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Dispersion Free Wave Splittings for Structural

Elements

M�Johansson� P�D� Folkow �� P� Olsson�

Department of Applied mechanics� Chalmers University of Technology�

SE���� �� G	oteborg� Sweden


Abstract

Wave splittings are derived for three types of structural elements� membranes� Ti�
moshenko beams� and Mindlin plates� The Timoshenko beam equation and the
Mindlin plate equation are inherently dispersive� as is each Fourier component of
the membrane equation in an angular decomposition of the �eld� The distinctive
feature of the wave splittings derived in the present paper is that� in homogeneous
regions� they transform the dispersive wave equations into simple one�way wave
equations without dispersion� Such splittings have uses both for radial scattering
problems in the �D cases and for scattering problems in dispersive media� As an
example of how the splittings may be applied� a direct scattering problem is solved
for a membrane with radially varying density� The imbedding method is utilised�
and agreement is obtained with an FE simulation�

Key words� wave splitting� time domain methods� Green�s operator� imbedding�
membrane� Timoshenko beam� Mindlin plate

� Introduction

During the last decades� time domain methods such as invariant imbedding�
Green�s function techniques and propagator methods� have successfully been
applied to a number of scattering and wave propagation problems� A survey
of these methods is contained in ���� Both direct and inverse scattering pro�
blems have been considered� as well as problems concerning� i�e�� wave guides
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and slender structural elements� Much of the work has been concerned with
electromagnetics� but acoustics and structural mechanics have also bene	ted
from the time domain approaches� see e�g� �
���� One basic building block in
such time domain methods is the wave splitting
 i�e�� a transformation that
achieves a decomposition of the wave 	elds into one�way waves� A number of
such splittings have been derived� with di�erent properties and applications�
For some purposes� the decomposition need only diagonalise the principal part
of the operator matrix of the relevant di�erential equation� Often it is advanta�
geous to have a transformation that exactly splits the PDE into one�way wave
equations in the homogeneous region� If the original wave equation is disper�
sive� the split wave equations in general are so too even in the homogeneous
regions� In regions where the original wave equations model inhomogeneities�
the one�way wave equations couple� and the coupling may often be utilised for
the reconstruction of the inhomogeneities� We refer to ����� for how this may
be done numerically�

Much of the work on wave splitting has been concerned with �D wave propaga�
tion� or situations which may naturally be reduced to �D propagation� Weston
and collaborators have� however� done much to extend the wave splittings to
more general situations� see e�g� ������ Moreover� Karlsson and Kristensson ����
have treated a �D radially symmetric scattering problem� and Kreider �����
�
has solved an inverse 
D radially symmetric scattering problem�

In the present paper we consider �D and 
D wave propagation in some structu�
ral elements� In all 
D cases considered� a distinguished radial direction allows
us to reduce the problem to �D propagation� However� common to both the
�D and 
D wave propagation for the structural elements considered is that
the wave equations exhibit dispersion� either directly geometrical or indirectly
geometrical� By directly geometrical dispersion we here denote dispersion due
to space dependent coe�cients of the wave equations� as in the case of radial
wave equations� By indirectly geometrical dispersion we denote such dispersion
that arises from the modeling of the structural elements as lower dimensional
objects� reducing the wave equation from �D to �D or 
D in space variables�

Preliminary considerations on the radial membrane showed that equations
exhibiting directly geometrical dispersion can not be split by means of the
standard methods utilised for indirectly geometrically dispersive equations�
The method which is presented in this paper� not only achieves an exact wave
splitting in homogeneous regions� but also provides some freedom to choose
the split wave equations� Here� we may choose dispersion free one�way wave
equations in a straightforward way� This method can also be utilised to obtain
wave splittings for equations that are not directly geometrically dispersive�
such as the Timoshenko beam equation� The same result may also be achieved
by extending the standard wave splitting by means of Green�s operators� which
is demonstrated in Section 
� It should be stressed� though� that this latter






approach is not an option for the radial cases�

A key feature of the dispersion free wave splittings is that the Green�s operators
are incorporated into the wave splitting transformation� The computational
di�culties involved when wave 	elds are propagated are thus not eliminated
entirely by the dispersion free wave splitting� All information about the dis�
persion of the physical 	elds is contained in the wave splitting transformation�
which of course must be computed�

In Section � we derive the dispersion free wave splitting on the radial mem�
brane� The derivation can be generalised and incorporated into the analysis
of the radial Mindlin plate in Section �� The plate problem is in a sense a
combination of the beam and the membrane problems� as it contains both the
indirectly geometrical dispersion of the beam� and the directly geometrical
dispersion of the radial membrane In Section � we apply the wave splitting
to an inhomogeneous membrane� The imbedding equations is discussed and
implemented numerically for some direct problems� The results are compared
to FE solutions� Some concluding remarks are found in Section ��

Our goal is then to construct wave splittings that not only diagonalise the
original wave equations� but also remove both the directly and the indirectly
geometrical dispersion�

� The Timoshenko Beam

This section 	rst presents a brief review of the original wave splitting trans�
formation together with new results on how to transform to dispersion free
	elds� Then follows an alternative method of obtaining dispersion free 	elds�
which has the advantage of being more easily extended to the cases of the
membrane and the plate�

The Timoshenko beam equation may be written ����

�x� � c��� ��tw� ���

��x� � f� � c��� ��t �� �
�

� � �xw � �� ���

where w�x� t�� ��x� t� and ��x� t� are the mean transverse de�ection� the mean
rotation and the mean shear angle of the cross section� respectively� Note that
in ������� � is de	ned in the opposite direction�

The quotient of the shearing and bending sti�nesses f � the velocities c� �ef�
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fective shear velocity� and c� �rod velocity� are de	ned as

f �
q
k�GA�IE� c� �

q
k�G��� c� �

q
E���

Here� A and I are the area and the moment of inertia of the cross section�
while � is the density of the beam� E is the modulus of elasticity� G is the
shear modulus and k� is the shear coe�cient�

��� Standard wave splitting

The original wave splitting for the Timoshenko beam was presented by Ols�
son and Kristensson ����� with an amendment given by Folkow et al� ����� It
takes its starting point from �������� written as a spatially 	rst order system
according to

�xw � Dw� D �

�BBBBBBBB�

� �� � �

� � � �

c��� ��t � � �

� c��� ��t f �

�CCCCCCCCA
� w �

�BBBBBBBB�

w

�

�

�x�

�CCCCCCCCA
� ���

An operator P and its formal inverse P�� are introduced and chosen so as to
diagonalise D�

u� � Pw� w � P��u�� PDP
�� � diag��������� ��� ���� ���

where u� � �u�� � u
�
� � u

�
� � u

�
� �

T is the vector of the split 	elds and the �i are
eigenoperators of D� The transformation operators are normalised so that
w � u�� � u�� � u�� � u�� � Hence� the Timoshenko beam equation ��� may be
written as dispersive one�way wave equations for the split 	elds as

�xu
�
i � �iu

�
i � �� �i �

�

ci
�t � Fi��� � � ���

In ���� explicit representations in the time domain for the �i� the Fi and the
elements of P and P�� are given�

For homogeneous beams� the left and right moving 	elds at a position x are
related to the left and right moving 	elds at a position x� respectively� through
linear operators called wave propagators or Green�s operators� These are de�
	ned by the following mapping properties ����

u�i �x� t� �x� x���ci� � G�i �x�� x�u�i �x�� t�� ���

�



Note that there are no restrictions on the relative magnitudes of x� and x�

in the Green�s operators� Due to the symmetry of the homogeneous beam
G�i �x�� x� � G�

i �x� x�� � Gi�x��x�� The inverse operator may then be written
G��i �x� � x� � Gi�x� x��� So� ��� may be summarised as

u�i �x� t� �x� x���ci� � Gi ���x� x���u�i �x
�� t�� ���

The functional form of the Green�s operators is obtained by applying Laplace
transform techniques to ��� and solving the ordinary di�erential equations�
which gives

eu�i �x� s� � eu�i �x�� s�e�e�i�s��x�x�� � eu�i �x�� s�e��sc��i �eFi�s���x�x��� ���

By de	ning the kernel

eGi�x� x�� s� � e�eFi�s��x�x�� � �� ����

the Green�s operator may be represented by Gi�x � x�� � � � Gi�x � x�� ����
The kernels Gi are Green�s functions �in the sense of Krueger and Ochs �����
and can be obtained from ���� in terms of Volterra equations of the second
kind� see �����

Gi�x� x�� t� � �x� x�

t

Z t

�
t�Fi�t

��Gi�x� x�� t� t��dt� � �x� x��Fi�t�� ����

Dispersion free 	elds v�i are obtained by using ���

ev�i �x� s� � eu�i �x� s�e�eFi�s��x�x�� � eu�i �x�� s�e�sc��i �x�x��� ��
�

which gives

v�i �x� t� � u�i �x
�� t� �x� x���ci� �

This means that the 	elds v�i satisfy the dispersion free one�way equations

�xv
�
i �

�

ci
�tv

�
i � �� ����

so that the 	elds v�i and v�i propagate in opposite directions at speeds ci
without dispersion� The 	elds u�i and v

�
i are seen to be related through

v�i �x� t� � Gi ���x� x��� u�i �x� t�� u�i �x� t� � Gi ���x� x��� v�i �x� t�� ����

Introducing v � �v�� � v
�
� � v

�
� � v

�
� �

T and G � diag�G��� �G��� �G��G��� where Gi �
Gi�x� x��� the dispersion free wave splitting transformation become

v � GPw� w � P��
G
��v� ����

�



The combined transformation may now be used even in nonhomogeneous parts
of the beam� where coupling occurs between the 	elds� All the usual appro�
aches of imbedding� Green�s functions and propagators may then be utilised�
However� in the present context we leave that aside and move on to another
way of approaching the dispersion free wave splitting transformation�

��� Reduction to second order equations

As in the previous section we will derive the dispersion free wave splitting in
two steps� thus obtaining a di�erent factorization of the transform than �����

Consider again �������� Eliminating � and �� one obtains the other familiar
form of the Timoshenko beam equation

���x � �c��� � c��� ��
�
x�

�
t � r��� c��� ��t � c��� c��� ��t �w � �� ����

where r� �
q
I�E is the radius of gyration� Equation ���� may be factorised

and written in terms of the eigenoperators de	ned in �����
��x � ���

� �
��x � ���

�
w � �� ����

The di�erential operators in ���� could of course be factorised further� giving
rise to relations such as ���� However� we refrain from doing so since we later
want to treat other cases in an analogous way� where the factorization is less
obvious� The operators ��i can be represented by ����

��i �
�

c�i
��t � V� V � �


r�c�	
�� �




� I����	���� ����

where 	 � c�r��c
��
� � c��� ��
 is a characteristic time and I� is the modi	ed

Bessel function of the 	rst kind and order two� Introduce the 	elds u��x� t�
and u��x� t� such that�

��x � ��i
�
ui � �� i � �� 
� w � u� � u�� ����

In analogy with Mindlin ���� and Vemula and Norris ���� we express the rota�
tion as

�i � Ai�xu�� i � �� 
� � � �� � ��� �
��

where the �time domain� operators Ai are independent of the spatial coor�
dinate� Since ui are solutions to ������� as well� use of �������� ��� and ����
gives

A� � V���� � A� � �c
��
� � c��� ��

�
t �

��
� � V���� � �
��

�



Their time domain expressions are given in Appendix A� The physical 	elds
w � �w� �� �� �x��

T may now be expressed in terms of u � �u�� �xu�� u�� �xu��
T

using ������� and ������
���

w � u� � u�� � � �� �A���xu� � �� �A���xu��

� � A��xu� �A��xu�� �x� � A��
�
�u� �A��

�
�u��

�

�

Denoting this 	rst transform operator by S� u � Sw and w � S��u� where

S
�� �

�BBBBBBBB�

� � � �

� A� � A�

� � �A� � � �A�

A��
�
� � A��

�
� �

�CCCCCCCCA
� S �

�BBBBBBBB�

��N� � � �N�

� ���N� ��N� �

N� � � N�

� N� N� �

�CCCCCCCCA
�

The operators Ni are given in Appendix A� The elements of S and S
�� may

of course be derived using ���� since ui � u�i � u�i and �xui � �i��u�i � u�i ��

The Timoshenko equation is thus reduced to two wave equations with di�erent
wave front speeds corresponding to the shear and bending modes respectively�
At this point we have not yet performed the wave splitting operation but only
decoupled the components of the wave 	eld whose wave fronts propagate with
di�erent speeds�

��� Transformation to dispersion free �elds

We now derive the second transformation� which will split the 	elds ui into
dispersion free left and right moving components� The two wave equations in
���� are treated simultaneously by considering the system

�xui � Diui� Di �

�B� � �

��i �

�CA � ui �

�B� ui

�xui

�CA � �
��

Introduce the operatorBi� its inverse B
��
i and dispersion free 	elds vi � �v

�
i � v

�
i �

T �
such that

vi � Biui� ui � B
��
i vi� �xvi � �ivi� �
��

�



where �i � c��i diagf��t� �tg� Now� as v�i and v�i satisfy 	rst order one�way
wave equations they may be expressed as

v�i �x� t� � v�i �x
�� t� �x� x���ci��

where x� is some reference position� Using ui � B��i���v
�
i � B��i���v

�
i in �
�� and

adopting Laplace transform techniques� the ordinary di�erential equations are
solved as

eB��i��� � a��s�e
�sc��i �e�i�s���x�x�� � b��s�e

�sc��i �e�i�s���x�x���eB��i��� � a��s�e
��sc��i �e�i�s���x�x�� � b��s�e

��sc��i �e�i�s���x�x���
As v�i propagates in the positive x�direction while v

�
i propagate in the negative

x�direction� we should have a��s� � a��s� � �� If we set b��s� � b��s� � �� the
same normalization is used as in Section 
��� It is straightforward to calculateeB��i��� and

eB��i��� using ���� Then�

eB��i �

�B� e�eFi�s��x�x�� eeFi�s��x�x��
�e�i�s�e�eFi�s��x�x�� e�i�s�eeFi�s��x�x��

�CA � �
��

eBi �
�




�B� eeFi�s��x�x�� �e���i �s�eeFi�s��x�x��
e�eFi�s��x�x�� e���i �s�e�eFi�s��x�x��

�CA � �
��

In the time domain� we have

B
��
i �

�B� G�
i G�i

��iG�
i �iG�i

�CA � Bi �
�




�B�G�i ����i G�i
G�
i ���i G�

i

�CA � �
��

where G�
i � Gi�x � x�� and G�i � Gi�x� � x�� This is in line with the results

in ���� using ui � u�i � u�i and �xui � �i��u�i � u�i �� The operators �
��
i are

found in Appendix A� By de	ning v � �v�� v��
T and B � diag�B��B�� we

obtain

v � BSw� w � S��B��v� �
��

The connection between ���� and �
�� is readily seen if B��i and Bi are facto�
rised as

B
��
i �

�B� I I
��i �i

�CA
�B�Gi �

� G��i

�CA � Bi �

�B�G��i �

� Gi

�CA �



�B�I ����i
I ���i

�CA �

Hence� the Green�s operator matrices carry the spatial dependences that deal
with the dispersion� while the eigenoperator matrices are involved in the actual

�



wave splitting� This is the reason why the original wave splitting transforma�
tion for the Timoshenko beam is found by means of a diagonalization� as the
beam is left�right isotropic� A membrane or a plate with rotational symmetry
lack the corresponding inward�outward symmetry�

� The Membrane

In this section the dispersion free transformation is derived for radial waves
in a homogeneous membrane� The objective is to obtain radially in� and out�
going waves that are uncoupled and propagate without dispersion� Since we
have cylindrical geometry we will encounter geometrical dispersion� So� the
transformation is performed in line with the methods presented in Section 
��

The wave equation for the membrane is

r�w�r� 
� t�� c����tw�r� 
� t� � �� �
��

where w�r� 
� t� is the de�ection� r� is the two�dimensional Laplace operator�

c �
q
T�� is the wave speed and �� T are mass per unit area and tension per

unit length respectively� In order to make comparisons to the plate in Section
� more apparent� the membrane equation is written

�r� � ���w � �� �� � c����t � ����

As the aim is to 	nd a transformation for radial waves� w is expanded according
to

w�r� 
� t� � we
��r� t� �

�X
m	�

�we
m�r� t� cos�m
� � wo

m�r� t� sin�m
�� � ����

For each Fourier component of the physical variables we may write ���� as

�rwm � Dmwm� Dm �

�B� � �

�� � m�

r�
��

r

�CA � wm �

�B� we�o
m

�rw
e�o
m

�CA � ��
�

The parity index e� o is dropped hereafter� since the even and odd variables
satisfy the same equations� Introduce the transformation operator Bm� its
inverse B��m and dispersion free 	elds vm � �v

�
m� v

�
m�

T � such that

vm � Bmwm� wm � B
��
m vm� �rvm � �vm�

where � � c��diagf��t� �tg� Since v�m and v�m satisfy 	rst order one�way wave
equations they may be expressed as

v�m�r� t� � v�m�r
�� t� �r � r���c�� ����

�



where r� is some reference radius� Inserting wm � B��m���v
�
m�B��m���v

�
m in ��
� and

using Laplace transform techniques� the solutions of the ordinary di�erential
equations are obtained as

eB��m��� � a��s�Im���r�e
�sc��i �r�r��� � b��s�Km���r�e

�sc��i �r�r����eB��m��� � a��s�Im���r�e
��sc��i �r�r��� � b��s�Km���r�e

��sc��i �r�r����
����

where Im and Km are the modi	ed Bessel functions of the 	rst and second
kind respectively� Reasonable physical properties of w are that the incoming
	elds� due to v�m� are regular at the origin� while the outgoing 	elds� due to
v�m� are regular at in	nity� This is accomplished by setting a��s� � b��s� � ��
If we choose a��s� � b��s� � � and set r

� � � for all the 	elds� the Laplace
transforms of the operators B��m and Bm are

eB��m �

�B� Km���r�e
sr
c Im���r�e

� sr
c

��K�m���r�e
sr
c ��I�m���r�e

� sr
c

�CA � eBm � r

�B� ��I�m���r�e�
sr
c �Im���r�e�

sr
c

���K�m���r�e
sr
c Km���r�e

sr
c

�CA �

����

In the time domain B��m � B��
m � and Bm � Bm�� The kernel matrices may

be written as ����
��

B��
m �

�B� ��
m ��m

L���
m L���m

�CA � Bm � r

�B� L���m ���m
�L���

m ��
m

�CA � ����

where L� � �r � c���t� Using t� � ct�r� ��m are given by ����
��

��
m �

��	
c
r
Tm�t����p
t����t��

� � t�

� t� � �
� ��m �

��	����
m c

r�
Tm�t����p
t����t�� t� � ��� 
�

� t� �� ��� 
�
� ����

where Tm are the Chebyshev polynomials of the 	rst kind� Note that the
kernels ��m are singular at t

� � � and that the ��m are singular at t
� � 
 and

have compact support�

There are reasons to comment on the 	elds v�m� Suppose a line source is located
at a radius r � r�� say� The transformations from the physical 	elds are such
that this source will solely cause 	elds v�m in r � r� and v

�
m in r � r�� Hence�

re�ections from the origin are part of v�m for r � r�� Hence� the 	elds v
�
m

are not in� and outgoing 	elds in the usual sense� Moreover� v�� ��� t� may be
interpreted as the magnitude of a point force at the origin� as K��

sr
c
� is seen

to be the Green�s function for the modi	ed Helmholtz equation� The present
normalization of the transformation is such that v�m��� t� � wm��� t�� in the
case of no sources at the origin�

��



There are of course other normalization alternatives that may be a better
choice when considering numerical implementation� For the calculations in
Section ��� we make the choice a��s� � b��s� �

p
s�

� The Mindlin Plate

As for the Timoshenko beam� the derivation of the dispersion free transfor�
mation will take place in steps� The 	rst step is to decouple the equations
obtaining three second order partial di�erential equations� which is in line
with Section 
�
� Up to this point� we do not specify any particular coordinate
system in the plane of the plate� However� for the wave splitting operation�
the cylindrical geometry is chosen in order to obtain dispersion free radial
waves� Hence� the dependent variables are expanded in the angular direction�
From here� the derivation of the dispersion free 	elds is performed in a similar
manner as for the membrane� Section ��

The Mindlin plate equation for a plate of thickness h and with density � may
be written ����

D



f��� 
�r�� � �� � 
�rr ��g � ��Gh� �

�h�

�

��t�� ����

��Ghr � � � �h��tw� ����

� � rw ��� ����

where D � Eh����
��� 
���� E is Young�s modulus� G is the shear modulus�

 is Poisson�s ratio and �� is the shear coe�cient� w is the displacement
transverse to the central plane of the plate� that is� in the z�direction� � is
the two�dimensional vector of rotations and � is the two�dimensional vector
of shearing angles�

��� Reduction to second order equations�

In analogy with ���� and ����� we make the ansatz

� � Arw � ez �ru�� ����

where A is an operator which is independent of the spatial coordinates� To
separate w and u�� we 	rst take the curl of ����� using ���������� which reduces
to �

r� � ���
�
u� � �� ��� � c��� ��t � ���r��� ��
�

��



where r� � h�
p
�
 is the radius of gyration of the plate cross section and

c� �
q
G�� is the wave front speed�

The equation for w is obtained by taking the divergence of ����� using �����
����� which turns into the often used equation for the plate�

r�r� � �c��� � c��� ��
�
tr� � c��� r��� ��t � c��� c��� ��t

�
w � �� ����

Hence� ���� is the two�dimensional counterpart of the beam equation �����

where c� � �c� and c� �
q
E������ 
��� are the velocities of the shearing

and bending modes respectively� In analogy with ����� ���� can be factorised
as �

r� � ���
� �
r� � ���

�
w � �� ����

where the operators ��i are obtained from ����� but with c�� c� and r� for the
plate� Introduce new 	elds u� and u� which� in accordance with ����� gives the
set of equations �

r� � ��i
�
ui � �� i � �� 
� �� ����

By using �������
� and ���� the new 	elds are related to the physical 	elds
through relations similar to �

�

w�u� � u��

��A�ru� �A�ru� � ez �ru��
� ��� �A��ru� � �� �A��ru� � ez �ru�� ����

r ���A��
�
�u� �A��

�
�u��

r� ������u�ez�

��� Reduction of dependent variables�

The aim is to reduce the equation system of nine dependent variables to a one�
dimensional problem� Folkow �
�� expressed the state of a plate in a Cartesian
coordinate system where the number of dependent variables was reduced to
six after performing a Fourier transform in one spatial direction� In the present
case� the 	elds are expanded in the angular direction� For �e � w� u�� u�� �r� �r
and �o � ��� ��� u��

��r� 
� t� ��e��r� t� �
�X

m	�

��em�r� t� cos�m
� � �om�r� t� sin�m
�� � ����

��r� 
� t� ��o��r� t� �
�X

m	�

��om�r� t� cos�m
�� �em�r� t� sin�m
�� � ����

�




The even and odd components decouple� so the parity index e� o will be supp�
ressed in the following� Expansions ��������� enable us to eliminate� from the
nine 	rst order variables� the ones which are di�erentiated with respect to the
angle 
� Thus� all in all we have six dependent variables for each m and parity�
De	ne the vectors of the physical variableswm � �wm� �r�m� �r�m� �r�r�m� ���m� �r���m�

T

and the new variables um � �u��m� �ru��m� u��m� �ru��m� u��m� �ru��m�
T � By �����

these 	elds are related through

um � Smwm� wm � S
��
m um� ����

where
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The operators Ni and Ai are obtained from the beam case in Section 
�

but with c�� c� and r� for the plate� TheMi are given in Appendix A� Note
that u��� decouples from u��� and u���� as found also in �
��� The same kind of
decoupling also occurs when r � 	� in which case u��m and u��m transform
as in the Timoshenko case�

So far we have derived a transformation that takes the Fourier components of
the physical 	elds� wm and gives a new set of variables um� which obey three
decoupled second order wave equations� with di�erent wave front speeds� We
now perform the wave splitting on each of these wave equations� giving six
one�way wave equations� with the additional condition that the one�way wave
equations shall be free of dispersion�

��



��� Transformation to dispersion free �elds�

The transformation to dispersion free 	elds is performed in the same manner
as for the membrane in Section �� For each Fourier component� equation ����
may be written

�rui�m � Di�mui�m� Di�m �

�B� � �

��i �
m�

r�
��

r

�CA � ui�m �

�B� ui�m

�rui�m

�CA � ����

Introduce the transformation operator Bi�m� its inverse B
��
i�m and dispersion

free 	elds vi�m � �v
�
i�m� v

�
i�m�

T such that

vi�m � Bi�mui�m� ui�m � B
��
i�mvi�m� �rvi�m � �ivi�m� ����

where �i � c��i diagf��t� �tg� The following steps are identical to the mem�
brane case and equations ��������� holds for the the 	elds ui� i � �� 
� �� by
adding the index i to c� �� a�� a�� b�� b��Bm�B

��
m ���m� The coe�cients ai�����bi��

are chosen on the same basis as for the membrane noting that the leading terms
of the �i are of the same order as in the membrane case� Hence� ai�� � bi�� � �
and ai�� � bi�� � ��

The inverse Laplace transforms of these elements are not as easy as in the
case of the membrane� There is� however� at least one case where an explicit
expression for the elements of the matrices exist� namely when i � � and
m � � �
��� Then�

��
��� �

�
�
	
c� cos��

p
t����t���

r
p

t����t��
� � t�

� t� � �
� ����� �

�
�
	
c� cosh��

p
t����t���

r�
p

t����t��
t� � ��� 
�

� t� �� ��� 
�
� ��
�

where � � �r�r� and t� � c�t�r� In conformity with the membrane case� the
kernels ����� are singular at t

� � � and ����� is singular at t
� � 
 and has

compact support� Note that ����� grows exponentially with increasing radius�
in contradistinction to the case of the u��mode in Cartesian coordinates �
���
For the other cases� the behaviour in the time domain for small times can be
obtained approximately by studying the asymptotics of the elements of �Bi�m

and �B
��
i�m for large values of the Laplace variable� see Appendix B� From the

asymptotic expansions it is indicated that all the kernels ��i�m have compact
support�

With vm � �v
�
��m� v

�
��m� v

�
��m� v

�
��m� v

�
��m� v

�
��m�

T and B � diag�B��m�B��m�B��m��
the combined transform is

vm � BmSmwm� wm � S
��
m B

��
m vm� ����
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� Application to an inhomogeneous membrane

��� The dynamic equations

We now consider the case when the mass per unit area of the membrane varies
as a function of the radius� Hence� the wave speed will be a function of r� We
use the same transformation matrices Bm and B

��
m as in Section �� however

with a varying velocity c�r�� Insertion of wm � B
��
m vm� into ��
�� gives

�rvm � �BDmB
��
m �B�rB��m �vm�

In order to use the results from the homogeneous membrane in Section �� we
introduce the following decomposition

�rB
��
m � �r

���
c�r�	const


B
��
m � c��r��c�r�B

��
m � ����

Hence� the dynamics of the split 	elds becomes

�rvm � �� �Lm�vm� � � c�r����tdiag���� ��� Lm � �c��r�Bm�c�r�B
��
m �
����

Thus� at each point we perform the wave splitting with respect to the local
wave speed� In the Laplace domain� the operator elements of Lm are

eLm��� �
c�

c
���Im���� I�m�����Km��� � K

�
m�����m�Im���Km���� ����eLm��� �

c�

c
�����Im�����Im������ I�m����e��� � ����eLm��� �

c�

c
������Km�����Km����� � K

�
m����e

�� � ����eLm��� �� eLm��� ����

where c � c�r�� c� � c��r� and � � sr�c� These elements can be obtained in
the time domain by taking the inverse Laplace transformation of each modi�
	ed Bessel function separately� applying the convolution theorem and 	nally
di�erentiate twice with respect to time� They then have the form

Lm�klv
� � Lm�kl � v�m �

Z t�

��
Lm�kl�r� t

��v�m�r� t� t��dt�� k� l � �� 
� ����

So the dynamics for the split 	elds� ����� become

�rv
�
m � �c���tv�m � Lm��� � v�m � Lm��� � v�m�

�rv
�
m � c���tv

�
m � Lm��� � v�m � Lm��� � v�m�

����

Thus� for an inhomogeneous region the split 	elds satisfy coupled partial
integro�di�erential equations� From here� one can exploit various time domain

��



methods� such as the imbedding method� Green�s functions and the propaga�
tor technique� to solve direct and inverse problems� In the example considered
here we utilise the imbedding method� In Section ��� explicit expressions for
the Lm�ij�kernels are given in the case m � ��

��� The imbedding equation

We seek an equation for the operator that� for a certain r in the inhomogeneous
region� relates the internal 	elds to each other� Due to linearity� causality and
time translation invariance this relation has the form

v�m�r� t� �
Z t�

��
Rm�r� t

��v�m�r� t� t��dt�� ��
�

The kernel Rm�r� t� will be referred to as the re�ection kernel as usual� alt�
hough v�m are not physical wave 	elds traveling inwards and outwards in the
usual sense� To obtain an equation for Rm�r� t�� v

�
m is eliminated from ����

by insertion of ��
�� After use of both equations� partial integration and the
causality of Rm�r� t� and v

�
m� the equation for R is obtained as�

�r �



c
�t



Rm � 
Lm��� �Rm �Rm � Lm��� �Rm � Lm��� � �� ����

In the following the analysis will be restricted to the case m � �� so the index
m is suppressed hereafter� It is also assumed that c�r� is continuous� while
c��r� is piecewise continuous�

��� Certain known components of the re�ection kernel for the case m	


In the time domain the kernels elements of L� become� after lengthy calcula�
tions�
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where H is the Heavyside step function and K� E are the complete elliptic
integrals of the 	rst and second kind respectively� The bkl and dkl are given by

b�� �
c


�r
� b�� �

�r�

��t�ct� �r��ct� 
r�� � b�� �
�r�

t�ct � �r��ct� 
r��
�

d�� �
ct


r
� d�� ���� �r

ct
��� d�� ��� �

�r
ct
���

The kernels of the coupling operator are de	ned in terms of E and K� with
algebraic coe�cients and arguments� which are singular� In addition� K has a
logarithmic singularity when the argument approaches unity� The kernels also
contain step functions and Dirac�s delta functions� It implies that R�r� t� may
contain these types of singularities as well�

Equation ���� thus contains terms of these kinds� Billger and Folkow �
� give
a proof� which� in e�ect� states that multiplicative and convolutional parts
of ��
� must satisfy ��
� independently� The coe�cients for collected Dirac�s
delta functions in ���� having the same characteristic then must be zero� It may
also be shown that coe�cients for power and logarithmic singularities must
be zero� This allows for analytical determination of some of the singularities
and distributions of the re�ection kernel�

For continuous c�r�� R�r� t� contains no Dirac�s delta functions� Hence� the
re�ection kernel is decomposed according to

R�r� t� �R��r� t� �
X
�R�i�r�H�t� �i�r�� �

X
gi�r��t� �i�r��

��

�
X

fi�r� ln �jt� �i�r�j� �
X

hi�r��t� �i�r�� ln �jt� �i�r�j� �
����

where R��r� t� is the bounded and smooth part of R�r� t�� The jump disconti�
nuities give rise to Dirac�s delta functions when inserted into ����� but so does
convolutions of power singularities� consider for instance �

�

Z t

�

dt�

�t� � t���t� t� � t��
�

�

t� t� � t�
ln j�t� t���t� t��

t�t�
j � ����t� t� � t���

����

where t�� t� � �� There is however one jump discontinuity that can be deter�
mined at this point� since these latter contributions propagate along �later�
characteristics� The kernel L�� contains � c�

��c
��t�� Cancellation is only possible

if R has a jump discontinuity �R�� according to ����� given by

�R�� � �c����� ���r� � � ����

Now� consider the power singularities� By studying Lkl� k� l � �� 
� in the
neighbourhood of the singularities� i�e� by examining expansions about singu�
lar points� the coe�cients of the singular parts can be identi	ed� After inser�
tion of R into ����� singular terms of the same order propagating along the

��



same characteristics are collected� The coe�cients for these must vanish inde�
pendently� which makes it possible to determine the necessary singularities of
R�

For power singularities of order one the convolution integral ��
� is interpret
as a CPV integral since it is valid for all t� The same holds for convolutions
in ����� A power singularity of order two is found in L��� The only term that
can cancel this term comes from the principal part of ����� Thus�

�g��t� ���
���
�c� �����

�
�
c�r����ct� 
r���

�
� ��

which gives ���r� � 
r�c�r� and g��r� � g� � ���� Investigation of the other
terms in ���� shows that there are no further singularities in R�r� t� along that
characteristic� f��r� � h��r� � �� but from inspection of the principal part it
is seen that there may be power singularities propagating along t � �i
��r��
where

�i
��r� �
Z r

�


dr�

c�r��
� C�

i � ����

To determine these� consider a case where c is constant for r � r� and a
function of r on the outside� Then R�r � r�� t� � �� From continuity consi�
derations for v� and ��
� it follows that there must be a power singularity
g��r

�� � �g�� that propagates from the point �r� t� � �r�� ���r��� along the
characteristic t � ���r�� where ���r� is given by ���� with C�

� � �� see II in
Figure �� For continuous c� there are no further power singularities� From the
other terms in ���� we may conclude also that g��r� � �g� and that f��r�
satisfy �
����rf� � �c

����c� c��r�

Since ���� is non�linear in R and the coupling kernels� as well as R� are singular
there are Dirac�s delta functions propagating also along t � 
��� 
��� �� � ���
It turns out that� when each of these terms in ���� are collected� including
� c�

��c
��t� �r

c
� from L��� the only one with a non�vanishing coe�cient propaga�

tes along t � 
���r� and has the coe�cient c
���
�c�� This necessitates another

jump discontinuity in R along t � ���r� � 
���r�� which is given by

�R�� �
�c� 
���� � c���
�c� � ��

Thus� �R�� � ��R��� There may be additional jump discontinuities �R�i
� pro�
pagating along t � �i
��r�� where �i
��r� is given by the right hand side of
����� These are initiated where c� has jump discontinuities� see I and III in Fi�
gure �� From considerations based on the continuity of v� and equation �����
initial values and di�erential equations for these additional jump discontinui�
ties may be derived� The additional logarithmic singularities that these jump
discontinuities lead to cancel out in ����� Hence� they do not imply further sin�
gularities in R� There are� however� additional singularities in individual terms
in ���� and they run along characteristics such as t � �� � �i
�� �� � �i
��

��



Finally� we note that ���r� is the true travel time from radius r to the origin
and back� while ���r� is the travel time with the constant wave speed c�r�
everywhere� i�e� the travel time for the homogeneous case�

t

rr� r��

c� c�r� c�

�R��

�R��

�R��

�R��

g�

g�� f�

��

��

��

��

��

��

I

II

III

Fig� 
� Characteristics for an inhomogeneous ring with c��r� discontinuous at the
boundaries� Note that �R�� runs along t � � for r� � r � r���

��� Numerical example

In this section we present numerical results from simulated direct scattering
problems for inhomogeneous membranes� All results concern the case with
circular symmetry
 w�r� 
� t� � w��r� t�� see Section �� We will 	rst give an
outline of the numerical implementation of the radial wave splitting and the
computation of the re�ection kernel� The direct problem is then considered
for three wave speed pro	les� where the result is compared to a FE solution�

����� Numerical implementation of the wave splitting and the re�ection ker�

nel

As was mentioned at the end of Section �� one may consider other norma�
lizations of the transforms than the one presented there� Here� we make the
choice a��s� � b��s� �

p
s� This makes the transform operators more sui�

ted for numerical implementation in the time domain� see Appendix A� The
kernels are still singular but integrable� interpreted as CPV integrals� This re�
normalization does not in�uence the coupling terms ����� and hence not the

��



dynamics of the split 	elds� ����� As a consequence� the re�ection operator is
not altered�

In Section ��
 it was demonstrated how parts of the re�ection kernel could
be determined analytically� The remaining part of R may then be calculated
numerically with simple methods� taking into consideration the known singu�
larities� Here� only a subset of the analytical information in Section ��
 has
been utilised� namely the information about the power singularities traveling
along t � �� and t � �� and the jump discontinuity �R��� The rest of the jumps
and singularities are being part of the numerical solution� and have thus been
handled with less accuracy� The reason for this is� that in many scattering
situations� the main objective is to be able to determine the 	elds up to and
past one travel time through the inhomogeneous medium and back� This is for
example the case when studying inverse problems� where information about
the varying media is to be recovered from re�ection data� The re�ection kernel
is therefore divided into a regular part� Rreg� and a singular part� whereby we
mean that the regular part does not contain power singularities and the jump
discontinuity �R��� The regular part is then calculated numerically by means
of 	nite di�erences�

Since all terms in the imbedding equation contain singularities it is inevitable
to have to perform convolutions with singular kernels numerically� This pro�
blem has been solved by replacing all singularities with discrete functions that
give an approximate result when being integrated� see Appendix C�

Travel time coordinates are introduced to simplify the calculations� If the
membrane is homogeneous outside a radius r � r� say� the non�dimensional
travel time coordinates are

��r� �
�

�

Z r

�

dr�

c�r��
� � � t�
�� � �

Z r�

�

dr�

c�r��
� ����

This makes the characteristic equation t � ���r� become � � � in non�
dimensional space� By introducing Lmod

�� as L�� without the power singularity
of order two and the 	rst Dirac�s delta function at t � �� ���� may be written

��� � �
�R
reg � 
L�� �R �R � L�� �R� Lmod

�� � �� ����

Then� ���� does not contain the power singularity of order two and no Dirac�s
delta functions for t � 
min���� ���� The inhomogeneous region is then divided
into N subintervals and Rreg��� s� is solved numerically from knowledge of the
coupling terms and R�x� ��� which is known from the jump condition ����� The
integrals are all approximated with the trapezoidal rule� where the logarithmic
singularities and the power singularities of order one are represented according
to Appendix C�
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����� Comparisons with FE solutions�

Solutions obtained by means of the commercial software FEMLAB are used
for comparisons� The membranes that are considered are of radius r � r��
with a possible region of inhomogeneity from the origin to r � r� � r�� In all
the examples discussed below� the outer radii r� are large enough so that no
re�ections from these boundaries have to be considered� The membranes are
initially at rest� and waves are generated at the boundaries according to

w�r�� t� �

��	sin
���t�� t � ��� �����

�� t �� ��� ����� ����

We start by noting that the properties of the wave splitting are such that no
v��waves are generated when boundary condition ���� is applied to a homoge�
neous membrane� The v��waves may then be computed solely from knowledge
of w� As v� propagates without dispersion� it is straightforward to obtain
w�r� t� and �rw�r� t� everywhere in the membrane using the transformations�
When compared to the solutions using the FE solver� the 	elds w and wFE

agree very well� However� the w�solutions were obtained much quicker�

For the inhomogeneous membranes� the objective is to obtain the 	elds at the
outer boundaries of the inhomogeneous regions� r � r�� Using the FE solu�
tion� v�FE�r�� t� and v�FE�r�� t� are transformed from wFE�r�� t� and its spatial
derivative� v��r�� t� may also be computed from v�FE�r�� t� by means of ��
�
and is denoted v�R�r�� t�� Comparisons of v

�
R and v

�
FE are made� where the time

is measured from when the incoming waves reach r � r��

Note that it is possible to calculate v��r�� t� over a 	nite time interval from
knowledge of only w�r�� t�� using v��r�� t� � � as in the homogeneous case�
This solution� which is valid up until the re�ected 	elds from the inhomoge�
neity reach r � r�� may then be used at r � r� instead of v

�
FE�r�� t�� So� the

	elds v��r�� t� are the same no matter the inhomogeneity� over a 	nite time
interval� This means that v� for the homogeneous case can be used in the
inhomogeneous cases over this 	nite time interval�

������� Interior with a lower speed of propagation� Here the wave
speed pro	le has a linear variation� where c � ��� for r � ��� and c � � for
r � ��� � r��

We 	rst take a look at the di�erent components of the wave 	eld in Figure 
�
By setting v�FE � � and using the wave splitting transformation we obtain the
wave 	eld for a homogeneous membrane� w�FE� Similarly� by setting v

�
FE � � we

obtain the wave 	eld w�
FE� which is the di�erence between the physical 	elds

for a homogeneous membrane and an inhomogeneous membrane� As is seen in


�



Figure 
� wFE � w�
FE�w�FE� as expected� A rough estimation of the wave 	eld

in an inhomogeneous membrane is obtained by approximating the re�ection
kernel with the known power singularities� The compensation for the re�ection
at the origin is then taken care of while the re�ections at the inhomogeneities�
which are small in comparison to the total 	eld� are neglected� In Figure 

this 	eld is denoted by wSING� and it is seen to agree remarkably well�
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Fig� �� Di�erent components of w at r � r�� �dash�dotted� wSING� �dashed� w
�
FE�

�solid� wFE� �dotted� w
�
FE�

We now turn to the comparisons� For this wave speed pro	le we have that
������� � ��� and ������� 
 
���� As is seen in Figure ��a�� the error is
small up to approximately t � 
��� where the solution is 	rst a�ected by the
distributions propagating along t � 
���r�� The deviation between t 
 ���
and t 
 ��� is due to the jump discontinuity� which propagates along t � ���
The convergence is not that clear in this region since it depends on both the
location of the jump discontinuity as well as the approximation of it� It is
rather the absolute value of the di�erences between successive approximations
that converges to zero� The structure of the error for other times is due to
convolutions with power singularities and the transformation from the physical
	elds to the split 	elds� Note that we compare with � of v�FE�

������� Interior with a higher speed of propagation Here� the wave
speed pro	le has a linear variation where c � 
 for r � ��� and c � � for
r � ��� � r�� We then have that ������� � ��� and ������� 
 ����� As is
seen in Figure ��b�� the error is small up to approximately t � ���� The
time of the 	rst in�uence from distributions propagating along t � 
�i�r� and
t � ���r� � ���r� is� in this case� t 
 ��
��

������� Strati�ed interior In this case r� � � and inside there are se�
veral layers where the wave speed is linearly varying between the radii r �
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�b� Fast interior�

Fig� �� The di�erence v�FE � v
�
R for slow and fast interior at r � r�� �dash�dotted�

N�
��� �dashed� N����� �solid� N�
��� �dotted� 
� of v�FE�

�� ��
� ���� ���� �� The wave speeds at these radii are c � ��
�� ��
�� ��
� ���� �
respectively� At the boundary of the inhomogeneous region ����� � 
 and
����� 
 ����� From Figure ��a� it is seen that the error is small for times up to
approximately t � 
� The 	rst in�uence from the �later� characteristics occur
for t 
 
����
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Fig� 
� The di�erence v�FE � v
�
R and the regular part of R for strati�ed interior at

r � r�� In �a�� �dash�dotted� N�
��� �dashed� N����� �solid� N�
��� �dotted� 
�
of v�FE�

The regular part of the re�ection kernel� including the logarithmic singularity�
propagating along t � ��� is shown in Figure ��b� for the strati	ed case� Here�
some of the numerical di�culties are apparent around time t � 
���
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	 Conclusions

This paper deals with wave splittings that transform to one�way wave equa�
tions� For the radial membrane and the radial Mindlin plate� which both
exhibit directly geometric dispersion� the splitting was obtained using non�
standard methods� This resulted in dispersion free split 	elds in a straight�
forward way� This feature could also be exploited for other structures that
do not require the presented method to obtain a wave splitting� such as the
Timoshenko beam� The main advantage of deriving dispersion free wave split�
tings is that when the split 	elds at some point are determined� translation
through homogeneous regions is trivial� This property can be utilised when
solving inverse problems since one then do not want to waste computational
resources on homogeneous regions� especially when the 	elds are measured far
from the inhomogeneous region� But� as is demonstrated in the case of the
Timoshenko beam� this is done to the price of a wave splitting transformation
that is more resource demanding than the original one�

The method agrees with the extension of a previous wave splitting for the
Timoshenko beam� For the radial membrane the transformation is a decom�
position into the 	eld from a source at the origin and the regular part of the
physical 	eld at the origin� �This decomposition is in analogy with� for in�
stance� the T matrix method� See� e�g�� Ref� �
�� which incidentally gives the
	rst time domain formulation of the T matrix method�� By combining these
two cases� it is indicated how the wave splitting transformation for the Mindlin
plate may be obtained�

To validate the method for inhomogeneous media the inhomogeneous mem�
brane has been investigated by means of the invariant imbedding technique
for a direct problem� The results from a numerical implementation has been
compared to solutions from FE computations� and agreement was obtained
within time intervals relevant for solving inverse problems�

The corresponding problem for the Mindlin plate can be expected to be more
complex due to the existence of several wave front speeds and lack of analytical
representations of certain operators� Note� however� that the major di�culties
in the case of the inhomogeneous membrane were due to the the varying wave
speed resulting from the type of inhomogeneity� A thickness variation in the
Mindlin plate� for instance� would not change the wave front speeds� Note also�
that the di�culties of having several wave front speeds have successfully been
handled for the case of Timoshenko beams �
������
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A Operators

The explicit representation of the operators Ai are

A� �
c�

c�	

�
c��
c��
�



� I����	��
�
sin�c� � �r����

A� �

�
c��
c��
� �

�
� c�

c�	

�
c��
c��
�



� I����	��
�
sin�c� � �r�� � �

The operators Ni can be given explicitly using the operators

C� �C������ C� �C���� C���� � C������
C��t� �

�


	

Z t��

�

I����d�

�
� C��t� �

�


	
I��t�	��

Then� with q � �c�� � c�����c
�
� � c��� � �� the Ni are

N� � �C�� N� �
q � �



� qC��

N� �
q � �
q � �

C� � 


q � �
C�C�� N� � c��

q � �



���t �� � 
C���

The operators ���i are

���� �c�Q� ��F� �Q��� ���� �c�Q� ��F� �Q���
Q��t� �J��c�t�r��� Q��t� �c�c��

��
t Q��t��

TheMi are given byMi �Mi����� where

M��t� �
c��
c��r

�
�

� M��t� �
��c�
r��

� M��t� �
c�
r�
H�t� sin�c�t�r���

M��t� �
r�

c���

Z t��

�
I����d��

The multiplication by s���� to the wave splitting transformation kernels eB��ij

and eB����ij is equivalent to a ���
 order time integral �
��� After some simpli�
	cations� the transform kernels Bij� where Bij � Bij�� are given for the case


�



m � � by

B�� �

��	
q

��
��
��t� �

p
��

�����t

�
�

������t�E�t���� � �E�t�����K�t�����
�
� t � ���

�
�����

p
t

�
�

���t����E����t� � 
�E����t�� K����t��
�
� t � ���

B�� �

��	�
c
p
��

����
K�t����� t � ���

� c��
����

p
t
K����t�� t � ���

B�� �
q

���
�
��t� � �p

��t����
�E�t��t� ���� �

��
�t
�E�t��t� �����K�t��t� �������

B�� �
c��p
��t����

E�t��t� �����

B��
�� �

q
�
��
��t�� �

����t
p
t���

�K�t��t� ����� E�t��t� ����� �

B��
�� �

��	
q

�
���

��t�� �
����

p
���t����

�
��
t
�E�t�����K�t����� � K�t����

�
� t � ���

��
����

p
t�t����E����t�� t � ���

The remaining two elements� B��
�� and B

��
�� of the inverse transformation have

not been explicitly written� but due to the re�normalization� they are essenti�
ally obtained by di�erentiating B�� and B�� with respect to t� respectively�

B Inverse Laplace Transform by use of Asymptotics

The time domain behaviour of the wave splitting transformation kernels� di�
scussed at the end of Section �� can be be obtained approximately for small
values of the time variable by studying the asymptotics for large values of the
Laplace variable� The starting point is the uniform asymptotic expressions for
large arguments for the modi	ed Bessel functions Im �
��

Im���kr�e
�sr�ck � e

r���k�s�ck�q

���kr

�X
j	�

����jAj�m

��jkr
j

� ie�m�i e
�r���k�s�ck�q

���kr

�X
j	�

Aj�m

��jkr
j
�

��
�

for �� � arg ��k � � � k � �� 
� �� For � � arg ��k � �� one uses the connection
formula Im���kr� � em�iIm�e

��i��kr��

The ��k are replaced by their asymptotic expansions for large s� ��
� may then
be written as an asymptotic series in inverse powers of s� Each term is then
transformed back to the time domain analytically� giving a series representa�
tion in the time domain for small values of the time variable� To know how to
close the contours� the analyticity properties of the ��k must be investigated�


�



The analyticity of the ��l� l � �� 
 for the Timoshenko beam� which are essen�
tially the same� has been studied before by several authors� among them �
���
They have however presented sets of branch cuts that are not suitable for our
purposes since we may expect to integrate also in the left half plane� In the
Laplace domain the ��k are given by

��l �

�
qs� � s�s� � 	������

����
c��q � ����� � ��� �

�s� � c���r
�
��

���

c�
� ����

where q � �c�� � c�����c
�
� � c��� � �� Consider 	rst ���� It has the branch

points s � �ic��r�� ��� is analytic for jsj � c��r� and the branch cut may
be chosen in such a way that c�����s � � for s � 	� Similarly� the in�
ner square root of ��l is analytic for jsj � 	�� and the branch cut may be
chosen so that �s� � 	�������s � � for s � 	� Then� ��l are analytic for
jsj � 	��max��� ��

p
q� � �� and the cuts may be chosen so that cl��l�s � ��

when s�	� For �����k � the principal branch is used�

Noting that the leading terms of ��l are s�cl� the leading terms of the ex�
ponentials of the exponential functions in ��
� for large s are� for the 	rst
factor� at most a constant� and for the second factor� at most a constant af�
ter extraction of a factor e��sr�ck� These factors may then too be expanded
in negative powers of s� Combining the formulas ��
� for the two half pla�
nes and using the asymptotic expansions of the ��k� a power series� valid for
s � U � fs ! jsj � 	��max��� ��

p
q� � �� 	c��r�g� is obtained as

Im���kr�e
�sr�ck � P�

j	� h�kjms
��j�����

� ��i�e�m�ie��sr�cksign�Im�s��
P�

j	� h�kjms
��j������

where the h�kjm and the h�kjm are coe�cients� not speci	ed here� The expo�
nential factor e��sr�ck will just give a time shift by 
r�ck in the time domain
so the 	rst sum will give an expansion for values of t near � while the second
sum gives an expansion for values of t near 
r�ck� The 	rst sum is analytic in
s � U Tfs ! Res � �g� The terms in the 	rst sum may then formally be in�
tegrated along a path to the right of the imaginary axis� Similarly� the second
sum is analytic in s � U Tfs ! Res � �g� The powers of the second sum may
then formally be integrated along a path to the left of the imaginary axis� By
a change in variable according to s � �e�i��� the corresponding Fourier trans�
forms are obtained and are identi	ed as the distributions ���i����j������ which
inverse Fourier transforms are given by �
��� So� by means of the formulas

L���s��j������ � t
j����
� �"�j � ��
��

L���sign�Im�s��s��j������ � i����jtj����� �"�j � ��
��
����


�



expansions for t near � and 
r�ck respectively� are found as

�X
j	�

h�kjm
"�j � ��
�

t
j����
� � e�m�i

�X
j	�

����jh�kjm
"�j � ��
�

�t� 
r�ck�j����� �

It turns out� though we do not prove it� that h�kjm � ����jh�kjm� Then�
L���Im���kr�e�sr�ck � is an even function about t � r�ck for even m and an odd
function for odd m� which simpli	es the computation of the functions in the
time domain somewhat�

The time domain representation of Km���kr�e
sr�ck for small t may be computed

in an analogous way� The asymptotic expression for large arguments is

Km���kr�e
sr�ck � e

�zk�sr�ckq

���kr

�X
j	�

Aj�m

��jkr
j
�

From the analysis for the ��k it is seen this series is analytic for s � U Tfs !
Res � �g� Expansion into powers of s and use of ���� gives

�X
j	�

h�ijm
"�j � ��
�

t
�j�����
� �

where h�ijm are coe�cients similar to h�ijm� h�ijm�

C Discretization of singularities in the numerical computation

The convolution of power singularities with smooth functions are interpreted
as CPV integrals� In ����� some kernels contain power singularities� which
propagate along known characteristics� When the computational region is di�
scretised� the characteristic lines will pass through discrete points� as well as
between them� We thus want to be able to treat both cases within the frame of
the trapezoidal rule� The numerical implementation of these integrals has been
done by modifying the discretization of the singular function in the neighbour�
hood of the singular point�

Consider the singular function g�t� � �t� t����� At a certain discrete point in
space� t� � kh� �� where h is the time step� k is an integer and � � � � h�
�
Then� g�t� has been approximated by

gapp�t� � �t� kh� ���� 
 w��t� kh��� � w��t� kh� h�
���� ����

where w� � �h � 
���h and w� � 
��h� The absolute error is then large for
t 
 kh � �� but the interated error is small� When gapp�t� is convolved with
some smooth function f � use of the CPV de	nition� Taylor expansion and the


�



trapezoidal rule will give the result I� say� The modi	ed function gmod
app is then

de	ned as the discrete function that give the result I� when convolved with f �
using only the trapezoidal rule and the same discretization� gmod

app is then given
by

gmod
app �

�
g���� g�h�� ���� g��k� 
�h�� �w�


h
�

�w�

h��� ��
� �

w�

�h �
w�


h
�

w�

h��� ��
� � g��k � 
�h�� ���
�
����

Logarithmic singularities have been represented in terms of the integral of a
discretised and modi	ed power singularity� The reason for this is to obtain a
uniform representation of logarithmic singularities in the imbedding equation�
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