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Coordinating Development: Can Income-based Incentive Schemes
Eliminate Pareto Inferior Equilibria?

Philip Bond and Rohini Pande

Abstract

Individuals’ inability to coordinate investment may significantly constrain economic development.

In this paper we study a simple investment game characterized by multiple equilibria and ask

whether an income-based incentive scheme can uniquely implement the high investment outcome.

A general property of this game is the presence of a crossover investment point at which an

individual’s incomes from investment and non-investment are equal.  We show that arbitrarily small

errors in the government’s knowledge of this crossover point can prevent unique implementation

of the high investment outcome.  We conclude that informational requirements are likely to severely

limit a government’s ability to use income-based incentive schemes as a coordination device.
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1 Introduction

Whenever investment decisions are decentralized but individual returns to investment re-

main dependent on the choices made by others, economic activity may be limited by a

coordination failure among the agents. This observation has often been taken to be par-

ticularly relevant for low-income countries. A large theoretical literature, starting with

Rosenstein and Rodan (1943) and Hirschman (1957), has explored how coordination fail-

ures can cause poor countries and people to stay poor (see, e.g., Murphy, Shleifer and

Vishny 1989, Matsuyama 1996 and Becker, Murphy and Tamura 1990).

If one takes seriously the view that economic growth is inhibited by coordination fail-

ures, then a natural question is whether suitably designed public policies can prevent such

failures. Import substitution industrialization policies, for instance, are widely viewed as

just such an attempt, although there is widespread scepticism about their success (Krueger

1997 and Bhagwati 1993). In general, however, discussions of whether or not a government

can coordinate economic development have remained largely informal and have rarely pro-

gressed beyond the observation that a government’s inability to directly observe individual

investment decisions may prevent such coordination (Rodrik 1996, and again Krueger 1997).

Put differently, the government’s inability to observe individual actions makes coordination

a multi-agent moral hazard problem.

However, as is now well known, the appropriate design of contracts can mitigate agency

concerns in moral hazard problems. In the standard example, an employee is paid according

to observable output. A suitably designed wage scheme will induce the agent to take the

employer’s preferred, though unobservable, action. In a public policy context (e.g., Mirrlees’

1971 seminal work on income taxation) the analogue is a tax and transfer policy which

depends on observed outcomes (an individual’s market income), but not on unobserved

actions. In keeping with this line of research, this paper examines whether a tax and

transfer policy can be used as a coordination device when the government does not observe

individual actions.

In the canonical coordination game an agent’s income depends both on her action and the
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actions of all other agents in the economy. As a result the game has multiple Pareto-ranked

equilibria.1 In this spirit, we consider an economy in which a continuum of agents must

each decide whether or not to invest.2 The returns to both investment and non-investment

depend on the proportion of investors, which we denote as η. The social optimum is for

all agents to invest. Individual incomes from non-investment exceed those from investment

when η = 0, with the opposite true when η = 1. Hence, although it is an equilibrium for

all agents to invest, it is also an equilibrium for no agent to invest. Moreover, there is an

intermediate level of investment, η̃ say, at which investment and non-investment generate

the same returns. We cast the problem of coordination of economic activity as a principal-

agent problem in which a single principal — the government — seeks to provide multiple

agents with the incentive to invest.

If the government can directly observe individual investments then coordinating the

full-investment equilibrium is straightforward. Indeed, Rodrik (1996) has argued that in-

formation gathering by institutions such as the Japanese MITI was key to the success of

the industrial policies pursued by East Asian governments. However, previous discussions

of government coordination have also noted that, in practice, a government bureaucrat

may find it difficult to distinguish between genuine investment and consumption disguised

as investment. That is, a government’s lack of information constrains its ability to foster

coordination and hence economic development.

Our main results both reinforce and develop the view that information is critical to

successful coordination — and that in practice, the informational hurdle is hard to clear. We

start from the point where previous informal discussions end: is there anything a government

can do if it cannot observe individual investment decisions? We allow a government to make

transfers to individuals based on their incomes, and likewise to engage in income taxation.3

1Cooper (1999) reviews the coordination game literature, while Hoff (2000) and Ray (2000) discuss their

relevance for modeling market outcomes in low income countries.
2Our description of the investment game is similar to those in “big push” models of development –

industrialization is individually profitable only if a sufficiently large number of agents industrialize (see, for

instance, Murphy, Shleifer and Vishny (1989)).
3Since we do not impose budget balancing, these two options allow for the same outcomes.
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Given this, we ask whether there exists tax/transfer schemes such that all agents investing

is the only stable equilibrium.

Recall that when η̃ individuals invest, investment and non-investment yield the same

income. Investors and non-investors appear identical to the government at the investment

level η̃; as such, there is necessarily an equilibrium at that point. Our main results relate

to the difficulties this engenders for successful coordination. Specifically, it is reasonable to

regard a government coordination policy as successful only if it leaves η = 1 as the only

stable equilibrium. In other words, η̃ must be an unstable equilibrium when the policy is

in place. To ensure this the government’s policy must leave investors with higher post-

tax/transfer income both when just more and just less than η̃ of the population invest.

Consider first the class of government policies in which each individual’s transfer depends

only on that individual’s pre-transfer income. Coordination is only feasible if the govern-

ment knows the exact value of η̃, along with the corresponding income at that point. We

show (Proposition 2) that if instead it makes even an arbitrarily small mistake in identifying

these values, then coordination fails. The reason is that the policy creates a stable equi-

librium in the vicinity of η̃. To the extent small misperceptions are inevitable, we interpret

this result as indicating that coordination using this class of policies is impossible.

Second, we consider a broader class of government policies in which each individual’s

transfer can also depend on the full distribution of incomes in the “economy.” In this case

coordination is often feasible. Specifically, if the externality associated with investment is

sufficiently strong then a government can successfully use information on the proportion

of investors at different income levels to ensure that post-transfer returns from investment

always exceed those from non-investment. However, we believe that such policies are much

harder for a government to successfully implement. In particular, the relevant “economy”

is the set of individuals actually affected by the externalities in question. If the government

fails to correctly identify this, then it likewise misidentifies the income distribution, and its

coordination policy will fail. This problem is made even more relevant by the fact that

investment games are typically played out at the sectoral level, and an economy consists
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of multiple sectors. Again, the informational requirements that a coordination policy must

meet appear substantial.

Related literature

Our analytic approach is related to the literature on implementation in moral-hazard set-

tings — see Ma (1988), Arya, Glover and Young (1995), Arya, Glover and Hughes (1997),

and Chung (1999).4 The first three of these papers address a problem noted by Mookherjee

(1984): when a principal seeks to provide incentives to many agents, the optimal incentive

scheme may possess multiple equilibria. Ma shows that, in general, the use of “integer”

message games can eliminate the multiplicity of equilibria. The papers of Arya, Glover and

their co-authors rule out the use of such mechanisms on grounds of realism, and show that

in specific instances of the many-agent incentive problem unwanted equilibria can still be

eliminated. Closest to us is Chung (1999) who examines whether a specific class of policies,

affirmative action policies, can implement the unique efficient (human capital) investment

equilibrium.

Paper outline

The remainder of the paper is structured as follows. Section 2 describes the economic

environment. Section 3 identifies necessary features of a tax scheme which implements

the high investment outcome. Section 4 considers implementation via policies based on

individual income, and Section 5 policies which also condition on the income distribution.

Section 6 discusses the robustness of our results under alternative assumptions and Section

7 concludes.

4The standard implementation problem concerns an adverse-selection setting (see Maskin 1999). That

is, agents first learn their type, which a planner then seeks to induce them to report truthfully.
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2 Environment

2.1 Basics

The economy consists of a continuum of risk-neutral agents. Every agent faces a discrete

investment choice, a ∈ {0, 1}, where a = 1 is interpreted as investment. Investment choice

a yields a monetary return of y ≡ fa (η), where η is the fraction of agents who invest.

We assume fa (·) is a continuous, twice-differentiable function. An agent’s decision to

invest generates positive spill-overs for other investors, i.e., f ′
1 (·) > 0. In contrast, f ′

0 (·) ≷ 0.

However, f ′
0 (.) = 0 at only finitely many values of η, i.e., investment affects the returns

to non-investment almost everywhere. The externalities investment generates for investors

exceed those generated for non-investors. That is, |f ′
1 (.)| > |f ′

0 (.)|. Fη denotes the income

distribution when a fraction η invest. The income distribution collapses to a one-point

distribution whenever incomes from investment and non-investment coincide. Otherwise, it

is a two-point distribution — a proportion 1− η of the population has income f0 (η) and a

proportion η income f1 (η).

A principal, who we refer to as the government, seeks to design a mechanism to affect

agents’ investment decisions. We restrict the government to transfer schemes T (y) that

determine the post-transfer income of an agent with pre-tax income y. We consider, in

turn, the cases where T only depends on an agent’s income, y, and where it can also

depend on the full income distribution F . In both cases we assume T is a continuous

function of y and F , in the following sense. Let F denote the set of distribution functions

on the real line that place mass on at most two points. For any pair of sequences {yn} ⊂ ℜ

and {Fn} ⊂ F such that yn → y and Fn (ǫ) → F (x) for all x except the mass points of F ,

T (yn, Fn) → T (y, F ).5 For the most part we restrict attention to mechanisms that do not

make use of messages; in Section 6 we discuss more general mechanisms of this type.

We impose no other restrictions on T . In particular, we do not require budget balancing

— there is no reason the investment externality should encompass the whole economy.

5That is, convergence in distribution (see, e.g., Billingsley 1995). We discuss the restriction to continuous

tax/transfer functions T in Section 6.
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Finally, when we refer to the economy absent government intervention, we simply mean

T (y, F ) ≡ y, i.e., no net taxes or transfers.

2.2 Equilibrium

Given a fraction η of investors, let ∆T (η) denote the gain to an agent from investing instead

of not investing :

∆T (η) ≡ T (f1 (η) , Fη) − T (f0 (η) , Fη)

We assume that, absent government intervention, full investment (η = 1) maximizes social

welfare, i.e.,

1 ∈ arg max
η

ηf1 (η) + (1 − η) f0 (η)

We define our concept of equilibrium and stability for this economic environment, and use

these definitions to characterize a coordination game.

Definition 1 (Nash equilibrium)

Given a government policy T , a fraction η of agents investing is a Nash equilibrium if and

only if η = 0 and ∆T (0) ≤ 0, or η = 1 and ∆T (1) ≥ 0 or η ∈ (0, 1) and ∆T (η) = 0.

Throughout we refer to an equilibrium by the fraction that invest in that equilibrium,

η.

Definition 2 (Stability)

An equilibrium η is unstable if there exists δ such that either ∆T (η − ε) < 0 for all ε ∈ (0, δ),

or ∆T (η + ε) > 0 for all ε ∈ (0, δ). An equilibrium that is not unstable is stable.

The notion of equilibrium stability consists of asking whether individuals’ optimal in-

vestment strategies are immune to small perturbations of the proportion of investors around

the presumed equilibrium, i.e., to investor noise. Below (see Proposition 2) we show that

arbitrarily small government misperceptions of the economic fundamentals create new sta-

ble equilibria. The sizes of the basins of attraction of the newly created stable equilibria

(i.e., the extent of investor noise) depend on the extent of government misperceptions. It
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Figure 1: A linear example of a coordination game

follows that our definition of stability is premised on the assumption that investor noise is

less than government noise. If we interpret the notion of equilibrium stability as reflecting

the outcome of a learning process among investors (in the face of strategic uncertainty) then

an economic interpretation of this assumption is that, relative to the government, investors

are faster at ‘learning’ about their economic environment.

Since we have assumed that f ′
1 > 0 and |f ′

1| > |f ′
0|, the function ∆T is strictly increasing

absent government intervention (i.e., T (y) ≡ y). Consequently, absent intervention there

are three possible equilibrium sets in our economy: η = 0 is the only stable equilibrium;

η = 1 is only stable equilibrium; and η = 0 and η = 1 are both stable equilibria, with an

unstable equilibrium at a unique investment level point η̃ ∈ (0, 1). For the remainder of

the paper we assume that the last of these three cases holds, and refer to our economy as

a coordination game. Figure 1 illustrates a coordination game. (In Section 7, we briefly

discuss the problem of ensuring full investment when the only stable equilibrium absent

intervention is η = 0. This case is, of course, a manifestation of the “free-rider” problem.6)

6A simple example of the free-rider problem in our economy is f0(η) = 5/8 + η/2 and f1(η) = η.

Investment has positive externalities for both investors and non-investors, the socially efficient investment

level is η = 1, yet the only equilibrium is at η = 0.
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Since investment and non-investment incomes coincide at the investment level η̃ ∈ (0, 1),

necessarily ∆T (η̃) = 0 for all government policies T . That is, investment by a fraction η̃ of

agents is an equilibrium. Given this, the most that can be hoped of a government policy

is that it leave η = 1 as a stable equilibrium, but η̃ as an unstable equilibrium:

Definition 3 (Implementation)

A policy T implements η if η is the only stable equilibrium.

Implementation when individual actions are publicly observable is straightforward: tax

the socially inefficient action, or subsidize the socially efficient action.7 More formally, con-

sider the policy T (a = 1, y, F ) = y and T (a = 0, y, F ) = f1 (0)−ε, some ε > f1 (0)−y. This

policy only taxes non-investors, such that they prefer investing. Under this choice of T , full-

investment is the only equilibrium. The remainder of the paper considers implementation

when agents’ incomes, but not actions, are observable.

3 Implementation

In selecting the parameters of the tax and transfer scheme the government’s aim is to

eliminate the no-investment equilibrium (η = 0), while preserving full investment as a

stable equilibrium (η = 1). We start by noting:

Proposition 1 (∆ must be positive)

Suppose that either (1) ∆T ≡ 0 over some interval [η − ε, η] ⊂ [0, 1], or (2) ∆T (η) < 0 for

some η ∈ [0, 1]. Then there is a stable equilibrium to the left of η.

Proof of Proposition 1: The returns to investment and non-investment f0 and f1 are

continuous in η. Continuity of T implies that ∆T is continuous. If condition (1) holds,

clearly any point η′ ∈ [η − ε, η] is a stable equilibrium. If condition (2) holds then either

there exists η′ < η such that ∆T (η′) > 0, and so there must be a stable equilibrium between

η′ and η; or else ∆T (0) < 0, in which case η = 0 is a stable equilibrium. QED

7This was the case considered by Pigou (1932).
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Proposition 1 immediately implies two restrictions on implementation via income-based

incentive schemes.

The first restriction relates to the fact that an individual’s pre-transfer income from

non-investment exceeds that from investment when the fraction of investors is less than

η̃. From Proposition 1, we know that any tax and transfer scheme that implements full

investment must leave investors with a higher after-transfer income than non-investors.

Consequently, the tax and transfer scheme must be non-monotonic in pre-transfer income:

over some range, income must be taxed at more than 100%. An immediate corollary is that

implementation is infeasible if economic agents can costlessly burn money.

More formally, assume an agent with true income y can costlessly reduce her income to

any θ ∈ [0, y]. This transforms a tax/transfer scheme as follows. Given T , an agent chooses

income θ ∈ arg max
θ̃∈[0,y] T

(

θ̃
)

. (Since T is continuous and [0, y] is compact, T (θ) has a

well-defined maximum over [0, y].) So the effective transfer scheme is

T eff (y) = max
θ̃∈[0,y]

T
(

θ̃
)

.

Trivially T eff is weakly increasing in y. It is easily shown to be continuous. Consequently:

Corollary 1 If agents can costlessly burn money, implementation of full investment is

impossible.

The second restriction relates to the existence of an investment level η̃ at which investor

and non-investor incomes coincide. Proposition 1 tells us that implementation requires that

the post-transfer returns from investment must everywhere (weakly) exceed those from non-

investment. However, if investment entails even a small non-pecuniary cost ǫ then under

any tax/transfer policy investors are worse off than non-investors when the investment level

is η̃. As such, a stable equilibrium will exist to the left of η̃:

Corollary 2 If investment entails a strictly positive non-pecuniary cost then implementa-

tion of full investment is impossible.
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Corollaries 1 and 2 identify two serious impediments to the possibility of implementing

full investment. In the next section, we show that even if a non-monotonic tax/transfer

scheme is viable (i.e., burning money is not possible), and there are no non-pecuniary costs

of investment implementation of full investment remains extremely challenging. Consistent

with informal discussions of coordination policies, our analysis highlights the key role played

by government information (or its lack thereof).

4 Policies based on individual income

We start with the case where the transfer policy, T , can only be conditioned on an agent’s

income. We know from Proposition 1 that implementing full investment requires that after

taxes and transfers investment yields a higher income level for all η. Non-investment yields

a higher income when less than η̃ invest but not when more than η̃ invest. Hence, T must

ensure that higher incomes are penalized when fewer than η̃ invest, but rewarded when

more than η̃ invest.

It follows that the tax/transfer policy T must be at a minimum at the income level at

which investment and non-investment incomes coincide, i.e., at ỹ = f0 (η̃) = f1 (η̃). When

T is differentiable, a somewhat loose argument is as follows. Since ∆T (η̃) = 0, it follows

from Proposition 1 that ∆T must be at a local minimum at η̃ — else, there exists a point η

such that ∆T (η) < 0, which is inconsistent with implementation of full-investment. Taking

derivatives of ∆T gives

∆′
T (η) = f ′

1 (η) T ′ (f1 (η)) − f ′
0 (η)T ′ (f0 (η))

∆′′
T (η̃) =

(

f ′
1 (η̃)2 − f ′

0 (η̃)2
)

T ′′ (ỹ)

Then ∆′
T (η̃) = 0 implies T ′ (ỹ), while ∆′′

T (η̃) ≥ 0 and |f ′
1| > |f ′

0| imply T ′′ (ỹ) ≥ 0. More

formally:

Lemma 1 (Intersection points)

Let η̃ ∈ (0, 1) be an investment level at which investment and non-investment incomes
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Figure 2: The tax/transfer scheme T = ỹ + γ|y − ỹ|

coincide. Any scheme T that implements full-investment (η = 1) must have a local minimum

at ỹ = f1 (η̃).

Proof of Lemma 1: See appendix.

The following example illustrates Lemma 1. Assume income from investment is f1 (η) =

η + x1, while that from non-investment is f0 (η) = x0 − βη. Also, assume β ∈ (0, 1),

x0 > x1 and 1 + x1 ≥ x0 − β, so that absent government intervention no-investment and

full-investment are both stable equilibria.

When a fraction η̃ = x0−x1

1+β
invest both investment and non-investment incomes equal

ỹ = x1 + x0−x1

1+β
. Lemma 1 suggests it is natural to consider a tax/transfer policy with a

minimum at ỹ. One class of policies with this property, illustrated in Figure 2, is

T = ỹ + γ|y − ỹ|

This specification of T is continuous in y and implements η = 1 as follows. First, if

η < η̃ invest then the pre-transfer incomes of investors are lower than those of non-investors;

but their post-transfer incomes are higher since the externalities experienced by investors

are stronger, and so |f1 (η) − ỹ| > |f0 (η) − ỹ|. Second, if η > η̃ invest then both the pre-

transfer and post-transfer incomes of investors exceed those of non-investors. So ∆T (η) > 0

for all η other than η̃, and η = 1 is the only stable equilibrium. Figure 3 provides a graphical

illustration.
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Fraction η who invest

In
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e

η̃

ỹ

Pre-tax non-investment income f0

Pre-tax investment income f1

After-tax investment income T (f1)

After-tax non-investment income T (f0)

Figure 3: Implementing full-investment: the solid lines represent investment incomes, the

dashed lines non-investment incomes, and the heavy lines after-tax/transfer incomes. For

all η after-tax/transfer incomes are higher for investors than non-investors.

However, implementation is extremely sensitive to small imperfections in government

information. To see this, consider the specific policy with γ = 1 (so that T (y) = 2ỹ − y for

y ≤ ỹ, and T (y) = y otherwise) and assume the government wrongly estimates the returns

to investing as f1 (η) + (x̂1 − x1), where x̂1 6= x1. We depict this possibility in Figure 4.

Suppose it overestimates investment returns, i.e., x̂1 > x1. In this case, incomes in

the neighborhood of ỹ are unaffected, and consequently ∆T (η̃) = 0, with ∆T (η) < 0

immediately to the left of η̃. There is now a stable equilibrium to the left of η̃.

Suppose instead the government underestimates investment returns, i.e., x̂1 < x1.

Then incomes around ỹ are reversed, making η̃ a stable equilibrium — whereas absent

the tax/transfer policy it was unstable.

In this example arbitrarily small errors in the government’s knowledge of the economy

cause implementation to fail. We show that this sensitivity of implementation to the gov-

ernment’s information is a general property of the environment.

In more general terms than before, a government may misperceive the returns to in-

vestment as g, in place of the true returns, f1.
8 Let G be the metric space consisting of

8Proposition 2 (see below) also holds if we restrict attention to the specific case analyzed in the example,

i.e., mistakes of the form f1 (η) + k, for some constant k.
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η̃

Figure 4: Errors create interior stable equilibrium: The solid lines represent investment

incomes, the dashed lines non-investment incomes, and the heavy lines after-tax/transfer

incomes. We see that a small upwards bias in identifying the income level ỹ at which

incomes coincide creates a stable equilibrium at η̃.

all continuous, increasing and twice-differentiable functions from [0, 1] to the positive real

line, with metric ‖g − h‖ =
∫

|g − h| ∀g, h ∈ G. It is reasonable to regard the government’s

misperception as small whenever ‖f1 − g‖ is small, i.e., when

g ∈ {h ∈ G| ‖h − f1‖ < ε} ≡ Bε (f1)

for some small ε. Given these preliminaries, we define fragile implementation:

Definition 4 (Fragility)

Suppose that T implements η. Implementation is fragile if for any ε > 0, implementation

of η is non-generic within Bε (f1), i.e., if the set

{g ∈ Bε (f1) |T implements η in economy (f0, f1 = g)}

is nowhere dense in Bε (f1). Implementation is non-fragile if it is not fragile.

It is worth pausing to compare the definitions of stability and fragility. In the above

example the government’s misperception of f1 creates interior stable equilibria with basins
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of attraction that extend only a distance 2β(x̂1−x1)
(1−β)(1+β) to the right of the newly created stable

equilibrium (see Appendix C). Consequently, when the government’s misperception is small,

the size of trembles required for agents to escape the interior equilibrium is likewise small.

By definition, equilibrium stability incorporates some notion of strategic uncertainty

among investors – an equilibrium is stable if investors’ optimal strategy is invariant to

small fluctuations in the proportion of investors. In contrast, implementation is fragile if

generic small misperceptions of investment returns f1 by the government cause implemen-

tation to fail. It follows that implicit in our definition of fragility is the assumption that

a government’s informational misperceptions are of greater “magnitude” then exogenous

“trembles” in agents’ investment decisions.

It is possible to provide an economic interpretation of this assumption. If we interpret

stability of equilibrium in terms of the dynamic learning process among agents (in the face

of strategic uncertainty), then (loosely speaking) our definition of fragility assumes that the

government learns more slowly than investors.

The observation that implementation was very sensitive to small informational errors in

the above example generalizes to:

Proposition 2 (Implementation is fragile)

Implementation of full investment by a tax/transfer policy T is fragile.

Proof of Proposition 2: See appendix.

How bad is it when implementation fails? Suppose that a tax/transfer policy T fails

to achieve a local minimum at a point ỹ = f1 (η̃) = f0 (η̃), where η̃ is the investment level

at which investment and non-investment incomes coincide. Then Lemma 1 implies that a

stable equilibrium exists in the interval [0, η̃ + ε], where ε > 0 can be made arbitrarily small.

A stable equilibrium η > 0 implies a positive level of investment, whereas the equilibrium

η = 0 implies no investment. In the example considered above investment generates a

negative externality on non-investors (f ′
0 < 0). Hence, any equilibrium η ∈ (0, η̃ + ε] is

socially worse than the no-investment equilibrium η = 0.
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5 Policies based on the income distribution

Implementation of full investment requires the use of a tax/transfer scheme that is non-

monotonic in income. That is, post-transfer income must be higher for agents with lower

income when η < η̃ with the opposite true when η > η̃. If it has a minimum somewhere else

— even if very close by — then implementation fails. Failure of implementation is generic

when the tax/transfer scheme only conditions on individual income and the government

lacks perfect information about economic fundamentals, specifically the value of η̃.

We now examine whether non-fragile implementation is feasible if the government can

also condition the tax/transfer scheme on the income distribution Fη.
9,10 We show that

non-fragile implementation is possible if η̃ 6= 1/2 and the externality on investment returns

is sufficiently strong.

Figure 5 provides the intuition. For investment levels other than η̃, the income distri-

bution has two mass points. We denote the proportion of the population at the higher of

these mass points by ξ. Figure 5 shows the relation of ξ to η when η̃ < 1/2. When η < η̃

non-investors have higher incomes, and so ξ = 1− η; conversely, when η > η̃ investors have

higher incomes and ξ = η.

For non-fragile implementation, the important point is that income distributions with

ξ ≤ 1/2 only arise when the investment level is between η̃ and η̂ = 1
2 > η̃. Moreover, for

a large enough investment externality, the income of investors when η > 1/2 exceeds the

income level of both non-investors and investors for any η < η̃.

9Section 7 discusses whether it is realistic to assume that T can depend on the income distribution.
10The implementation problem when transfers can depend on the full income distribution is related to

Battaglini (Forthcoming). The main difference between our paper and his is that we show unique imple-

mentation of the full-investment equilibrium in our environment. Battaglini’s more general results only

establish uniqueness of implementation in coalition-proof equilibria. In our environment no-investment is

not a coalition-proof equilibrium whenever f0 (η) < f1 (1) (this is implied by f ′
0 < 0 and the assumption

that full-investment is socially efficient). Thus the coordination problem at the heart of our paper (and, in-

deed, in much of the literature on coordination failures) simply disappears if we only consider coalition-proof

equilibria.
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Figure 5: The fraction ξ with an income equal to the higher income as a function of the

investment level (shown for η̃ < 1/2).

Non-fragile implementation can then be achieved as follows. If ξ ≤ 1/2, it must be that

η > η̃, and so individuals with higher incomes should receive higher post-transfer incomes.

Moreover, if ξ > 1/2 but the higher income exceeds maxη∈[0,η̃] f0 (η), then again it must

be that η > η̃, and so individuals with higher incomes should receive higher post-transfer

incomes. Finally, if ξ > 1/2 but the higher income level is less than maxη∈[0,η̃] f0 (η) then

it must be that η < η̃, and so individuals with higher incomes should receive lower post-

transfer incomes.

A similar scheme is possible when η̃ > 1/2 (see the proof of Proposition 3). Moreover, it

is worth stressing that the requirement that the externality is sufficiently strong is sufficient

but not necessary. That is, all that is required is that when ξ > 1/2, the government

can robustly distinguish the distribution when η = 1 − ξ invest from that when η = ξ

invest. When externalities are strong this is easily established, but it will be true much

more generally. However, for the purposes of presenting a reasonably concise constructive

proof, we focus on the case of strong externalities. Formally, our result is:

Proposition 3 (Non-fragile implementation)

Provided the externality on investment is sufficiently large (i.e., f ′
1 large enough), and η̃ 6=

1/2, there exists a tax/transfer policy T such that for all f̂1 sufficiently close to f1 full-
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investment is the only stable equilibrium.

Proof of Proposition 3: The text above gives the main idea. The main difficulty

encountered in the formal proof is defining T such that it is continuous on the space F of

distributions. The proof is relegated to the appendix.

6 Some extensions

We conclude our analysis with a discussion of the robustness of our results to four features

of our model.

6.1 Continuity of Tax Scheme

Our analysis assumes that the tax/transfer policy T is continuous — both in an agent’s

income y and in the income distribution F when this is also an argument. Does this assump-

tion matter? The main issue with allowing T to depend on incomes y in a discontinuous

fashion is that it allows the government to eliminate equilibria in very unconvincing ways.

For instance, consider the following simple example. The return to investment is f1 (η) = η

while that to non-investment is f0 (η) = 1+2η
4 . Consider the tax/transfer policy

T (y) =







−y if y ≤ 3/8

y if y > 3/8

Since f0 (η) ≤ 3/8 whenever η ≤ 1/4 while f1 (η) ≤ 3/8 whenever η ≤ 3/8, this implies

∆T (η) =



















−η + 1+2η
4 if η ∈

[

0, 1
4

]

−η − 1+2η
4 if η ∈

(

1
4 , 3

8

]

η − 1+2η
4 if η ∈

(

3
8 , 1

]

That is, ∆T (η) is strictly positive for η ≤ 1/4, jumps to being negative and decreasing over

(1/4, 3/8], and then is increasing over (3/8, 1]. The only stable equilibrium is η = 1.

However, there is a strong sense in which η = 1/4 should be considered a stable equi-

librium. If just less than η = 1/4 invest, then more agents will invest; while if just more
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than η = 1/4 invest, then fewer agents invest. Requiring that the tax/transfer policy T be

continuous in y avoids such problems.

With regard to tax/transfer policies based on the income distribution, it suffices to note

that, a fortiori, Proposition 3 would still hold if T were allowed to be discontinuous.

6.2 Message Games

Thus far we have restricted attention to tax/transfer policies that rely solely on pre-tax

incomes observed by the government. We now examine whether the government can do

better by using a scheme where it also collects messages from agents.

We restrict attention to finite message spaces; we denote the message space by M .11 We

also continue to distinguish between schemes which only make use of individual incomes,

and those that use the full distribution.

A scheme that uses only individual incomes and individual messages is equivalent to one

using only individual incomes. To see this, consider a scheme T (y,m) in which the agent’s

after-transfer income is determined by his own pre-transfer income y and message m ∈ M .

Define the scheme T̂ (y) ≡ maxm T (y,m): that is, for any income y the government knows

which message(s) provide an agent with the highest payoff, and so can design an alternate

scheme that directly embeds this information. Clearly T̂ has the same equilibria as T .

Second, suppose a scheme can condition both on the distribution of incomes and the

distribution of messages. Similarly to above, the equilibria under such a mechanism are

the same as those under a suitably defined scheme in which messages are not used. We

provide the details of this claim in the appendix; broadly speaking, the government can

define a message-free scheme T̂ that matches T when equilibrium messages are reported.

6.3 Nash Implementation

We have focused throughout on Nash implementation: full-investment is implemented if and

only if it is a Nash equilibrium under the tax/transfer policy in effect. However, alternate

11This avoids the possibility of “tail-chasing” schemes.
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notions of implementation are possible. For example, one might instead ask whether full-

investment is undominated Nash implementable: that is, is there a policy T under which

full investment is the only equilibrium when agents play undominated strategies?12

In our setting, undominated Nash implementation is straightforward. Recall that, by

assumption, f1 (1) > maxη f0 (η). Choose ŷ ∈ (maxη f0 (η) , f1 (1)), and consider the policy

T (y) =







0 if y < ŷ

f1 (1) y−ŷ
f1(1)−ŷ

y ≥ ŷ
.

Under this policy, investment is strictly preferred when everyone else invests. Moreover,

at any investment level η, an agent’s income from not investing is f0 (η) < ŷ, and so

T (ŷ) = 0. This is at least weakly less than the agent’s income from investing. Thus

not investing is a weakly dominated strategy, while investing is an undominated strategy.

Consequently, if we require that agents use undominated strategies a tax/transfer scheme

which conditions on own income implements full investment. Moreover, this scheme is

robust to small informational mistakes.13

More generally, and in terms of ∆T , a policy implements full investment in undominated

Nash if ∆T (η) ≥ 0 for all η, with ∆T (η) > 0 for some η. The proof of Proposition 2 is easily

adapted to deal with this alternate implementation concept, and implies that for non-fragile

implementation in undominated Nash the policy T must be flat over some neighborhood

around ỹ.

The above example makes clear that this is straightforward to accomplish in our existing

model. However, at least under some perturbations of the model the requirement of

complete flatness of the tax/transfer scheme is surprisingly hard to satisfy. In particular,

consider the following change to the timing of our model to capture the idea that with a

small probability the government will abandon its announced tax/transfer policy:

(1) The government announces its policy T .

12A weakly dominated strategy is one such that an alternative strategy is weakly preferred no matter

what other agents do, and is strictly preferred for at least some choice of strategies by other agents. An

undominated strategy is one that is not weakly dominated.
13We thank the editor for bringing this example to our attention.
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(2) Agents observe whether the state of the world is ω ∈ {L,H}.

(3) Agents decide whether or not to invest.

(4) With probability εω a “regime change” occurs: the government abandons its tax

policy T , and instead adopts T0. For concreteness, we take T0 to be the no-intervention

policy, T0 (y) ≡ y.

(5) The government observes incomes and executes its policy.

From the agents’ perspective, the tax policy when they make their investment decisions

is Tω = (1 − εω) T + εωT0. The key point is that Tω cannot be flat around ỹ for both

states ω = L,H. As such, non-fragile implementation in undominated Nash equilibrium

is not possible in both states ω = L,H. (In contrast, this modeling perturbation does not

eliminate the possibility of fragile implementation.14)

6.4 Equilibrium stability

A related issue is our definition of stability. For concreteness, consider the following exam-

ple: f1 (η) = η, f0 (η) = 3/4 − η/2, and a tax policy defined by

T (y) =



















1
2 + γ

(

3
8 − y

)

if y < 3
8

1
2 if y ∈

[

3
8 , 5

8

]

1
2 + γ

(

y − 5
8

)

if y > 5
8

.

It is readily verified that ∆T (η) is positive up to 3/8, zero from 3/8 to 5/8, and positive

from 5/8 to 1.

Given our current definition of stability, this tax scheme fails to implement full invest-

ment: investment levels in the range 3/8 to 5/8 are stable equilibria. However, these

equilibria are clearly not as stable as an equilibrium η for which ∆T (η) = 0 and ∆T is

14In particular, in the example we saw that T (y) = ỹ +γ |y − ỹ| Nash implements full investment. Under

the possibility of regime change,

Tω =







(1 − εω) (1 + γ) ỹ + (εω − (1 − εω) γ) y if y ≤ ỹ

(1 − εω) (1 − γ) ỹ + ((1 − εω) γ + εω) y if y > ỹ

Provided (1 − εω) γ > εω for ω = L, H , full investment is the only stable Nash equilibrium for ω = L, H .
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strictly decreasing at η. In particular, if stability relates to small mistakes by agents in

playing the game, over time agents will eventually “escape” to the right from any equilib-

rium in the interval 3/8 to 5/8. In essence, these equilibria may be seen as “short-run”

stable, but “long-run” unstable.

If we alter our definition of stability so as to classify equilibria of this type as unstable,

then full investment could be (at least) sometimes implemented in a non-fragile way. One

such instance is the above example. However, as with alternate implementation concepts,

Nash implementation here depends critically on the government being able to impose a tax

scheme that is completely flat over the income range around ỹ. Again, although easily

accomplished in our existing model, this is not possible in the perturbed model sketched

above.

7 Discussion

This paper examines the use of income-based incentive schemes as a coordination device.

Generic implementation is infeasible if the scheme only conditions on individual income,

and is sometimes feasible if it conditions on individual income and the income distribution.

The main problem with implementation arises from the existence of a crossover point

η̃ at which incomes from investment and non-investment coincide, not from the existence

of externalities per se. This is clearly seen when we consider implementation in a free-

rider game, that is a game with externalities but a unique (inefficient) equilibrium.15 In a

free-rider game individual returns from investment vary with the number of investors but

are always below those from not-investing. Implementation is straightforward: choose a

tax/transfer that rewards those with lower pre-tax incomes. Observe that f ′
1 > f ′

0 implies

15The economics literature on how to achieve efficiency in the presence of externalities has, almost ex-

clusively, focused on free-rider games. Two much studied examples are the “tragedy of the commons”

games where common access to resources lead agents to choose consumption levels in excess of the social

optimum (see, e.g., Gordon 1954), and “team production games ” where, given a joint production process,

team members under-provide effort (Holmström 1982; also see Legros and Matthews 1993; and Battaglini,

Forthcoming).
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that f1 (η)−f0 (η) is strictly increasing. Since full-investment is not an equilibrium f1 (η) <

f0 (η) for all η < 1. A policy of the form T (y) = Y − λy, where Y and λ > 0 are constants

rewards those with lower pre-transfer incomes. Thus T (f1 (η)) > T (f0 (η)) for all η < 1.

That is, full-investment (η = 1) is the only stable equilibrium. Moreover, implementation

is insensitive to small errors in the government’s knowledge of the returns to investment,

f1.

Overall, we are inclined to interpret our results as both reinforcing and developing the

widely held view that limited information constrains a government’s ability to conduct a

successful development policy based on coordination of investment activity. Coordination

using policies that only condition on individual income fails whenever the government has

even arbitrarily small misperceptions regarding the fundamentals of the economy. In con-

trast, the high-investment equilibrium can be implemented with less exact knowledge if the

tax/transfer policy is allowed to depend on the full distribution of incomes. However, the

successful execution of such a policy, in turn, presents its own informational challenges. In

particular, it requires that the policy-maker know which individuals are actually affected by

the multiple-equilibria generating externality. In practice, this is likely to be a non-trivial

matter. To see this, consider an economy populated by many different groups. Individuals

in each group (separately) decide whether to invest in a group-specific technology. The pos-

itive externality generated by investment may only apply across individuals adopting the

same technology. If the principal does not know the group identity of agents, and if there

are many groups, then the income distribution for each group is unobservable (Lanjouw

and Lanjouw 2001 discuss the widespread coexistence of multiple heterogeneous sectors in

developing countries).

A quite different concern about mechanisms which depend on the whole income distri-

bution is that they may require more commitment by the government than those which do

not. For instance, suppose only the government observes all agents’ incomes, while each

agent only observes his/her income. Then ex post the government will be tempted to im-

plement the transfer policy minF∈F T (y, F ): that is, give each agent the smallest transfer
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consistent with his/her individual income. Only tax/transfer policies that are independent

of the income distribution are immune from this type of problem.16

We would like to conclude with a methodological counter to our policy pessimism. A rich

literature has developed and used the techniques of implementation theory to analyze the

efficient provision of public goods. However, few researchers have applied these techniques

to the field of development economics.17 This paper, we hope, both demonstrates the

importance of these techniques for development economics and, more specifically, suggests

their usefulness for identifying policy mechanisms which are both feasible and robust to

informational constraints.

16The auctions literature analyzes the possibility that mechanisms in which an agent’s allocation depends

on other agents’ messages may be prone to cheating by the principal. Vickrey (1961) notes that a “second-

price method may not be automatically self-policing to quite the same extent as the top-price method.”

Porter and Shoham (2003) show that a second-price auction collapses to a first-price auction when the seller

can costlessly “invent” bids.
17Exceptions include Rai (2002), who studies the design of credit programs, and Besley and Coate (1992),

who analyze targeting of public work programs.
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A Appendix: Proofs

The proof of Lemma 1 requires the following result:

Lemma 2

Let T : ℜ → ℜ be a continuous function, with ŷ, ỹ ∈ ℜ such that T (ŷ) < T (ỹ). Then there

exists y̌ 6= ỹ such that |y̌ − ỹ| ≤ |ŷ − ỹ| and T (y) > T (y̌) for all y such that |y − ỹ| < |y̌ − ỹ|.

That is, we can find a point y̌ such that at all points closer to ỹ the function T is strictly

greater than at y̌ (and y̌ itself is closer to ỹ than is ŷ).

Proof of Lemma 2: For any ε > 0 and y ∈ ℜ let Bε (y) denote the open interval

(y − ε, y + ε), while B̄ε (y) denotes the closed interval [y − ε, y + ε]. The proof is by con-

tradiction. Suppose that contrary to the claimed result for any y̌ ∈ B̄|ŷ−ỹ| (ỹ) \ {ỹ} there

exists a y ∈ B|y̌−ỹ| (ỹ) such that T (y) ≤ T (y̌).

Since the function T is continuous it must obtain its infimum value over the closed

interval B̄|ŷ−ỹ| (ỹ). That is, the set A ≡ arg miny∈B̄|ŷ−ỹ|(ỹ) T (y) is non-empty. Define

y− = sup {y ∈ A : y ≤ ỹ} and y+ = inf {y ∈ A : y ≥ ỹ}, and then define y̌ as whichever of

y+ and y− is closer to ỹ.18 That is, y̌ is essentially the element of A that is closest to ỹ.

By continuity T (y̌) = miny∈B̄|ŷ−ỹ|(ỹ) T (y) ≤ T (ŷ) < T (ỹ). By supposition, there exists

y ∈ B|y̌−ỹ| (ỹ) such that T (y) ≤ T (y̌). But then y must lie in A, and is strictly closer to ỹ

than y̌ — a contradiction. QED

Proof of Lemma 1: The proof is by contradiction. Suppose to the contrary that T does

not have a local minimum at ỹ.

Recall |f ′
1| > |f ′

0|, and that both f0 and f1 are twice-differentiable. A straightforward

application of the mean-value theorem implies that there exists an ε > 0 such that

|f1 (η) − ỹ| > |f0 (η) − ỹ| for all η ∈ (η̃ − ε, η̃ + ε) (1)

18In the case of ties, set y̌ = y−. Also, if {y ∈ A : y ≥ ỹ} is empty then simply define y̌ = y−, while if

{y ∈ A : y ≤ ỹ} is empty define y̌ = y+.
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That is, for all investment levels close enough to η̃ the income from investing is further from

ỹ than is the income from not investing.

By assumption ỹ is not a local minimum of T . So since f1 is strictly increasing and

continuous, there must exist some η̂ ∈ (η̃ − ε, η̃ + ε) such that T (f1 (η̂)) < T (ỹ). Since

T is strictly below T (ỹ) at ŷ ≡ f1 (η̂), it follows that we can find a point y̌ such that T

is strictly lower at y̌ than at all points nearer ỹ (Lemma 2 in the appendix gives a formal

proof). Moreover, the point y̌ is itself at least as close to ỹ as is ŷ. Let η̌ ∈ (η̃ − ε, η̃ + ε)

be such that f1 (η̌) = y̌. Then by (1),

∆T (η̌) = T (f1 (η̌)) − T (f0 (η̌)) < 0

But then by Proposition 1, T cannot implement full-investment, a contradiction. QED

Proof of Proposition 2: Take any ε > 0, and let G∗ ⊂ Bε (f1) be those specifications of

investment returns for which T implements full-investment. We show that the set G∗ is

nowhere dense in Bε (f1), i.e., that its closure G∗ has an empty interior.

Suppose to the contrary that there exists an open set H ⊂ G∗. All elements of H

must lie either in G∗ itself, or else arbitrarily close to a member of G∗. Select an element

f∗
1 ∈ H ∩ G∗, and take υ > 0 such that Bυ (f∗

1 ) ⊂ H. Let η∗ be the investment level at

which f∗
1 (η∗) = f0 (η∗).

Without loss we can assume that f ′
0 (η∗) 6= 0. Take ηL and ηH so that f0 (ηL) <

f0 (η∗) < f0 (ηH). The heart of the proof consists of establishing:

Claim: For all ηL and ηH sufficiently close to η∗, then T (f0 (ηL)) = T (f0 (ηH)).

Proof of claim: Suppose to the contrary that γ ≡ |T (f0 (ηL)) − T (f0 (ηH))| > 0.

Choose functions fH
1 and fL

1 from H such that fH
1 (ηH) = f0 (ηL) and fL

1 (ηL) = f0 (ηH).

Whenever ηL and ηH are close enough to η∗, such a choice is possible. Since T is continuous,

there exist δH and δL such that
∣

∣

∣
T

(

fH
1 (ηH)

)

− T (y)
∣

∣

∣
< γ for

∣

∣

∣
fH
1 (ηH) − y

∣

∣

∣
< δH , and

∣

∣

∣
T

(

fL
1 (ηL)

)

− T (y)
∣

∣

∣
< γ for

∣

∣

∣
T

(

fL
1 (ηL)

)

− y
∣

∣

∣
< δL.

While fH
1 and fL

1 may not themselves lie within the set G∗ over which T implements full-

investment, by supposition there exist functions fH
1 , fL

1 ∈ G∗ such that
∣

∣

∣
fH
1 (ηH) − fH

1 (ηH)
∣

∣

∣
<
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δH and
∣

∣

∣
fL
1 (ηL) − fL

1 (ηL)
∣

∣

∣
< δL. For these functions, Proposition 1 implies that

T
(

fH
1 (ηH)

)

≥ T (f0 (ηH)) (2)

T
(

fL
1 (ηL)

)

≥ T (f0 (ηL)) . (3)

By continuity of T , there exist constants θH , θL ∈ (−γ, γ) such that

T
(

fH
1 (ηH)

)

= T
(

fH
1 (ηH)

)

+ θH (4)

T
(

fL
1 (ηL)

)

= T
(

fL
1 (ηL)

)

+ θL. (5)

To complete the proof of our claim, suppose first that T (f0 (ηH)) = T (f0 (ηL)) + γ. Then

(2) and (4) together imply that

T
(

fH
1 (ηH)

)

+ θH = T (f0 (ηL)) + θH ≥ T (f0 (ηH)) = T (f0 (ηL)) + γ,

a contradiction since |θH | < γ. Likewise, if instead T (f0 (ηL)) = T (f0 (ηH)) + γ then (3)

and (5) together imply that

T
(

fL
1 (ηL)

)

+ θL = T (f0 (ηH)) + θL ≥ T (f0 (ηL)) = T (f0 (ηH)) + γ,

which is again a contradiction.

Back to main proof: The above claim implies that T must be constant over some

open neighborhood around f∗
1 (η∗). To see this, suppose to the contrary that T (y) 6=

T (f∗
1 (η∗)) for some y close to f∗

1 (η∗). Then T (y̌) = T (y) 6= T (f∗
1 (η∗)) for all y̌ close to

f∗
1 (η∗) on the opposite side of f∗

1 (η∗) from y, contradicting the continuity of T (·).

It then follows that ∆T ≡ 0 over some interval around η∗. But this contradicts Propo-

sition 1, completing the proof. QED

Proof of Proposition 3: We focus on the case η̃ < 1/2. The case η̃ > 1/2 is similar,

and is sketched in less detail below. As noted in the main text, the main difficulty in

proving this result arises from the need to define the tax/transfer function T such that it is

continuous on the space F of distributions. We proceed as follows:

1. Partition F into Fu, the set of distributions with mass at one point only, and FB , the

set of distributions with mass at two points. For all F ∈ Fu, define T (·, F ) ≡ y.

30



2. Any two-point distribution F ∈ FB is uniquely represented by a triple (y−, y+, ξ),

where y− denotes the lower mass point, y+ 6= y− the higher mass point, and ξ the

mass at the higher mass point. Observe that if a sequence
{(

yn
−, yn

+, ξn
)}

is such that
(

yn
−, yn

+, ξn
)

→ (y−, y+, ξ) for some triple (where yn
− 6= yn

+ and y− 6= y+), then the

corresponding sequence of two-point distributions {Fn} converges to the distribution

F that corresponds to (y−, y+, ξ).

3. We use this representation to define T (·, F ) on FB . Take ȳ greater than the maximum

income achieved by non-investors when η < η̃, i.e., maxz∈[0,η̃] f0 (z). Then if ξ ≥ 1/2

and y+ ≤ ȳ, define a function t (y, (y−, y+, ξ)) by

t (y, (y−, y+, ξ)) = −y (y+ − y−)2 exp ((ξ − 1/2) (y − ȳ))

while otherwise define t (y, (y−, y+, ξ)) by

t (y, (y−, y+, ξ)) = y (y+ − y−)2 exp ((ξ − 1/2) (y − ȳ)) .

Given t, we then define the policy T by

T (y, (y−, y+, ξ)) = t (y, (y−, y+, ξ))+ξ (y+ − t (y+, (y−, y+, ξ)))+(1 − ξ) (y− − t (y−, (y−, y+, ξ)))

By construction, T is budget-balancing: for all distributions (y−, y+, ξ),

ξT (y+, (y−, y+, ξ)) + (1 − ξ) T (y−, (y−, y+, ξ)) = ξy+ + (1 − ξ) y−.

4. Clearly the specification of T above is continuous as a function of y and (y−, y+, ξ).

So for any pair of sequences {yn} ⊂ ℜ and {Fn} ⊂ FB such that yn → y and Fn →

F ∈ FB , then T (yn, Fn) → T (y, F ). This same property holds if Fn → F ∈ FU .

For this, note that the corresponding sequence of triples
{(

yn
−, yn

+, ξn
)}

must converge

to a point of the form (y, y, ξ). So T (yn, Fn) → y = T (y, F ).

5. Thus far, we have defined T in such a way that is continuous in both its arguments.

We now show it implements full-investment. To this end, we evaluate ∆T (η) for all

η.
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(a) For η < η̃, the distribution of incomes is (f1 (η) , f0 (η) , 1 − η). Note that 1−η >

1/2, and f0 (η) ≤ ȳ. So T is such that higher pre-tax incomes are associated

with lower post-tax incomes, and so ∆T (η) > 0.

(b) At η = η̃ the distribution has mass at one point, T (y, Fη) ≡ y and so ∆T (η) = 0.

(c) For η ∈ (η̃, 1/2), the distribution of incomes is (f0 (η) , f1 (η) , η). Since η <

1/2, T is such that higher pre-tax incomes are associated with higher post-tax

incomes, and so ∆T (η) > 0.

(d) For η ≥ 1/2, the income at the higher mass point is again f1 (η). Provided the

externality in investment is sufficiently pronounced, this exceeds ȳ. So as in the

case of η ∈ (η̃, 1/2) it follows that ∆T (η) > 0.

Given this, the only stable equilibrium is at η = 1.

6. It is easily verified that the previous step remains valid even if f1 is perturbed slightly.

This completes the proof of the case η̃ < 1/2. For the case η̃ > 1/2, a similar mech-

anism works. As before, for all F ∈ Fu, define T (·, F ) ≡ y. For F ∈ FB , define

T as follows. Take y lower than the minimum income achieved by non-investors when

η > η̃, i.e., minz∈[η̃,1] f0 (z). Provided the externality is sufficiently strong, then if η < 1/2

then f1 (η) < y for suitably chosen y. Then if ξ ≤ 1/2, or if ξ > 1/2 but y− < y define

t (y, (y−, y+, ξ)) so that incomes are reversed. Specifically,

t (y, (y−, y+, ξ)) = −y (y+ − y−)2 exp ((ξ − 1/2) (y − ȳ))

Otherwise, define t (y, (y−, y+, ξ)) so that incomes are not reversed:

t (y, (y−, y+, ξ)) = y (y+ − y−)2 exp ((ξ − 1/2) (y − ȳ))

The actual transfer function T is then defined in terms of t in the same way as before.

Full investment is implemented as follows. For η < 1/2 then there are 1−η > 1/2 at the

higher mass point, and the lower income is the investment income. Since by assumption

this is less than y, incomes are reversed and investment yields more than non-investment.
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For η ∈ [1/2, η̃), there are 1− η ≤ 1/2 at the higher mass point; incomes are again reversed

and investment yields more than non-investment. Finally, if η > η̃ then there are η > 1/2

at the higher mass point, and the lower income is the non-investment income. Since this is

certainly above y, incomes are not reversed and investment yields more than non-investment.

QED

B Appendix: Message Games

Let M = {m1, . . . ,mn} be a finite set of possible messages. Let Λ (M) be the set of

probability distributions over M , with typical member
(

λ1, . . . , λn
)

. For any λ ∈ Λ (M),

let suppλ denote the support of λ, i.e., suppλ ≡
{

mi : λi > 0
}

.

Write F i for the distribution of incomes for agents reporting message mi, and let

G =
(

F 1, . . . , Fn, λ1, . . . , λn
)

∈ Fn × Λ (M) represent the joint distribution of incomes

and messages.

For use below, given a fraction of agents who invest, η, define Gη (ζ0, ζ1) to be the

distribution corresponding to the η investors playing mixed-strategy ζ1 and the 1 − η non-

investors playing mixed-strategy ζ0.

Formally, a tax/transfer policy that uses messages is a function T (y,m,G): an agent’s

after-transfer income depends on his pre-tax income y, his message m, and the joint dis-

tribution over messages and incomes G. As in our main analysis, we assume that T is

continuous in its arguments.

Taking η as given, and with some abuse of language, we will say that message strate-

gies (λ0, λ1) ∈ Λ (M) × Λ (M) constitute an equilibrium given η if for a ∈ {0, 1} and

m ∈suppλa, then m ∈ arg maxm′ T (fa (η) ,m′, G (λ0, λ1)). That is, given the message-

income distribution G (λ0, λ1), every message reported with strictly positive probability by

investors (respectively, non-investors) is a best response given the investor’s (respectively,

non-investor’s) income level. Standard arguments imply that for any η an equilibrium
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given η exists.19

An equilibrium is an investment level η and a pair of reporting strategies (λ0, λ1) such

that (λ0, λ1) is an equilibrium given η, and such that

max
m′∈M

T
(

f1 (η) ,m′, G (λ0, λ1)
)

≥ max
m′∈M

T
(

f0 (η) ,m′, G (λ0, λ1)
)

if η ∈ (0, 1]

max
m′∈M

T
(

f1 (η) ,m′, G (λ0, λ1)
)

≤ max
m′∈M

T
(

f0 (η) ,m′, G (λ0, λ1)
)

if η ∈ [0, 1).

Proposition 4 Suppose that η1, . . . , ηk are the equilibrium investment levels given T . Then

there is a transfer scheme T̂ that makes no use of messages such that η1, . . . , ηk are the

equilibrium investment levels given T̂ also.

Proof

Define T̂ as follows: for each η, define T̂ (fa (η) , Fη) = T (fa (η) ,m,Gη (λ0, λ1)) where

(λ0, λ1) is an equilibrium in the message game given η, and m ∈suppλa. For the equilibria

levels of investment η1, . . . , ηk, use message strategies (λ0, λ1)1 , . . . , (λ0, λ1)k such that for

each i = 1, . . . , k, investment level ηi and message strategies (λ0, λ1)i do indeed together

constitute an equilibrium of investment-message game.

By construction, for i = 1, . . . , k, investment level ηi is indeed an equilibrium given T̂ .

Conversely, consider any other investment level η /∈ {η1, . . . , ηk}. Suppose for now that

η ∈ (0, 1). Since this is not an equilibrium investment level given T , for any message

strategies (λ0, λ1) that are an equilibrium given η, then

max
m′∈M

T
(

f1 (η) ,m′, G (λ0, λ1)
)

6= max
m′∈M

T
(

f0 (η) ,m′, G (λ0, λ1)
)

.

19To see this, define a correspondence Z : Λ (M) × Λ (M) →→ Λ (M) × Λ (M) by

Z (λ0, λ1) = {(ζ0, ζ1) ∈ Λ (M) × Λ (M) such that for a = 0, 1,

if m ∈ suppζ
a

then m ∈ arg max
m′

T
(

fa (η) , m′, G (λ0, λ1)
)

.

}

That is, for strategies λ0 and λ1, the correspondance Z gives the strategies that have support over messages

that are best responses given G (λ0, λ1). Trivially Λ (M) × Λ (M) is compact, convex and non-empty.

Z (λ0, λ1) is non-empty and convex for all (λ0, λ1) ∈ Λ (M)×Λ (M). Finally, given the continuity of T , the

correspondance Z is closed. Kakutani’s fixed point theorem thus applies, and implies the existence of some

(λ0, λ1) such that (λ0, λ1) ∈ Z (λ0, λ1). The strategies (λ0, λ1) constitute an equilibrium.
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But from this is follows that

T̂ (f1 (η) , Fη) 6= T̂ (f0 (η) , Fη) ,

so that η is not an equilibrium given T̂ either. The cases η = 0 and η = 1 follow similarly.

QED

C Appendix: Basins of attraction in the linear example

In the main text we presented a simple linear example: f1 (η) = η +x1 and f0 (η) = x0−βη

with x0 > x1 and 1 + x1 ≥ x0 − β. We showed that if the government is able to precisely

estimate the functions f1 and f0, then it can compute the income level

ỹ = x1 +
x0 − x1

1 + β
=

x0 + βx1

1 + β

corresponding to the investment level η̃ = x0−x1

1+β
at which investment and non-investment

incomes coincide. It can then impose the tax/transfer policy

T (y) =







(1 + γ) ỹ − γy if y ≤ ỹ

(1 − γ) ỹ + γy if y ≥ ỹ

and successfully implement full investment. In contrast, if the government misestimates

the parameter x1 by δ it misestimates ỹ by βδ
1+β

and imposes the tax/transfer policy

T (y) =







(1 + γ) z̃ − γy if y ≤ z̃

(1 − γ) z̃ + γy if y ≥ z̃
(6)

where z̃ = ỹ + βδ
1+β

= x0+β(x1+δ)
1+β

.

As we discussed in the main text, whenever |δ| > 0 this tax/transfer policy results in

a stable equilibrium close to η̃. We also noted that the basin of attraction for this stable

equilibrium is small. Here, we explicitly calculate the basin of attraction.
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Under the tax/transfer policy given in (6),

T (f1 (η)) =







(1 + γ) z̃ − γ (η + x1) if η ≤ z̃ − x1

(1 − γ) z̃ + γ (η + x1) if η ≥ z̃ − x1

T (f0 (η)) =







(1 − γ) z̃ + γ (x0 − βη) if η ≤ x0−z̃
β

(1 + γ) z̃ − γ (x0 − βη) if η ≥ x0−z̃
β

.

Observe that x0−z̃
β

< η̃ is equivalent to (1 + β) (x0 − z̃) < β (x0 − x1), or equivalently to

(1 + β) z̃ > x0 + βx1. Likewise, η̃ < z̃ − x1 is equivalent to x0 − x1 < (1 + β) (z̃ − x1), or

again equivalently to x0 + βx1 < (1 + β) z̃.

It follows that if δ > 0,
x0 − z̃

β
< η̃ < z̃ − x1,

while if δ < 0,

z̃ − x1 < η̃ <
x0 − z̃

β
.

As such, when δ > 0 there are three subcases to consider:

If η ≤ x0−z̃
β

, then

∆T (η) = γ (2z̃ − (η + x1) − (x0 − βη))

= γ (2z̃ − x1 − x0 − (1 − β) η)

≥ γ

(

2z̃ − x1 − x0 −
(1 − β) (x0 − z̃)

β

)

=
γ

β
((2β + (1 − β)) z̃ − βx1 − (β + (1 − β)) x0)

=
γ

β
((1 + β) z̃ − βx1 − x0)

=
γ

β
βδ > 0.

If η ∈
(

x0−z̃
β

, z̃ − x1

)

, then

∆T (η) = γ (− (η + x1) + x0 − βη)

= γ (x0 − x1 − (1 + β) η) .
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This is positive if and only if

η ≤
x0 − x1

1 + β
= η̃.

Finally, if η ≥ z̃ − x1 then

∆T (η) = γ (−2z̃ + (η + x1) + (x0 − βη))

= γ (x1 + x0 − 2z̃ + (1 − β) η)

At η = z̃ − x1 this is equal to

γ (βx1 + x0 − (1 + β) z̃)

which is negative. It is strictly increasing over the range, and is zero at

η =
2z̃ − (x1 + x0)

1 − β
.

It follows that ∆T is negative if and only if

η ∈

(

x0 − x1

1 + β
,
2z̃ − (x1 + x0)

1 − β

)

.

Consequently, there is a stable equilibrium at η = x0−x1

1+β
= η̃. The basin of attraction for

this equilibrium is [0, 2z̃−(x1+x0)
1−β

). The righthand boundary of this interval lies a distance

2z̃ − (x1 + x0)

1 − β
−

x0 − x1

1 + β

=
2 (x0 + β (x1 + δ)) − (1 + β) (x1 + x0) − (1 − β) (x0 − x1)

(1 − β) (1 + β)
=

2βδ

(1 − β) (1 + β)

away from the stable equilibrium η̃. That is, the distance from the newly created stable

equilibrium to the righthand boundary of its basin of attraction is proportional to δ, the

size of the government’s misestimation of x1.

The analysis of the case in which δ < 0 is similar. In this case, ∆T is negative if and

only if

η ∈

(

2z̃ − (x1 + x0)

1 − β
,
x0 − x1

1 + β

)

,

and there is a stable equilibrium at 2z̃−(x1+x0)
1−β

. The basin of attraction is [0, x0−x1

1+β
); again,

the right hand boundary lies a distance 2βδ
(1−β)(1+β) to the right of this equilibrium.
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