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Abstract 

We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair 

consists of tC
O
, 1,3-diaza-2-oxophenoxazine, as an energy donor and the newly developed tCnitro, 7-

nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors 

distances covering up to more than one turn of the DNA duplex. Importantly, we show that the rigid 

stacking of the two base analogs, and consequently excellent control of their exact positions and 

orientations, results in a high control of the orientation factor and hence very distinct FRET changes as 

the number of bases separating tC
O
 and tCnitro is varied. A set of DNA strands containing the FRET-pair 

at wisely chosen locations will, thus, make it possible to accurately distinguish distance- from 

orientation-changes using FRET. In combination with the good nucleobase analog properties this points 

towards detailed studies of the inherent dynamics of nucleic acid structures. Moreover, the placement of 

FRET-pair chromophores inside the base stack will be a great advantage in studies where other 

(biomacro)molecules interact with the nucleic acid. Lastly, our study gives possibly the first truly solid 

experimental support to the dependence of energy transfer efficiency on orientation of involved 

transition dipoles as predicted by the Förster theory. 
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Introduction 

In the search for improved methods for more accurate and detailed investigations on the structure and 

dynamics of nucleic acids as well as their interactions with other (biomacro)molecules we present the 

first base analog fluorescence resonance energy transfer (FRET)-pair. FRET is a technique frequently 

utilized to detect structural changes in biomacromolecular systems.
1-5

 The strong dependence of the 

transfer efficiency (E; see eq 1) between an excited donor (D) and a ground state acceptor (A) on 

distance (RDA
-6

), makes FRET the obvious choice for monitoring conformational changes and 

interactions between molecules. The efficiency of energy transfer is also governed by the Förster critical 

distance, R0, (eq 2; at which the E is 0.5) which in turn depends on the quantum yield of the donor (D), 

the donor/acceptor spectral overlap integral (JDA), the refractive index of the medium (n), and 

importantly the geometric factor ().
1,2,6

 

 

E = R0
6
/(R0

6
+RDA

6
)   (1) 

R0 = 0.211(JDA
2
n

-4D)
1/6

 in Å (2) 

 

The geometric factor takes the direction of the donor and acceptor transition dipoles into consideration 

and is described by eq 3: 

 

 = e1e2 – 3(e1e12)(e12e2)  (3) 

 

where e1 and e2 are the unit vectors of the donor and acceptor transition dipoles and e12 the unit vector 

between their centers. The value of 2
 can range from 0 to 4. Thus, to be able to extract detailed 

structural information from the measured FRET efficiency an accurate estimate of 2
 is required. Such 

estimates of 2
 are rarely available due to the lack of knowledge of orientation of the donor or acceptor 

molecules themselves and/or their interacting transition dipole moments.
7
 The most frequently used 
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(both correctly and incorrectly) 2
 is 2/3, which corresponds to freely rotating donor and acceptor 

transition dipoles. 

When monitoring conformational changes or interaction processes in nucleic acid containing systems 

using FRET, the most common method is to covalently attach donor and acceptor molecules via flexible 

linkers to two different positions and to assume that 2
 is 2/3. However, many donor/acceptor 

chromophores interact with the nucleic acid structure
7-9

 and, thus, the use of a 2
 of 2/3 is an inaccurate 

assumption that may result in considerable errors in structural interpretations. Better control of the 2
 in 

nucleic acid systems was presented in the excellent study by Lewis et al. in which a donor was rigidly 

attached to one end of the DNA helix resulting in a very good orientation control.
10

 However, the 

acceptor on the opposite end was attached only to one of the strands and had considerable motional 

freedom. Other recent excellent studies trying to achieve better control of the FRET orientation factor in 

nucleic acid systems are those by Iqbal et al.
11

 and Hurley et al.
12

. In an attempt to achieve the highest 

possible control of donor/acceptor orientation we here present a novel FRET-pair composed of two 

cytosine analogs, tC
O
 (1,3-diaza-2-oxophenoxazine) and the newly synthesized tCnitro (7-nitro-1,3-diaza-

2-oxophenothiazine) (Figure 1). 
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Figure 1. Top: Structure of G-tC
O
 base pair (left), fluorescent cytosine analog tC (middle) and newly 

developed cytosine analog tCnitro (right). Bottom: Representative normalized absorption (black) and 

emission (blue) spectra of FRET donor tC
O
 and absorption spectrum (red) of virtually non-fluorescent 

acceptor tCnitro within dsDNA showing the donor/acceptor spectral overlap. Measurements performed at 

22C in 25 mM phosphate buffer (pH 7.5) and [Na
+
] = 100 mM. 

 

Results and Discussion 

In the design of a nucleic acid base analog FRET-pair, our goal was to utilize tC or tC
O
 (Figure 1). 

We have previously established that both analogs have a high and stable quantum yield in dsDNA as 

well as being rigidly stacked within the duplex and, thus, are excellent donor candidates.
13,14-16

 With the 

objective of red-shifting the absorption of tC/tC
O
 and maintaining their nucleobase properties we 

synthesized tCnitro (Figure 1) as a FRET acceptor.  

Before investigating tCnitro as a spectroscopic tool its properties as a cytosine analogue needed to be 

established. In Table 1 a DNA melting temperature study for duplexes composed of tCnitro-containing 
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strands and the corresponding unmodified complements with G, A, C, and T, respectively, opposite 

tCnitro/C is presented. 

 

Table 1. DNA Melting Temperatures of tCnitro-containing Duplexes. 

 Base opposite tCnitro/C 
DNA sequence 

a
 G /ºC

 b
 A /ºC

 b
 C /ºC

 b
 T /ºC

 b
 

5’-CGTCYTTTGC-3’ 47 (45) 32 (21) 28 (20) 32 (27) 
5’-CGTTYCTTGC-3’ 43 (41) 29 (23) 29 (17) 30 (23) 

a
 Y denotes tCnitro or a normal C. 

b
 Temperatures in parenthesis are for the unmodified duplexes. 

 

The duplexes where tCnitro is paired with G have melting temperatures that are 13-19ºC higher than 

when it pairs with A, C, or T on the opposite strand. The corresponding differences for unmodified 

cytosine are 18-25ºC. Although the differences are slightly lower for the tCnitro/G base-pair than for the 

normal C/G base-pair, this result shows that tCnitro is highly selective for base-pairing with guanine. In 

addition, tCnitro increases the melting temperature compared to C by 2ºC in the fully complementary 

“GC” case. This slight increase in duplex stability is in good agreement with our previous studies on tC 

and tC
O
.
13,15

 To further establish the suitability of tCnitro as a cytosine analogue when positioned inside 

the DNA double helix we performed circular dichroism (CD) measurements on the duplexes in Table 1 

(see Figure 2). Comparing the modified duplexes (solid lines) to the corresponding unmodified ones 

(dashed lines) the same overall spectral envelope is found. The general appearance of the CD spectra is 

that of normal B-form DNA, which is characterized by a positive band centered at 275 nm, a negative 

band at 250-240 nm, a band that can be either positive or negative at 220 nm, and just below that a 

narrow negative peak followed by a large positive peak at 190-180 nm.
17

 The slight differences that can 

be seen between the CD of the unmodified and corresponding modified duplex most certainly come as 

an effect of the differences between the absorption of tCnitro compared to cytosine. In conclusion, the 

CD experiment together with the duplex melting temperature study, as well as the fact that the 

structurally very similar tC and tC
O
 have been shown using CD

13,15
 and NMR

15
 not to alter the natural 
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form of DNA, indicate that exchanging a cytosine for a tCnitro does not perturb the structure of the 

normal B-form DNA.  
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Figure 2. Circular dichroism CD spectra of tCnitro-modified DNA duplexes and the corresponding 

unmodified duplexes. Modified duplex with CT neighboring tCnitro (black solid line), modified duplex 

with TC neighboring tCnitro (red solid line) and corresponding unmodified duplexes (dashed lines). 

Measurements performed in 25 mM phosphate buffer (pH 7.5) and [Na
+
] = 100 mM at a duplex 

concentration of approximately 3.5 µM. 

 

The lowest energy absorption maximum of tCnitro in dsDNA is centered at approximately 440 nm with 

an extinction coefficient of 5400 M
-1

cm
-1

 (Figure 1). The position of the absorption results in a very 

good spectral overlap with the emission of tC
O
 (Figure 1) which is centered at 465 nm and a smaller 

overlap with the emission of tC (Emissionmax=505 nm, not shown). In combination with the quantum 

yield of tC
O
 in dsDNA and a refractive index of 1.4 in DNA,

1
 the R0 of the tC

O
-tCnitro FRET-pair is 

estimated to be 27 Å when using a 2
 of 2/3 (the use of 2/3 here is only to facilitate comparison with R0 

of common FRET-pairs). The 33-mer oligonucleotides utilized for the measurements in this study are 

presented in Table 2. 
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Table 2. Donor and Acceptor 33-mer Oligonucleotides Used. 

Name Sequence
a
 

tC
O
1 5’-CGATCACACAXAAGGACGAGGATAAGGAGGAGG-3’ 

tC
O
2 5’-CGATCACAXACAAGGACGAGGATAAGGAGGAGG-3’ 

tC
O
3 5’-CGATCAXACACAAGGACGAGGATAAGGAGGAGG-3’ 

tCnitro1 5’-CCTCCTCCTTATCCTCGTCYTTGTGTGTGATCG-3’ 
tCnitro2 5’-CCTCCTCCTTATCCTCGTYCTTGTGTGTGATCG-3’ 
tCnitro3 5’-CCTCCTCCTTATCYTCGTCCTTGTGTGTGATCG-3’ 
tCnitro4 5’-CCTCCTCCTTATYCTCGTCCTTGTGTGTGATCG-3’ 

a
 X = tC

O
; Y = tCnitro 

 

Except for the FRET donor position, the three tC
O
-sequences are the same and are complementary to the 

tCnitro-sequences, which have the FRET acceptor at four different positions. The positions of the donor 

and acceptor in the seven sequences are chosen so that every separation between 2 and 13 bases can be 

monitored combining the strands. Furthermore, the sequences are designed so that tC
O
 has the same 

surrounding bases and the donor and acceptor are situated far from the more dynamic ends of the 

duplex. 

 

Table 3. Lifetimes and Steady-State Quenching Data as well as Fitted FRET Efficiency. 

Bases in between τ1 (α1) /ns τ2 (α2) / ns <τ>
a
 / ns χ

2
 1-<τ>/τ0 1-I/I0 E

b
 

2 0.05 (0.96) 0.48 (0.04) 0.07 1.24 0.99 0.98 1.00 
3 0.05 (0.96) 0.54 (0.04) 0.07 1.31 0.99 0.97 0.99 
4 0.13 (0.65) 0.38 (0.35) 0.22 1.14 0.95 0.93 0.98 
5 1.11 (0.68) 0.36 (0.32) 0.87 1.62 0.81 0.77 0.89 
6 3.64 (1)  3.64 1.28 0.20 0.26 0.18 
7 2.63 (1)  2.63 1.57 0.42 0.45 0.39 
8 2.65 (1)  2.65 1.58 0.44 0.46 0.55 
9 3.09 (1)  3.09 1.30 0.35 0.37 0.43 
10 3.91 (1)  3.91 1.14 0.14 0.15 0.17 
11 4.41 (1)  4.41 1.11 0.03 0.04 0.01 
12 4.40 (1)  4.40 1.13 0.03 0.08 0.02 
13 4.26 (1)  4.26 1.21 0.06 0.10 0.05 

a
 <τ> = α1τ1+α2τ2 

b
 Fitted FRET efficiency 
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To study the change in the tC
O
-tCnitro FRET efficiency for the 12 different separations, both steady-

state and time-resolved fluorescence measurements were performed (Table 3). In both cases the results 

(Figure 3) show an efficiency that is highly dependent on both distance and orientation as the separation 

and, thus, the direction of the transition dipoles of the base analogs are altered in a stepwise fashion. 

The data suggest that we have successfully designed an excellent nucleic acid base analog FRET-pair. 

In the time-resolved measurements tC
O
 exhibits single exponential fluorescence decay for most 

sequences. However, the most quenched sequences need two exponential components in order to 

explain the fluorescence decay. There might be several reasons for the non-exponential decay such as: 

(1) difficulties in measuring highly quenched fluorophores on this short timescale where small amounts 

of unquenched fluorophores or scattered light might disturb the experiment or (2) distribution of donor-

acceptor distances and orientations leading to a distribution of energy transfer efficiencies. 

 

Figure 3. Efficiency of energy transfer for the base analog FRET-pair tC
O
-tCnitro estimated using 

decreases in tC
O
, donor, emission (red circles) and tC

O
 average emission lifetimes (black squares) as the 

two analogs are separated by 2 to 13 bases in a DNA duplex. Curve fitting using eq 6-7 with α and JDA 

as fit parameters is shown as solid line. Excitation wavelength 370 nm. Measurements performed at 

22C in 25 mM phosphate buffer (pH 7.5) and [Na
+
] = 100 mM.  
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Qualitatively, the data has an appearance exactly as expected for a FRET-pair situated at different 

positions within a DNA duplex: E decreases sharply with distance while oscillating between local 

maxima and minima as the transition dipoles of the donor and acceptor change between more parallel 

and more perpendicular configurations (eq 3). To analyze the measured efficiencies quantitatively we 

use eq 6 and 7. These equations take into consideration vector distance and accurate orientations 

between chromophores and become increasingly similar to the rough model in which the chromophores 

are placed on top of each other along the DNA helix axis, with increasing base separation. The excellent 

fit, where JDA and α are varied, to the experimental data and the distinct changes between maxima and 

minima not only confirm that the D and the overlap integral (i.e. donor emission profile and A) are 

virtually constant, but also gives further evidence that these C-analogs have practically no dynamics on 

the time-scale of fluorescence, however, faster dynamics cannot be ruled out. The fit is quite insensitive 

to the magnitude of the overlap integral and the fitted value (2∙10
14

 M
-1 

cm
-1 

nm
4
) is close to the one 

estimated from eq. 4 using the spectroscopic properties of the donor and acceptor (1.2∙10
14

 M
-1 

cm
-1 

nm
4
). 

From the phase angle parameter in the curve fitting we also find that the direction of the S1-S0 transition 

of tCnitro is rotated 67 compared to that of tC
O
 within their three-ring systems. This is in good 

agreement with the values obtained for tC
O
 (-33; anti-clockwise from molecule long-axis)

13 
and tCnitro 

(+25, manuscript in preparation) and proves the high potential of this FRET-pair in detailed structure 

probing. The slight difference between the curve fitted and the calculated angle of the S1-S0-transitions 

(67 vs. 58) likely comes as an effect of the model fitting, in combination with small errors in the 

experimental determination of the transition dipole orientations, rather than any significant changes in 

orientations when the base analogs are positioned within the base stack compared to their monomeric 

forms. We have previously performed circular dichroism experiments on homodimers of tC as well as 

tC
O
 that are separated by 0-2 bases in DNA-duplexes to examine the excitonic effect and found minor 

effects for the case where the homodimer is separated only by 0 bases (data not shown). The fact that 

the exciton interaction found is small most likely comes as an effect of the fairly low extinction 
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coefficients (oscillator strengths) of the analogs. In the current study we have a case where tC
O
 and 

tCnitro are separated by at least 2 bases, the extinction coefficients are fairly low and, furthermore, the 

energy of the S1-S0-transitions of tC
O
 and tCnitro is different (heterodimer) as is the energy of the S1-S0-

transitions of tC
O
 and tCnitro compared to the normal bases. This suggests that the direction of the 

transition dipoles of tC
O
 and tCnitro are not substantially affected due to interactions between them or 

between them and the surrounding bases. 

 

Conclusions 

In conclusion we have designed the first nucleic acid base analog FRET-pair. As a consequence of 

both the analogs being rigidly located within the base stack, this system enables very high control of the 

orientation factor. A set of strands containing our FRET-pair at strategically chosen positions, i.e. where 

the slopes are steep in Figure 3, will, thus, make it possible to accurately distinguish distance- from 

orientation-changes using FRET. In combination with the favorable base pairing properties this will 

facilitate detailed studies of the inherent dynamics of nucleic acid structures. Moreover, the placement 

of FRET-pair chromophores inside the base stack will be a great advantage in studies where other 

(biomacro)molecules interact with the nucleic acid. Lastly, our study gives possibly the first truly solid 

experimental support to the dependence of E on orientation of involved transition dipoles as predicted 

by the Förster theory. 

 

 

Experimental 

Synthesis of nucleoside building blocks tC
O

 and tCnitro. Unless stated otherwise, all reagents were 

obtained from commercial suppliers and used without further purification: DCM, pyridine and DIPEA 

were purified by distillation (over calcium hydride). Synthesis of tC
O
, 5-nitro-2-amino-thiophenol and 

2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl was done according to literature procedures. 

13,18-20
 De-oxygenation of reaction mixtures was achieved by bubbling nitrogen through the solution for 
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30 minutes. Column chromatography was performed using silica gel (Matrex, LC 60Å/35–70 micron). 

1
H (400 MHz) and 

13
C (100.6 MHz) NMR spectra were recorded at room temp. in CDCl3 or (CD3)2SO 

using a Jeol Eclipse 400 NMR spectrometer. Chemical shifts are reported relative to residual CHCl3 or 

(CH3)2SO ( = 7.26 or 2.54 ppm) for 
1
H NMR and ( = 77.23 or 40.45 ppm) for 

13
C NMR, respectively. 

31
P NMR spectrum was recorded on a Bruker AV300 spectrometer at 121 MHz and was externally 

referenced to 85% phosphoric acid in deuterated water. High-resolution mass spectrum was recorded 

using the electrospray technique on a Bruker APEX III FT-ICR mass spectrometer. Low-resolution 

mass spectra were recorded using the electrospray technique on a Fisons VG platform instrument or a 

Waters ZMD quadrupole mass spectrometer in acetonitrile (HPLC grade). Elemental analyses were 

performed by H. Kolbe Mikroanalytisches laboratorium, Mülheim an der Ruhr, Germany. 
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Scheme 1. Reaction conditions: (i) NaOH(aq), 24 h, reflux; (ii) EtOH, HCl, 24 h, reflux, 15% over two 

steps; (iii) DMF, toluene, 3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl, NaH, 18 h, rt, 11%; (iv) 

MeONa, MeOH, 18 h, rt, 71%; (v) pyridine, DMAP, DMT-Cl, 18 h, rt, 74%; (vi) DCM, DIPEA, 2-

cyanoethyl-N,N-diisopropylchlorophosphoramidite, 1 h, rt, 93%. 
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3: Degassed NaOH (aq) (0.25 M, 95 ml) was added to a mixture of 5-nitro-2-amino-thiophenol (5.55 

g, 32.6 mmol) and 5-bromouracil (6.46 g, 33.8 mmol) under argon and was allowed to reflux for 24 h. 

The crude product was allowed to cool and was subsequently filtered off. No more purification was 

done. 

4: To the crude product 3 was added EtOH (940 ml) and concentrated HCl (37%, 64 ml). The reaction 

mixture was refluxed for 24 h where after it was allowed to cool down and subsequently filtered off. 

The filter cake was slurred up in NH4 (aq) (8%, 50 ml) at 60°C for 10 minutes, cooled down and filtered 

off. This was repeated once. The filter cake was washed with water, DMSO and finely MeOH resulting 

in a red insoluble powder (1.3 g, 5 mmol, 15% over two steps). Elemental analysis calculated for 

[C10H6N4O3S]: C, 45.80; H, 2.31, found C, 45.97; H, 2.36. 

5: DMF (15 ml) was added to a mixture of 4 (606 mg, 2.31 mmol) and NaH (60% in mineral oil, 101 

mg, 2.54 mmol) under argon. The reaction mixture was left for 1 h where after toluene (15 ml) was 

added. 2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl (1.04 g, 2.67 mmol) was added portion 

wise to the blue reaction mixture for 1 h where after it was left overnight. Ethylacetate was added to the 

mixture where after the mixture was filtrated and the filtrate was washed twice with water where upon 

the solvent was removed in vacuo. Chromatography (SiO2, 1-1.5% MeOH in CH2Cl2) yielded a yellow-

red solid (160 mg, 0.26 mmol, 11%); 
1
H NMR (CDCl3)  =  7.88-8.5 (m, 5H), 7.76 (d, 1H), 7.51 (s, 1 

H), 7.42 (d, 1H), 7.2-7.3 (m, 4H), 6.32 (dd, 1H), 5.61 (d, 1H), 4.83 (dd, 1H), 4.6-4.7 (m, 2H), 2.94 (dd, 

1H), 2.43 (s, 3H), 2.38 (s, 3H), 2.25 (m, 1H) ppm; 
13

C NMR (CDCl3)  = 166.2, 160.5, 154.1, 144.7, 

144.2, 141.6, 134.7, 130.3, 129.9, 129.7, 129.6, 129.4, 129.2, 126.5, 123.5, 121.4, 118.4, 118.3, 96.1, 

87.5, 83.9, 75.1, 64.1, 39.5, 21.8 ppm; Elemental analysis calculated for [C31H26N4O8S]: C, 60.58; H, 

4.26, found C, 60.52; H, 4.31. 

6: MeONa (40 mM in MeOH, 25 ml) was added to 5 (137 mg, 0.223 mmol) under argon. The reaction 

mixture was left overnight where after it was neutralized with acetic acid and the solvent was removed 

in vacuo. Chromatography (SiO2, 10-13% MeOH in CH2Cl2) yielded a yellow-red solid (60 mg, 0.16 

mmol, 71%); 
1
H NMR ((CD3)2SO)  = 11 (br s, 1H), 7.91-8.03 (m, 3H), 7.03 (d, 1H), 6.09 (t, 1H), 5.28 
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(br s, 1H), 5.15 (br s, 1H), 4.25 (m, 1H), 3.83 (q, 1H), 3.67 (dd, 1H), 3.58 (dd, 1H), 2.21 (m, 1H), 2.07 

(m, 1H) ppm; 
13

C NMR ((CD3)2SO  = 159.66, 154.41, 143.67, 137.30, 124.33, 122.25, 118.70, 117.56, 

94.22, 88.53, 86.62, 70.70, 61.71, 41.50 ppm; Elemental analysis calculated for [C15H14N4O6S]: C, 

47.62; H, 3.73, found C, 47.48; H, 3.70. 

7: Freshly distilled pyridine (5 ml) was added to 6 (222 mg, 0.587 mmol), DMAP (4 mg, 0.03 mmol) 

and DMT-Cl (240 mg, 0.71 mmol) under argon. The reaction mixture was left overnight where after it 

was quenched with a small amount of NaHCO3 (aq, 5%) and the solvent was evaporated in vacuo. The 

crude product was dissolved in DCM and washed once with 5% NaHCO3 (aq) and twice with H2O. 

Chromatography (SiO2, 1.5-3% MeOH in CH2Cl2) yielded a yellow-red solid (297 mg, 0.436 mmol, 

74%); 
1
H NMR (CDCl3)  = 10.45 (br s, 1H), 7.88 (s, 1H), 7.80 (d, 1H), 7.51 (s, 1H), 7.10-7.45 (m, 

10H), 6.83 (m, 4H), 6.37 (t, 1H), 4.68 (m, 1H), 4.17 (m, 2H), 3.74 (s, 3H), 3.71 (s, 3H), 3.41 (d, 1H), 

3.33 (d, 1H), 2.88 (m, 1H), 2.34 (m, 1H) ppm; 
13

C NMR (CDCl3)  = 160.51, 158.79, 155.20, 144.38, 

143.89, 141.82, 136.15, 135.76, 135.39, 130.17, 130.05, 128.21, 128.12, 127.20, 123.21, 121.24, 

118.56, 117.78, 113.50, 96.41, 87.43, 87.21, 86.92, 72.10, 63.46, 55.33, 42.32 ppm; Elemental analysis 

calculated for [C36H32N4O8S]: C, 63.52; H, 4.74, found C, 63.59; H, 4.67. 

8: Dry 7 (0.29 mg, 0.43 mmol) was dissolved in DCM (10.0 mL) under an atmosphere of argon and 

DIPEA (0.184 mL, 1.06 mmol) was added. 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (0.114 

mL, 0.51 mmol) was then added drop wise and after that the reaction mixture stirred at room 

temperature for 1 h then transferred under argon into a separating funnel containing degassed DCM 

(20.0 mL). The mixture was washed with degassed saturated aqueous KCl (20.0 mL) and the organic 

layer was separated, dried over sodium sulfate, filtered and the solvent removed in vacuo. The 

phosphoramidite product was dried under vacuum, dissolved in DCM (3 mL) and precipitated from 

hexane (200 mL) at room temperature to give the title compound 8 (the phosphoramidite of 7-nitro-1,3-

diaza-2-oxophenothiazine) as an orange precipitate (0.35 g, 93%); δP (300 MHz, CDCl3) 148.21 and 

149.14; m/z LRMS [ES
+
, MeCN] 903 (M + Na

+
, 10%); HRMS (M + Na

+
) (C45H49N6NaO9PS) calc. 

903.2912, found 903.2895. 



 

15 

Oligonucleotide synthesis. Standard DNA phosphoramidites, solid supports and additional reagents 

were purchased from Link Technologies or Applied Biosystems Ltd. Disposable Sephadex NAP 

columns were purchased from GE Healthcare. All oligonucleotides were synthesized on an Applied 

Biosystems 394 automated DNA/RNA synthesizer using a standard 0.2 μmole phosphoramidite cycle of 

acid-catalyzed detritylation, coupling, capping, and iodine oxidation. Stepwise coupling efficiencies and 

overall yields were determined by the automated trityl cation conductivity monitoring facility and in all 

cases were >98.0%. All β-cyanoethyl phosphoramidite monomers were dissolved in anhydrous 

acetonitrile to a concentration of 0.1 M. The coupling times were 25 s for normal (A,G,C,T) monomers 

and 10 min for the modified phosphoramidite monomer. Cleavage of oligonucleotides from the solid 

support and deprotection was achieved by exposure to concentrated aqueous ammonia solution for 60 

min at room temperature followed by heating in a sealed tube for 5 h at 55°C. For details in RP-HPLC 

analysis and purification of oligonucleotides see Supporting information. 

 

Photophysical measurements 

All measurements were made at 22°C in a phosphate buffer at pH 7.5 in total sodium- and phosphate 

ion concentrations of 100 mM and 25 mM, respectively. Double stranded concentrations were 2 µM or 

9 µM (the higher concentration used for time resolved measurements of highly quenched sequences). 

An excess of the acceptor strand were used in all experiments (to ensure complete hybridization). 

Absorption spectra were recorded from 200 to 600 nm on a Varian Cary 4000 spectrophotometer. The 

sequences used in the study are 5'- CGA TCA XAX AXA AYY ACG AYY ATA AGG AGG AGG -3', 

where X is C which can be substituted by a tC
O
 and Y is a G where the C on the complementary strand 

can be substituted by a tCnitro. Combination of singly substituted strands results in duplexes with 

distances ranging from 2 to 13 base pairs separating the tC
O
 and tCnitro (10 Å to 48 Å). The extinction 

coefficient of the tCnitro nucleoside was determined by measuring the absorption of samples of known 

concentration. Samples were prepared by weighing out small amounts of the tCnitro nucleoside, typically 



 

16 

1 mg, and dissolving them in known volumes of MQ water (Millipore). The extinction coefficient was 

determined as an average of three measurements. 

Steady state fluorescence was measured on a Spex Fluorolog 3 spectrofluorimeter (JY Horiba). The 

emission spectra were recorded from 380 to 800 nm with the excitation wavelength fixed at 370 nm. 

Fluorescence lifetimes were determined using time-correlated single photon counting. The excitation 

pulse was provided by a Tsunami Ti:Sapphire laser (Spectra-Physics; 80 MHz) which was pumped by a 

Millenia Pro X (Spectra-Physics). The Tsunami output at 740 nm was acousto-optically pulse-picked to 

4 MHz by a pulse selector (Spectra Physics) when needed and subsequently frequency-doubled yielding 

an excitation wavelength of 370 nm. The photons were collected by a thermoelectrically cooled micro 

channel-plate photomultiplier tube (MCP-PMT R3809U-50; Hamamatsu) and fed into a multi-channel 

analyzer with 4096 channels. A minimum of 10000 counts were recorded in the top channel. The 

fluorescence decay curves were fitted to exponential expressions by the program FluoFit Pro v.4 

(PicoQuant GmbH). The sample response was monitored through a monochromator at 460±16 nm. 

UV absorption DNA melting studies were performed on 10-mer oligonucleotides (for sequences see 

Table 1 or Supporting Information) at a concentration of approximately 4 µM using a Varian Cary 4000 

spectrophotometer equipped with a programmable multi-cell temperature block. The samples were 

heated from 10C to 80C at a maximum rate of 0.2C min
-1

 whereupon they were cooled to 10C at the 

same rate. The absorption at 260 nm was measured with a temperature interval of 0.5C. Melting 

temperatures were determined using the maximum of the derivatives. 

Circular Dichroism spectra were recorded on 10-mer oligonucleotides (for sequences see Table 1 or 

Supporting Information) at a concentration of approximately 3.5 µM using a Jasco J-810 

spectropolarimeter at 20ºC. Spectra were recorded between 200 and 500 nm. 

 

Theoretical evaluation 

The energy transfer efficiency for the steady state case as well as for the time resolved case was 

determined using eq 4: 
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00

11



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F

F
E   (4) 

where E is the energy transfer efficiency, F and F0 are the integrated emission intensities of the donor in 

presence and absence of acceptor, respectively, and τ and τ0 are the donor lifetimes in presence and 

absence of acceptor, respectively. The expected energy transfer efficiencies were calculated using eq 1 

and the Förster distances, R0, were calculated using eq 2 with the refractive index (n) and donor 

quantum yield (D) set to 1.4 and 0.23, respectively.
1,13

  The spectral overlap integral (JDA) was 

determined using eq 5: 

   



0

4 λdλλελFJ ADDA  (5) 

where FD is the normalized donor emission and εA is the acceptor absorption. The orientation factor, κ, 

was calculated using eq 6:
21
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
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where nDA is the number of base pairs in between the donor and acceptor, a is the distance between the 

centre of the DNA helix to the centre of the chromophore (4 Å), RDA is the donor acceptor distance, α is 

a fitted phase angle, and β is the helical rise angle (34.3° /base pair). The donor acceptor distance (in Å) 

is calculated using eq 7:
21

  

     22 1cos12  DADADA nbnaR   (7) 

where b is the helical rise (3.4 Å /base pair). An in-house made MATLAB program was used to fit the 

data from the lifetime measurements with respect to the phase angle and the overlap integral. The phase 

angle is defined as the angle between the transition dipole moments of the donor on one strand and the 

acceptor on the other, looking along the DNA helix long-axis and when there are no bases separating 

the donor and the acceptor (i.e. the acceptor is the neighboring base of the guanine that base-pairs with 

the donor). Considering how the donor and acceptor are oriented in the helix, the phase angle can be 
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translated to an angle describing the difference in the orientation of the transition dipole moments of the 

donor and acceptor within their three-ring systems. 
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