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Abstract 

 
Rotor wake interactions with stators is an important 
aspect in turbomachinery noise generation. This 
paper deals with the time lagged periodic boundary 
condition (chorochronic periodicity) used in time 
domain Navier-Stokes equations solvers. The time 
lag periodic b.c. is used to solve the nonlinear three 
dimensional N-S equations using realizable k-epsilon 
turbulence model and time dependent wake defined 
at the inlet, with only a limited number of blade 
passages discretized. The time lag periodic b.c. has 
been validated through a number of 3D test cases. It 
has been shown that the use of a periodic/temporal 
damping term is an eff icient way to stabilize the time 
lagged boundary condition without adding any extra 
spatial dissipation to the computation. The acoustic 
response from a stator vane with wakes defined at the 
inlet is presented. 
 
 
Nomenclature 
 
T Period 
C Fourier coefficient 
Q Vector with flow variables 
 Damping factor 

m  Tangential mode number 
N  Number of blades 
 
Subscripts 
 
k,l Fourier coefficient index 
 
Superscripts 
 
^ Fourier representation 

 Vector 
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Introduction 
 
Aerodynamic interaction between rotor wakes and 
stators is one of the most important sources in 
turbomachinery noise generation [1]. The rotor wake, 
caused by the rotor boundary layer, is seen by the 
stator as a local change in velocity, rotating with the 
same rotational speed and pitch as the rotor. The 
stator is therefore experiencing an unsteady velocity 
field, and an unsteady pressure distribution on the 
blades is created. This in turn creates pressure waves, 
which will take the form of spinning modes in the 
turbomachinery duct, according to the well known 
theory of Tyler and Sofrin [2]. The resulting noise is 
a tone that consist of the blade passing frequency, 
BPF, and harmonics.  
 
When pressure modes of an arbitrary axial stage are 
to be predicted, some problems may arise. One is that 
the use of ordinary CFD can be computationall y very 
expensive if no periodicity can be used to simplify 
calculations, i.e. number of rotors and number of 
stators are such that a large number of stators has to 
be discretized to fit the periodicity of the rotor wakes. 
One solution to this problem is to use a frequency 
domain linearized Navier-Stokes equations solvers. A 
nonlinear mean flow solution is computed and on top 
of this the wakes are treated as linear perturbations 
and calculated in frequency domain. This has to be 
done for each harmonic to the BPF, i.e. each Fourier 
coefficient in the Fourier series representation of the 
flow perturbations, that are of interest. The linear 
response for each harmonic can then be calculated by 
using pseudo time marching, to reach convergence of 
the Fourier coefficients. If the period of the rotor 
wakes does not fit in a single stator vane 
discretization, it is easil y solved by introducing a 
phase lag at the periodic boundaries. This method has 
successfull y been used at e.g. Volvo Aero [3], but it 
has some built i n limitations. Due to the linearization, 
the nonlinear effects in the wakes are neglected. 
These nonlinear effects depend on the amplitude of 
the flow perturbations, and it is unclear when they 
become significant. The solution is obtained through 
many steps, i.e. first a mean flow has to be 
calculated, then the wake response for each BPF 
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harmonic has to be calculated separately. This can be 
seen as a drawback too. 
 
Another way of calculating rotor-wake interaction on 
a single or a few stator vane discretizations is to use 
ordinary unsteady CFD with a time lagged periodic 
boundary condition, i.e. chorochronic periodicity 
[4,5]. A Fourier representation of the information 
near the periodic boundaries can be made by 
sampling the flow variables there. The Fourier-series 
can then be used to insert a time shift into the 
periodic boundary, which then makes it possible to 
calculate the rotor wake response of an arbitrary axial 
stage. In this case the unsteady effects in the 
perturbations are treated and all the frequencies of the 
wake response together with the mean flow can be 
obtained in one calculation. The drawback is that the 
time it takes to reach periodic convergence can be 
very long. Anyhow, it can save computational cost 
compared to a full 360o simulation if  that is the only 
alternative. 
 
 

Chorochronic periodicity 
 
The interaction between two arbitrary sets of blade 
rows that are rotating with different angular velocities 
can be computed by using chorochronic boundary 
conditions [4,5]. Only the stators of a fan stage is 
considered is this paper. The wakes from the rotor are 

modeled at the inflow of the computational domain, 
and a chorochronic periodic b.c., i.e. time lagged 
periodic b.c., is used at the pitch wise boundaries as 
shown in Fig. 1. The fundamental frequency in a fan 
stage is the blade passing frequency (BPF), i.e. the 
frequency of the rotor wakes that are entering the 
domain, and all deterministic flow perturbations that 
are caused by the rotor wakes can then be described 
by the BPF and harmonics to it. A rotor wake of 
arbitrary pitch can, with a chorochronic b.c., fit into 
an arbitrary number of stator vane discretizations. 
 
The chorochronic b.c. works in three steps; First as a 
filter, that samples values at each side, to update a 
Fourier series representation of the flow variables 
near the boundaries. Then it works as a time shif t, by 
evaluating the Fourier series at a time that 
corresponds to the phase shif t between the periodic 
sides, and uses the time shif ted and rotated flow 
variables at the other side. Next the Fourier 
representation is evaluated again, at the current time, 
and used to damp out unperiodic flow phenomena in 
the cell where the sampling occurred. A diagram of 
how this works is shown in Fig. 2. The only thing 
that changes if two or more stator vanes are 
discretized is the timelag size/phase shift, and the 
rotational angle. 
 
 

 

 
Fig. 1  Schematic drawing of computational domain 

 
 
Step 1: Updating the Fourier coefficients 
The Fourier coefficients are updated with a moving 
average technique [4], and the computation should 
converge to a periodic solution, where the period is 
the inverse of the BPF. The Fourier coefficients that 
should represent the flow variables near the periodic 
boundaries can be calculated by integration over one 
period, 
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The time derivatives of these Fourier coefficients can 
be found by looking at the integration boundaries, 
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where, 
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The approximate time derivative of the Fourier 
coefficients can then be found with the new sample 
and the existing set of Fourier coefficients as, 
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or, 
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The Fourier coefficients are updated inside the 
Runge-Kutta cycle that is used to update the solution 
in time. The calculation has converged to a periodic 
solution when the Fourier coefficients are stationary, 
and the flow through the boundary wil l not be 
affected if  a suff icient amount of Fourier coefficients 
is used at each cell close to the boundary.

 
Fig. 2  Simplified diagram of how the periodic b.c. with time shift works. Rings represent physical cells  inside the 
domain and crosses are ghost cells used to calculate fluxes through the boundary. The Fourier representation of a 

physical cell near a boundary  is updated continuously by sampling. It is used both to damp out unperiodic flow 
phenomena (errors) in the physical cell and in ghost cells at the other side of the boundary. 

 
Step 2: Time shift 
A Fourier representation of the flow variables in two 
cell layers at each side of the periodic b.c. is needed, 
because two cells on each side of a cell f ace are 
needed for the convective flux calculation scheme 
used in this paper. The Fourier series are evaluated at 
a time that corresponds to the phase shift between the 
periodic sides, and then the time shifted variables are 
used in ghost cells at the boundaries at each side. The 
ghost cells corresponds to physical cells near the 
other side of the boundary, at a dif ferent time. A 
diagram of how data is transferred from one side to 
the other is shown in Fig. 2. It works in the same 

way, the other way around, i.e. on the other side of 
the boundary. 
 
Step 3: Periodic damping 
If only step one and two are used in a periodic b.c. 
with time shift, it wil l be unstable. A 1D-Euler test 
case was made to find out what caused these 
instabil ities. The 1D problem represents a tube with 
periodic time lagged boundaries, and the time lag was 
inserted as described in Step 1 and Step 2. The 
domain and the Fourier coefficients was initialized 
with an acoustic wave that had a wave length that 
was 50% longer than the domain. The time lag and 
the period was specified so that the acoustic wave 
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should be completely resolved. The nonlinear effects 
wil l start to deform the wave when the simulation is 
started. The Fourier coefficients will adapt to the 
deformed wave, but some reflections wil l occur at the 
boundaries, since the deformed wave is not 
completely represented at once. These reflected 
waves will travel in the opposite direction compared 
to the wave that was initialized, and therefore it will 
not match the specif ied period and time lag. 
Nevertheless, these reflections will grow and 
contaminate the solution and the Fourier coefficients 
until it diverges. The first solution to this problem 
was to make the time lagged periodic b.c. absorbing 
[6]. It was shown to be stable, but it adds some extra 
spatial dissipation close to the b.c. This extra 
dissipation was shown to destroy the wake too much, 
when the absorbing time lag periodic b.c. was tested 
in a 3D computation. A better solution to stabilize the 
b.c. is to use temporal damping, by evaluating the 
Fourier coefficients and use the result in a periodic 
damping term; 
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The damping term will damp out unperiodic 
errors/reflections and stabilize the b.c. When the 
solution has reached periodic convergence, the 
damping term will be zero, and no extra spatial 
dissipation is added. The optimal size of the damping 
factor is mesh dependent, because we only use 
periodic damping in two cell l ayers on each side of 
the b.c., as shown in Fig. 2. For that reason the size of 
the cells close to the b.c. will have an influence on 
the amount of damping. The solution will  reach 
periodic convergence slower if the damping term is 
set to a higher than optimal value, but on the other 
hand, LI� LV�WRR�VPDOO�WKHUH�ZLOO�EH�LQVWDELOLWLHV and 
the computation will  either be contaminated with 

unperiodic flow phenomenon or diverge. Anyhow, 
for our cases it seemed to work well with a damping 
factor somewhere between: 
 

TT

10010
dd H      (8) 

 
Absorbing boundaries 

 
The inflow is defined with the rotor wakes on top of 
the mean inflow properties, as radial profiles of wake 
harmonics and mean flow. The inflow is a zero order 
absorbing boundary condition that absorbs most of 
the upstream traveling waves. The outlet is defined 
with a static pressure profile. Upstream of the outlet 
there is a buffer layer, as shown in Fig. 1, that works 
as a low pass fil ter, and it will cancel out all 
transients before it reaches the outlet, to ensure that 
no reflection of waves occur. 
 

Numerical schemes 
 
The solver, based on the G3D family of codes [7], 
solves the unsteady Reynolds-averaged Navier-
Stokes equations with realizable k- WXUEXOHQFH�
model, by using a finite volume solver with a 
standard third-order upwind scheme for the 
convective fluxes, and a second order centered 
dif ference scheme for the diffusive fluxes. The 
solution is updated with a three-stage Runge-Kutta 
technique. 
 

Results 
 
A fan stage with a rotor stator vane count ratio of 
about 1:1.56 is considered. Two stators are here 
discretized to reduce the time lag size in the 
chorochronic periodic b.c. This will speed up 
convergence time [6]. The wakes from the rotors 
have been calculated in a separate steady state RANS 
calculation for the rotor blade row. The wakes are 
modeled at the inflow of the stator domain by an 
unsteady inflow b.c., and can be seen by plotting 
entropy contours, as shown in Fig. 3. 
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Fig. 3  Entropy contours at a mid-radius-surface and blades, over the two stator passages used in the wake 

response computation. Wakes are entering from the left through the unsteady inflow b.c. and seen as light strikes 
that are convected downstream (to the right) with the flow. 

 
The block structured mesh that has been generated 
consist of ~6.3Â��6 nodes, and it has a resolution that 
should be able to capture acoustic response up to the 
3rd BPF harmonic. A sparse mesh, ~1.0Â��6 nodes, is 
also created and used to generate a good initial 
solution for the fine mesh.  
 
Three harmonics is used in the Fourier series 
representation of the flow through the time lagged 
periodic b.c.  
 
The wake response from the unsteady (nonlinear) 
RANS equations solver using chorochronic 
periodicity is compared to a solution obtained with a 
frequency domain linearized Navier-Stokes equations 
solver [6], that has been validated against 
independent data [3]. 
 
The acoustic response is evaluated through a 
decomposition into the Tyler-Sofrin modes [2] that 
are of interest: 
 

statorrotor NpNnm ��� 
    (9) 

 
where, 
 

������� ��� ,1,0,1,,2,1 pn
    (10) 

 
In this case the propagating modes are m=-10 for the 
BPF, m=-20, m=8 for 2nd BPF harmonic, and m=-30, 
m=-2, m=26, for the 3rd BPF harmonic. 
 
The calculation on the sparse mesh is simulated for 
about 80 periods to ensure periodic convergence. 
Then the solution and the Fourier coefficients is 
interpolated onto the fine mesh and simulated for 
another 20 periods, which seemed to be enough for 
periodic convergence on the acoustically suited mesh. 
 
The maximum amplitude of the pressure modes is 
about the same or lower in the results from the 
nonlinear solver compared to the linear frequency 
domain solver; Fig. 4-9. Also the shape of the 
pressure modes is about the same for the 1st BPF, Fig. 
4, but dif fers for the higher frequencies, Fig. 5-9. 
Some discrepancies are expected since nonlinear 
effects are ignored in the linear solver, and at this 
stage it can only be said that the results shows 
promising agreement. It is also unclear if  it is enough 
with a three harmonics representation of the flow 
through the time lagged periodic b.c., but this will be 
investigated in a near future. 
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Results from the linear frequency domain solver is shown to the left and results from the nonlinear solver is shown 
to the right. This corresponds to all the following plots; Fig. 4-9. 

 

 
Fig. 4  Pressure fluctuations downstream of the stator vanes at BPF and tangential mode number m=-10. The 

maximum amplitude of the nonlinear results is here about 10 % lower than in the linear results. 
 
 

 
Fig. 5  Pressure fluctuations downstream of the stator vanes at 2nd BPF and tangential mode number m=-20. The 

maximum amplitude of the nonlinear results is here about 40 % lower than in the linear results. 
 
 

 
Fig. 6  Pressure fluctuations downstream of the stator vanes at 2nd BPF and tangential mode number m=8. The 

maximum amplitude of the nonlinear results is here about the same the in the linear results. 
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Fig. 7  Pressure fluctuations downstream of the stator vanes at 3rd BPF and tangential mode number m=-30. The 

maximum amplitude of the nonlinear results is here about 5 % lower than in the linear results. 
 
 

 
Fig. 8  Pressure fluctuations downstream of the stator vanes at 3rd BPF and tangential mode number m=-2. The 

maximum amplitude of the nonlinear results is here about 40 % lower than the linear results. 
 
 

 
Fig. 9  Pressure fluctuations downstream of the stator vanes at 3rd BPF and tangential mode number m=26. The 

maximum amplitude of the nonlinear results is here about 50 % lower than in the linear results. 
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Conclusions 

 
The method of calculating acoustic response from 
rotor wake interactions with stators by using 
chorochronic periodicity and unsteady CFD has been 
validated against a frequency domain linearized 
Navier-Stokes equations solver method. 
 
The use of a periodic damping term is an eff icient 
way to stabilize the time lagged boundary condition 
without adding any extra spatial dissipation to the 
computation. 
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