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ABSTRACT. This study proposes a utility-based framework for the de-
termination of optimal hedge ratios that can allow for the impact of
higher moments on the hedging decision. The approach is applied to
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zero higher moments is only very slightly better than the performance of
the much simpler OLS hedge ratio. When implemented out of sample,
utility-based hedge ratios are usually less stable over time, and can make
investors worse off for some assets compared to hedging using the tradi-
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recent literature, by suggesting that higher moments matter in theory but
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1. INTRODUCTION

There is now indisputable evidence to suggest that the return distribu-
tions of risky assets depart from normality. For example, deviations from
normality have been observed for emerging stock market indices (Harvey,
1995), hedge fund indices (Agarwal and Naik, 2004), individual hedge
funds (Brooks and Kat, 2002), relative-strength strategies (Harvey and Sid-
dique, 2000) and futures contracts (Christie-David and Chaudhry, 2001).
Under some fairly weak assumptions concerning the shape of investor util-
ity functions, Scott and Horvarth (1980) show that investors are concerned
not just with the mean and variance of asset returns, but also with the dis-
tribution's higher moments as well. Scott and Horvarth further demonstrate
that investors will have a preference for larger odd moments and smaller
even moments. Importantly, Kraus and Litzenberger (1976), Harvey and
Siddique (2000) and Chung et al. (2006) have made it clear that systematic
risks related to skewness and kurtosis are priced by the market. To put it
differently, exposure to systematic �non-normality risks� commands a risk
premium.
In parallel to the analysis of Markowitz (1959), Kraus and Litzenberger

(1976) have shown that it is not the total skewness of an asset that will
be priced, but rather the contribution of the asset to the skewness of a well-
diversi�ed portfolio (also called systematic skewness or co-skewness). Sim-
ilarly, it will only be systematic kurtosis risk, or the contribution of an asset
to the kurtosis of a well-diversi�ed portfolio, that commands a risk pre-
mium. As in Markowitz (1959), unsystematic skewness or kurtosis risk
should be eliminated through diversi�cation. Recent renewed interest in
this proposition has led to a number of studies that extend existing asset
pricing models to incorporate higher moments, building on the early work
of Kraus and Litzenberger (1983). Examples include Chunhachinda et al.
(1997) on the incorporation of moments higher than the second into the in-
vestor's portfolio decision, and Barone-Adesi et al. (2004) on incorporating
co-skewness into asset pricing models. Harvey and Siddique (2000) demon-
strate that conditional skewness can help to explain the cross-sectional vari-
ation in asset returns, including momentum effects. Similarly, Chung et al.
(2006) have shown that the risk premia associated with size and book-to-
market value are compensation for systematic exposures to a set of non-
normality risks of order 3 to 10. Following this argument, it is possible that
failure to incorporate higher moment considerations could help to rational-
ize several other widely documented asset pricing anomalies.
Another, almost entirely separate strand of �nance literature has looked

at the hedging decisions of risk-averse investors, with particular reference
to hedging with futures contracts. A large number of studies have been
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concerned with estimation of the optimal hedge ratio, de�ned as the opti-
mal number of futures contracts to employ per unit of the spot asset to be
hedged (see, for example, Baillie and Myers, 1991; Cecchetti et al., 1988;
Kroner and Sultan, 1991; Lien and Luo, 1993; Lin, Najand and Yung, 1994;
Myers and Thompson, 1989; Park and Switzer, 1995; Strong and Dickin-
son, 1994). The simplest way to calculate this number of futures contracts is
to employ the OLS hedge ratio of Ederington (1979) and Figlewski (1984),
which simply measures the hedge ratio as the slope coef�cient of an OLS
regression of spot returns on futures returns. This implies a static risk man-
agement strategy that involves a one-off decision on the optimal hedge and
might therefore yield suboptimal hedging decisions in periods of high basis
volatility. To overcome this problem, quite a large literature has developed
that models the optimal hedge ratio within a conditional framework, tak-
ing into account the dynamics between the spot and futures returns (see,
for example, Kroner and Sultan, 1991; Brooks et al., 2002; Alexander and
Barbosa, 2006; or Miffre, 2004, to name only a few). These studies have
mainly employed models from the multivariate generalized autoregressive
conditionally heteroscedastic (MGARCH) family. They have reached con-
�icting results on the out-of-sample hedging effectiveness of conditional
minimum variance hedge ratios, even before taking into account the addi-
tional costs involved with continually buying and selling futures contracts
so as to rebalance the hedged portfolio when the model suggests. At best,
MGARCH models have led to very modest improvements in gross hedging
ef�ciency when evaluated on an out-of-sample basis. Hence the bene�ts of
active risk management strategies ought to be viewed with caution.
Almost without exception, studies on the determination of optimal hedge

ratios at best assume that investors have two-moment (quadratic) utility
functions or that the distribution of returns on the hedged portfolio is nor-
mal, so that the mean and variance alone are suf�cient to determine the
hedge ratio optimally1. In a slight generalization, Levy (1969) shows that
a cubic utility function can be employed where investor preferences de-
pend on skewness. However, it is not at all obvious, when one is released
from the constraint of the mean-variance framework, why one should stop
at skewness, for in addition to an aversion to negative skewness, rational in-
vestors should possess an aversion to positive excess kurtosis as well. Even
less plausibly, many studies focus on minimum variance hedging, where

1A slightly weaker assumption than return normality is that the spot and corresponding
futures returns are drawn from a multivariate elliptical distribution. In such circumstances,
even if the spot returns are skewed and/or leptokurtic, the magnitude or otherwise of these
higher moments is not affected by hedging with futures and thus optimally, they should not
enter into the hedger's objective function.
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the mean, as well as any moments of order higher than the second, are ig-
nored. Such an assumption concerning the mean will only be appropriate if
investors are in�nitely risk-averse, or if the expected return is zero.
Clearly then, if return distributions depart from normality, hedging strate-

gies that assume normality might lead to sub-optimal hedging decisions.
The extant literature concerning the impact of higher moments on hedging
is very sparse. Gilbert et al. (2006) derive and apply a partial equilibrium
model of hedging that allows for skewness (but not kurtosis) in the hedger's
utility function. They show that skewness can be important for undiversi�ed
agents, and the overall extent of speculation could either rise or fall depend-
ing upon whether there is a price bias in the forward market. However,
while they allow for skewness in the utility function, they do not explicitly
consider its impact on the determination of optimal hedge ratios.
The only other relevant contribution in this area is by Harris and Shen

(2006), who consider cross-hedging with currencies rather than with fu-
tures. They show, using a set of daily currency exposures, that minimum
variance hedging is likely to reduce the out-of-sample variance of the hedged
portfolio, but the skewness and kurtosis are likely to fall and rise respec-
tively. This result indicates that the bene�t of hedging may be overstated
since these higher moments move in exactly the opposite directions to those
preferred by a rational utility maximizer of the form described in the the-
oretical literature. Similarly, Brooks and Kat (2002) observed that hedge
funds, while they demonstrate impressive performance on mean-variance
grounds, also typically have less desirable higher moment values than tra-
ditional asset classes.
To our knowledge, there are no previous studies that have attempted to

estimate optimal hedge ratios within a utility-based framework that allows
for investors to have non-zero preferences for higher moments. We mea-
sure, for the �rst time, the loss of welfare that may be incurred if we use
OLS hedge ratios in non-quadratic utility functions. We de�ne the optimal
hedge ratio as the derivative of the optimal futures position with respect to
the change in the spot position. By doing so, we draw together the litera-
tures on hedging with futures, and on utility maximization with higher mo-
ments. An important precursor to our work is Kallberg and Ziemba (1983)
who study optimal equity portfolios and conclude that mean�variance port-
folios differ insigni�cantly in welfare terms from general utility-based op-
timal portfolios once risk aversion is taken into account. We extend their
work in several directions by allowing i) non-parametric return distributions
instead of Gaussian distribution; ii) more comprehensive family of utility
functions; and iii) welfare measures adjusted for risk aversion. The main
difference, of course, is that we do not study optimal investment in itself
but we use it as an intermediate step to formulate optimal hedge ratios. In
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summary, we draw the conclusion that out-of-sample, investors maximize
the expected utility of their hedged portfolio better if they ignore higher
moments. In other words, when it comes to hedging, higher moments do
not matter, despite the fact that these higher moments are clearly present in
the data and faithfully represented in our analysis.
The remainder of the article is organized as follows. Section 2 presents

the theory that underpins our higher moment hedge ratio. Section 3 in-
troduces the dataset and Section 4 presents the empirical results. Finally
section 5 concludes.

2. METHODOLOGY

An agent who hedges a long spot position at time t using ht futures con-
tracts will receive the following payoff at time t + 1, Rt+1, to the hedged
position

Rt+1 = Ct+1 � htFt+1; (2.1)
whereCt+1 and Ft+1 denote the changes in the cash (spot) and futures prices
respectively between times t and t+ 1.
Suppose that the agent has the four-moment utility function given by

Ut(Rt+1) = Et(Rt+1)� aVart(Rt+1) + bSkewt(Rt+1)� cKurtt(Rt+1)
(2.2)

where Et(Rt+1) is the expectation formed at time t for the return during the
next period, Var, Skew, andKurt are the second, third, and fourth moments
of the distribution of expected returns respectively, and a; b; c are parameters
that represent the relative desirability of the moments of the return distrib-
ution in the agent's utility function. Given the signs used to precede the
parameters in (2.2), we would usually expect a; b; c > 0 (see, for exam-
ple, Scott and Horvath, 1980). While the literature on determining optimal
hedge ratios is now vast, traditionally, academic research has assumed that
only the �rst two moments of the utility function are of concern to the in-
vestor, a restriction equivalent to b = c = 0 in (2.2). Under this assumption,
and provided that the value of the hedged portfolio follows a pure martin-
gale process, it is easy to show that the optimal hedge ratio is simply the
ratio of the covariance between the cash and futures returns to the variance
of the futures returns, equivalent to the OLS hedge.
Our objective in this study is to implement a rule for determining hedge

ratios that
(1) is not limited to the �rst two moments of the hedged portfolio return

distribution,
(2) does not impose parametric distribution of returns,
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(3) does not require the martingale assumption,
(4) puts a monetary measure on the welfare gain from following a par-

ticular hedging strategy,
(5) permits fast and reliable numerical implementation.

Employing an approach based on jointly optimizing over the mean, vari-
ance, skewness and kurtosis is not feasible unless an auxiliary assumption
is made concerning the investor's relative preferences for each of these mo-
ments. For example, one would have to answer questions such as, �how
much extra expected return would be required for the investor to be willing
to lose one unit of skewness or to gain one unit of kurtosis in the return
distribution?� This is equivalent to attempting to �nd plausible values of
a; b, and c in (2.2) above. It may be possible to obtain such information
indirectly from the prices of traded options (for example, based on com-
pound options), but there does not yet exist any �rmly established method
of achieving this goal. The fact that the mean and standard deviation both
scale with the returns, but the higher moments are usually presented in a
standardised form, and are therefore unit free, makes the problem even more
complex2.
Thus we are compelled to adopt a more general approach based not on

directly optimizing simultaneously across multiple moments, but rather on
a utility function. Broadly speaking, we de�ne the optimal hedge ratio as
the slope of the optimal futures position with respect to the change in the
spot position. This concept coincides with the standard OLS hedge if the
mean futures return is zero and preferences are dictated by quadratic utility.
Details of the methodology are spelled out in Section 2.1. To test robustness
of our results we examine a whole family of utility functions including the
logarithmic, exponential, power and quadratic utility (the so called HARA
class, see Tsiang 1972) as well as fourth moment polynomial approxima-
tions thereof corresponding to different choices of a; b; c in equation (2.2).
These utility functions are discussed in Sections 2.3 and 2.4, respectively.
The �rst challenge is to �nd meaningful comparison of optimal hedging
portfolios and of the welfare loss from adopting OLS hedging strategies
across different utility functions. The key insight is provided by Arrow
(1971), who notes that optimal portfolios normalized by local risk toler-
ance behave robustly across utility functions (see also Samuelson, 1970).
We apply the same insight to risk-adjusted performance measurement to
2Ad-hoc preferences over mean, variance and skewness that do not have interpretation

in monetary terms appear, for example, in de Athayde and Flôres (2004), Chunhachinda et
al. (1997), Lai (1991) and Prakash et al. (2003). We believe that a monetary measure of
performance is crucial to draw meaningful conclusions on the welfare loss of OLS hedging
strategies, or more generally, on the welfare loss from following mean-variance investment
rules.
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obtain a monetary measure of performance which again is robust across
utility functions (see �Cerný 2004, Chapter 3).
The second challenge is to solve the utility maximization problem accu-

rately and quickly. To make the problem tractable, the literature on optimal
investment has in the past opted for parametric distributions of returns (nor-
mal in Kalberg and Ziemba, 1979; normal combined with a speci�c skewed
distribution in Simaan 1993a,b) or else has restricted its attention to the �rst
four moments in a non-parametric setting (Post et al., 2003; Jondeau and
Rockinger, 2006). Our approach, based on Newton's optimization method
detailed in Section 2.5, is able to deal with non-parametric distributions of
returns and apart from strict concavity it does not impose restrictions on the
utility function. The method exhibits quadratic convergence, doubling the
number of digits of accuracy in each iteration, and it is thus extremely fast3.

2.1. Performance measurement.

De�nition 2.1. We call U : R ! [�1;1) with effective domain DU a
utility function if
(1) U is at least twice differentiable on the interior of DU ,
(2) U 00 < 0 on the interior of DU ,
(3) the maximal domain �DU on which U is strictly increasing has non-

empty interior,
(4) limv!�1 U

0(v) = �1 or limv!+1 U
0(v) � 0:

In cases when �DU ( DU we de�ne the inverse utility U�1 as taking
values in �DU :

Fix a probability space (
; P;F) with j
j < 1. Denote by X; Y two
random variables representing the excess returns of the future contract and
of the spot asset, respectively4. We assume that there is no arbitrage, i.e.
there is a measure Q equivalent to P and such that EQ(X) = EQ(Y ) = 0:
The next Lemma states that the optimal investment problem is well-de�ned
in the absence of arbitrage.

3Apart from computing optimal hedge ratios our procedure is also suitable for solving
optimal investment problems with a large number of assets because the computational
effort grows only quadratically with the number of assets. In contrast, the use of co-
skewness and co-kurtosis (see, for example, de Athayde and Flôres, 2004; Harvey et al.,
2004; Jondeau and Rockinger, 2006) makes the computational time grow with the third
and fourth power of the total number of assets, respectively.
4We suppress time subscripts throughout this section. The random variable X corre-

sponds to the change in the futures index Ft+1 and Y is interpreted as the change in the
cash valueCt+1. The expectationE(:) is intepreted as the expectation at time t conditional
on the information at that time.
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Theorem 2.2. Consider a utility U and initial endowment v 2 �DU and
de�ne

u(v; �; #) := E (U (v + �Y + #X)) 2 [�1;1)
There is an interval I containing an open neighbourhood of zero such that
for every � 2 I the optimal trading strategy in sup#2R u(v; �; #) exists and
is unique; we denote it by '(v; �).
De�ne the certainty equivalent (CE) wealth increase in the standard way,

CE(v; �; #) := U�1 (u(v; �; #))� v;

and denote its maximal value by cCE(v; �) := CE(v; �; '(v; �)). For � 2 I
the quantity cCE(v; �) is �nite whereas for � =2 I we have cCE(v; �) = �1.
Proof. See �Cerný (2003, Theorem 2). �
Suppose the investor goes long � units of the spot asset. If the investor

does not hedge, she continues to hold '(v; 0) futures contracts. If she
hedges optimally, her position in the futures changes to '(v; �). One can
now de�ne the optimal hedge per unit of the spot asset

opt:hedge (v; �) = �'(v; �)� '(v; 0)
�

: (2.3)

We use the standard convention whereby the hedge ratio signi�es the num-
ber of futures contracts the investor shorts as a result of being long one unit
of the spot asset, hence the extra minus sign in equation (2.3).
The welfare gain from a particular (not necessarily optimal) hedge h is

de�ned as follows5

welfare gain (v; �; h) = CE(v; �; '(v; 0)� �h)�CE(v; �; '(v; 0)): (2.4)
The literature on optimal hedging typically assumes that E (X) = 0;

in which case '(v; 0) = 0 by Jensen's inequality. When E (X) 6= 0 the
optimal futures position is non-zero even if the agent holds no spot assets,
therefore '(v; 0) does not constitute a hedge in itself. In such case only
the incremental position over and above '(v; 0) should be interpreted as the
hedging position, which is re�ected in de�nitions (2.3) and (2.4).
If one wants to understand and compare optimal investment/hedging dic-

tated by different utility functions then it is important to normalize the re-
sulting portfolio by some measure of risk aversion. This insight goes back
to Arrow (1971). The most convenient normalization factor turns out to
be the Arrow-Pratt coef�cient of risk aversion, cf. Pratt (1964), Kallberg

5Our measure of the welfare loss arising from using a second-best hedging strategy is
based on the certainty equivalent as in Kallberg and Ziemba (1979) and Pulley (1983), in
contrast to Simaan (1993b) who uses compensating variation in terminal wealth.
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and Ziemba (1983), Samuelson (1970). �Cerný (2004) shows that a similar
normalization can be applied to performance measurement.
Using the coef�cient of local absolute risk aversion

A(v) := �U
00(v)

U 0(v)
;

we de�ne the normalized spot and futures positions

� := A(v)�; � := A(v)#: (2.5)

Similarly we set

normalized opt: hedge (v; �) = A(v)opt: hedge (v; �) ;

normalized welfare gain (v; �; h) = A(v)welfare gain(v; �; h):

The normalization is performed to make the hedging coef�cients and wel-
fare measurements comparable across different utility functions.
To evaluate the normalized quantities mathematically it is convenient to

de�ne a normalized utility fv;U : R! [�1;1)

fv;U(z) := U

�
v +

z

A(v)

�
:

We review speci�c functional forms of f implied by the CRRA and HARA
class of utility functions in Section 2.3 where we also provide further eco-
nomic interpretation for the normalized utility f . Preferences over the �rst
four moments are examined in Section 2.4.

Theorem 2.3. Consider a utility U , initial endowment v 2 �DU and the
corresponding normalized utility f . De�ne

a(�; �) = f�1 (E (f (�Y + �X))) ;

�(�) = argmax
�2R

E (f (�Y + �X)) ; (2.6)

ĥ (�) = ��(�)� �(0)
�

;

g(�; h) = a(�; �(0)� �h)� a(�; �(0)):
Then

normalized opt: hedge (v; �) = ĥ (�) ; (2.7)
normalized welfare gain (v; �; h) = g(�; h); (2.8)

where �; � are the risk-normalized spot and futures positions from equation
(2.5).

Proof. By a straightforward calculation
A(v)CE (v; �; #) = f�1 (E (f (�Y + �X))) = a(�; �);
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whereby we obtain (2.8). The existence and uniqueness of the maximizer
in (2.6) was shown in Theorem 2.2. �
�Cerný (2004) calls the quantity a(�; �) investment potential. One inter-

prets a(�; �) as the percentage increase in initial wealth per unit of local
relative risk tolerance. Hence if a(�; �) = 5%, the agent's risk-free wealth
is USD 1 million and her local relative risk aversion is 5, then the perceived
certainty equivalent wealth due to holding � = ��1million

5
units of the spot

asset and # = ��1million
5

units of the futures contract equals

1 million�
�
1 +

0:05

5

�
= 1:01 million.

If the agent's local risk aversion is 1, the certainty equivalent wealth in-
creases to

1 million�
�
1 +

0:05

1

�
= 1:05 million,

provided that the spot and futures positions are scaled up 5 times (so that
the exposure normalized by risk aversion remains the same).
The investment potential has a close link to the Sharpe ratio. If we de-

�ne the Sharpe ratio of X as SR(X) := E (X) =
p
Var(X) then one can

show6 that for any utility function the investment potential from optimal
investment in X is approximately equal to 1

2
SR2 (X) for SR(X) small,

a(0; �(0)) � 1

2
SR2 (X) as SR (X)! 0:

For the quadratic utility we have identically7

a(0; �(0)) = 1�
q�
1 + SR2 (X)

��1
:

For exponential utility and normally distributed X we have identically8

a(0; �(0)) =
1

2
SR2 (X) :

2.2. Optimal hedging and OLS. Assuming suf�cient smoothness (f 2
C2) the quantity �(�) is differentiable and we can think of the optimal hedge
ĥ(�) as the average value of the marginal hedge ratios ��0(s) with s 2
[0; �];

ĥ(�) = �
R �
0
�0 (s) ds

�
:

6See �Cerný (2003, equation 25).
7See �Cerný (2004, equation 3.46).
8See �Cerný (2004, Section 3.8.1) and Hodges (1998).
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By differentiating the �rst order condition E (Xf 0 (� (�)X + �Y )) = 0
with respect to � we have
E
�
X2f 00 (�Y + � (�)X)

�
�0 (�) = �E (XY f 00 (�Y + � (�)X)) ;

�0 (�) = �E (XY f
00 (�Y + � (�)X))

E (X2f 00 (�Y + � (�)X))
:

In the special case f 00 =const, corresponding to quadratic utility, we obtain

�0 (�) = �E (XY )
E (X2)

;

which means that ĥ(�) is independent of �. If, in addition, the mean of
X is zero then the quadratic hedge equals the slope coef�cient from the
OLS regression of Y onto X and intercept. For other utility functions the
choice of � matters to some extent, but our numerical results show that this
dependence is extremely weak for � 2 [0; 1].
The literature on optimal hedging with non-quadratic utility typically

chooses the value of the non-normalized spot position � to be 1. It is clear,
however, that this may distort results substantially if the agent's risk aver-
sionA(v) is very high because the initial spot position is then unrealistically
high relative to agent's attitude to risk. We therefore opt for � = 1 across
all utility functions.

2.3. CRRA and HARA utility. To simplify notation we extend the mean-
ing of a power function with real exponent as follows.
De�nition 2.4. For all z; � 2 R we de�ne

"z�" :=

8>>>>>><>>>>>>:

�1 for � < 0; z � 0;
�1 for 0 < � < 1; z < 0;
0 for 0 < �; z = 0;
1 for � = 0; z 2 R;
z for � = 1; z 2 R;
jzj� elsewhere.

(2.9)

De�nition 2.5. The utility function

U ()(V ) :=
V 1��1
1=�1 for  =2 f0; 1g
lnV for  = 1

is called the CRRA (constant relative risk-aversion) utility9. We denote the
corresponding effective domain by D and the maximal domain on which
U () is increasing by �D .
9Note that CRRA utility is typically de�ned only for  > 0. To make the de�nition

meaningful for  < 0 and thus to prepare the ground for quadratic utility ( = �1), one
has to extend the power function in the manner indicated in equation (2.9).
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The CRRA utility is an in�nitely differentiable utility in the sense of
De�nition 2.1. U () is strictly increasing and unbounded from above for
 2 (0; 1]; it is strictly increasing and bounded from above for  > 1 and
for  < 0 it has a bliss point at zero. The coef�cient of relative risk aversion
at v reads sgn(v) for v 2 �D , hence the acronym CRRA. As it stands, for
 < 0, the utility is increasing only for negative values of wealth but this
unpleasant feature is �xed in the HARA class, which we discuss shortly.

Proposition 2.6. Fix  2 R n f0g and v 2 �D . Then Theorem 2.3 applies
to the CRRA utility U () with

f ()(z) =

(
(1+�1z)

1��1
1=�1 for  2 R n f0; 1g;

ln (1 + z) for  = 1:
(2.10)

In particular, the normalized optimal portfolio �()(�); the investment po-
tential a()(�; �), the optimal hedge h() (�) and the normalized welfare
gain g()(�; h) are independent of v 2 �D .

Proof. The normalized utility corresponding to U () equals

fv;U() ==

(
v1�(1+�1z)

1��1
1=�1 for  2 R n f0; 1g;

ln v + ln (1 + z) for  = 1:
:

Since v is �xed we have

f�1
v;U()

�
E
�
fv;U() (�Y + �X)

��
=

�
f ()

��1 �
E
�
f () (�Y + �X)

��
;

argmax
�2R

E
�
fv;U() (�Y + �X)

�
= argmax

�2R
E
�
f () (�Y + �X)

�
;

for all �; � 2 R, which proves �()(�) and a()(�; �) are independent of v.
The same claim for ĥ() (�) and g()(�; h) follows trivially. �

Note that f () converges pointwise to an exponential utility as  ! �1.
We de�ne

f (1)(z) = 1� e�z: (2.11)

The function f (); which one can think of as the normalized CRRA utility,
is at the heart of the HARA class. Effectively, HARA utility shifts the
original domain of de�nition so that the HARA utility is increasing for some
positive levels of wealth even when  < 0. It also re-sets the local relative
risk aversion to an arbitrary ~ > 0 rather than keeping it �xed at jj : This
re�ects the motivation in Tsiang (1972) who searches for a modi�cation
of power utility with reasonable values of local relative risk aversion and
comes up with a pre-cursor of the HARA class.
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De�nition 2.7. We say that an agent with initial wealth v > 0 has HARA
(hyperbolic absolute risk aversion) utility with local relative risk aversion
~ > 0 and baseline risk aversion  2 (�1;1] n f0g if it is of the form

�U
()
~;v (V ) := f

()

�
~
V � v
v

�
: (2.12)

Remark 2.8.
(1) The HARA class includes the most popular utility functions: qua-

dratic ( = �1), quartic ( = �3 with preferences over mean,
variance, skewness and kurtosis only), logarithmic (~ =  = 1),
power utility (~ =  > 0); and exponential ( = �1):

(2) For �xed V; v; ~ > 0 the utility is continuous with respect to 

�U
(1)
~;v(V ) = lim

!1
�U
()
~;v (V );

�U
(1)
~;v (V ) = lim

!�1
�U
()
~;v (V ):

(3) For  < 0 the utility function �U ()~;v (V ) has a satiation point at �V =
(1� =~) v > v.

(4) An optimizing agent will avoid bankruptcy as long as 0 <  < ~.
(5) By construction the HARA class of utility functions in (2.12) is para-

metrized to achieve

�
v
�
�U
()
~;v

�00
(v)�

�U
()
~;v

�0
(v)

= ~ for all  2 (�1;1] n f0g; v; ~ > 0:

Theorem 2.9. Fix  2 (�1;1] n f0g and v; ~ > 0. Then Theorem 2.3
applies to the HARA utility �U () with f () given in equations (2.10) and
(2.11).

Proof. The statement follows directly from Theorems 2.2 and 2.3. �

2.4. Preferences over skewness and kurtosis. It is clear that with the ex-
ception of quadratic utility ( = �1), all other members of the HARA class
take into account higher moments. If one wants to consider only mean, vari-
ance and skewness10 one may take  = �2 and to add kurtosis  = �3. Yet
another possibility is to create an ad-hoc fourth power polynomial by taking

10To be speci�c E(f (�2)(z)) = E
���1� z

2

��3� so the HARA utility f (�2) generates a
preference over mean, variance and skewness provided the excess return z does not exceed
2.
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the Taylor expansion11 of the HARA utility to the fourth order around the
risk-free wealth v: This yields

~U
()
~;v (V ) = ~f ()

�
~

v
(V � v)

�
~f ()(z) = z � z

2

2
+

�
1 +

1



�
z3

6
(2.13)

�
�
1 +

1



��
1 +

2



�
z4

24
:

Since the original utility function and its Taylor expansion share the �rst
two (in fact the �rst four) derivatives at v we retain the identity

�
v
�
~U
()
~;v

�00
(v)�

~U
()
~;v

�0
(v)

= ~:

~f () is strictly concave for  =2 (�3;�1); for these values it is also in-
creasing at 0. This implies that ~U ()~;v is a utility function in the sense of
De�nition 2.1. For  = �3 the polynomial approximation coincides with
the fourth-power HARA utility. The following proposition shows that the
case  = �3 has the best properties among the polynomial approximations.

Theorem 2.10. For  =2 (�3;�1) [ f0g and ~; v > 0 the following state-
ments hold
1) Theorem 2.3 applies to ~U ()~;v with f = ~f ().
2) the maximum investment potential detectable by the polynomial utility

~U
()
~;v equals ~z(); given as the unique maximum of ~f () on R,

~z() =


 + 2
+

3

vuut2 (2 + 7 + 12)

( + 1) ( + 2)3
+

s
24

( + 3)2

(2 + 3 + 2)3

+
3

vuut2 (2 + 7 + 12)

( + 1) ( + 2)3
�

s
24

( + 3)2

(2 + 3 + 2)3
:

11Jondeau and Rockinger (2006) use  = 1 in this context. See also Guidolin and
Timmerman (2005).
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We have

3 = ~z(�3) � ~z();
lim
!0

~z() = 0;

lim
!�1

~z() = 1 +
3

q
1 +

p
2 +

3

q
1�

p
2 � 1: 596:

2.5. Numerical algorithm. The problem

� = argmax
#2Rn

E (f (Y + #X)) ;

a = f�1 (E (f (Y + �X))) ;

can be solved by Newton's iteration method provided that the initial guess
#0 is close to the optimal portfolio �: In practice #0 = 0 works very well.
We de�ne g : R! R [ f�1g

g(#) = f�1 (E (f (Y + #X)))

and assume that in each iteration g(#) > �1. The target function g cor-
responds to a percentage increase in certainty equivalent wealth of an agent
with unit relative risk aversion. Starting at #0 we use the iteration

#k+1 = #k �
g0(#k)

g00(#k)
;

where

g0 (#) =
E (Xf 0 (Y + #X))

f 0 (g(#))
;

g00 (#) =
E (X2f 00 (Y + #X))

f 0 (g(#))
� f

00 (g(#)) (E (Xf 0 (Y + #X)))2

(f 0 (g(#)))3
:

The �rst iteration #1 always corresponds to the optimal investment with
quadratic utility. We stop the iteration when

(g0(#k))
2

g00(#k)
< 10�12;

which implies jg(#k)� g(�)j < 10�12:

3. DATA

The data, downloaded from Datastream International, comprise end-of-
month spot and futures prices on 20 US commodities. This set of series was
chosen on the grounds that it has been the subject of an important scrutiny
in the literature (Ederington, 1979; Myers and Thompson, 1989; Baillie
and Myers, 1991) and covers a wide range of commodities of interest to
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investors. The cross-section covers 10 agricultural commodity futures (co-
coa, coffee, corn, cotton, oats, soybean meal, soybean oil, soybeans, sugar
and wheat), 2 energy futures (heating oil and light crude oil), 5 metal fu-
tures (aluminum, copper, gold 100 oz, platinum and silver 1000 oz) and
the futures on frozen pork bellies, lean hogs and lumber. To compile the
time-series of futures prices, we collect the futures prices on all nearest
and second nearest contracts. We hold the �rst nearby contract up to one
month before maturity. At the end of that month, we roll our position over
to the second nearest contract and hold that contract up to one month prior
to maturity. Returns are then computed as the changes in the logarithms of
these settlement prices. The procedure is then rolled forward to the next
set of nearest and second nearest contracts when a new sequence of futures
returns is compiled. The process is repeated throughout the dataset to gen-
erate a sequence of nearby maturity futures returns.
The characteristics of the underlying asset of the contract do not nec-

essarily match those of the commodity that is being hedged. This is to be
expected since futures contracts often amalgamate commodities with differ-
ent grades or countries of origin. As a result, the return correlation between
the spot asset and its corresponding futures ranges from a low of 0.27 for
aluminum to 0.96 for gold with an average of 0.78.
The dataset covers the period January 31, 1979 to September 30, 2004.

Note that we include in our analysis some commodity futures and spot
assets that started trading after January 1979 or that were delisted before
September 2004. As a result, the sample spans shorter periods for some
contracts (aluminum, cocoa, copper, cotton, heating oil, lean hogs, light
crude oil, live cattle, lumber, silver and soybeans). Optimal hedge ratios are
�rst constructed using the entire sample for estimation and for in-sample
tests of hedging effectiveness. Then subsequently, hedging effectiveness
is tested out-of-sample and for this purpose, the whole period is split into
two sub-samples. The in-sample period covers approximately two-third of
the dataset and is used for estimation. The out-of-sample period, used for
forecasting and hedging decisions, covers the remaining one-third.
Table 1 presents some summary statistics for the futures returns, the spot

returns, and for the hedged portfolio returns, where a time-invariant OLS
hedge is employed. Most spot series are signi�cantly leptokurtic and are
positively skewed because events such as hurricanes or wars positively af-
fect commodity prices. Hedging with futures is evidently very successful
for the vast majority of the series. Compared with the spot return variance,
the hedged portfolio variance is an average of 62% lower, and for gold, the
reduction in variance is over 90%. However, interestingly, the skewness
falls for the hedged portfolio returns in 13 of the 20 series compared with
the spot skewness, falling by an average of 0.64, while the kurtosis rises
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for 15 of the series, by an average of 3.74. Thus, if we accept the premise
that hedgers are indeed concerned with higher moments, then the effective-
ness of the OLS hedge may be overstated by a consideration only of the
reduction in variance.

4. EMPIRICAL RESULTS

4.1. In-sample analysis. We measure the investment potential of the OLS
and the utility-based hedge ratios, where the investment potential can be
thought of as the percentage increase in certainty equivalent wealth that
each hedge ratio generates per unit of hedger's risk aversion. We consider
HARA utility functions with baseline risk aversion  2 f�3;�1; 1; 5;1g
and their polynomial approximations12 for  2 f1; 5;1g; as described in
Section 2.4. Our framework allows us to examine a much wider range of
parameters but we have found that all utility function with jj > 5 behave
essentially like the exponential utility,  = 1. On the other hand, utility
functions with jj � 0 are undesirable because their polynomial approxi-
mations have a low bliss point, as shown in Theorem 2.10.
Table 2 reports i) OHR, the optimal hedge ratios, ĥ(1), obtained for each

utility function via Theorems 2.3, 2.9 and 2.10, ii) OLS GAIN, g(1; hOLS)�
1200, the normalized welfare gain that results from using the second-best
(i.e. the OLS) hedge ratio in each utility function, and iii) OHR GAIN,
g(1; ĥ(1)) � 1200, the welfare gain of the optimal hedge for each utility.
Function g;too, is de�ned via Theorems 2.3, 2.9 and 2.10. The multiplica-
tion by 1200 means we interpret the welfare gain as the percentage points
increase in initial wealth per year.
The results warrant two comments. First, the OLS hedge ratios only

differ slightly from the utility-based hedge ratios. For example, all utility-
based hedge ratios are within a range of 0.1 away from the OLS hedge
ratios. This suggests that the OLS hedge ratio might be tractable and conve-
nient �rst approximation of the utility-based hedge ratios. Second, overall,
the welfare gain of the �rst-best hedge ratio only marginally exceeds, if at
all, the investment potential of the OLS hedge ratio. This tells us that per
unit of risk aversion, hedgers increase their in-sample certainty equivalent
wealth by only a very small amount when using the �rst-best hedge ratio
as opposed to the OLS hedge ratio. In other words, taking higher moments
into account does not substantially increase the welfare of the hedger, very
much regardless of the utility function.
Take, for example, cocoa and assume HARA utility with  = 1. The

reward per unit of risk that is obtained from using the �rst-best hedge ratio
exceeds that which is achieved with the standard OLS hedge ratio by a very
12For  2 f�3;�1g the HARA utility coincides with its polynomial approximation.

Copyright 2006, Brooks, �Cerný and Miffre. All Rights Reserved



ICMA Centre Discussion Papers in Finance, DP2006-12 17

marginal 0.002% per year. This suggests that, using the OLS hedge ratio (of
0.853) as opposed to the OHR (of 0.873) generates in a logarithmic HARA
utility function a welfare loss of only 0.002% per year for an agent with
local relative risk aversion of 1. If the risk aversion of the agent is higher
(which seems likely), then the welfare loss is proportionately smaller. For
the HARA utility with  = �3, the welfare of the second-best is identical
(to four decimal places) to the �rst best welfare. In other words, there is no
increase in welfare that is achieved by using the utility-based hedge ratio.
Oats stands out as the commodity for which hedgers will get the maxi-

mum increase in welfare from using a utility-based hedge ratio for the ma-
jority of utility functions that we consider. Using the OLS hedge ratio (0.78)
in the logarithmic HARA utility function generates an investment potential
of 4.08. On the other hand, using the optimal hedge ratio estimated from
the logarithmic HARA utility (0.87) generates an investment potential of
4.14 and thus increases welfare by, roughly, 0.06% a year. This 0.06% is
the highest increase in welfare that can be achieved in-sample from using
the utility-based hedge ratio as opposed to the OLS hedge ratio. By any
standard, the increase in welfare is economically insigni�cant.
Out of the eight utility functions depicted, the logarithmic HARA utility

( = 1) is the one that generates the highest average yearly increase in wel-
fare (0.008% across the 20 commodities). This means that using the optimal
hedge ratios, as opposed to the OLS hedge ratios, in the logarithmic utility
function increases wealth by less than 0.01% per annum on average. The
results are even less economically signi�cant for the other utility functions,
where the increase in welfare obtained with the optimal hedge relative to
the standard OLS hedge is roughly 0.002%.
Intuitively, one would expect that spot series for which the hedged port-

folio returns show signi�cant departures from normality (such as cotton),
should showmore considerable increases in welfare from the use of a utility-
based hedge ratio estimate, and indeed this is the case. By contrast, for the
copper series, where neither the skewness nor the kurtosis of the hedged
portfolio returns demonstrate any statistically signi�cant departures from
normality, the incremental impact on the estimated OLS HR and the wel-
fare bene�ts of utility-based OHR calculation are negligible. For that series,
the gain in investment potential as one moves away from the OLS hedge is
a meagre 0.0005% per annum at most.

4.2. Out-of-sample analysis. What increase in welfare can be achieved if
one uses historical hedge ratios to determine appropriate hedging strategies
for future time periods? Hedgers are assumed to update their information
set once a month and to re-estimate their optimal hedge ratios accordingly.
The new hedge ratios are then used as a basis for risk management over the
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following month. We calculate the resulting time series of returns according
to equation (2.1). The out-of-sample (ex-post) investment potentials gener-
ated from different utility functions are reported in Table 3 for both the case
when we inappropriately use the OLS hedge (OLS IP) and the case when
we rightly use the utility-based optimal hedge (OHR IP).
There is no tendency ex-post for the investment potential of the optimal

hedge to exceed that of the OLS hedge. In other words, modelling the
hedge ratios with the true distribution and thus taking into account higher
moments does not necessarily increase the welfare of the hedger out-of-
sample. To put it differently, there is no systematic loss in wealth that occurs
from inappropriately using OLS hedging.
Let us take silver as an example. For all values of  other than �1, the

investment potential of the utility-based hedge ratio exceeds that of the OLS
hedge ratio. In other words, adopting a more sophisticated approach to de-
termining the HR in this case helps as it increases welfare by an incremental
average return of 0.4% a year compared to the OLS hedge. At the other end
of the spectrum, some commodities are better hedged with the OLS hedge
ratio. Take, for example, cotton. Irrespective of the hedger's utility func-
tion, the ex-post investment potential of the OLS hedge is higher than that
of the predictive OHR. In effect, correctly modelling the optimal hedge ra-
tio with a utility function decreases welfare by an average of 0.9%. This
suggests that in this case, anything more sophisticated than OLS hedging
actually hurts.
Bringing together the evidence of Table 3, it seems that there is no consis-

tent support for the hypothesis that utility-based hedge ratios substantially
increase welfare. The welfare bene�ts of using utility functions sensitive
to higher moments are small but positive for 10 commodities (aluminium,
cocoa, corn, gold, heating oil, light crude oil, oats, silver, soybean oil, and
wheat). For the remaining 10 commodities, utility-based hedging is actually
detrimental.
All else equal, a hedge ratio that is stable over time is preferable to one

that is highly volatile in order to keep the transactions costs from rebalanc-
ing the hedged portfolio to a minimum. In order to investigate the variability
of the estimated hedge ratios from the various techniques, Table 3 also re-
ports the means and the standard deviations of the estimated 1-step ahead
rolling hedge ratios. The means of the utility-based optimal hedge ratios
are bigger than the means of the OLS hedge ratios for 13 of the 20 spot
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series hedged, while they are smaller for the remaining 7.13 Thus, most of
the time, switching to a utility-based approach that explicitly incorporates
higher moments leads to higher hedge ratios, commensurate with a more
precise estimate of the risks associated with systematically leptokurtic re-
turn distributions. In almost all cases, OLS-based hedging yields HRs that
have lower variances, indicating more stable hedge ratios and therefore a
lower cost of hedging. In fact, only for three series (soybean meal, lean
hogs, and light crude oil), are the OLS HRs less stable than utility-based
HRs out of sample.
In order to examine the relative sizes and stabilities of the estimated

hedge ratios, Figures 1 to 3 plot the predictive HRs implied by OLS and
various utility functions in the HARA class. The hedge ratios are estimated
recursively using all in-sample data, with one observation added at each
time step, for the cotton, gold, and soybean meal series respectively.14 Fig-
ure 1 shows that in the case of cotton, the OLS hedge ratio is higher and less
variable than those estimated from HARA utility functions, and in particu-
lar, logarithmic utility generates a dynamic OHR that has a lower mean but
much higher variance than the others. Similarly, for gold (Figure 2), again
the OLS hedge ratio is much less volatile than that of the other utility func-
tions (although now the OLS hedge also has a lower average value). This
increased variability of the utility-based hedge ratios suggests that more fre-
quent rebalancing of the hedged portfolio would be required, which could
have important consequences for the cost of implementing the hedges. Fi-
nally, Figure 3 illustrates that for some of the series, there is very little
indeed to choose between the different hedge ratios, as indicated by the
indistinguishability of the lines in the �gure. In such cases, the temporal
variation in the HRs is much more signi�cant than the contemporaneous
differences across the HRs.

5. CONCLUSIONS

This study has proposed a utility-based framework for the determination
of optimal hedge ratios that can allow for the impact of higher moments on
the hedging decision. The approach is applied to a set of 20 commodities
that are hedged with futures contracts. We �nd that in sample, the utilities
of hedges constructed allowing for non-zero higher moments are only very
13This part of the analysis leaves aside the case where the utility function has a risk

aversion parameter of -1 since these results are quite different from those emanating from
the other utility-based measures).  = -1 almost invariably leads to low hedging coef�cients
but also very stable hedges.

14The three �gures are shown for illustration and we do not include plots for all 20 series
due to space constraints, but comparable �gures for every asset in our dataset are available
from the authors on request.
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slightly higher than those determined by much simpler OLS. When imple-
mented out of sample, utility-based hedge ratios are usually less stable over
time, and can make investors worse off for some assets than hedging using
the traditional methods.
To the extent that using a considerably more sophisticated approach does

not reliably improve upon simple OLS hedging, our results con�rm those
of Harris and Shen (2006). They are unable to �nd any consistent improve-
ment in minimum value at risk with additional complexity. Similarly, Jon-
deau and Rockinger (2006) show that under many circumstances, incorpo-
rating higher moments does not affect asset allocation decisions; Post et
al. (2002) reach comparable conclusions concerning the usefulness of co-
skewness in explaining the cross-sectional variation in asset returns. Thus,
in summary, our �ndings add to a growing body of very recent literature
suggesting that higher moments matter in theory but not in practice.
Our research suggests several potentially fruitful avenues for further in-

vestigation. The practical implementation of hedging strategies requires a
consideration of returns on a net of transactions costs basis. We conjec-
ture that, given the lack of welfare bene�ts from utility-based hedge ratio
estimation even on a gross basis, this approach is likely to be even less
attractive once reasonable transactions costs are accounted for. These non-
parametric hedge ratios are typically less stable than those estimated us-
ing mean-variance analysis, with a consequent need for more frequent and
larger rebalancing. It would also be useful to determine whether our broad
conclusions also hold for other hedging assets, sample periods and data fre-
quencies.
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TABLE 2. In-sample hedge ratios and their ex-ante performance.

commodity 

OLS HR -1 -3 1 5 1
HARA POLY HARA POLY HARA POLY

ALUMINUM OHR 0.1826 0.1866 0.1973 0.1967 0.1904 0.1903 0.1889 0.1889
0.1828 OLS gain 0.0348 0.0363 0.0418 0.0415 0.0381 0.0381 0.0374 0.0374

OHR gain 0.0348 0.0363 0.0421 0.0417 0.0382 0.0381 0.0374 0.0374

COCOA OHR 0.8463 0.8563 0.8732 0.8713 0.8635 0.8633 0.8609 0.8608
0.8530 OLS gain 3.0529 3.1315 3.3875 3.3689 3.2177 3.2158 3.1828 3.1821

OHR gain 3.0531 3.1315 3.3894 3.3705 3.2182 3.2162 3.1831 3.1824

COFFEE OHR 0.853 0.8527 0.8484 0.8485 0.8516 0.8516 0.8521 0.8521
0.8553 OLS gain 5.3606 5.2869 5.2057 5.222 5.2456 5.2477 5.2595 5.2604

OHR gain 5.3607 5.287 5.206 5.2224 5.2457 5.2478 5.2596 5.2605

COPPER OHR 0.8991 0.8948 0.8878 0.8881 0.8918 0.8918 0.8929 0.8929
0.8978 OLS gain 3.9998 3.8743 3.8181 3.8388 3.8222 3.8256 3.8371 3.8385

OHR gain 3.9999 3.8744 3.8186 3.8392 3.8224 3.8258 3.8372 3.8386

CORN OHR 1.0184 1.0306 1.0668 1.052 1.0419 1.0403 1.0374 1.0368
1.0329 OLS gain 2.5082 2.5881 3.2604 3.007 2.7459 2.7244 2.6744 2.667

OHR gain 2.5087 2.5882 3.2642 3.008 2.7461 2.7246 2.6744 2.667

COTTON OHR 0.8604 0.8533 0.7674 0.8176 0.8401 0.8424 0.8463 0.847
0.8623 OLS gain 2.2765 2.2187 1.8207 2.0259 2.1441 2.1539 2.1769 2.1801

OHR gain 2.2765 2.2189 1.8494 2.032 2.1456 2.1551 2.1777 2.1808

FROZEN PORK OHR 0.9337 0.9518 0.9544 0.9494 0.9585 0.9573 0.9568 0.9563
0.9477 OLS gain 6.7604 6.7039 6.6696 6.7109 6.6832 6.6885 6.6892 6.6914

OHR gain 6.7619 6.704 6.67 6.711 6.6841 6.6892 6.6898 6.6919

GOLD OHR 0.9598 0.9742 1.001 0.9977 0.9851 0.9847 0.9811 0.9809
0.9662 OLS gain 1.6244 1.6579 1.7733 1.7676 1.6964 1.6959 1.6808 1.6806

OHR gain 1.6245 1.658 1.7755 1.7694 1.697 1.6965 1.6812 1.681

HEATING OIL OHR 0.8197 0.8074 0.8023 0.8165 0.803 0.8057 0.8043 0.8054
0.8246 OLS gain 4.1521 3.7077 4.4804 4.7656 3.7341 3.8307 3.6915 3.734

OHR gain 4.1522 3.7094 4.4836 4.7661 3.7368 3.8328 3.6939 3.7361

LEAN HOGS OHR 0.9556 0.9423 0.9302 0.9323 0.9352 0.9356 0.9375 0.9377
0.9555 OLS gain 2.6371 2.5399 2.5633 2.5928 2.5165 2.5217 2.5202 2.5223

OHR gain 2.6371 2.5403 2.5652 2.5943 2.5177 2.5228 2.5211 2.5232

Continued on next page.
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TABLE 2. Continued from previous page.

commodity 

OLS HR -1 -3 1 5 1
HARA POLY HARA POLY HARA POLY

LIGHT CRUDE OHR 1.0762 1.0505 1.0223 1.0391 1.0363 1.0391 1.0411 1.0422
1.0781 OLS gain 6.3277 5.7828 6.6023 6.9565 5.8014 5.9019 5.7558 5.7999

OHR gain 6.3277 5.7868 6.6199 6.9653 5.8106 5.9101 5.763 5.8067

LUMBER OHR 0.6778 0.6726 0.6524 0.6542 0.6662 0.6664 0.6689 0.6689
0.6827 OLS gain 2.2788 2.2512 2.1974 2.208 2.2306 2.2319 2.2383 2.2388

OHR gain 2.2789 2.2517 2.2023 2.2123 2.232 2.2332 2.2393 2.2398

OATS OHR 0.7671 0.7922 0.8746 0.8433 0.8185 0.8146 0.8078 0.8063
0.7775 OLS gain 2.6935 2.9648 4.0755 3.7347 3.3014 3.2611 3.1604 3.1455

OHR gain 2.694 2.9658 4.1356 3.7604 3.3103 3.2683 3.1651 3.1497

PLATINUM OHR 0.9215 0.921 0.9203 0.9203 0.9207 0.9207 0.9208 0.9208
0.9214 OLS gain 3.0384 3.0122 3.0285 3.0259 3.007 3.0071 3.0073 3.0074

OHR gain 3.0384 3.0122 3.0285 3.0259 3.007 3.0071 3.0073 3.0074

SILVER OHR 0.9076 0.9419 0.9947 0.9668 0.9651 0.9601 0.9567 0.9547
0.9265 OLS gain 2.9066 2.9765 3.7111 3.5862 3.167 3.1621 3.0811 3.0804

OHR gain 2.9079 2.9773 3.73 3.5929 3.1721 3.166 3.0842 3.0831
SOYB. MEAL OHR 0.4322 0.436 0.449 0.4478 0.4402 0.4401 0.4385 0.4385

0.4314 OLS gain 0.522 0.5309 0.5988 0.5941 0.5492 0.549 0.5412 0.5411
OHR gain 0.522 0.531 0.5997 0.5949 0.5494 0.5492 0.5413 0.5413

SOYB. OIL OHR 1.0182 1.0272 1.0459 1.0442 1.0345 1.0343 1.0318 1.0317
1.0245 OLS gain 3.4276 3.4665 3.6222 3.6086 3.5155 3.5142 3.4952 3.4947

OHR gain 3.4277 3.4665 3.6238 3.6099 3.5158 3.5145 3.4953 3.4949

SOYBEANS OHR 0.9732 0.9775 0.9868 0.986 0.9811 0.981 0.9797 0.9797
0.9785 OLS gain 2.3901 2.3724 2.4063 2.4079 2.3749 2.3753 2.3722 2.3724

OHR gain 2.3901 2.3724 2.4065 2.4081 2.3749 2.3754 2.3722 2.3724

SUGAR OHR 0.7416 0.7573 0.7798 0.7765 0.7677 0.7672 0.764 0.7638
0.7485 OLS gain 4.8832 4.9641 5.1873 5.1688 5.0432 5.041 5.012 5.0112

OHR gain 4.8836 4.9648 5.1961 5.1759 5.0465 5.0441 5.0141 5.0132

WHEAT OHR 0.6088 0.6178 0.6297 0.6296 0.624 0.6238 0.6218 0.6218
0.6213 OLS gain 0.8838 0.8977 1.0113 0.9908 0.927 0.9256 0.9139 0.9135

OHR gain 0.8842 0.8977 1.0115 0.991 0.927 0.9256 0.9139 0.9135

Notes: OLS hedge is computed as hOLS = Cov(X; Y )=V ar(X). Optimal hedge for each
utility function is given by ĥ(1) from Theorem 2.9. OLS gain shows the welfare gain from using
the OLS hedge ratio, g(1; hOLS). The 1st best gives the welfare gain from using the optimal
hedge ratio, g(1; ĥ(1)). For unexplained symbols see Theorem 2.9. For de�nitions of HARA
utility and its polynomial approximation (POLY), see Sections 2.3 and 2.4.
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TABLE 3. Out-of-sample hedging performance.

commodity 
(in, out) �1 �3 1 5 1
mean OLS HARA POLY HARA POLY HARA POLY
std OLS

ALUMINUM HR mean 0.1803 0.1784 0.1740 0.1742 0.1768 0.1768 0.1774 0.1774
( 40, 21) HR std 0.0317 0.0348 0.0426 0.0423 0.0377 0.0376 0.0366 0.0365
0.1793 OLS IP 2.3640 2.3607 2.3529 2.3530 2.3577 2.3577 2.3589 2.3589
0.03221 OHR IP 2.3461 2.3719 2.4366 2.4313 2.3958 2.3953 2.3866 2.3864
COCOA HR mean 0.8381 0.8562 0.8847 0.8786 0.8688 0.8678 0.8643 0.8639
(165, 84) HR std 0.0090 0.0054 0.0083 0.0067 0.0055 0.0054 0.0052 0.0052
0.84979 OLS IP 6.8866 6.8871 6.8879 6.8879 6.8875 6.8875 6.8874 6.8874
0.00637 OHR IP 6.8459 6.9073 6.9666 6.9609 6.9410 6.9395 6.9297 6.9291
COFFEE HR mean 0.8485 0.8453 0.8378 0.8381 0.8425 0.8425 0.8436 0.8436
(204, 103) HR std 0.0117 0.0141 0.0176 0.0172 0.0158 0.0157 0.0152 0.0152
0.84934 OLS IP 7.6510 7.6492 7.6294 7.6308 7.6440 7.6442 7.6464 7.6464
0.01224 OHR IP 7.6591 7.6014 7.4914 7.5044 7.5571 7.5587 7.5736 7.5742
COPPER HR mean 0.9160 0.9371 0.9662 0.9364 0.9499 0.9441 0.9453 0.9429
( 86, 44) HR std 0.0207 0.0467 0.0852 0.0500 0.0632 0.0563 0.0573 0.0544
0.92611 OLS IP -14.712 -14.723 -14.751 -14.751 -14.733 -14.733 -14.729 -14.729
0.03205 OHR IP -14.329 -15.138 -16.270 -15.537 -15.646 -15.521 -15.466 -15.416
CORN HR mean 0.9900 1.0030 1.0393 1.0266 1.0148 1.0134 1.0101 1.0096
(204, 103) HR std 0.0060 0.0069 0.0160 0.0099 0.0087 0.0082 0.0079 0.0077
1.00139 OLS IP 8.8247 8.8192 8.8044 8.8048 8.8140 8.8140 8.8161 8.8161
0.00837 OHR IP 8.6881 8.8432 9.2558 9.1254 8.9814 8.9672 8.9269 8.9217
COTTON HR mean 0.8303 0.8104 0.7143 0.7572 0.7884 0.7909 0.7977 0.7985
(196, 99) HR std 0.0152 0.0201 0.0231 0.0268 0.0238 0.0238 0.0226 0.0225
0.83058 OLS IP 12.700 12.708 12.722 12.722 12.714 12.714 12.712 12.712
0.01559 OHR IP 12.698 12.300 10.400 11.217 11.859 11.907 12.045 12.061
FROZEN PORK HR mean 0.9325 0.9713 0.9996 0.9744 0.9907 0.9858 0.9845 0.9825
(204, 103) HR std 0.0213 0.0229 0.0362 0.0256 0.0278 0.0261 0.0258 0.0252
0.95781 OLS IP -0.4819 -0.3974 -0.6974 -0.7270 -0.4423 -0.4495 -0.4144 -0.4175
0.02039 OHR IP -0.1383 -0.6171 -1.3030 -0.8916 -0.9469 -0.8624 -0.8292 -0.7947
GOLD HR mean 0.9568 0.9767 1.0130 1.0060 0.9916 0.9906 0.9861 0.9857
(204, 103) HR std 0.0030 0.0041 0.0084 0.0062 0.0058 0.0055 0.0051 0.0050
0.96583 OLS IP 4.0846 4.0847 4.0849 4.0849 4.0848 4.0848 4.0847 4.0847
0.00313 OHR IP 4.0632 4.1067 4.1863 4.1809 4.1397 4.1392 4.1275 4.1274
HEATING OIL HR mean 0.8226 0.8082 0.8061 0.8207 0.8039 0.8066 0.8049 0.8061
(180, 91) HR std 0.0111 0.0106 0.0111 0.0107 0.0106 0.0105 0.0106 0.0105
0.82848 OLS IP 0.1497 0.1425 0.0779 0.0791 0.1250 0.1249 0.1328 0.1327
0.01065 OHR IP 0.2013 0.5034 0.6121 0.3198 0.6096 0.5610 0.5803 0.5606
LEAN HOGS HR mean 0.9100 0.9023 0.9044 0.9087 0.9008 0.9015 0.9009 0.9012
(139, 70) HR std 0.0371 0.0348 0.0310 0.0312 0.0330 0.0330 0.0336 0.0336
0.91373 OLS IP 10.378 10.399 10.364 10.368 10.398 10.398 10.400 10.400
0.03539 OHR IP 10.310 10.303 10.397 10.428 10.327 10.333 10.316 10.318

Continued on next page.
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TABLE 3. Continued from previous page.

commodity 
(in, out) �1 �3 1 5 1
mean OLS HARA POLY HARA POLY HARA POLY
std OLS

LIGHT CRUDE HR mean 1.0623 1.0444 1.0238 1.0315 1.0340 1.0352 1.0376 1.0380
(171, 86) HR std 0.0167 0.0149 0.0148 0.0147 0.0146 0.0146 0.0147 0.0147
1.06301 OLS IP -0.5702 -0.5660 -0.5607 -0.5608 -0.5634 -0.5634 -0.5643 -0.5643
0.01675 OHR IP -0.5641 -0.2879 0.0395 -0.0741 -0.1267 -0.1438 -0.1820 -0.1888
LUMBER HR mean 0.6102 0.5995 0.5604 0.5662 0.5870 0.5876 0.5921 0.5923
( 76, 39) HR std 0.0401 0.0409 0.0488 0.0469 0.0430 0.0429 0.0421 0.0421
0.61722 OLS IP 11.935 12.129 12.419 12.402 12.259 12.256 12.212 12.211
0.03922 OHR IP 11.993 12.096 12.409 12.356 12.202 12.198 12.160 12.158
OATS HR mean 0.7767 0.8184 0.9393 0.8896 0.8618 0.8528 0.8444 0.8407
(204, 103) HR std 0.0158 0.0207 0.0445 0.0313 0.0296 0.0267 0.0257 0.0246
0.79252 OLS IP 2.1613 2.1506 2.1109 2.1129 2.1379 2.1381 2.1431 2.1432
0.01706 OHR IP 2.1163 2.2919 2.5796 2.5255 2.4332 2.4151 2.3818 2.3736
PLATINUM HR mean 0.9220 0.9315 0.9477 0.9443 0.9384 0.9379 0.9359 0.9357
(204, 103) HR std 0.0025 0.0057 0.0141 0.0116 0.0092 0.0089 0.0079 0.0078
0.92526 OLS IP -0.7301 -0.7302 -0.7306 -0.7306 -0.7303 -0.7303 -0.7303 -0.7303
0.00295 OHR IP -0.7041 -0.7846 -0.9220 -0.8978 -0.8426 -0.8394 -0.8214 -0.8201
SILVER HR mean 0.9233 0.9561 1.0044 0.9799 0.9777 0.9734 0.9700 0.9682
(170, 86) HR std 0.0071 0.0097 0.0114 0.0093 0.0110 0.0104 0.0106 0.0103
0.94011 OLS IP 12.001 12.005 12.013 12.013 12.008 12.008 12.007 12.007
0.00735 OHR IP 11.802 12.184 12.767 12.509 12.440 12.398 12.348 12.331
SOYB. MEAL HR mean 0.2454 0.2567 0.2700 0.2642 0.2629 0.2621 0.2608 0.2605
(129, 65) HR std 0.0843 0.0722 0.0668 0.0740 0.0676 0.0688 0.0689 0.0694
0.2452 OLS IP 5.5188 5.5467 5.5840 5.5816 5.5643 5.5639 5.5581 5.5580
0.08323 OHR IP 5.5360 5.2208 5.0567 5.2607 5.0951 5.1275 5.1319 5.1449
SOYB. OIL HR mean 0.9874 0.9970 1.0195 1.0159 1.0053 1.0049 1.0021 1.0020
(204, 103) HR std 0.0162 0.0169 0.0192 0.0186 0.0176 0.0176 0.0173 0.0173
0.994 OLS IP 12.036 12.044 12.057 12.057 12.050 12.050 12.047 12.047
0.01686 OHR IP 12.002 12.059 12.176 12.172 12.105 12.105 12.088 12.088
SOYBEANS HR mean 0.9548 0.9685 0.9960 0.9895 0.9792 0.9784 0.9752 0.9749
(204, 103) HR std 0.0028 0.0046 0.0109 0.0084 0.0069 0.0066 0.0060 0.0059
0.96451 OLS IP -0.9915 -0.9949 -1.0026 -1.0025 -0.9979 -0.9978 -0.9967 -0.9967
0.00371 OHR IP -0.9683 -0.9991 -1.0651 -1.0400 -1.0240 -1.0206 -1.0146 -1.0133
SUGAR HR mean 0.7505 0.7723 0.8048 0.7984 0.7870 0.7860 0.7817 0.7814
(204, 103) HR std 0.0062 0.0095 0.0157 0.0137 0.0121 0.0118 0.0111 0.0110
0.76002 OLS IP -1.4177 -1.4234 -1.4414 -1.4409 -1.4295 -1.4294 -1.4270 -1.4270
0.00757 OHR IP -1.4034 -1.4384 -1.5112 -1.4882 -1.4667 -1.4634 -1.4560 -1.4547
WHEAT HR mean 0.6294 0.6382 0.6514 0.6509 0.6445 0.6444 0.6423 0.6422
(204, 103) HR std 0.0176 0.0155 0.0132 0.0133 0.0141 0.0142 0.0146 0.0146
0.63787 OLS IP 10.659 10.663 10.663 10.663 10.664 10.664 10.664 10.664
0.01474 OHR IP 10.523 10.671 10.877 10.871 10.771 10.769 10.736 10.735

Notes: The values in parentheses below the series labels denote the number of in-sample and
out-of-sample observations respectively. Below that, means and standard deviations of the OLS hedge
ratios are also presented in the �rst column. The entries for each asset in the remaining columns give �rst
the mean and standard deviations of the hedge ratios for the utility-based hedges, followed by the
investment potentials of the OLS and of the utility-based hedges respectively. For de�nitions of HARA
utility and its polynomial approximation (POLY), see Sections 2.3 and 2.4.
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FIGURE 1. Out-of-sample hedge ratios for cotton.
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FIGURE 2. Out-of-sample hedge ratios for gold.
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FIGURE 3. Out-of-sample hedge ratios for soybean meal.
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