and nutrient 
supply) around the time of birth [1]. Certain characteristics of this pattern 
can provide clinicians with important information about the prognosis of 
the patient and is thus important in the adjustment of the treatment. 
Examples of important characteristics of the BS pattern are length of burst 
and suppression intervals, percentage of suppression activity in a 
recording, and spectral contents of bursts [2-4]. 

In practice, most EEG recordings are evaluated by experienced 
neurophysiologists through visual inspection of the unprocessed signal. 
Concerning the analysis of burst suppression EEG, some attempts towards 
automatic classification of burst-suppression have been made, most of 
them targeting burst-suppression induced by anaesthesia [5, 6], but also 
for monitoring neonates [7]. 

Our goal is to develop tools that can be used for automatic classification 
of BS caused by e.g. perinatal asphyxia. The target patient group is 
newborns, and a possible future application is a monitoring system for 
neonates under intensive care. 
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This paper compares Support Vector Machines (SVM) and Hidden 
Markov Models (HMM) with respect to their performance when 
classifying burst and suppression in neonatal EEG. An important 
difference between the methods is that the SVM uses supervised training 
while the HMM uses unsupervised training. Another difference is that the 
SVM examines the data samples without regard to order, while the HMM 
includes the state of the previous sample (burst or suppression) in the 
classification. The underlying process is assumed to be a Markov process 
when deciding the most probable state of the present sample (the Markov 
condition [8]). The word hidden in HMM refers to that the states and the 
transition probabilities are not directly observable in the data, but each 
state is associated with an observable output, in our case a set of features.  

2. Methods 

2.1. Data 

The study was performed on EEGs from six full term infants having 
suffered from perinatal asphyxia. The data set is the same as was used in 
[9]. Each subject contributed with a continuous recording of 6-40 minutes, 
selected and classified by an experienced electroencephalographer (MT). 
The length was chosen to include at least 10 bursts, and all artifacts were 
manually identified and removed from the data. A common average 
montage with eight electrodes was used, placed according to the 
international 10-20 system at positions F7, F3, T5, P3, F8, F4, P4 and T6. 
The signals were digitized at a sampling rate of 200 Hz and band pass 
filtered between 0.5 and 20 Hz before feature generation. In one case 
(patient 2), an LMS (least mean square) adaptive filter [10] with a 
separate ECG channel as reference was used to suppress ECG interference 
in the EEG signal. The manually classified BS reference data had a time 
resolution of one second. When the start or end of a burst did not coincide 
with even seconds, the time was rounded off so that the entire burst was 
included. This meant that in many cases up to nearly two seconds of 
suppression activity was included with every burst. 

2.2. Features 

Five features were selected (Table I), some of which have been used for 
classification of BS in adult subjects under anesthesia [6, 11] or has 
shown promising results earlier [12]. The features were extracted from 
overlapping one-second segments of the EEG signal. The segment length 
was motivated by the fact that bursts were considered to be at least one 
second long. Combining this segment length with an overlap of 0.75 s 
produced an output feature signal with an effective sampling rate of 4 
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samples per second. All feature signals (except variance) were smoothed 
by convolution with a six-point triangular window. This was performed 
because we know that a burst is at least one second long and we want to 
suppress short spikes or dips in the feature signal to get longer continuous 
detections. Finally the feature signals were normalized by fitting their 
distributions between the first and the 99th percentile into the interval zero 
to one, thus giving all features the same amplitude range. This removes 
the bias caused by different features having different magnitudes. The 
proposed normalization method is suitable when the signal is known to 
contain both burst and suppression activity. 

Feature Description 

Spectral Edge 
Frequency  
(SEF95) [13] 

Frequency under which 95% of the signal power 
resides, based on the Fourier transform (FT) 
calculated on Blackman-Harris windows of the 
signal. Output signal smoothed by a six-point 
triangular window. 

3 Hz power Power in a one Hz wide band centered at three 
Hz. Output signal smoothed by a six-point 
triangular window. 

Median [14] Median absolute value. Output signal smoothed 
by a six-point triangular window. 

Variance (s2(x)) [14] 

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x is a time series, μ is the sample mean of x.  

Shannon entropy (HSh) 
[15] 1
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Sh u u
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

  

p(I1)… p(IU), pU is a discrete set of probabilities, 
which are  estimated by counting the samples 
falling in the disjoint amplitude intervals I1,..,IU.  
20 intervals were used evenly distributed between 
+/- two standard deviations of the signal in the 
window. HSh is a measure of uncertainty of a 
random variable. Output signal smoothed by a 
six-point triangular window. 

Table I: Features used for classifying bursts and suppression in bs EEG. 

2.3. Performance measures 

For performance evaluation, sample sensitivity and specificity were used 
as measures. Sensitivity was defined as the percentage of the burst 
samples that were correctly classified as bursts, and specificity as the 
percentage of the suppression samples that were classified as suppression.  
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Receiver operating characteristic (ROC) curves were formed for the SVM 
by taking the raw signal that is proportional to the distance for each 
sample from the separating hyperplane (this signal is normally thresholded 
at zero) and sweeping it with a range of thresholds that covered the range 
of the signal. For the HMM the ROC was generated by sweeping a range 
of a priori probabilities for the burst and suppression states. The ROC 
curves show the potential of a detector, displaying all possible tradeoffs 
between sensitivity and specificity. The area under the curve (AUC) 
provides us with a single number for comparing the classifiers, with the 
value one representing the perfect classifier. For the HMM this measure is 
not as accurate as for the SVM, because only partial ROC curves that had 
to be linearly interpolated could be obtained. The interpolation was 
performed by adding the extreme values to the ROCs, i.e. the coordinates 
(100, 0) and (0, 100). 

2.3.1. Support Vector Machine 
The SVM [16] optimizes a nonlinear boundary that maximizes the margin 
between the classes. It uses (manually) pre-classified training data to 
generate this boundary, and is therefore a classifier that is trained in a 
supervised manner. The system was implemented using a freeware Matlab 
toolbox [17]. As kernel a Gaussian radial basis function (RBF) [18] was 
used, with a width parameter that has to be chosen. The SVM setup also 
includes the choice of a weight for misclassified samples, and these two 
parameters were chosen by performing a grid-search over a suitable area 
and choosing the combination that produced the best AUC score for all 
patients. The training was performed using the leave-one-out method; the 
system was tested on each patient using the other five patients for 
training. 

2.3.2. Hidden Markov Model 
The HMM [16] does not require any manual pre-classification of the 
training data; only the feature data and the number of states are needed as 
input. The number of states here is two, one for burst and one for 
suppression. Other parameters such as transition probabilities and 
emission distributions () are initialized randomly. After initialization, the 
algorithm works in two steps. First the Baum-Welch algorithm is used to 
re-estimate the parameters of the model. Then the Viterbi algorithm is 
used to find the sequence of states that is most likely to have produced the 
sequence of feature samples in the data. The a priori state probability in 
the performance measure evaluation was incorporated in the re-estimated 
distributions before decoding the states.  

Because the HMM parameters are initialized randomly there is a risk that 
the training ends up in a local error minimum instead of in the global 
minimum. To reduce the risk of this, the data was run through the 
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algorithm ten times (empirically found to be enough), and the instance 
with the highest sum of sensitivity and specificity was chosen. 

3. Results 
Figure 2 shows a comparison of the ROC curves acquired when running 
the SVM and the HMM on data from the six patients. Each of the six plots 
is associated with one of the patients, and shows ROC curves for the two 
classification methods. The ROC for HMM is plotted with dots to 
illustrate that most points are grouped together. 

Figure 3 is an example of an EEG signal for one of the patients, and 
shows some of the detections for both methods in the time domain.  

Table II shows the classification results as AUC values. Because of the 
linear interpolation of the ROC curves for the HMM, the ROC itself 
should be taken into account when studying these numbers. The table also 
shows the sensitivity and specificity achieved for the two methods without 
sweeping the threshold or a priori distributions. 

 

Figure 1: HMM with two states (burst and suppression). Each state is associated with 
an output vector that is observed, here illustrated by four distributions. The problem is 
to estimate the model parameters and distributions based on unmarked training data, 
and then estimate the sequence of states that is most likely to have generated an 
observed mixture.  
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Figure 2: ROC curves for SVM and HMM. The HMM curves are not complete due to 
limitations in the methods. It should be noted that in five out of six cases the curves from 
the two methods are virtually on top of each other, even though the HMM uses 
unsupervised training and SVM uses supervised training. The rings show each point in 
the HMM ROC and illustrates that most points are closely grouped together. 

 

Figure 3: Example of an EEG signal from patient three, with detections made by the SVM 
and the HMM algorithms, respectively. The sensitivity and specificity tradeoffs are the 
ones inherent in the classifiers (Table II). 

 SVM HMM* SVM** HMM** 

Pat. AUC AUC Sens. Spec. Sens. Spec. 

1 0.96 0.92 70 99 76 97 

2 0.97 0.95 89 94 93 91 

3 0.97 0.95 65 99 81 98 

4 0.91 0.82 61 98 69 86 

5 0.98 0.95 96 86 94 90 

6 0.90 0.79 32 100 38 99 

Table II: Classification Results 

* Calculated by linearly interpolating the ROC curve 
** These numbers refer to the inherent choice of the classifier 
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4. Discussion 
The results show that given identical input feature data, the HMM 
classifier produces performance values that in terms of ROC curves are 
very close to the ones produced by the SVM. The results of the inherent 
settings show that the HMM generally gets a slightly higher sensitivity at 
the cost of a lower specificity. A significant difference between the two is 
that the SVM uses supervised training while the HMM uses unsupervised 
training. The only input parameter to the HMM is the number of states in 
the data, all other HMM parameters are estimated automatically by the 
algorithms.  

An earlier study (publication in progress) indicates that the SVM is very 
good at handling this multidimensional feature data, and generalizes well. 
The HMM on the other hand does not have to generalize, because it is 
trained in an unsupervised way on each patient and creates a patient-
specific model. Because all burst and suppression properties differ 
between individuals, an unsupervised classifier that estimates a patient-
specific EEG model could be very useful in a monitoring system. 

Patient-specific models could also be used for other classification tasks in 
a monitoring system. Burst-suppression is a type of periodic activity that 
indicates severe pathology in a neonate. However, tracé alternant is a 
similar type of periodic activity that is normal during this period of life. 
By automatically building models of the periodic signals using the HMM 
algorithms, features that describe the entire signal could be extracted from 
the models, i.e. transition probabilities and the properties of the emission 
distributions. These features could then be used for classifying the entire 
signal segment as e.g. burst-suppression or tracé alternant. 

Conclusion 
It has been demonstrated that the HMM classifier is able to accurately 
distinguish the two types of activity in burst-suppression EEG, without 
supervised training. The performance of HMM and SVM, as showed in 
Table II, does not differ significantly, although SVM is slightly more 
accurate when compared to the gold standard. This finding supports the 
theory that discrete time signals generated by the EEG can be modeled by 
a first-order Markov chain, and that the unsupervised HMM can be useful 
for characterizing periodic EEG. 
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Abstract 
The overall aim of our research is to develop methods for a monitoring 
system to be used at neonatal intensive care units. When monitoring a 
baby, a range of different types of background activity needs to be 
considered. In this work, we have developed a scheme for automatic 
classification of background EEG activity in newborn babies. EEG from 
six full term babies who were displaying a burst suppression pattern while 
suffering from the after-effects of asphyxia during birth was included 
along with EEG from 20 full term healthy newborn babies. The signals 
from the healthy babies were divided into four behavioural states: active 
awake, quiet awake, active sleep and quiet sleep. By using a number of 
features extracted from the EEG together with the Fisher’s linear 
discriminant classifier we have managed to achieve 100% correct 
classification when separating burst suppression EEG from all four 
healthy EEG types and 93% true positive classification when separating 
quiet sleep from the other types. The other three sleep stages could not be 
classified.  

When the pathological burst suppression pattern was detected, the analysis 
was taken one step further and the signal was segmented into burst and 
suppression, allowing clinically relevant parameters such as suppression 
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length and burst suppression ratio to be calculated. The segmentation of 
the burst suppression EEG works well, with a probability of error around 
4 %. 

1. Introduction 
When a baby is being born there is a risk for complications that reduce the 
blood gas exchange to the fetus during delivery. This can lead to hypoxia, 
acidemia and potentially cause brain damage. When complications are 
expected, the baby is monitored closely during the delivery and is then, if 
necessary, transferred to a neonatal intensive care unit (NICU). It is 
however difficult to determine at an early stage if the baby’s brain is 
recovering, if brain damage is still a threat or if it already has occurred 
[1]. At the NICU parameters such as heart rate, blood pressure, oxygen 
saturation and other measures are monitored regularly [2], but these 
parameters only assess the general condition of the baby. To monitor the 
function of the brain itself, a more direct way is to measure the 
electroencephalogram (EEG); a measure of the electrical signals produced 
by the brain. This makes possible continuous monitoring of the brain over 
long time with high time resolution.  

In earlier studies [3-5], various parameters have been used for the 
detection of hypoxia in the brain and for the prediction of outcome after a 
hypoxic event. Concerning the EEG, clinical neurophysiologists evaluate 
most recordings through visual inspection of the unprocessed signal. This 
service is however usually not available at the NICU. Even though 
methods for remote consultations have been developed [6], as a rule, only 
evaluations at certain distinct time instances are possible. This way of 
analysing data is of course suboptimal when it comes to continuous bed 
side monitoring. 

An existing method for simplified long-time monitoring of brain function 
is amplitude-integrated EEG (aEEG), for example implemented as the 
Cerebral Function Monitor (CFM) [7]. This method filters the EEG in a 
certain way and then displays it on a compressed time scale, giving the 
clinician a simple way to monitor the brain activity of a patient. There 
have however been reports of missed seizure activity [8, 9], and the 
compressed signal can mask interference and artefacts and cause them to 
be mistaken for brain activity. Because of these drawbacks, 
neurophysiologists argue that the unprocessed EEG signal has to be taken 
into consideration when interpreting the aEEG [8]. 

Burst suppression (BS) is one type of activity that can be seen in babies 
after asphyxia, and it indicates that the baby is in a serious condition. In 
earlier work [10] we have demonstrated a scheme for segmenting an EEG 
signal into periods of burst and suppression. This scheme assumes that the 
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EEG is known to contain a BS pattern. As a next step towards the 
development of a complete system for automatic classification of neonatal 
EEG we have now developed a scheme for determination if an EEG is of 
BS type. The BS detector was tested on EEG known to contain BS 
activity, and to check for any false positives it was validated against 
normal EEG.  In this study we have chosen to divide the normal data, 
acquired from healthy newborn babies, according to the behaviour of the 
baby as described by Prechtl [11]. The first four states in this scale 
correspond to quiet sleep (QS), active sleep (AS), quiet awake (QA) and 
active awake (AW). The fifth state, crying, has not been included. The 
behavioural characteristics that the Prechtl scale is defined by can not be 
observed [4] during BS. Quiet sleep EEG can have some resemblance with 
BS when it has a periodic form, the so called tracé alternant (TA) pattern 
whereas the EEG during the other states is less periodic. Examples of 
signals from the five classes are displayed in figure 1.   

When the high level (long time scale) classification in the scheme 
encounters BS in the EEG, the signal is processed further on a lower level 
(short time scale) by segmentation into burst and suppression, using 
methods similar to what we describe in [10]. However, the choice of 
features has been optimized by adding feature selection using genetic 
algorithms, and the feature set has been expanded from five features to 22. 
The segments are then used for extracting the suppression length and the 

 

Figure 1. Examples of EEG data from the five classes. The classes are from the top: BS, 
QS, QW, AS and AW. 50 s are displayed and the amplitude scale is +/- 40 µV. The signals 
were band-pass filtered between 1.6 and 44 Hz and the average of all channels was 
subtracted from each channel, as in the rest of the paper. Note that only channel F4 from 
each patient is displayed here, while eight channels from each subject was used for 
extracting the features used for classification. 
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burst suppression ratio, two parameters that may give prognostic 
information about the brain [12]. 

Most publications on BS classification address the problem of segmenting 
adult EEG recorded during deep anaesthesia, while only a few deal with 
neonatal BS induced by hypoxia. The publications regarding burst 
suppression detection or classification usually deal with what we in this 
paper call “segmentation”, i.e. given a signal known to be burst 
suppression, classify it into burst and suppression, which also is the topic 
in [10].  

The scheme was developed using data from full term neonates: 20 healthy 
patients and six sick ones that had suffered perinatal asphyxia, expressing 
a BS pattern in their EEG. The scheme was also tested on long continuous 
recordings, one from each group.  

2. Methods 

2.1. Data 

All data were collected using the SACS [13] system, using sampling 
frequencies of 200 Hz (post-asphyctic patients) or 256 Hz (healthy 
babies). The data sampled at the higher frequency were downsampled to 
200 Hz to make sure that all data were comparable. An experienced 
electroencephalographer (MT) then chose suitable periods of EEG and 
exported them to the Matlab environment, where all subsequent 
processing was performed.  

Eight channels were used, with electrodes placed according to the 
international 10-20 system [14] at positions F7, F3, T5, P3, F8, F4, P4 and 
T6. Disturbances were reduced by using the CAR (common average 
reference) montage, meaning that the mean of all channels was subtracted 
from each channel. Moreover, the data were notch filtered at 50 Hz to 
reduce power line interference, and then band pass filtered between 1.6 
and 44 Hz to remove low- and high frequency noise. These limits were 
chosen especially because a large amount of energy was present in the low 
frequencies, possibly due to ventilator interference. Although we realize 
that the normal neonatal EEG contains a large proportion of its energy at 
very low frequencies [15, 16], the present recordings were often obtained 
when the baby was artificially ventilated at frequencies around 0.5 Hz and 
in the most suppressed BS periods 50 Hz interference required heavy 
filtering to be sufficiently damped. These filter limits were chosen 
because they were found to work best with the classification and 
segmentation methods. When the classification and segmentation is done, 
the segment limits can be used together with the original signal for 
extracting low frequency information. 



 

137 
 
 

 

2.1.1. Data from healthy babies 
The first group of subjects consisted of 20 full-term healthy newborn 
babies who were recorded after uneventful deliveries. Data were collected 
during a few hours so that the four behavioural states could be included in 
most of the registrations. Then epochs of median length of 1.4 to 2.3 
minutes for each state were chosen. These data were divided into the four 
states based on the observations made by the technician performing the 
recording and on the classification made by an experienced 
electroencephalographer (MT). For quiet sleep, EEG of the TA type was 
chosen. 

For evaluation of the method in a situation close to the clinical setting, 
one of the recordings (2 h) was processed by the system as it was, without 
selecting any particular periods.   

2.1.2. Data from post‐asphyctic babies 
The second group consisted of EEG recordings from six full-term 
newborn infants having suffered from perinatal asphyxia (impaired gas 
transfer and circulation around the time of birth). These babies all 
exhibited a severe BS pattern in their EEG. Each subject contributed a 
continuous recording of 6-40 minutes, selected and visually segmented 
into burst and suppression segments by the electroencephalographer. The 
length was chosen to include at least 10 bursts, and all artefacts were 
visually identified and marked for later exclusion from the analysis. The 
total amount of data in this category was 77 minutes, before artefact 
removal and equalization of the number of samples from the different 
patients. 

For evaluation of the BS-related methods in a setting as close as possible 
to the clinical one, a 32 hour recording from one of the six babies was 
used. The baby had to be resuscitated after birth and was then intubated 
and put on a ventilator. The EEG recording was started six hours after 
birth and continued for 32 hours with a short break around 18 hours after 
start. The ventilator frequency was set to 40/min (0.7 Hz) initially and was 
changed to 30/min (0.5 Hz) 16 hours after start. At 18 hours after the start 
of the recording, a dose of Phenobarbital was given to treat seizure 
activity. The baby was later diagnosed with cerebral palsy. This recording 
was not manually segmented because of its length. 
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Figure 2. Flowchart describing the process from the raw EEG to classification into 
different states and segmentation of BS. The darker boxes represent steps that are only 
carried out during training. 
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2.2. System overview 

The analyzing scheme includes many processing steps, from pre-
processing of the raw signal to the final result. The first step is running 
the raw EEG through a band-pass filter described above, and then a 
number of features are extracted and fed to the classifier that separates BS 
from normal EEG. When BS is detected, another classifier is used for 
segmenting the EEG into burst and suppression. The segmented output 
can be displayed as e.g. the burst-suppression ratio (BSR), or used for 
further processing. All the different steps are included in the flowchart in 
figure 2. Note that some of the steps in the flowchart are only made during 
training or development of the system, and will not be included in a future 
system for clinical use. 

2.3. Features 

Features represent certain characteristics of the underlying signal, and 
should in the classification case enhance the characteristics that differ 
between the classes. When multiple features are used they should 
complement each other, and be as independent as possible. The 22 
features that were used in this work are listed in table 1. These features 
include measures of power, frequency distribution and entropy and were 
chosen so that they should represent a broad spectrum of different 
characteristics of the signal. 

A sliding window with a length of one second, corresponding to 200 
samples, was used, with an overlap of 0.75 seconds. This produces feature 
signals with an effective sample rate of 4 Hz. The choice of window 
length is a trade-off between time resolution and accuracy. 

Because both bursts and suppressions on one hand and the characteristics 
of different behavioural states on the other are largely global phenomena, 
the activity that is typical for them should appear in a majority of the 
channels. This criterion was implemented by taking the median over the 
eight channels after the features were generated. This enhances the 
common activity, e.g. the bursts, while attenuating activity that appear in 
less than half of the channels, e.g. some types of seizures and artefacts.  

For the BS/sleep stage classifier, the features were summarized by 
applying the four statistical measures mean, variance, skewness and 
kurtosis on the feature signals from each 30 s non-overlapping epoch in 
the data, resulting in 88 features based on the original 22. This was done 
because sleep-stages and BS goes on for some time, at least a couple of 
minutes, while e.g. a single burst can be as short as one second. These 
measures describe different properties of the feature signals distributions. 
For example, the mean and the variance are measures of where the 
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distribution is located and how wide it is, while skewness and kurtosis 
measure its shape. These measures are in this paper called metafeatures, 
because they are features of the features of the EEG. 

 

Table 1. Features used for classification and segmentation. 

Feature Description 

Spectral Edge 
Frequency  
(SEF95) 

Frequency under which 95% of the signal power 
resides, based on the Fourier transform (FT) 
calculated on rectangular windows of the signal. 

3 Hz power Power in a 1-Hz wide band centred at 3 Hz. 

Median  Median absolute value. 

Shannon entropy 
(HSh)  

The Shannon entropy is a measure of uncertainty of 
a random variable and is calculated using the 
equation 
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where p(I1)… p(IU) is a discrete set of probabilities, 
which are  estimated by counting the samples falling 
in the disjoint amplitude intervals I1,..,IU.  
20 intervals were used evenly distributed between 
the maximum and minimum values of the signal in 
the window. 

Zero crossings The number of zero crossings in each window. 

Variance (s2(x))  The variance is calculated using the equation: 
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where x is a time series, and μ is the sample mean of 
x.  

Spectral centroid The “centre of mass” of the frequency distribution: 
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where X is the Fourier transform of the signal and N 
is the number of samples in the window. 

Residual energy 
variance 

The variance of the residual after applying an eight-
coefficient linear predictor on the signal window. 
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Spectral flux Measures the change in the spectrum between 
consecutive windows using the distance between the 
spectra. 

deltaF Measures the rate of change by taking the Euclidian 
distance between consecutive windows of the signal. 

Spectral flatness Calculated by dividing the geometric mean of the 
power spectrum with the arithmetic mean: 
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A high spectral flatness indicates that the spectrum 
has a similar amount of power in all bands – like 
white noise. A low spectral flatness indicates a spiky 
spectrum.  

Spectral roll-off Equivalent to SEF85. 

Cepstral coefficients Ten cepstral coefficients were extracted by applying 
the Fourier transform on a window of the signal, 
mapping the logarithm of the spectrum onto a linear 
scale using ten triangular overlapping windows, and 
then taking the discrete cosine transform of the list 
of amplitudes. The cepstral coefficients are the 
amplitudes of the resulting spectrum, and are related 
to the rate of change in the corresponding frequency 
bands.   

 

2.4. Feature selection 

For the segmentation, the 22 feature functions listed in table 1 have been 
available, and for the classification the four metafeature functions were 
used, resulting in a total number of 88 metafeatures. In order to select the 
optimal set of features, a genetic algorithm (GA) has been used [17], with 
the number of features limited using the method described in [18, 19]. The 
algorithm searches the space of possible combinations using methods 
inspired by natural selection and can usually find a combination that is 
close in performance to the optimal one. The advantage is that it is much 
quicker than an exhaustive search because only a subset of all possible 
combinations is tested. The algorithm was used to try combinations of one 
to ten features selected from the total set of 22 features or 88 
metafeatures.  
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The number of feature data points from the different patients was 
equalized by drawing a number of samples from each patient that was 
equal to the median number of samples available. In the cases when the 
available number of samples was lower than the median, samples were 
drawn with replacement. The data from the different patients were then 
concatenated into one matrix, and the sample order was randomized. The 
resulting matrix was divided into three parts; one half of the data was used 
for training, one quarter for testing and one quarter for validation (see 
table 2 for data set sizes). The training set is used for calculating the 
projection matrix and the testing set is used for selecting the best one. 
This is repeated for many combinations using the genetic algorithm. When 
all selection is finished, the resulting classifier is tested on the validation 
set, which has not been involved in the process. If the result from the 
validation set is much worse than on the testing set, the classifier has 
probably been overfitted during training, and will not be able to generalize 
to unseen data. 

Because the result of the GA may depend on the randomly initiated 
starting set, the algorithm was run five times for each number of included 
features, and the one with the lowest error on the test set was included in 
the evaluation. The observed differences in probability of error between 
different runs were less than one percent. 

 

 Training Test Validation

Classification 4848 2424 2424 

Segmentation 208 96 96 

Table 2. Dataset sizes. The values are the number of feature samples used for training. 

2.5. Classifier 

Fisher’s linear discriminant (FLD) was used for both classification and 
segmentation. It has good performance when used with linearly separable 
features, and is very quick compared to more advanced classifiers as e.g. 
support vector machines or neural networks. When using genetic 
algorithms it is unwise to use more advanced classifiers since the 
classifier is trained and evaluated thousands of times using different 
combinations of features and the processing time would make it 
impractical.  

FLD is based on scatter matrices [20, 21] formed from the training data 
from the two classes. These are used for deriving the projection of the 
multidimensional input space onto the line that gives the maximum ratio 
of between-class scatter to within-class scatter. This projection is then 
applied on the test data, resulting in a mapping from the five-dimensional 
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feature signal to a one-dimensional decision signal that is thresholded at 
zero. 

In the classification case, after the feature signals were combined by using 
the FLD classifier, the resulting (non-thresholded) classification signals 
were smoothed by convolving with a ten sample rectangular window. The 
final classification was then achieved by selecting the largest of the five 
classification signals for each time instance.  

2.6. Performance measure 

The performance was measured in terms of the probability of error 
calculated as 

Perr=P(class 1)P(class 2|class 1)+P(class 2)P(class 1|class 2) 

where P(class 1) is the probability of class one and P(class 1|class 2) is the 
probability of classifying a given sample as class 1 when it does in fact 
belong to class 2, and the other way around. The formula gives a weighted 
sum of the two misclassification probabilities, where the weights are the 
proportions of the two classes in the data. 

The performance is also presented as a confusion matrix, where the 
probabilities for misclassifying each of the classes can be found. The 
confusion matrix entries are defined in table 3. 

Table 3. Definition of the confusion matrix entries. 

 True class 

P
re

di
ct

ed
 c

la
ss

  BS QS QW AS AW 
BS P(BS|BS P(BS|QS P(BS|QW P(BS|AS P(BS|AW
QS P(QS|BS P(QS|QS P(QS|QW P(QS|AS P(QS|AW
Q P(QW|BS P(QW|QS P(QW|QW P(QW|AS P(QW|AW

AS P(AS|BS P(AS|QS P(AS|QW P(AS|AS P(AS|AW
A P(AW|BS P(AW|QS P(AW|QW P(AW|AS P(AW|AW

 

For example, P(BS|BS) is the probability of classifying a sample as BS 
when the true class really is BS, and P(BS|QS) is the probability for 
classifying a sample as BS when the true class is QS. 

2.7. Burst suppression segmentation 

When the first classifier in the system detects BS, the data is passed along 
to a second classifier that works as a segmenter. This segmenter is also an 
instance of a FLD, but is trained on pre-segmented bursts and 
suppressions. Even though it was found in [10] that the support vector 
machine classifier was better than the FLD at segmenting BS the 
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difference was not very large, and the larger number of features and the 
feature selection process used in this case made the FLD a better choice. 
The segmenter works with the 22 base features that have a sampling rate 
of 4 Hz, giving the segmentation a time resolution of 0.25 s.  

The trained segmenter was applied on the parts of the 32 h recording that 
had been classified as BS, and the segmented signal was then used for 
extracting information about the underlying EEG and the BS pattern. 
Parameters such as the length of suppression and the burst-suppression 
ratio that are commonly used to characterize BS were calculated.  

3. Results 
The results are grouped into results from the two main parts of the 
scheme: the classification into the five classes (BS and normal states) and 
the results of segmenting BS signals and extracting information from the 
segments. The classification is tested on both a long (2 h) recording of a 
healthy baby and a long (32 h) recording of a sick baby. 

3.1. State classification 

Figure 3 shows the probability of error for the different numbers of 
features used in the feature selection process. The error is presented for 
both the test set, which is used during the selection process to choose the 
best candidate selections, and for the validation set, which is only used 
when the training and selection process is finished. The selected feature 
combinations are displayed in table 4. 

Figure 4 shows the distributions (estimated by histograms) of the output 
of the Fisher projection for each class. The classification is acquired by 
thresholding this signal at zero. If the distributions are completely 
separated as in the BS case, perfect classification is possible on this 
specific validation set. The confusion matrix in table 5 shows the 
probabilities for correct classification and for the different types of 
misclassification. 

Figure 5 shows a time-frequency plot of the two hour long recording from 
a healthy baby used for testing the final sleep stage/BS classifier. The 
lower plot shows the classification done by the technician who monitored 
the recording. During the parts of the recording that are not marked as a 
behavioural state the baby is crying, marked by high power strips in the 
time frequency plot that mainly are due to muscle artefacts. 

Figure 6 shows the output of the five classifiers when running the long 
sleep stage recording through it. The BS classification is perfect, with no 
epochs erroneously classified as BS. The QS classifier does fairly well 
during the first half of the recording, but misses a large part of the second 
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QS period. The QW and AS classifiers also have low precision during the 
second half of the recording, and the AW classifier even more so.  

 
Figure 3. Probability of error as function of the number of features included in the 
training. The lines without circles show the error on the test set and the lines with circles 
show the error on the validation set. 
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Burst Suppression 
median mean 
entropy variance 
residual energy variance skewness
spectral roll-off kurtosis 
cepstral coeff 9 mean 
 

Quiet Sleep 
SEF95 kurtosis 
median variance 
variance skewness 
centroid kurtosis 
spectral flux skewness 
deltaF skewness 
deltaF kurtosis 
spectral flatness mean 
cepstral coeff 7 mean 
 

Quiet Wake 
SEF95 skewness 
SEF95 kurtosis 
entropy variance 
 

Active Sleep 
median skewness 
centroid mean 
centroid skewness 
cepstral coeff 10 mean 
 

Active Wake 
SEF95 skewness 
median mean 
median skewness 
spectral flatness variance 
spectral roll-off mean 
cepstral coeff 7 mean 
cepstral coeff 7 kurtosis 

Table 4. Features selected for the five classes. 

 



 

147 
 
 

 
Figure 4. Histograms showing the distributions of the output from the Fisher projection 
for the validation data. The solid lines are the single classes and the dashed lines are the 
combination of the other classes for each binary classification case.  

  true values 

pr
ed

ic
te

d 
va

lu
es

  BS QS QW AS AW

BS 100 0.0 0.0 0.0 0.0

QS 0.0 92.6 0.0 5.3 7.7

QW 0.0 3.7 47.6 47.4 38.4

AS 0.0 3.7 28.6 42.1 30.8

AW 0.0 0.0 23.8 5.2 23.1
Table 5. Confusion matrix for the BS/sleep stage classification. The diagonal elements are 
the probabilities for correct classification and the other elements the probabilities of 
confusing the different classes. 
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Figure 5. Average power and time-frequency plot of the long sleep stage recording of a 
healthy baby. The colours show the signal power in decibel, with the lowest power (dark 
red) as reference. The markings below the figure shows the different sleep stages, marked 
by the technician doing the recording. 

 
Figure 6. Result of running the long sleep stage recording through the classifier. The 
black dots represent the classification of 30 s epochs, and the grey thick lines show the 
reference classification done by the technician doing the recording. 

 
Figure 7. Result of running the 32 h hypoxia-registration through the BS/sleep stage 
classifier. Each dot represents the classification of a 30 s epoch. The grey thick lines are 
classified as BS periods by the electroencephalographer. 

3.2. Burst suppression segmentation 

Figure 8 shows the results from the feature selection process where the 
manually pre-classified training and validation sets were used. The 
evolution of the probability of error is shown when increasing the number 
of included features from one to ten, for both the test data and the 
validation data. In the figure the probability of error on the validation set 
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seems lower than the probability of error on the test set. Theoretically, the 
opposite is expected, but the size of the error is essentially the same. The 
scale emphasizes the small random difference that in this case happens to 
be in opposition to the theory for large sets of data. The limited size of the 
current data set caused the results to vary slightly depending on how the 
data was distributed in the training, testing and validation sets, but the 
error range did not vary significantly. Table 6 shows the selected features, 
and figure 10 gives an example of the segmented EEG. 

Figure 9 contains a smoothed graph of the mean power and a time-
frequency plot that gives an overview of the 32 h recording from one of 
the babies with burst suppression. In the plot it is clearly visible that the 
power of the signal is very low in the beginning, and then gradually 
increases. Half way through the recording there is a relapse into lower 
power before the final stabilization at a more normal level. The time-
frequency plot also shows the frequency distribution of power which is 
relevant because many of the features considered measure different 
aspects of the frequency distribution.  

Figure 11 and 12 show the results of applying the automatic classification 
and segmentation methods on the long 32 h recording. The estimated 
length of each suppression segment and the estimated burst-suppression 
ratio for 30 s windows are displayed. For the first BS episode the BSR is 
low, corresponding to a small amount of bursts compared to the amount of 
suppression. During the later BS periods the BSR is higher. 

 
Figure 8. Probability of error as a function of the number of features included in the 
training.  
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Table 6. Features selected for BS segmentation by the genetic algorithm.  

Feature name
3 Hz power 
Variance 
Centroid 
Residual energy 
deltaF 
Spectral flatness 
Cepstral coeff 2 
Cepstral coeff 3 
Cepstral coeff 10 

 

 
Figure 9. Average power and time-frequency plot for the long burst suppression 
recording. The dark blue strip around 18 hours is a gap in the recording. The colour 
shows the signal power in decibel, with the lowest power (dark red) as reference. The 
lower subplot shows visual classifications made by an electroencephalographer. 

 
Figure 10. A 60 s example of segmented EEG. 
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Figure 11. The x-marks show the estimated lengths of the suppression for the BS episodes 
that were detected by the method. The large black and grey dots show the seizure and BS 
episodes that were found by the human expert. The small black dots show the BS episodes 
that were detected by the method. The x-coordinate shows the position in time and the y-
coordinate the length of the interval. Seven hours after the start, the BS pattern is 
gradually replaced by TA. After 18 h there is a 20 min gap in the record, and after the 
gap there is some seizure activity which after treatment turns into a short BS episode 
followed by a longer one that starts at 21:15 and gradually stops before 24 h. 

 

Figure 12. The x-marks show the estimated burst suppression ratio for the BS episodes 
that were detected by the method. The large black and grey dots show the seizure and BS 
episodes that were found by the human expert. The small black dots show the BS episodes 
that were detected by the method. The x-coordinate shows the position in time and the y-
coordinate the length of the interval. Seven hours after the start, the BS pattern is 
gradually replaced by TA. After 18 h there is a 20 min gap in the record, and after the 
gap there is some seizure activity which after treatment turns into a short BS episode 
followed by a longer one that starts at 21:15 and gradually stops before 24 h. 
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4. Discussion 
In this paper we have described a possible scheme for automatic detection 
and quantification of BS patterns and the performance of the scheme if 
presented with EEG known to contain BS as well as normal EEG during 
different behavioural states. The scheme does well in distinguishing BS 
from the normal EEGs. In the case of BS, the EEG is also segmented into 
burst and suppression, and the BSR and the suppression lengths are 
calculated.  

The classification of BS from post asphyctic patients when compared to 
EEGs from the healthy babies is 100 % accurate. This is not too 
surprising, since the BS pattern differs from the likewise periodic TA 
pattern by its interburst activity having much lower amplitude [4]. The 
classification of quiet sleep, containing TA activity, is also highly 
accurate with a true positive classification rate of 93 %. This can be 
compared to recent works where true positive classification rates of 89.2 
% have been achieved when using the behavioural state classification of 
quiet sleep [22] and 80-90 % when using the definition that TA is equal to 
quiet sleep [23]. Whatever definition is used, it is clear that quiet sleep is 
the easiest state to classify, indicated e.g. by the finding that the spectral 
edge frequency and the entropy of the EEG between quiet and active sleep 
differs significantly [24-26].  

The training of the classifier is illustrated in figure 3, where the 
probability of error is shown for increasing numbers of features included 
in the classification process. When classifying BS compared to all other 
classes, the error goes down to zero for five features. The other classes do 
not reach this accuracy, and in some cases there is a tendency for the error 
to level out or even increase when the number of features is increased 
over a certain level. This is probably due to overfitting, i.e. the classifier 
starts to model the noise in the data resulting in poor generalization 
ability. Overfitting is common in machine learning and is avoided by 
monitoring the error and limiting the number of included features to the 
one that minimizes the error on the validation set. 

The selected metafeature combinations are shown in table 4, and show 
that the individual metafeatures usually do not show up in more than one 
classification case. This is because the chosen feature combinations 
enhance what makes the individual classes stand out from the rest. The 
job of the classifier is to combine the chosen metafeature signals into a 
single classification signal that can be thresholded. These classification 
signals are displayed in figure 4. In the BS case there is no overlap 
between the signal distributions, so perfect classification is possible. In 
the other cases the amount of overlap varies from minimal in the QS case 
to complete overlap in the AS and AW cases. 
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When the classifier was tested on the long sleep stage recording from a 
healthy baby (figure 5 and figure 6), BS is not detected a single time. QS 
detection performs well for the first QS episode, but in the second a lot is 
confused with QW and some with AS. QW detection has a lot of false 
positives, and AS and AW detection works less well. When the classifier 
was tested on the long recording from a sick baby, all three BS episodes 
are detected.  

The BS segmentation part was trained in a similar way as the 
classification part, and a minimum probability of error of 3.3 % on the 
validation set was achieved when using nine features. This corresponds to 
correct classification of 87 % of the suppression epochs and 94 % of the 
burst epochs, where epochs in this case refer to the one-second time 
resolution set by the feature extraction process.   

Figure 11 and figure 12 shows the results of running the 32 h recording 
through the classification and segmentation parts and calculating the 
suppression lengths and the burst suppression ratio from the resulting BS 
pattern. These are two possible ways to display the acquired information 
regarding the state of the brain. For example, a suppression length of more 
than 30 seconds has been shown to have a high specificity for predicting 
an unfavourable neurological outcome [12], making it an important 
parameter for a future monitoring system. 

5. Conclusion 
We aim at developing one important component in a system for 
monitoring neonatal EEG. At this stage, the classifier easily can 
distinguish burst suppression from normal EEG in a neonate, and quiet 
sleep also can be separated from the other sleep stages. When the EEG is 
classified as BS, it is segmented into burst and suppression, and 
parameters such as suppression length and BSR can be calculated. This 
enables the clinician to follow brain function in quantitative terms. These 
results could be useful to include in a monitoring device for continuous 
monitoring of babies at neonatal intensive care units. 
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Abstract 
Objective: To study if indomethacin used in conventional dose for closure 
of patent ductus arteriosus, affects cerebral function measured by EEG 
evaluated by quantitative measures. 

Study design: Seven premature neonates with clinically significant 
persistent ductus arteriosus were recruited. Electroencephalograms (EEG) 
from eight electrodes were recorded before, during and after an 
intravenous infusion of 0.2 mg/kg indomethacin over 20 minutes. The 
EEG was analysed by two methods with different degrees of complexity 
for the amount of low activity periods (LAP, “suppressions”) as an 
indicator of cerebral strain. 
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Results: Neither of the two methods identified any change of the amount 
of LAPs in the EEG after as compared to before the indomethacin 
infusion. 

Conclusion: Indomethacin in conventional dose for closure of patent 
ductus arteriosus, does not affect cerebral function as evaluated by 
quantitative EEG. 

1. Introduction: 
The clinical use of indomethacin for closure of symptomatic patent ductus 
arteriosus was established almost thirty years ago (1,2). Prophylactic 
therapy for patent ductus arteriosus in very-low-birth-weight infants 
started after Ment et al. (3,4) demonstrated that the incidence rate of 
intraventricular hemorrhage decreased after giving prophylactic 
indomethacin. 

However, side effects from indomethacin were observed early on, not only 
related to the expected effect of reduced synthesis of prostaglandins but 
also resulting from a direct vasoconstrictor effect of indomethacin (5). 
Direct measurements of blood flow velocities in cerebral arteries revealed 
significant reduction of blood flow velocity to the brain of preterm infants 
starting 5-30 min after infusion of indomethacin and lasting at least one 
hour (6,7,8). Indirect estimates using near-infrared spectroscopy 
confirmed the reduction of blood flow after indomethacin together with a 
diminution of oxygen availability to the brain tissue (9, 10).The 
observations that indomethacin in therapeutic doses causes reduction of 
blood flow to the brain together with the reported lack of protection from 
cerebral palsy, deafness and blindness by prophylactic indomethacin in 
another large controlled trial (11), led to substitution of indomethacin with 
ibuprofen in many clinical centres. But conclusions from current literature 
are by no means straight forward. Follow-up studies claim decreased 
white matter injury (12) and favourable neurodevelopmental outcome (13) 
after indomethacin. In a systematic review indomethacin is recommended 
for use during the first day of life but ibuprofen on the following days (14) 
and when the impact of two multicenter randomized controlled trials 
(4,11) on clinical practice is evaluated, the authors arrive at advocating 
the use of indomethacin (15). 

But the fact that indomethacin reduces blood flow and oxygen delivery to 
the brain remains. It would thus be reasonable to find out whether these 
effects of indomethacin are severe enough to cause a deterioration of the 
brain function. We therefore investigated the influence of indomethacin 
on the EEG activity in preterm neonates treated with indomethacin 
because of clinically significant patent ductus arteriosus. The EEG of very 
preterm infants typically demonstrates a pattern alternating between low 
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and high amplitude activity. Generally, strain of the central nervous 
system affecting cortical function, leads to increased proportions of low 
amplitude activity and changes in the frequency content of the EEG (16, 
17). Therefore, the characteristics of this pattern were evaluated in 
preterm infants with patent ductus arteriosus immediately before and 
during treatment with indomethacin. 

2. Material and methods 

2.1. Patients 

The inclusion criteria were prematurity, defined as an age of less than 
34+0 gestational weeks at birth and a hemodynamically significant patent 
ductus arteriosus. 

We included seven newborn premature babies with a gestational age 
between 25-33 weeks at birth. Three of the babies were SGA (<-2SD) and 
four were AGA (± 2 SD). All seven babies had a hemodynamically 
significant ductus arteriosus and were treated with indomethacin, 0.2 
mg/kg .The drug was given as an intravenous infusion over 20 minutes. 
Treatment was initiated between day 1-7 of life. The number of doses for 
each patient was between two and three given with an interval of 12 
hours. Indomethacin treatment was successful in six of the babies. In one 
baby the ductus arteriosus was later surgically closed. Six babies had RDS 
(respiratory distress syndrome). Three of the babies were treated with 
ventilator, three treated with CPAP-(continues positive airway pressure) 
and one baby was without any respiratory support during the EEG 
recording. Oxygen saturation was measured continuously and was kept 
above 92%. No medication was added during the recording. The three 
babies on the ventilator had intravenous infusion of morphine in a dose 
between 8-20 μg / kg / h. 

All but one patient had invasive arterial blood pressure continuously 
measured. Mean arterial blood pressure was above 35 mm Hg for all 
babies during the registration. pCO2 was measured before and after 
indomethacin. In the group it varied between 3.5-8.0 kPa. Blood glucose 
was measured before and after indomethacin and was > 3mmol/l in all 
babies except one were the values were between 1.7-2.9 mmol/l. Ionized 
calcium was above 1.1 mmol/l and hemoglobin levels were above 140 g/l 
in all babies. 

Head ultrasound was normal prior to the treatment with indomethacin in 
all the babies. A follow up head ultrasound was done in five babies and 
was normal. Two babies did not have a second ultrasound. 
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Routine follow up was made. All the babies except one had a normal 
follow up at 18 corrected months of age. The baby with abnormal follow 
up had a delayed sensory-motor development. 

2.2. Recordings 

EEG was recorded from eight electrodes positioned according to the 10-20 
system at F3, P3, F4, P4, F7, T5, F8 and T6 and displayed using a 
common average montage. The signals were high pass filtered at 1.6 Hz, 
low pass filtered at 70 Hz, amplified and stored digitally using a sample 
frequency of 200 Hz. The system used for recording, SACS® (Signal 
Archiving and Communication System), is a software system which runs 
on a standard PC under Windows operating system (18) with a custom 
built amplifier.  

2.3. Analysis 

A period from 40 minutes before to 2 h after start of the first dose of 
indomethacin infusion was selected for analysis. 

2.3.1. Method 1 
The time period between 40 and 20 minutes before administration of 
indomethacin was chosen as a baseline period. The expected time for 
maximal effect of indomethacin on cerebral perfusion (7), 30-60 minutes 
after administration, was chosen for evaluation of a possible effect on 
cerebral function. These periods were first visually analysed by a clinical 
neurophysiologist (MT), specialised in newborn EEG interpretation to 
exclude periods of recording with artefacts. Next, the periods were 
divided into 60 s segments with 30 s overlap. The samples in each 
segment were classified as belonging to a high amplitude period (HAP) or 
low amplitude period (LAP) by using a simple amplitude threshold and 
time constrains:  

First step, channel wise classification; 

LAP is a period of at least one second where no absolute value of any 
sample exceeds 15 μV. HAPs are all samples not classified as LAPs. 

Second step, combining all electrodes; 

For a sample to be classified as HAP in the second step, it has to be 
classified as HAP in at least five out of the eight channels during the first 
step and be at least one second long in all these channels. All samples not 
fulfilling the above requirements are classified as LAPs. 

Based on this classification, mean LAP time was calculated for each 60 s 
segment not containing artefacts. If an artefact was present in any channel 
within the segment, the whole segment was discarded from the analysis. 
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This produced a feature signal containing an estimate of the mean LAP 
time with one sample each 30 s. 

2.3.2. Method 2 
A set of 22 feature signals were extracted from the EEG (cf. appendix 
table), using a one-second sliding window with 0.75 s overlap producing 
feature signals with an effective sampling rate of 4 Hz. Each feature signal 
describes a specific property of the underlying EEG signal, for example 
power or frequency distribution, and can be used for classification of 
different types of activity in the EEG. The features were extracted from 
the eight EEG channels separately, but then the median over the channels 
were taken, producing a single signal for each feature. This was done 
because HAPs were defined to be present in at least half of the channels.  

Ten minutes (t=[-20,-10] min) of the signal from each patient was 
segmented by visual analysis (MT) and was used as training data for the 
classification algorithm. To find the best features to use, the data was fed 
to a genetic algorithm that tested combinations from one to ten features, 
using the classification algorithm Fisher’s linear discriminant (19). The 
process was repeated independently for the different patients. Half of the 
pre-segmented data was used for training and half was used for testing the 
classifier. The feature combination that gave the lowest probability of 
error on the test data was then used for segmenting the entire signal 
(Appendix 2). 

The output signal from the classification algorithm was filtered for 
removing short detections or gaps in longer detections in the detection 
signal. This was done using a 4-point (1 s) sliding window, setting the 
output of each window to the majority class in the input. Fig 1 shows an 
example of the result of automatic segmentation together with the 
manually segmented training sequence.  

Then the lengths of all LAPs were calculated for twenty minute epochs, 
including a baseline period defined as 40-20 minutes before the infusion 
of indomethacin. For each epoch and patient the median LAP length was 
calculated, resulting in seven values for each epoch. The median and 
confidence interval (5th and 95th percentile) was then estimated using 
bootstrapping (20). 

3. Results 
In the analysis based on the threshold of amplitude (the first method) the 
mean LAP at baseline was 4.6 +/-3.2 seconds, and during the period 30-60 
minutes after administration of indomethacin, 4.9 seconds, -/+ 5.2 seconds 
(mean +/- SD, Fig 2). 
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The results from the more elaborate analysis using feature extraction in 
combination with classification according to Fisher’s linear discriminant 
algorithm (the second method) are displayed in Fig 3. Compared to 
baseline there was no difference in LAP time after indomethacin was 
given. 

Thus, in neither of the analyses an effect on cerebral function measured as 
LAP time of the EEG after indomethacin administration of 0.2 mg/kg, 
could be found. 

 
Fig. 1: Sixty seconds of eight channels of EEG from one patient, filtered from 1.6 to 70 
Hz. The shaded areas have been manually classified as high activity periods (HAPs) by a 
neurophysiologist (MT). The black blocks show the parts of the signal that has been 
classified as HAPs by the machine learning algorithm. 
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Fig. 2: Mean time for low activity periods over one minute EEG segments at 40-20 
minutes prior to and 30-60 minutes after the onset of indomethacin infusion respectively. 
The crosses represent the mean of these mean suppression lengths and the horizontal bars 
show the mean +/- the standard deviation. 

 

Fig. 3: Median low activity period (LAP) length (marked with X) for 20 minute epochs. 
The horizontal lines indicate the 5th and 95th percentile. The infusion of Indomethacin was 
started at t = 0, and the period from 40 to 20 minutes before the infusion is used as base 
line. 

4. Discussion 
Patency of the ductus arteriosus is a common problem in the very-low-
birth-weight infant. The pulmonary consequences of this complication 
have been studied extensively and pharmacological closure of 
symptomatic ductus arteriosus in preterm babies is clinical practice. 
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It has been suggested that an altered cerebral blood flow (CBF) after the 
administration of indomethacin could be a contributory cause of ischemic 
cerebral damage (21). 

We used EEG to measure the effect of indomethacin on the cerebral 
function. Two different methods were applied to analyze the original EEG 
signal for the degree of intermittency. We were unable to detect any effect 
on the EEG after indomethacin was given with either one of these 
methods (Fig. 2 and Fig. 3). 

The intermittent EEG, typical for the very preterm neonate (16) reacts to 
adverse influences including reduced cerebral perfusion (22) with 
increased intermittency recorded as prolonged LAPs, often referred to as 
prolonged interburst intervals. 

A lack of effect creates problems for interpretation. Could there have been 
an effect that was missed in our recordings? A recent report describes how 
an EEG cap with 20 recording electrodes detects spontaneously occurring 
focal and localized so called spontaneous activity transients in the EEG of 
the very preterm infant (23). Our recording system used fewer recording 
electrodes – eight – and therefore did not provide the same degree of 
resolution. On the other hand, we wanted to study generalized effects from 
an intravenous infusion of indomethacin, which most probably would 
have been detected in our system. It is therefore reasonable to assume that 
any effect of indomethacin would have been detected by our system. 

Conclusions: Indomethacin in a dose of 0.2mg/kg, given intravenously 
over 20 minutes to preterm infants does not increase the degree of 
intermittency of the EEG, indicating that any possible cerebral 
vasoconstriction is not severe enough to affect cerebral cortical function. 
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Appendix 1 
List of features used for segmentation in method 2. 

Feature Description 

Spectral Edge 
Frequency  
(SEF95) 

Frequency under which 95% of the signal power 
resides, based on the Fourier transform (FT) 
calculated on rectangular windows of the signal 

3 Hz power Power in a 1-Hz wide band centred at 3 Hz 

Median  Median absolute value 

Shannon entropy 
(HSh)  1

( ) log ( )
U

Sh u u
u

H p I p I



 

p(I1)… p(IU) is a discrete set of probabilities, which 
are  estimated by counting the samples falling in the 
disjoint amplitude intervals I1,..,IU.  
20 intervals were used evenly distributed between 
the maximum and minimum values of the signal in 
the window. HSh is a measure of uncertainty of a 
random variable. 

Zero crossings The number of zero crossings in each window. 

Variance (s2(x))  






N

n

nx
N

xs
1

22 )][(
1

1
)(   

where x is a time series, and μ is the sample mean of 
x  

Spectral centroid The ’’centre of mass’’ of the frequency distribution 

ܿ ൌ
∑ ݂ሺ݊ሻݔሺ݊ሻேିଵ
௡ୀ଴

∑ ሺ݊ሻேିଵݔ
௡ୀ଴

 

Where x(n) represents the magnitude of bin number 
n, and f(n) represents the centre frequency of that 
bin. 

Residual energy 
variance 

The variance of the residual after applying an eight-
coefficient linear predictor on the signal window. 

Spectral flux Measures the change in the spectrum between 
consecutive windows using the Euclidian distance 
(2-norm) between the spectra. 

deltaF Measures the rate of change by taking the Euclidian 
distance between consecutive windows of the signal. 
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Spectral flatness Calculated by dividing the geometric mean of the 
power spectrum with the arithmetic mean. 

ܨ ൌ
ඥ∏ ሺ݊ሻேିଵݔ

௡ୀ଴
ಿ

∑ ሺ݊ሻேିଵݔ
௡ୀ଴

ܰ

 

A high spectral flatness indicates that the spectrum 
has a similar amount of power in all bands – like 
white noise  

A low spectral flatness indicates a spiky spectrum  

Spectral roll-off Equivalent to SEF85 

Cepstral coefficients The cepstral coefficients were extracted by applying 
the Fourier transform on a window of the signal, 
mapping the logarithm of the spectrum onto a linear 
scale using ten triangular overlapping windows, and 
then taking the discrete cosine transform of the list 
of amplitudes. The cepstral coefficients are the 
amplitudes of the resulting spectrum, and are related 
to the rate of change in the corresponding frequency 
bands.   
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Appendix 2 
Features selected (x) by the generic algorithm and used for classification 
of HAP and LAP. 

Feature Pat. 1 Pat. 2 Pat. 3 Pat. 4 Pat. 5 Pat. 6 Pat. 7

SEF95 x     x  

3 Hz power  x x x x x x 

median  x   x x  

entropy   x x x x x 

zero crossings x x x  x x  

variance      x  

centroid  x  x  x  

residual energy var.  x   x x  

spectral flux     x   

deltaF      x  

spectral flatness  x  x x   

spectral roll-off    x    

cepstral coeff 1 x  x x    

cepstral coeff 2    x   x 

cepstral coeff 3  x   x  x 

cepstral coeff 4  x      

cepstral coeff 5 x   x    

cepstral coeff 6    x x   

cepstral coeff 7  x      

cepstral coeff 8 x x      

cepstral coeff 9 x       

cepstral coeff 10    x  x  
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