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We consider semidirect gauge mediation models of supersymmetry breaking where the messengers are

composite fields and their supersymmetric mass is naturally generated through quartic superpotential

couplings. We show that such composite messenger models can be easily embedded in quiver gauge

theories arising from D-branes at Calabi-Yau singularities, and argue that semidirect gauge mediation is in

fact a very natural option for supersymmetry breaking in D-brane models. We provide several explicit

examples and discuss their salient phenomenological properties.
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I. INTRODUCTION

Gauge mediation [1] (for a review see [2]) is one of the
most popular frameworks for a phenomenologically viable
mechanism to transmit supersymmetry breaking down to
the minimal supersymmetric model (MSSM).

Within the general messenger paradigm [3,4], a possi-
bility that has been less investigated so far is the one named
‘‘semidirect gauge mediation’’ in [5]. In this scheme of
gauge mediation the messengers interact with the hidden
sector through gauge interactions only, and they are irrele-
vant to the mechanism of dynamical supersymmetry break-
ing (DSB), unlike in direct gauge mediation models [6].
The only superpotential term involving them is a mass
term. The hidden sector gauge group that the messengers
couple to (henceforth the ‘‘messenger gauge group’’) can
be a (weakly gauged) global symmetry group, as in the
mediator models of [7], or a genuine gauge group of the
hidden sector, as for the models recently studied in [5,8]. In
the former case, sending to zero the corresponding gauge
coupling does not destroy supersymmetry breaking in the
hidden sector. In the latter case, having a nonvanishing
gauge coupling is instead crucial for the DSB mechanism
to hold.

Semidirect gauge mediation has some distinctive fea-
tures as compared to other popular frameworks of gauge
mediation. Unlike minimal gauge mediation there is no
need for unnatural spurionlike superpotential couplings
involving singlets since the messengers communicate
with the hidden sector via gauge interactions only. On
the other hand, in contrast to direct gauge mediation, the
MSSM gauge group does not need to be part of the flavor
group of the DSB sector: the messenger gauge group can
be as small asUð1Þ or SUð2Þ. This is sensibly softening the
problem of dangerous Landau poles due to the fact that
DSB models with large flavor groups tend to also have

large gauge groups and thus a large number of messengers.
Finally, in some specific situations, semidirect mediation
models give rise to D-term like contributions to diagonal
messenger masses, even in the absence of Abelian gauge
factors and FI D-terms [5,8].
In semidirect gauge mediation, the messengers, which

carry MSSM quantum numbers, are usually considered
elementary fields, and their supersymmetric mass is a
parameter of the theory. It has to be at least some orders
of magnitude below the Planck scale if gravity mediation
effects are to be suppressed. It is hence desirable to have a
naturally small messenger mass in these models.
In this paper we first show that it is in fact not difficult to

construct models of semidirect gauge mediation where all
scales are dynamically generated, including the messenger
masses (we could refer to this as retrofitted [9], or natural,
semidirect mediation), and where the messengers them-
selves are composite fields. In direct mediation models the
messengers, as seen by the MSSM, are also naturally
composite fields. However, in this case they are composite
because of strongly coupled dynamics in the DSB sector.
The basic mechanism we present, which is similar in spirit
to that of [10], relies instead on an additional gauge group,
which we dub ‘‘mediator gauge group,’’ whose strong
dynamics leads to the generation of composite messengers,
charged both under the hidden sector and the visible sector
gauge groups, with a natural supersymmetric mass term
which is independent on the details of the hidden sector
dynamics.
A second goal of this note is to show how such a frame-

work arises quite naturally in string theory. It is straightfor-
ward to picture the models above as quiver gauge theories,
with several gauge groups represented as nodes and bi-
fundamentals going from one node to another. This is the
typical structure of the gauge theories describing D-branes
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at Calabi-Yau (CY) singularities, suggesting that natural
semidirect mediation is rather generic in string theory
models of gauge mediation. To support such a claim, we
will work out several explicit examples where this holds.

The paper is organized as follows. In Sec. II we describe
the basic building blocks which are needed for constructing
semidirect gauge mediation models with natural masses for
the messengers. Using these building blocks, in Sec. III we
discuss complete, explicit models of semidirect gauge
mediation. In Sec. IV we show how such models arise
quite generically in string theory, provide a few explicit
examples, and discuss some of their very basic phenome-
nological properties. Section V contains our conclusions
and outlook.

II. RETROFITTING THE MESSENGER SECTOR

In what follows we will first describe the basic ingre-
dients we are going to use to generate a natural, composite
messenger sector in the framework of semidirect gauge
mediation. Then we will discuss how such basic building
blocks can be embedded in concrete gauge mediation
models.

A. A toy model

Let us consider the nonchiral supersymmetric gauge
theory depicted in Fig. 1, a quiver gauge theory with three
gauge factors and bi-fundamental matter superfields. We
will label the three gauge groups as SUðNhÞ for the hidden
sector gauge group (which, in more elaborate models, need
not be the gauge group whose strong dynamics leads to
DSB), SUðNvÞ for the visible sector gauge group (typi-
cally, we will take Nv ¼ 5), and SUðNmÞ for what we
dubbed mediator gauge group. Of course, generalizations
to gauge groups other than SUðNÞ are also possible.

An important further ingredient is to let the bi-
fundamental matter interact via a quartic superpotential:

Wtree ¼ h1XhmXmvXvmXmh þ h2XhmXmhXhmXmh

þ h3XvmXmvXvmXmv: (1)

Traces over the indices of the various gauge groups are
understood. The couplings hi have dimension of an inverse
mass and they are inversely proportional to the UV scale
generating the nonrenormalizable interaction (1). In this
toy model, which lacks a UV completion, this scale is
undetermined, and can be taken to be the Planck scale.1

We now take the rank of the mediator gauge group to be

Nm ¼ Nh þ Nv: (2)

Given this matter content, the beta function of the middle
nodewill be the one with the largest one-loop coefficient. It
is thus natural to assume that such gauge group reaches
strong coupling first. In other words, if all the three gauge
factors are UV-free, we assume the following hierarchy
between the corresponding dynamically generated scales:
�m � �h, �v. Since we want to achieve DSB we will
need to add extra matter to the hidden gauge group.
Thus, we can also keep the possibility that the hidden
gauge group is not UV-free, in which case we only impose
�m � �v.
At scales above �m the other nodes act effectively as

global flavor groups and the theory reduces to SQCD with
Nf ¼ Nc (where Nc ¼ Nm ¼ Nh þ Nv in this case). The

effective superpotential hence reads [11]

Weff ¼ h1MhvMvh þ h2MhhMhh þ h3MvvMvv

þ �ðdetM�B ~B��2Nm
m Þ; (3)

with � a Lagrange multiplier, B� ðXmhÞNhðXmvÞNv , ~B�
ðXhmÞNhðXvmÞNv the baryon fields and M the meson ma-
trix, with entriesMhv ¼ XhmXmv,Mvh ¼ XvmXmh,Mhh ¼
XhmXmh, and Mvv ¼ XvmXmv (the summation on the
middle node gauge indices is understood).
Because of the quartic superpotential terms, which be-

come quadratic terms in the mesons, the moduli space
separates into two disconnected branches, the mesonic
one and the baryonic one. On the mesonic branch some
mesons acquire VEVs, and hence the two gauge groups at
the first and third node are Higgsed in some way. We will
not be interested in the physics along this branch.
Along the baryonic branch the low energy theory re-

duces to two SUðNhÞ and SUðNvÞ SYM nodes coupled via
the meson fields Mhv and Mvh, and two adjoints Mhh and
Mvv. The effective superpotential reduces to

W ¼ h1MhvMvh þ h2MhhMhh þ h3MvvMvv; (4)

which makes the (messenger!) fieldsMhv,Mvh and the two
adjoints Mhh, Mvv massive, with a dynamically generated
(supersymmetric) mass

mi � hið�mÞ2: (5)

Notice that we have to rescale the meson fields by �m to
reinstate the correct mass dimension, and we have assumed

31 2
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FIG. 1 (color online). The basic building blocks. Each node
corresponds to a SU factor; the gauge group ranks are Nh, Nm

and Nv. The (red) arrows correspond to bi-fundamental chiral
superfields. We choose Nm ¼ Nh þ Nv.

1In string theory embeddings, one can set hi � 1=M�
s , withM

�
s

being the string scale possibly warped down to a lower value by
a duality cascade RG flow. In order to avoid Landau pole
problems, one might not like to have M�

s too low, though. For
definiteness, in this paper we will always take M�

s to be order of
the Planck scale Mp.
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a canonical Kähler potential near the origin of the baryonic
branch. A hierarchy between the messenger and the adjoint
masses can be achieved either by hand by tuning the hi, or
dynamically in slightly more elaborate models as we will
show later.2

We note that models of semidirect mediation where the
messenger masses are generated dynamically were also
considered in [10]. There, however, the effective dynamics
of the mediator node was SQCD with a symplectic gauge
group and Nf ¼ Nc þ 1 flavors [12].

The simple mechanism described above may seem quite
ad hoc. In fact, this is not the case. A crucial ingredient for
it to work is a gauge theory with a quiver structure and with
quartic couplings between the bi-fundamental chiral super-
fields. This is precisely what happens, generically, when
engineering supersymmetric gauge theories by means of
D-branes at singularities. In Sec. IV we will consider
several such examples where simple variants of the above
mechanism arise automatically when considering suitable
stacks of fractional branes at CY singularities.

Let us end this section with a few more comments.
In the model described above, there is an additional

massless field given by the baryonic superfields modulo

the baryonic branch constraint B ~B ¼ ��2Nm
m . This mode

decouples completely from the dynamics of the other
nodes, and can be given a mass by gauging the baryonic
Uð1Þ global symmetry of the middle node (in string theory
setups, this is naturally accomplished by compactification).

One more comment is about the absence of explicit mass
terms in the tree-level superpotential (1). Such terms are
not forbidden by the gauge symmetries. In order to prevent
their appearance (which would lead at the effective level to
phenomenologically dangerous VEVs for the messengers),
we could resort to a Z4 symmetry acting on the bi-
fundamentals, or a continuous Uð1ÞR symmetry. It is the
latter which forbids the mass terms when such quiver
gauge theories arise in string theory (typically, one defines
the theory at a superconformal fixed point, hence masses
are obviously forbidden). Another option is to have a
slightly more complicated, but chiral, model, as we will
discuss later.

One could wonder whether models with a composite
messenger sector generated with a mechanism as the one
described here may be plagued by possible instabilities.
Indeed, there are presumably supersymmetric states along
the mesonic branch which survive even in the regime
where there is supersymmetry breaking on the baryonic

branch. We will assume that they are far enough in field
space, typically as �X��m. The potential in the super-
symmetry breaking vacuum is on the other hand controlled
by, say, V ��4

h so that tunnelling to the supersymmetric

vacua is parametrically suppressed by powers of �h=�m.
It is obvious that the above simple toy model can be

generalized in a variety of ways. The main message we
want to convey here is that it is quite simple to build a
supersymmetric gauge theory which, in some regime, re-
duces to an effective theory with massive fields transform-
ing in the bi-fundamental representation of two otherwise
decoupled (gauge) sectors. For this to happen, quartic
superpotential terms are generically needed. The latter is
a nice feature of these models since quartic terms are the
most generic nonrenormalizable terms one can start adding
to a given model. And, as already mentioned, such cou-
plings are ubiquitous in D-brane constructions of super-
symmetric gauge theories.

B. More complete models

This simple way of generating composite and naturally
massive chiral superfields mediating the interactions be-
tween two otherwise decoupled sectors, can be easily
embedded into concrete semidirect gauge mediation mod-
els. This can be done by promoting the hidden and visible
nodes to full-fledged hidden and visible sectors, including
thus MSSM matter families and Higgses on the visible
side, and any matter fields and additional gauge groups
on the hidden side in order to achieve DSB. This is sche-
matically depicted in Fig. 2. This way, we have a set of
(composite) messenger fields, with a dynamically gener-
ated mass, coupled to the hidden sector only through gauge
interactions.
At scales well below �m, the messengers behave as

effectively elementary. Thus, regardless the specific super-
symmetry breaking mechanism in the hidden sector, the
next step of the story amounts to computing the induced
nonsupersymmetric messenger masses. Indeed, via gauge
interactions with the gauge group SUðNhÞ, the messengers
acquire a nonsupersymmetric mass matrix which has both
diagonal and off-diagonal contributions. Such contribu-
tions are generically at two-loops in the messenger group
coupling and lead to a nonvanishing supertrace StrM2 of
the messenger mass matrix.
In fact, some interesting phenomena occur in specific

situations. For instance, when the messenger gauge group

31 2
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GUT

SUSY

m vh

FIG. 2 (color online). The basic building blocks embedded
into semidirect gauge mediation.

2In this respect, note that the adjoint field Mvv could play the
role of the GUT Higgs field. This would indeed necessitate some
hierarchy between its mass scale and the scale of the messenger
mass. Of course, in order to implement this option in any specific
model, one should also find a mechanism to generate the other
couplings of the GUT Higgs field. The other option is thatMvv is
just a spectator. For a natural choice of its mass scale it should
not by itself induce a Landau pole.
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SUðNhÞ is Higgsed due to the DSB mechanism [5,8] there
are also D-term-like contributions to the diagonal messen-
ger masses which are induced by the F-terms. Notably,
these terms arise also in the absence of Uð1Þ factors (i.e.
one does not need explicit FI-terms, as in minimal gauge
mediation). A second interesting phenomenon, which
holds when the scale of Higgsing is higher than the mes-
senger supersymmetric mass scale, is that the loop orders
in SUðNhÞ of the messenger masses are effectively reduced
by one unit. This applies to the D-terms, which appear then
as classical, and to the aforementioned diagonal and off-
diagonal contributions which are now at one loop. The D-
terms do not contribute to the supertrace of the messenger
sector masses, and the latter is thus one loop. The off-
diagonal masses (which are encoded as F in minimal gauge
mediation models) depend differently on the scales of the
model, and hence can be naturally chosen to dominate or
not.

One needs to worry about the messenger sector not
having tachyonic components. This is usually achieved
by implementing a hierarchy among the different scales
of the problem. In our models it will be sufficient to have a
reasonable hierarchy among the dynamical scales of the
hidden and the mediator gauge groups. Very schematically,
and in the worst case scenario, one has to impose a relation
like

mnon-susy

msusy
� �h

hð�mÞ2
��hMp

ð�mÞ2
< 1r: (6)

Of course, such bounds will have to be refined in specific
models, in cases for instance where the hidden sector has
more than one scale. One has then more options when
choosing a hierarchy of scales, each choice leading to a
different phenomenology [7].

III. NATURAL SEMIDIRECT MEDIATION:
EXAMPLES

Within the spirit outlined above, there are many ways in
which one can build concrete semidirect gauge mediation
models.

In the most conservative case, one might like to keep
untouched the simple dynamical mechanism presented in
Sec. II A. In this case, the middle node has to be described
by an effective SQCD with Nf ¼ Nc at scales above �m.

If we wanted just to retrofit the model of [5], where the
hidden sector is the well-known 3–2 model [13], we could
then take the messenger node SUðNhÞ to be the SUð2Þ
gauge group of the 3–2 model [to which we attach further
to the left an SUð3Þ node, along with additional matter],
and the visible node to be SUð5Þ (possibly broken to the
MSSM gauge group). Then, the middle node has to be
taken to be SUð7Þ. Below its dynamical scale, when SUð7Þ
confines, the model is exactly the one of [5], albeit with
dynamically generated masses for the messengers (and an
additional adjoint in the SUð2Þ which plays no role at all,

since it is very massive). Obviously, above the messenger
mass scale, when SUð7Þ deconfines, we acquire a lot more
matter fields in SUð5Þ. However, if this happens close
enough to the GUT scale, there is no Landau pole problem
with having such a large number of messengers.
Similarly, one can retrofit the semidirect mediation

model discussed in [8] (the hidden sector is now the 4–1
model [4,14]), where the messengers are charged under the
Abelian gauge group of the hidden sector. In this case,
keeping the visible sector to be again an SUð5Þ GUT, we
should take the middle node to be SUð6Þ and the rest is the
same as before.
Another possibility would be not to change at all the

quiver in Fig. 1, take Nh ¼ Nv ¼ 5, and dress the left node
with a complete (hidden) SUð5Þ family and the right node
with three (SUð5Þ GUT) families and a Higgs sector. The
mediator node would then be SUð10Þ. The hidden sector is
a well known example of (incalculable) DSB model [15],
with the scale of supersymmetry breaking being of order
�h. If the effective messenger mass is sufficiently above
the DSB scale �h, this should be considered as a bona-fide
semidirect mediation model, since the messengers in this
case should not affect the DSB mechanism, as in the
similar cases discussed in [14,16]. In our setup, all scales
are related to dynamically generated scales. Another very
similar model would be based on taking as the hidden DSB
sector the calculable model of SUð5Þ with two chiral
families [17].3

Similarly, one can consider hidden sectors where super-
symmetry is broken in a metastable vacuum, as massive
SQCD in the magnetic-free phase [19]. This type of models
have been considered as hidden sectors for direct media-
tion of supersymmetry breaking, where the MSSM gauge
group is embedded in the flavor group of SQCD [20,21].
Here we propose to have instead only the messengers
charged under the (weakly gauged) flavor group. The
presence of an unbroken R-symmetry in the ISS supersym-
metry breaking vacua is a problem for these direct media-
tion models since it suppresses gaugino masses. In our
semidirect setup the R-symmetry would result in suppress-
ing the off-diagonal terms in the messenger mass matrix,
which in turn also leads to a suppression of the MSSM
gaugino masses. For this reason we prefer to consider
models such as the one presented in [20] where, at the
price of a more complicated vacuum structure, the R-
symmetry problem is overcome. In the next section,
when considering string embeddings, we review a specific
semidirect mediation model along these lines.

3Of course, calculability is not a value in itself. Rather,
incalculable models might even predict more generic MSSM
soft terms. In this respect, it is also worth mentioning that for the
incalculable model of [15] an exact D-brane construction (and
hence, in principle, its gravity dual description) is known in
string theory [18].
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We can of course continue along these lines and build
many more models. In what follows, we want instead to
show how to recover models of natural semidirect media-
tion within known quiver gauge theories arising from D-
branes at Calabi-Yau singularities.

IV. STRING EMBEDDINGS OF RETROFITTED
MESSENGER SECTORS

Though it is an interesting and perhaps amusing exercise
to try and find a model with hidden, messenger and MSSM
sectors in a setup which could lead to a holographic gravity
dual, it is not clear at all why, for instance, we would like to
embed the MSSM, which is not strongly coupled (at least
at the scales relevant to the soft terms), in such a strict
setup. Thus, we could very well be satisfied with engineer-
ing through branes at CY singularities just the sectors
which are truly strongly coupled, like the composite mes-
senger sector that we described in this note, and possibly
the DSB sector. The latter could even be taken to be an
incalculable model defined by its holographic string dual,
as in [22]. In the same spirit, and in the context of a full-
fledged CY compactification, one can then add visible
matter by means of D7-branes [22], which live far away
from the warped throat where the hidden sector strong
coupling dynamics takes place, and are hence weakly
coupled.

We present below three examples of how to embed the
composite messenger models in known quivers dual to D-
branes at singularities.4 For the reasons above, we will not
be interested in the details of the visible sector.

A. The orbifold of the conifold as a messenger sector

One of the simplest string setups where to implement the
mechanism discussed in Sec. II A is the Z2 orbifold of the
conifold, extensively used in [24]. The model is just a
simple variant of our toy model. This is a four nodes
nonchiral quiver gauge theory with bi-fundamental matter,
as depicted in Fig. 3.

Here we take the gauge group to be SUðNhÞ �
SUðNmÞ1 � SUðNvÞ � SUðNmÞ2, the superpotential given
by string theory being

Wtree ¼ hðXh1X1vXv1X1h � X1vXv2X2vXv1

þ Xv2X2hXh2X2v � X2hXh1X1hXh2Þ: (7)

We see that instead of one mediator node, we have two. We
will take Nm ¼ Nh þ Nv, so that both mediator nodes are
effectively like Nf ¼ Nc SQCD. These two nodes have

two separate scales �1 and �2. Assuming that they both
confine, we will have an effective description in terms of
two sets of messenger fields, two sets of adjoint fields and
two sets of baryons, essentially doubling the effective

fields with respect to the toy model discussed at the begin-
ning of this note. By solving for the F-terms, and taking
into account the constrained moduli spaces, one can show
that there are several branches. The only one where the
visible or hidden gauge groups are not Higgsed is when we
are on the baryonic branch for both mediator nodes. Then,
the effective superpotential reads

Weff ¼ hðMð1Þ
hvM

ð1Þ
vh �Mð1Þ

vvM
ð2Þ
vv þMð2Þ

vhM
ð2Þ
hv �Mð1Þ

hhM
ð2Þ
hh Þ:
(8)

Rescaling each meson superfield by the scale of its con-

fined gauge group MðiÞ
ab ¼ �i�

ðiÞ
ab, we get

Weff ¼ h�2
1�

ð1Þ
hv�

ð1Þ
vh � h�1�2ð�ð1Þ

vv�
ð2Þ
vv þ�ð1Þ

hh�
ð2Þ
hhÞ

þ h�2
2�

ð2Þ
vh�

ð2Þ
hv: (9)

So, if there is some hierarchy �1 � �2, naturally gener-
ated by a mild hierarchy of the UV couplings, we see that
we have one pair of messengers which are the lightest
effective fields. Then come the adjoints, and eventually
we have another pair of massive messengers which should
be completely irrelevant to the physics below the GUT
scale.
This simple model can then be made phenomenologi-

cally viable by decorating the hidden and visible nodes
with the relevant matter fields or additional nodes. The
virtue of the present model is to naturally separate the
scales of the messengers from the ones of the adjoints,
making the former always the lightest. It may seem more
contrived than our simple toy model. However, from the
string theory perspective it is actually simpler, since it does
not require multitracelike operators in order to give mass to
the adjoints.5

mN

N vhN

N m

2

1

FIG. 3 (color online). The quiver theory for a stack of (frac-
tional) D-branes at a Conifold=Z2 singularity. In our realization
we choose Nm ¼ Nh þ Nv.

4Another approach for embedding gauge mediation in the
context of D-branes at singularities can be found in [23].

5Such operators could arise from D-branes at orientifolded
singularities.
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B. A chiral messenger sector

It could be interesting to provide also an example of
composite messengers which derive from a chiral model.
The added value of such a model is to explain naturally
why we only have quartic superpotential terms. Take for
instance the following model, which can be recovered
considering fractional branes at a dP3 singularity (see
e.g. [25]). The quiver structure is the same of the previous
model, but with half the bi-fundamental matter, see Fig. 4.

The model is hence chiral and the only superpotential
one can write is

Wtree ¼ hXh1X1vXv2X2h: (10)

Another constraint from chirality is that Nh ¼ Nv, in order
to prevent gauge anomalies in the mediator nodes (let us
stress again that all these conditions come out automati-
cally from the string construction). We further take Nm ¼
Nh ¼ Nv, so that exactly as before when the two middle
nodes confine the moduli space splits into two, the inter-
esting branch being the baryonic one where the mesons are
massive. The effective superpotential is then

Weff ¼ hMhvMvh ¼ h�1�2�hv�vh: (11)

A similar model is obtained considering D-branes at the F0

singularity (which is a different—and chiral—Z2 orbifold
of the conifold with respect to the one considered previ-
ously), whose quiver is obtained by doubling all the bi-
fundamental fields of the dP3 quiver. The only drawback in
this case is that one is left, after the middle nodes confine,
with 4 times as many composite messengers with the same
mass.

In these models there is no need to impose symmetries
that forbid the presence of potentially dangerous lower
order terms in the superpotential. Also, there are no addi-
tional adjoints in the visible and hidden sector. On the other
hand, chirality imposes that the hidden sector gauge group
be essentially SUð5Þ, so that one might have to worry about
Landau poles, as in some direct mediation models.

C. A metastable DSB example

In a similar fashion, one can consider string embeddings
of natural semidirect gauge mediation where supersymme-
try is broken à la ISS [19]. Here we aim at embedding both
the messenger and the full hidden sector in a setup derived
from D-branes at singularities.
As an explicit example, we consider the model presented

in [20] (we refer to it as KOO). This model breaks the R-
symmetry, and therefore it does allow for gaugino mass
terms when used as a model of direct gauge mediation. As
already stressed, this property is crucial also in semidirect
setups: here the gauginos are those of the hidden sector
gauge group coupling to the messenger, and such a mass
term is needed to provide, ultimately, masses to the MSSM
gauginos.
In the KOO model the supersymmetry breaking sector

and the retrofitted messenger sector arise from D-branes at
a (N ¼ 2 preserving) A5 singularity, suitably deformed to
aN ¼ 1 CY singularity by means of a nontrivial geomet-
ric fibration (for a description of deformed An singularities
and the corresponding field theories, see [26]). The quiver
gauge theory is depicted in Fig. 5.
The superpotential reads

W ¼ q12q21X11 � q21q12X22 þ q23q32X22 � q32q23X33

þ q34q43X33 � q43q34X44 þ q45q54X44 � q54q45X55

þM

2
X2
11 þm2

1X11 �M

2
X2
22 þm2

3X33 þM

2
X2
44

þM

2
X2
55; (12)

where the last line is theN ¼ 2 ! N ¼ 1 breaking part.
We have set the dimensionless cubic coupling h ¼ 1 for
simplicity while, as in previous examples, the mass scales
M, m1, m3 can be generically taken of the order of the
Planck scale Mp.

Having in mind the embedding into a concrete semi-
direct gauge mediation model, the rightmost node, node 5,
corresponds to the visible sector. Nodes 1 to 3 are the ISS-
like sector, with node 3 being the gauge group under which
the composite messengers will be coupled to, eventually.
Node 4 plays then the role of the mediator node. Let us see
how things work.
It is convenient to work in the following regime for the

dynamical scales of the different gauge factors

�4 >�2 >�1;�3;�5: (13)Nh Nv

N m
1

2

Nm

FIG. 4 (color online). The quiver theory for a stack of (frac-
tional) D-branes at a dP3 singularity. To avoid gauge anomalies
we have Nh ¼ Nv. We further require Nm ¼ Nh ¼ Nv for our
purposes.

3

N3

2

N 2

1

N1 N N4 5

4 5

FIG. 5 (color online). The A5 quiver gauge theory. The adjoint
fields at each node are labeled Xii and the bi-fundamentals qij.
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This hierarchy defines the steps one has to perform in order
to obtain the low energy theory.6

Given that the mass parameters entering the superpoten-
tial (12) are of the order of the highest scale in the problem,
Mp, we first have to integrate out the massive fields X11,

X22, X44, X55, obtaining

Weff ¼ � 1

M
q12q23q32q21 þ 1

2M
ðq23q32Þ2 � 1

2M
ðq34q43Þ2

þ 1

M
q34q45q54q43 � 1

M
ðq54q45Þ2 � q32q23X33

þ X33q34q43 �m2
1

M
q12q21 þm2

3X33: (14)

Then, flowing to the IR, node 4 develops strong dynamics.
To reproduce the simple dynamics of our toy model, we
choose the ranks such thatN3 þ N5 ¼ N4. This way node 4
has Nf ¼ Nc and undergoes confinement with a modified

moduli space. Selecting the baryonic branch, as before, and
integrating out the very massive fields one obtains

Weff ¼ � 1

M
q12q23q32q21 �m2

1

M
q12q21 þm2

3

M
q32q23

þ 1

M
N35N53; (15)

where N35 ¼ q34q45 and N53 ¼ q54q43 are the mesons
associated to node 4. The first three terms in Eq. (15)
correspond to the electric phase of the KOO model, which
breaks supersymmetry into a metastable vacuum. The
messenger fields N35 and N53 couple to it only through
the gauge group at node 3.

We now proceed to obtain the low energy description.
According to the hierarchy among the scales we chose,
Eq. (13), node 2 becomes then strongly coupled, and we
have to dualize it. To recover the KOO model, we choose
the ranks N1 ¼ Nf � Nc, N2 ¼ N3 ¼ Nc. In the dual de-

scription, node 2 is a SUðNf � NcÞ gauge group, and in

terms of magnetic dual variables the superpotential reads

Weff ¼ �m2
1

M
M11 þm2

3

M
M33 þ 1

�2

ðM11t12t21 þM33t32t23

þM13t32t21 þM31t12t23Þ � 1

M
M13M31

þ 1

M
N35N53; (16)

where tij are the magnetic quarks. In order to estimate the

scales of the theory we give the mesons canonical dimen-
sions, inserting the proper dynamical scales, finally obtain-
ing

Weff ¼ � �m2M11 þ ��2M33 þM11t12t21 þM33t32t23

þM13t32t21 þM31t12t23 �mzM13M31

þmN35N53; (17)

where

�m2 ¼ m2
1�2

M
��2 ¼ m2

3�2

M

mz ¼ �2
2

M
m ¼ �2

4

M
;

(18)

and recall that M, m1, m3 ¼ OðMpÞ. As discussed in [20],

in order for the metastable ISS-like vacua to have a suffi-
ciently large lifetime we have to require ��< �m and mz <
�m. The first inequality is easily accomplished by a mild
tuning of the masses m1, m3 which, generically, are of the
same order of magnitude. The second is easily seen to hold
(strongly) since we assume �2 � Mp. Similarly, we also

have m � �m.
The relative hierarchy between m and mz depends on

whether we implement the hierarchy (13) or not. Roughly,
what we need is the messenger supersymmetric mass m to
lie within the mass of the gauginos associated to node 3
(which depends on mz as we review below) and �m, the
highest mass scale in the hidden sector, as discussed in [7].
As anticipated we have realized a model of natural

(metastable) semidirect mediation. In our setup the
MSSM is at node 5. It is not directly coupled to the
supersymmetry breaking sector, but it is coupled to the
massive fields N35 and N53, which are the composite
messengers. The mediation is semidirect, since the mes-
sengers are coupled to the susy-breaking sector only
through gauge interactions (node 3, the messenger gauge
group, which in this case enters just as a flavor group
within the DSB mechanism).

Computing the messenger susy-breaking spectrum

Since this model has an explicit (and calculable) hidden
sector, we can go a little further.
We would like to compute the mass splitting for the

messengers N35 and N53. In a semidirect scenario as the
one discussed here, the messengers feel the breaking of
supersymmetry exactly as the matter chiral fields of the
MSSM in a model of gauge mediation. The only difference
here is that they already have a mass at tree-level m. This
implies that, besides ordinary diagonal mass terms (which
contribute to the supertrace), off-diagonal masses are also
generated at two loops. The messenger masses are easily
computed using standard techniques.
The diagonal supersymmetry breaking mass for the

messengers are as the soft scalar masses computed in [20]

m2
d � �2

3
�N

�
��2

�m

�
2
; (19)

6This is essentially for convenience. We could choose not to
enforce a hierarchy between �2 and �4 (while keeping them
larger than the other scales), the analysis would be slightly more
involved but the results unchanged.
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where �3 ¼ g23=4� is the loop factor of the gauge group at

node 3 and �N ¼ N1 þ N3 � N2.
The off-diagonal masses for the messengers can also be

computed. The computation involves the supersymmetric
mass of the messengers m and the nonsupersymmetric
mass of the gauginos of node 3, which is [20]

m� � �3
�N
��2mz

�m2
: (20)

Henceforth, we will take �N ¼ Oð1Þ and drop it from the
expressions. To perform the computation we parameterize
the gaugino mass as in the general gauge mediation (GGM)
formalism [27]

m� � �3MB1=2ð0Þ; (21)

where B1=2ðp2=M2Þ is a function characterizing a current-

current correlator of the hidden sector. Since we are only
interested in order of magnitude estimates, we approximate
it as a step function, i.e. BðxÞ ¼ 1 if x 2 ð0; 1Þ, BðxÞ ¼ 0
otherwise.M is the scale emerging from the KOO sector. It
can be obtained comparing Eqs. (20) and (21), and reads
M ¼ ��2mz= �m2.

The off-diagonal mass for the messengers is then given
by a diagram involving the massive messenger fermion and
the hidden gauginos of node 3

m2
off � �2

3

Z
d4p

1

p2

m

p2 þm2
MB1=2

�
p2

M2

�
: (22)

It can be evaluated using the approximation we explained
before for the function B1=2ðxÞ giving

m2
off � �2

3m
��2mz

�m2
log

�
1þ ��4m2

z

�m4m2

�
: (23)

We see that the off-diagonal mass, which is going to be the
leading contribution to the visible gaugino mass, peaks
when m is of the same order as the mass of the hidden
gaugino divided by the coupling constant, m�=�3, see
Eq. (20).

If we work in the regime (13), the ratio m�=ð�3mÞ is
easily suppressed by a few orders of magnitude and m2

off

can be approximated as

m2
off �

�2
3

m

�
��2mz

�m2

�
3
: (24)

Hence it results suppressed in the supersymmetry breaking
scale set by the gaugino mass (20).

We could think however of a different scenario. In order
to make m�=ð�3mÞ ¼ Oð1Þ we take a different hierarchy
with respect to the one in Eq. (13), namely �2 >�4. We
have

m�

�3m
� ��2

�m2

mz

m
�m2

3

m2
1

�2
2

�2
4

: (25)

Recalling what we said after Eq. (18), the ratio m3=m1 in
the expression above is necessarily smaller than 1; but we
see that even with a small hierarchy like �2 � 10�4 we
can achieve a not too small ratio m�=ð�3mÞ so that the log
in Eq. (23) is roughly of order one.
Thus, in this regime, we have potentially unsuppressed

visible gaugino masses, proportional to

m�;vis � �vis

m2
off

m
� �vis�3m� � �vis�

2
3m: (26)

As in [7], the visible gaugino mass turns out to be a
three-loop effect (one MSSM loop times two hidden
loops). Assuming the messenger gauge group at node 3
to be rather weak, this leads to a messenger mass which
is 109–1011 GeV, which seems phenomenologically
acceptable.
The question is of course what is the ratio of this gaugino

mass to the MSSM sfermion masses. If we were in a setup
similar to minimal gauge mediation, we could immediately
see that this ratio would be of order one. However, we are
not in such a setup, since we have a sizable contribution
from the diagonal messenger masses (19) to the supertrace
over the messenger sector. As discussed in [28], in such a
situation the sfermion masses become model dependent.
This is expected, since by turning on the supertrace we
cover more parameter space. Hence, in order to discuss in
more detail the MSSM soft spectrum one should set up the
computation along the lines of [28].7 This is however
beyond the scope of the present paper. What we have
shown is that in this model the MSSM gaugino masses
are not a priori suppressed by higher orders in the off-
diagonal messenger masses, at least in some range of
parameters. This suggests that F-term suppression of gau-
gino masses is not generic in semidirect gauge mediation.

V. CONCLUSIONS AND OUTLOOK

We have shown that semidirect gauge mediation can be
easily made natural, by dynamically generating supersym-
metric masses for the messenger fields. The simple mecha-
nism we have proposed turned out to be quite generic in
string theory when realized by D-brane embeddings.
We have discussed a few explicit examples by consid-

ering D-branes at chiral and nonchiral CY singularities.
The ease in which models of semidirect mediation arise
suggests that a large portion of their parameter space can
be covered by such constructions. As an example of such
possibility, we have shown that in a calculable model

7Note that, as discussed in [7,28], a positive supertrace over
the messenger sector would result in tachyonic masses for the
MSSM sfermions, which is of course phenomenologically ruled
out.
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where supersymmetry is broken in a metastable vacuum
and the messenger gauge group is a (weakly gauged) flavor
group of the hidden sector, one may choose a regime where
the visible gaugino masses are not necessarily suppressed.
This regime is not easily achieved in models of semidirect
gauge mediation where the messenger gauge group is a
genuine gauge group of the hidden sector, and is Higgsed
[5,8]. Conversely, the generation of D-term-like contribu-
tion to the diagonal scalar masses for the messengers,
induced by the supersymmetry breaking F-terms, seems
specific to the latter class of Higgsed models.

These facts suggest that, from a phenomenological point
of view, besides generic predictions encompassed by any
model of semidirect gauge mediation, there are others
which seem to hold only for some specific subclass of
models. It would be desirable to analyze further the phe-
nomenology of semidirect gauge mediation. In this respect,
recasting semidirect gauge mediation in the formalism of
general gauge mediation [27] might be helpful. Efforts in
this direction are under way [29].
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621-2006-3337. Contribution from the Längmanska
Kulturfonden and the Wilhelm och Martina Lundgrens
Veteskapsfond are also gratefully acknowledged. A.M. is
supported in part by FWO-Vlaanderen through project
G.0428.06. R. A. and A.M. are also supported in part by
the Belgian Federal Science Policy Office through the
Interuniversity Attraction Pole IAP VI/11.

[1] M. Dine and W. Fischler, Phys. Lett. 110B, 227 (1982);
C. R. Nappi and B.A. Ovrut, Phys. Lett. 113B, 175
(1982); M. Dine and W. Fischler, Nucl. Phys. B204, 346
(1982); L. Alvarez-Gaume, M. Claudson, and M.B. Wise,
Nucl. Phys. B207, 96 (1982).

[2] G. F. Giudice and R. Rattazzi, Phys. Rep. 322, 419 (1999).
[3] M. Dine and A. E. Nelson, Phys. Rev. D 48, 1277 (1993);

M. Dine, A. E. Nelson, and Y. Shirman, Phys. Rev. D 51,
1362 (1995).

[4] M. Dine, A. E. Nelson, Y. Nir, and Y. Shirman, Phys. Rev.
D 53, 2658 (1996).

[5] N. Seiberg, T. Volansky, and B. Wecht, J. High Energy
Phys. 11 (2008) 004.

[6] E. Poppitz and S. P. Trivedi, Phys. Rev. D 55, 5508 (1997);
N. Arkani-Hamed, J. March-Russell, and H. Murayama,
Nucl. Phys. B509, 3 (1998); H. Murayama, Phys. Rev.
Lett. 79, 18 (1997); S. Dimopoulos, G. R. Dvali, R.
Rattazzi, and G. F. Giudice, Nucl. Phys. B510, 12 (1998).

[7] L. Randall, Nucl. Phys. B495, 37 (1997).
[8] H. Elvang and B. Wecht, J. High Energy Phys. 06 (2009)

026.
[9] M. Dine, J. L. Feng, and E. Silverstein, Phys. Rev. D 74,

095012 (2006).
[10] C. Csaki, L. Randall, and W. Skiba, Phys. Rev. D 57, 383

(1998).
[11] N. Seiberg, Phys. Rev. D 49, 6857 (1994).
[12] K. A. Intriligator and P. Pouliot, Phys. Lett. B 353, 471

(1995).
[13] I. Affleck, M. Dine, and N. Seiberg, Nucl. Phys. B256, 557

(1985).
[14] E. Poppitz and S. P. Trivedi, Phys. Lett. B 365, 125 (1996).

[15] I. Affleck, M. Dine, and N. Seiberg, Phys. Lett. 137B, 187
(1984).

[16] H. Murayama, Phys. Lett. B 355, 187 (1995).
[17] I. Affleck, M. Dine, and N. Seiberg, Phys. Rev. Lett. 52,

1677 (1984).
[18] S. Franco, A. Hanany, D. Krefl, J. Park, A.M. Uranga, and

D. Vegh, J. High Energy Phys. 09 (2007) 075.
[19] K. A. Intriligator, N. Seiberg, and D. Shih, J. High Energy

Phys. 04 (2006) 021.
[20] R. Kitano, H. Ooguri, and Y. Ookouchi, Phys. Rev. D 75,

045022 (2007).
[21] C. Csaki, Y. Shirman, and J. Terning, J. High Energy Phys.

05 (2007) 099; A. Amariti, L. Girardello, and A. Mariotti,
Fortschr. Phys. 55, 627 (2007); T. Kawano, H. Ooguri, and
Y. Ookouchi, Phys. Lett. B 652, 40 (2007); A. Amariti, L.
Girardello, and A. Mariotti, J. High Energy Phys. 10
(2007) 017; S. Abel, C. Durnford, J. Jaeckel, and V.V.
Khoze, Phys. Lett. B 661, 201 (2008); N. Haba and N.
Maru, Phys. Rev. D 76, 115019 (2007); S. A. Abel, C.
Durnford, J. Jaeckel, and V.V. Khoze, J. High Energy
Phys. 02 (2008) 074; B. K. Zur, L. Mazzucato, and Y. Oz,
J. High Energy Phys. 10 (2008) 099; S. Abel and V.V.
Khoze, J. High Energy Phys. 11 (2008) 024.

[22] F. Benini, A. Dymarsky, S. Franco, S. Kachru, D. Simic,
and H. Verlinde, arXiv:0903.0619.

[23] I. Garcia-Etxebarria, F. Saad, and A.M. Uranga, J. High
Energy Phys. 08 (2006) 069.

[24] R. Argurio, M. Bertolini, S. Franco, and S. Kachru, J. High
Energy Phys. 01 (2007) 083; 06 (2007) 017.

[25] R. Argurio, G. Ferretti, and C. Petersson, J. High Energy
Phys. 07 (2008) 123.

NATURAL SEMIDIRECT GAUGE MEDIATION AND D- . . . PHYSICAL REVIEW D 80, 045001 (2009)

045001-9



[26] C. Vafa, J. Math. Phys. (N.Y.) 42, 2798 (2001); F.
Cachazo, B. Fiol, K.A. Intriligator, S. Katz, and C.
Vafa, Nucl. Phys. B628, 3 (2002); M. Aganagic, C.
Beem, and S. Kachru, Nucl. Phys. B796, 1 (2008).

[27] P. Meade, N. Seiberg, and D. Shih, arXiv:0801.3278.
[28] E. Poppitz and S. P. Trivedi, Phys. Lett. B 401, 38 (1997).
[29] R. Argurio, M. Bertolini, G. Ferretti, and A. Mariotti

(work in progress).

ARGURIO, BERTOLINI, FERRETTI, AND MARIOTTI PHYSICAL REVIEW D 80, 045001 (2009)

045001-10


