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Abstract
This paper introduces new dynamic quantile models called the Dynamic
Additive Quantile (DAQ) model and the Quantile Factor Model (QFM)
for univariate time series and panel data, respectively. The Dynamic
Additive Quantile (DAQ) model is suitable for applications to financial
data such as univariate returns, and can be used for computation and
updating of the Value-at-Risk. The Quantile Factor Model (QFM) is
a multivariate model that can represent the dynamics of cross-sectional
distributions of returns, individual incomes, and corporate ratings. The
estimation method proposed in the paper relies on an optimization cri-
terion based on the inverse KLIC measure. Goodness of fit tests and
diagnostic tools for fit assessment are also provided. For illustration,

the models are estimated on stock return data from the Toronto Stock
Exchange (TSX).

Keywords: Value-at-Risk, Factor Model, Information Criterion, In-
come Inequality, Panel Data, Loss-Given-Default.
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1 Introduction

In 1995, the Governors of the Central Banks met in Basle (Switzerland)
to establish common rules for banking supervision. An important decision
that was taken at that occasion was mandatory computation of a risk mea-
sure, called the Value-at-Risk (VaR). A few years later, the regulators added
the requirement of compulsory use of internal models for more frequent and
detailed risk monitoring in banks. Since then, banks have been routinely
computing daily VaR’s for each category of assets and for each line of the
balance sheet. The VaR has also been used by banks to determine the mini-
mum capital reserve that is required to be set aside for coverage of potential
losses due to extreme risks [see e.g. Basle Committee (1995), Jorion (1997),
and Gourieroux, Jasiak (2003) for a survey). Technically, the VaR is a con-
ditional quantile of the return distribution of a portfolio, and varies in time
according to the dynamics of its returns. Therefore, a natural approach to
VaR modelling leads to a path dependent conditional quantile specification.

The aim of this paper is to implement this idea by introducing the fol-
lowing two types of models: the Dynamic Additive Quantile (DAQ) model,
for univariate time series of portfolio returns and the Quantile Factor Model
(QFM), for applications to time series of cross-sectional asset return distri-
butions. The QFM model can also be used in studies on income inequality,
corporate rating dynamics, recovery rates, or for the analysis of mutual fund
performances !.

The paper is organized as follows. Sections 2 and 3 discuss the specifica-
tion and estimation of dynamic quantiles in univariate time series. In partic-
ular, Section 2 presents examples of dynamic quantile models that already
exist in the literature and introduces the new Dynamic Additive Quantile

(DAQ) model. The maximum likelihood estimation of a parametric dynamic

LThese applications concern panel data with a high number of cross-sectional data at
each point in time (see Section 5).



quantile model can be numerically cumbersome. Therefore, Section 3 intro-
duces an information based estimation method for DAQ models, along the
lines of Kitamura, Stutzer (1997). Sections 4 and 5 concern the estimation of
quantiles from panel data. More precisely, Section 4 considers quantile mod-
els for panel data driven by some unobservable macrofactors. This section
introduces the dynamic Quantile Factor Model (QFM) and describes its es-
timation procedure. Section 5 presents two applications of dynamic quantile
models to stock return data from the Toronto Stock Exchange (TSX). The
first one examines the performance of DAQ in a study of the dynamics of
the conditional quantiles of market returns. The second one investigates the
use of QFM for modeling the dynamics of quantiles of cross-sectional asset
return distributions and provides a more detailed summary of market risk.

Section 6 concludes the paper. Proofs are gathered in Appendices.

2 Dynamic Quantile Models

The first part of this section reviews the main properties of a quantile func-
tion. It is followed by examples of dynamic quantile models existing in the
literature. The third part introduces the new Dynamic Additive Quantile
(DAQ) model.

2.1 Quantile Functions

A quantile function of a random variable is defined as the inverse of the cu-
mulative distribution function. Let us consider a continuous random variable
that takes values in (—oo, +00) [resp.(0,00)], and suppose that its quantile
function is denoted by . The domain of @ is the interval [0,1]. @ is in-
creasing, takes value —oo [resp.0] at 0, and value 400 at 1. Examples of
quantile functions for some selected continuous random variables are given
in Table 1.



Table 1 : Quantile functions

distribution range quantile
Cauchy (=00, +00) | Q(u) = tg[r(u—1/2)]
Logistic (—o00,+00) | Q(u) =log[u/(1 — u)]
Exponential (0, 00) Q(u) = —log(1 — u)

1
Pareto (0, 00) Q(u,a) = (=0 1,a>0

A quantile function can be transformed into a different quantile function us-
ing some specific transformations. Those transformations can be determined
by taking into consideration the following properties of quantile functions
[see e.g. Joe (1997)].

i) If Q is a quantile function with range (—oo, +00), then Q*(u) = —Q(1—u)

is also a quantile function.

ii) If @ is a quantile function with range (0, 00), then @Q*(u) = Q(u”), where

~v > 0, is also a quantile function.

iii) If Qx, k = 1,..., K are quantile functions with Ii(dentical range which
is either (0,00), or (—oo,+00), then Q*(u) = Zaka(u), where the
coefficients a; are positive, is a quantile fun(:tioI;l:.1

iv) If @1, Q2 are quantile functions with range (0, c0), then :

Qi(u) = Q1(u)Q2(u) and Q3(u) = Q1(u)?, where v > 0, are also
quantile functions. If Q1,Qs are quantile functions with range (0, 1),

then Q% (u) = %

Note that in some cases Q1(u) = Y h | axQx(u) can behave like a quan-

, is a quantile function too.

tile function, even if some a; coefficients are negative. This is because the

difference of increasing functions can be an increasing function as well.
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2.2 Dynamic Quantile Models : Definition and Exam-
ples

A common approach to dynamic quantile analysis is the following. The con-
ditional quantile at risk level « is specified as a function of some conditioning
variables known at time ¢ : Qi(«) = g(z4;6,), say. Then, parameter 6, is
estimated by minimizing the following criterion [see Koenker, Basset (1978),
Koenker (2005)] 2 3:

0, = argmin Z{Oz[yt —g(@0)]" + (1 — )y — g(z;0)]"}

T
= arg malnz palye — g(x4;0)],

t=1
where y* = max(y,0),y” = max(—y,0), and p,(u) = u[a — Ly<o]-

This approach has drawbacks that become apparent when 6, is estimated
for a set of different risk levels . For example, let us consider a linear in-
dex model with Qi(a) = g(z4;0,) = x}0,. One would expect that g(zy,0,)
is an increasing function of risk level a. However, according to the above
specification, this is not necessarily the case. In particular, z}6, may not be
an increasing function of « for all admissible values of the conditioning vari-
ables. Especially, this problem may occur when some explanatory variables
take both positive and negative values. Also, even when the explanatory
variables are nonnegative, separate estimations of 6, for different levels o do
not necessarily produce outcomes that are increasing in . This is an impor-

tant limitation, since a well-specified quantile model is expected to provide

2and Portnoy (1991), Weiss (1991), Kould, Saleh (1995), Koenker, Zhao (1996),
Mukherjee (1999) for the properties of this estimation method in nonlinear dynamic frame-
work.

3An alternative estimation method with similar drawback is the Quasi Maximum Like-
lihood for conditional quantile [see e.g. Gourieroux, Monfort, Renault (1987), Gourieroux
Monfort (2001), Proposition 8.23, Komunjer (2005)]
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estimators that behave like true quantiles (that is, increase with «/), and can
be interpreted as such for any values of the parameters and conditioning vari-
ables. The monotonicity of quantile estimators with respect to « is crucial
for practical applications. For example, when the monotonicity condition is
violated, there is nothing that prevents the (estimated) Value-at-Risk from
becoming a decreasing function of risk level a. This, in turn, suggests low-
ering the (estimated) minimum required capital for balancing risky portfolio
when the loss probability increases!

In general, the specification of a dynamic quantile model is based on a
conditional quantile function. The conditional quantile function (); can be
parametric, or semi-parametric, provided that it is tractable and in a closed
form. It depends on the selected conditioning information set. Given the
dynamic quantile model, the conditional pdf at time ¢,

fily) =1/ 52107 (),

has, in general, a complicated form, and requires inversion of the conditional

quantile function Q).

Let us now present a brief overview of dynamic quantile models that have
already appeared earlier in the econometric literature (often with specific

terminologies).

Example 1 : Path dependent location and scale parameters

Let us assume that the conditional distribution of Y; is such that :
Y,11 = my + 04411, where my, 0y are functions of the information available
at time ¢ and &; are i.i.d. variables, with p.d.f. f, and quantile function ).
The forms of the conditional pdf and the conditional quantile function are
both tractable. We get :



Yy —my

Mw=%h<

The conditional quantile is simply a path dependent linear affine transforma-

> , and Qy(u) = my + 01Qo (u).

O

tion of the path independent baseline quantile function ). This specifica-
tion includes the accelerated hazard model [see Kalbfleisch, Prentice (1980),
Lancaster (1990)], and the autoregressive conditional duration (ACD) model
[Engle, Russell (1998)] introduced for time series of intertrade durations.
Both these models involve only a scale effect, that is, m; = 0. The condi-
tional scale o; is generally parametrized, while the baseline distribution fo,
or (Qo can be either parametrized, or left unconstrained.

The path-dependent location and scale parameters model is not sufficiently
flexible to describe the dynamics of risk for a portfolio of assets, as it includes
a single ”scale” parameter. This eliminates the possibility of distinguishing
between the dynamics of negative and positive extreme risks, or of standard
and extreme risks. For this purpose, at least three path dependent ”scale”

parameters are necessary.
Example 2 : Conditional Autoregressive Value-at-Risk (CAViaR)

In risk management, it is important to determine some conditional quan-
tiles of a portfolio return distribution, called the Value-at-Risk (VaR). Engle,
Manganelli (2001), (2004) directly defined the dynamics of risk by means of
an autoregression involving the lagged Values-at-Risk (that is, lagged con-
ditional quantiles) and the lagged value of the endogenous variable. Since
the Value-at-Risk at level u is equal to the conditional quantile @Qy(u), the
symbol Q;(u) replaces VaR;(u) from now on until the end of the paper.

Let us first discuss models without the autoregressive component [Engle,
Manganelli (2004), p7]. To this group belong the CAViaR model with a

symmetric absolute value :



Qi(u) = Bo(u) + Ba(u)|ye-1],

and the CAViaR model with an asymmetric slope :

Qi(u) = Bo(u) + Bo(u) (ye—1)" + Bs(u) (ye—1) "

The conditional quantile function @) is well-defined, provided that func-
tions [y, Ba, B3 are quantile functions too [see Property iii) in Section 2.1].
In brief, the CAViaR model assigns weights to different baseline quantile
functions, depending on the observed history.

When an autoregressive component of VaR is included, the CaViaR model

becomes:

Qi(u) = Bo(u) + B1(u)Qi—1(u) + Ba(uw)|ys—1],

Qi(u) = Bo(u) + Br(u)Qi—1(u) + B2(u) (Y1) + Bs(u) (ye-1) "
The conditional quantile function @); is well-defined, if functions (g, 81, B2, B3

and :

are quantile functions as well, and if (), ; is nonnegative. Indeed, if (); takes

values in (0, 1), the autoregressive specification can be written as follows:

Qu(u) = ————+ > Bo(u)Bi(u)"|yenl-
Bo

Q:(u) is now a linear combination of quantile functions ﬁ’ Ba B, h vary-
— P
ing, with nonnegative coefficients (see Section 2.1, Property iv)). Therefore,

it satisfies the properties of a quantile function *.

4However, other CAViaR specifications do not satisfy the monotonicity property. This
is the case of the indirect GARCH (1,1) : Q¢(u) = (Bo(u)+ B1 (w)Qs—1(u)?+Bo(u)y? )2,
or of the adaptive CAViaR models :

Qt(w) = Qe—1(u) + Bo(w){[1 + exp(maz (T, K (u)[ye—1 + Qe-1(w))] ™ — B1(u)}
[see Engle, Manganelli (2001)].



In practice, the conditional upper quantiles of portfolio return distributions
are not always nonnegative. In contrast, the nonnegative range constraint
holds for the conditional quantiles of intertrade durations (the so-called Time-
at-Risk (TaR)) [See Ghysels, Gourieroux, Jasiak (2003)] in the analysis of
liquidity risk, and the (0,1) range constraint holds the Loss-Given-Default

involved in the computation of the VaR for credit portfolios.

The models presented above can be extended to a simple class of para-
metric dynamic quantile models that combines different baseline quantile
functions with path dependent coefficients. This idea is explored in the fol-
lowing section that introduces the DAQ Model.

2.3 Dynamic Additive Quantile (DAQ) Model

The new class of dynamic quantile models is defined as follows.

Definition 1 : A Dynamic Additive Quantile (DAQ) model is :

Qu(u; 0) = S5 ar (Ye—1; o) Qr (u; Br) + ao(Y—1; o), (1.1)

where @, are path-independent baseline quantile functions and ay(y; 1; o)

are nonnegative functions of the past.

According to the above definition, the model with path-dependent loca-
tion and scale parameters is written as a sum of K + 1 different components.
The DAQ specification is quite flexible because it can combine baseline quan-
tile functions with tails of different thickness. From a practical point of view,
the additive quantile specification is very convenient for computing quantiles
for a set of different levels u, since it does not require inversion of the con-

ditional cdf. It is also suitable for simulation of future paths of the process.



Indeed, if a process is observed up to time ¢, the future simulated values are

defined recursively as:

Y2 (0) = D awly;_1(0), axQe(us; Bi) + aoly;_, (6), e,

where : y2(0) = y,, if 7 < ¢, and ul,7 > ¢t + 1 are drawn independently in
the uniform distribution on [0, 1].
The formulas of models in the class of Dynamic Additive Quantile models

are quite simple. For instance, let us consider the following specification:

Qu(u;0) = app+ ao1Y—1 + ao2|yi—1| + (@10 + a11|y—1])Q1(u)

Yt—1 ‘)Q?(u)a

where a1, a1,1, a2, az,1 are nonnegative. This model is a parametrized con-

+ (CLQ’Q + 2,1

ditional quantile function, that is a linear function of the parameters. Up
to a conditional drift effect, it arises as a combination of the following

baseline (possibly path-dependent) conditional quantile functions : @ (u),
|Ye-1]Q1(1),Q2(u), |y1—1]Qa(u).

In particular, to the class of Dynamic Additive Quantile models belongs
the linear DAQ model defined below.

Definition 2 : A linear Dynamic Additive Quantile (DAQ) model is :

Qi(u; 6) = Z 0,Q;+(u) = 0'Qs(u), say.
j=1

The above conditional quantile function is linear in the parameters °.

5This specification is different from the encompassing quantile model introduced in
Giacomini, Komunjer (2005). That encompassing model is 0},Q1¢(u; 81) + 05, Q2 (u; B2)
where 6;}, H;t are solutions of MZ'TLgl,92Et[pa [Z/t+1 — 01Q1t (a; ﬂl) — 02Q2t (a; 52)]] Indeed,
the solutions of this optimization depend on the past but also on the critical level a.



2.4 Conditional Moment Conditions

The DAQ model for nonnegative variables implies restrictions on all condi-
tional moments. The conditional mean and variance restrictions are discussed
below.

In general, the moments about 0 of a nonnegative random variable are

easily written in terms of its quantile function as :

B0 = [ Qura

provided that they exist. It follows, that the DAQ model implies a conditional

mean of the form:

K

Ei (V) = Zak Y 1)mk+ao(yt 1)
k=1

where my, is the mean of distribution (). Thus, the conditional mean depends
on K + 1 functions of the past ax(y; 1), k =0,..., K.

The conditional variance is:

Viei (V) = Ea(Y2) = B (V)]

K K
= Zzak Ye1)ar(Ye—1) [ — ],

k=1 I=1
where @y — mpmy = Cov [Q(U), Qi(U)] and U ~ Ujgy. The conditional
variance depends on K (K + 1)/2 functions of the past ay (M)al (Yi—1)-

3 Statistical Inference for Parametric Dynamic
Quantile Models

In this section, we consider observations ¥i,...,yr, on a univariate time

series, such as portfolio returns. Since estimation of a dynamic quantile
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model by maximizing the log-likelihood can be time consuming, we propose
a modified objective criterion that yields estimators faster, while preserving
their asymptotic efficiency. In the second part of this section, we discuss

specification tests.

3.1 Maximum Likelihood

Let us consider a parametric conditional quantile model, defined by : Q,(u;6) =
Q(u|ys—1;0), where y;_1 = {y; 1,¥s 2,...}, and 0 is a finite dimensional pa-
rameter. For instance, the parameter of a Dynamic Additive Quantile model
is: 0 = [ag,af,...,d, B1,..., 0%, and it can be estimated by the maxi-

mum likelihood. The m.l. estimator is:

T
Or = arg max — Zlog a:1Q; (ys; 0); 0], (3.1)
t=1
. aQt . -1 . .
where ¢;(u,0) = a—(u, ) and @; " denotes the inverse of @), with respect
u

to the argument u. In the Dynamic Additive Quantile model, the expression
of the conditional quantile @); is simple when it is written as a function of
baseline quantile functions Q( ; Bx). In contrast, the conditional cumulative
distribution function (cdf) Q;' is a complicated function of the baseline cdf
Q,;l( ; B). In practice, the inversion has to be performed numerically for each
observation, at each step of the optimization algorithm used to maximize the
log-likelihood function. This explains why the standard maximum likelihood
approach can be computationally cumbersome due to 7' inversions required
at each step of the optimization algorithm.

In the remainder of this section, we follow the approach of Amari (1990),
Kitamura, Stutzer (1997), and introduce an alternative Kullback-Leibler in-
formation criterion (KLIC). The advantage of this approach is that KLIC
can be written directly as a function of the quantile function and provides

asymptotically efficient estimators when used as an objective function.
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3.2 Information Criterion

There exist several measures of proximity between two pdf, f, and f, say,
such as the a-divergence measures [see Csiszar (1975), Amari (1990)] These
include, as special cases, two Kullback-Leibler Information Criteria given be-
low. Let fy denote the true p.d.f. and let f be the p.d.f. of the approximating

parametric model.

Li(fo, f) = /fo(y) log %dy, (3.2)

and

fmﬁjr=/fwwm£%;

The KLIC measure I; underlies the standard maximum likelihood estima-

dy. (3.3)

tion procedure, while the KLIC measure I_; provides the empirical likelihood
interpretation of the GMM estimator [Kitamura, Stutzer (1997)]. In partic-

ular, the KLIC measure I_; is more suitable for a quantile model. Indeed,

let us denote by Q(u) and g(u) = dgiu) the quantile and quantile density
functions, respectively. We get, :
f(y) /1 f1Q(u)]
I (fo,f)= /lo —=dF(y) = log ———=du,
oo 1) = [ log ey W)= J 18 Fi)

and the KLIC measure I_; written in terms of the quantile function:

1

Ly (for f) = — / log () dus — / log fol@ (u)]du. (3.4)

3.3 The Information Based Estimation Method

Let us consider observations on a stationary process (v, z¢),t = 1,...,T,

where the variables x include exogenous or lagged endogenous variables. For
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example, let us assume that z; = (y; 1,y 2..) is a series of portfolio returns.

The conditional quantile function given the information x; is denoted by

Qi(u;0) = Q(ulzs; 0), (3.5)

and the associated conditional quantile density is

qi(u; 0) = q(u|zy; 6). (3.6)
Next, consider a kernel estimator fOT of the conditional p.d.f. of y given x :
a — Ty — X
r 1 T=1 hT hT
for(ylz) = — T ) (3.7)
Ty — T
K* |
> x ()

where K, K* are kernels and hr, h} are bandwidths, which tend to zero at

an appropriate rate, when T tends to infinity. Then, an information based
estimator can be obtained as a solution of the optimization of the following

sample-based KLIC measure I_; :

T 1 1
b = axgmx Y- { [ ogatuleo)du+ [ g forlQ(ule O)du}.
t=1 70 0
(3.8)

Proposition 1 : Under standard regularity conditions, the information
based estimator Oy is consistent, asymptotically normal and asymptotically

efficient.

Proof : See Appendix 1.
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Under the maximum likelihood approach based on KLIC I;, the true
distribution is approximated by the sample distribution, and no smoothing is
required. In contrast, smoothing becomes necessary, when the KLIC measure
1_; is used, due to the logarithmic transform of density that appears in the
expression of Oy [see Kitamura, Stutzer (1997), or Gagliardini, Gourieroux,
Renault (2005)].

Optimization (3.8) is performed numerically. The procedure can be accel-
erated by setting the initial values of the parameters equal to some consistent,
but inefficient estimators produced either by 1) a method of moments, or 2)
a simulation based method. Earlier in the text, we have shown that closed
form expressions of the first- and second-order moments for dynamic quantile

models exist (for 1) and that these models can be easily simulated (for 2).

3.4 Specification Tests

Commonly used specification tests for a parametric dynamic model with con-
ditional cdf Fi(y;6,) are based on the estimated ranks : ;11 = Fy(ysy1; éT),
where 67 is a consistent estimator of parameter #y. If the model is well-
specified, Oy is close to fy and the estimated ranks are close to the ranks
ugr1 = Fy(yiy1;600), which appear as a sequence of iid uniform variables. In a
quantile model, the expression of the conditional cdf is too complicated for
the estimated ranks approach to be followed. Instead, let us consider the

stochastic function :

o — Zt+1(04) = ]lyt+1<Qt(a;90) - Q,

which is defined on [0,1]. 241(«) is called a hit variable [Christoffersen
(1998), Engle, Manganelli (2001)]. We know that :

14



U1 = Ft(yt+1;90)
= inf {o; Y1 < Qua, b))}

= inf {a: z1(a) > 0}.
There exists a one-to-one relationship between the rank u;,; and the stochas-
tic function z;y1(.). Thus, instead of using the estimated ranks for testing
the specification of the nonlinear dynamic model, one can equivalently use
the functionals z;,1, which are iid with mean zero. In particular, their con-

ditional moments satisfy the following equality:

Eizi1(a) =0, Ve

These conditional moment conditions can be used in several overidentification

tests [Szroeter (1983)]. Among useful diagnostic tools are for instance :

T
1 2
i) the plot of : @ — — E Z(0) £ —=[a(1 — @)]'/?, where
T t=1

VT

Zer1(a) = Ny, .| <Qy(as9) — @ Verifies the marginal moment condition Ez; 1 (a) =
0;

This idea has been initially suggested by Christoffersen (1998), Engle,
Manganelli (2001), Section 5, and applied to a fixed value of the critical level
a.

However, as noted by Giacomini, White (2006), the test based on the
marginal moment is not sufficiently powerful, and it is preferable to use a
larger set of instruments.

ii) For example, one can plot the cross-autocorrelations at lag 1 :

(a, B) — Corr[z(a), 2 1(B)] + 2/VT,

15



which are based on the unconditional moment condition F[z(a)z; 1(5)] = 0,
that is use the set of instruments z; ;(53), § varying.

At this point, it is important to discuss the relationship between the
hit variables and the objective function that is commonly used in quantile

regression. It is easy to see that

zi1(a) = [%—/;?(ytﬂ - ,U)] )
#=Q1(a;00)
where %Llj denotes the right derivative of function p,. In some sense, the
specification tests given above are score tests associated with a quantile re-
gression criterion (Koenker (2005)). This explains why the hit variable is
called a a-quantile score or rank score in the statistical literature [Kould,

Saleh (1995)].

4 Factor Quantile Model for Panel Data

The previous section discussed the estimation of the conditional quantile
function from one observed trajectory (y;). This approach allows for compu-
tation of the VaR, when y; is a univariate series of returns on a portfolio for
which the VaR needs to be determined. However, there exist other potential
applications of the model, such as panel data with a fairly high number of
individuals or assets. These data consist, at any date ¢, of individual observa-
tions Y14, .. ., Yn,,, with large ny. Given large n;’s, it is possible to determine
the sample distribution at each date ¢ and to compute the deciles Qy(u;) at
each date ¢, where u, = 1/10,2/10,...,9/10.
Examples of panel data of interest are the following:

i) Data on household income, where the individual is a household, y is the
income of that household and (); is the income distribution at date t.

ii) Data on corporate default, where the individual is a firm defaulted at date

16



t, y is the loss-given-default (LGD) and @, is the distribution of loss-given-
default at date .

iii) Data on mutual funds, where the individual is a mutual fund, y is the
Sharpe performance of that fund over the last month, and @); is the distri-
bution of Sharpe performances.

iv) Data on corporate credit ratings, where the individual is a firm, y is the
current value of the quantitative score assigned by the credit rating agency
(an approximation of its expected probability of default in the next 3 years),

and @, is the distribution of scores.

Aggregation of panel data accross individuals allows for investigation of the
global evolution of the population of interest. For instance, in Example i)
the aggregate data show the evolution of global inequality in the population,
rather than the transitions of individual households between the categories
of rich and poor. In Example iii), the aggregate data provide information
on global performance of the market, instead of showing the performance of
each fund manager in time. In Example iv), the aggregate data reveal the
cross-sectional distribution of scores that constitutes a global measure of risk,
while the individual data also depict the credit rating migration of individual

firms.

4.1 The Quantile Factor Model (QFM)

This section introduces the dynamic conditional Quantile Factor Model (QFM)

for panel data. The analysis is performed under the following assumption:

Assumption 1: At any date ¢, the cross-sectional sample quantile Q,(uy),
k=1,...,K, is a consistent, asymptotically normal estimator of the true

quantile Q;(ux), k =1,..., K, say.

The true distribution @), is the cross-sectional distribution of individual
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realizations of variable y; ; at time ¢. For ease of exposition, let us assume that
individual histories (y;:),% = 1,...,n are observed, and that each variable
¥is is driven by some macrofactors and an idiosyncratic component. The
joint evolution of (y; 4, i,t varying) can be specified as follows:

(*) Conditional on the past, current and future values of macrofactor (Z;),
say, the individual histories are independent, identically distributed.

(**) Conditional on (Z;), the transition pdf of y;; depends on the past
through y;;—; and Z;. The conditional transition is f(y;+|yist—1, Zt), say.
(***) The factor has its own dynamics represented, for instance, by a tran-
sition pdf g(z¢|z1—1).

This panel data model accommodates both common macroeffects (Z;) that,
in part, determine the aggregate distribution @), and individual mobility
reflected by the presence of y;,—;. According to the above specification, any

individual observation y;; can be written in the final form 6.

Yie =MZi, Zi1, Zi—2y -, €ity Ei—1s - - -),

where ¢;, are independent standard Gaussian shocks. Therefore, the cross-
sectional sample distribution at date ¢ converges to the distribution of

W Zy Zy—1, Zt—g, - . . €ty E4—1,E—2 . . .), Where &, are I[IN(0,1), and Z;, Z;_1,
Zy_o ... are fixed and equal to their observed values. Thus, the distribution
Q: is a complicated function of macrofactor dynamics and individual mobility.
If the factor value were constant in time Z;, = Z, V¢, the true quantile function
(Q; would be constant in time too, and it would depend on the factor level Z.
Such a quantile function could be be interpreted as the stationary distribution
of (y;:) associated with a constant level of the factor.

Note also that, for panel data, the theoretical cross-sectional quantile func-

It is known that the conditional distribution is f(yi¢|yit—1,2Z:), iff, yiz =
¢(Yi,t—1,2Z¢,€4,t), where ;¢ are i.i.d. standard Gaussian variables. The final form is de-
duced by recursive substitution under regularity conditions for function g.
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tion @; has a different interpretation than the conditional quantile examined

in Section 3.

4.2 Linear Quantile Factor Model

A special case of the dynamic Quantile Factor Model is the linear QFM

defined as

K
Qu(u) = Qu(u; 0) Zry + Zog, (4.1)

k=1

where Zy;, k = 0,..., K are factors, with Z,, > 0,k = 1,..., K, and Qx(u;0)
parametrized quantile functions. The model is completed by specifying the
dynamics of the K 41 factors, where the conditional pdf of the factor process
is denoted by g(z|2z:1;0).

Several specifications of factor dynamics can be considered. For instance, one
can assume that either a) variables log Zy;, k = 0,..., K follow a Gaussian
Vector Autoregressive (VAR) model, or b) variables Z;;, k = 0, ..., K fol-
low independent gamma autoregressive processes [Gourieroux, Jasiak (2006)],
which are time discretized Cox-Ingersoll-Ross processes. Models a) and b)
can be used in dynamic analysis of the term structure of interest rates [see e.g.
Duffie, Kan (1996)]. Alternatively, one can write Zy; = Tr(DyZ;), where
(ZF) is a (L, L) Wishart process and Dy are deterministic symmetric posi-
tive semi-definite matrices to ensure the nonnegativity of Zj, [Gourieroux,
Jasiak, Sufana (2004)].

The linear factor representation (4.1) is convenient for empirical applications,

as it implies an (approximately) linear relationship between the observed

"In application to income distribution, the basic tool is a Lorenz (concentration) curve
defined by L¢(v) = (f; Q¢(u)du)/( fol Q:(u)du). Tt is equal to the following ratio of linear

functions of factor values Ly (v) = (Ele Ly(v;0)Zy . + Zo,t)/(szzl WUk Zyt + Zo,t), where
Ly, denotes a baseline Lorenz curve and py a baseline expectation.
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sample cross-sectional quantiles and the underlying factors. Indeed, we get :

K
Qt(ul) ~ ZQk(ul;H)Zk,t-l—Zo,t,l = 1,...,L, (42)
k=1
or :
where : Qt = Qt(ul)a---aQt(uL) ’7
Q1(u1;0) Qu(ug;0) 1]
B(#) =

| Qi(ur;0)... Qr(ur;0)1 |
The advantage of this approach, as compared to the standard one that con-
sists in representing the set of log-quantiles by a Gaussian VAR model, is that
it preserves the ordering (ascending or descending) of successive quantiles in

a systematic manner.

4.3 Maximum likelihood estimation

4.3.1 Just-identified factors

When the number of factors K + 1 is equal to the number L of observed
sample cross-sectional quantiles, relation (4.3) can be inverted, yielding fac-
tor approximations written as functions of the parameters and the observed
quantiles : Z; ~ B(H)_th. The factor approximations are consistent, when
the cross-sectional dimensions n; tend to infinity at any date ¢. In such a case,
the parameters can be estimated by maximizing the log-likelihood computed

for Z, = B(0)~'Q;. This approximated log-likelihood is given by :
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log Lr(0)

= {—Tlog det B(0) + Y log g[B(0)™' Qi B(0) ™' Qi1 9]} 12 1p[B(0)7'Qy], -

where D is the domain of the factor. When the factors are left unconstrained,
the domain restrictions are not relevant. In contrast, when the factors are
constrained, some domain restrictions need to be imposed [see Gourieroux,
Monfort (2005)b].

4.4 Overidentified Factors

In practice, we can expect to find evidence of a rather small number of factors.
When L > K + 1, the factors are overidentified. Then, the model can be

written as follows :

K

Qu(w) = ZQk(Ul; 0)Zky+ Zog + g, L =1,..., L.
k=1

where u;; are cross-sectional errors, which are approximately Gaussian by
Assumption 1, with a variance-covariance matrix derived from standard re-
sults on quantile estimation. The expression given above can be seen as a
standard linear measurement equation in a state space representation, which
needs to be completed by a transition equation for factor dynamics.

The transition equation can be written in the form of a Gaussian VAR model :

Zy=p+ P72 1 +ey,

where (g;) is independent of (u;) such that ¢, ~ N(0,9). In that case, we
obtain a standard linear Gaussian state space representation, which can be

estimated by the Kalman filter. It has been proved in Gourieroux, Monfort
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(2005a) that the Kalman filter estimator is consistent and asymptotically
efficient, provided that \/n/T — oo.

The approximate Kalman filter approach is more difficult to implement
when the factors display nonlinear dynamics, and are modelled as gamma
Autoregressive or Wishart processes. In that case, it is possible to use a
linear approximation of the Kalman filter, and to correct for asymptotic bias

by indirect inference.

5 Applications

The estimation of dynamic quantile models is illustrated by two applica-
tions to series of returns on stocks traded on the Toronto Stock Exchange
(TSX). The first application examines the dynamics of the conditional quan-
tile of market returns. The second one investigates the dynamics of the
cross-sectional asset return distribution for a more detailed description of

market risk.

5.1 Conditional Quantile of Market Return

Our series of daily market returns of the TSX index is computed as the dif-
ference of log market index values on consecutive days. The sample contains
T = 247 observations recorded between October, 15, 2002, and October, 1%,
2003. The series is plotted in Figure 1. The average daily return is 0.00011,
with a daily standard deviation equal to 0.007. The series is right skewed
with a skewness equal to 0.12, and features fat marginal tails with a kur-
tosis equal to 5.14. The autocorrelations of market index returns are not
significant, while the squared market returns feature slight persistence. In

particular, the first-order correlation of y? is equal to 0.36.

[ Insert Figure 1 : Daily Market Returns].
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Let us consider the following DAQ model:

Qi(w;0) = mo+my|yi—1 — pl
+ (000 + 001|ye—1 — p)) 2@ ()

+ (o10+011|Y—1 — N‘)l/ztg[ﬁ(u —1/2)],

where p denotes the median of returns.

This model includes drift mg + mq|y—1 — p|, with a risk premium, and
accommodates endogenous tail behaviour that arises from mixing Gaussian
and Cauchy tails. In particular, if 019 = 011 = 0 [resp. 0o = 091 = 0],
we get a kind of an ARCH-in-Mean model with Gaussian [resp. Cauchy]
standardized errors. Note that, due to the presence of Cauchy tails, the
volatilities do not exist.

The estimation of 6 = (mg, m1, 00,0, 00,1,01,0,01,1) is performed by apply-
ing the method described in Section 3.3, with x; = ;1. The kernels K, K*
are standard Gaussian kernels with fixed bandwidth Ay = A% = 0.01. The

estimated parameters and their standard errors are reported in Table 2.

Table 2 : Estimated DAQ model

parameter X102 my mq 00,0 09,1 01,0 01,1
estimates 18.50 | 3.72 |-17.31 | +6.92 | 31.91 | -8.70
std.error (0.71) | (0.15) | (0-12) | (2.01) | (1.71) | (0.04)

The estimation was performed without imposing any restrictions on the
parameters. Therefore, ex-post, it is important to check, if the quantities
00,0 + 001 |Yt—1 — p|, and 019 + 01,1|y1—1 — p| are nonnegative ®. We found
that only 3 values of these expressions out of the set of computed 592 values

were negative.

8This is a sufficient (but not necessary) condition for a quantile function interpretation.
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We observe that significantly different ratios g /01,9 = 0.54 and 0¢ 1 /01,1 =
0.80, pertain to different mixtures of Gaussian and Cauchy tails determined
by the lagged market returns. The estimated model provides the 10 % and
90 % daily VaR that allow us to analyse the required capital for either a
short, or a long position in the index. The estimated daily 10 % and 90 %
VaR are plotted in Figure 2.

[Insert Figure 2 : 10 % and 90% VaR for TSX Return].

Figure 3 shows all nine series of estimated deciles and illustrates the fact
that the decile estimators satisfy the monotonicity property with respect to
risk level a.. As expected, the extreme deciles feature much more variability

than the middle range deciles °.
[Insert Figure 3 : Dynamic Decile Estimation].

Let us now discuss the specification tests based on the hit variables. Fig-
ure 4 displays the confidence interval for the mean of hit residuals, at different
risk levels: 0.1, 0.2, ..., 0.9. The upper bound (resp. lower bound) of the
confidence interval is plotted by the dotted line (resp. solid line). When the
model is well-specified, the mean of the hit variables is close to the theoreti-
cal value zero. We observe that zero lies inside the confidence intervals, for
all risk levels, except for the extreme risk levels of 0.1 and 0.9. This indi-
cates a misspecification of the DAQ model that will be corrected by rolling

estimations described later in the text.
[Insert Figure 4 : Mean of the Hit Variables]

The first-order auto- and cross-correlations of hit variables are given in

Table 3. They are nonsignificant for absolute values less than 0.14. We

9Note that according to the regulations, the required capital is derived by smoothing
the VaR to reduce the variability (see, Gourieroux, Jasiak (2001) Chapter 16)
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observe that all first-order correlations are nonsignificant, except the first-

order autocorrelation of the hit variable at o = 0.1.

Table 3: First-Order Correlation of Hit Variables

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1{0.206 | 0.092 | 0.122 | 0.064 | 0.018 | 0.102 | 0.069 | 0.044 | 0.043
0.2 1 0.046 | 0.102 | 0.093 | 0.047 | 0.021 | 0.032 | 0.034 | -0.022 | 0.044
0.3 ]0.122 | 0.138 | 0.129 | 0.062 | 0.040 | 0.038 | 0.052 | 0.033 | 0.021
0.4 1]0.142 | 0.126 | 0.113 | 0.036 | 0.026 | 0.042 | 0.059 | 0.076 | 0.061
0.510.096 | 0.078 | 0.052 | 0.028 | 0.036 | 0.058 | 0.065 | 0.131 | 0.096
0.6 | 0.100 | 0.048 | 0.051 | 0.008 | 0.003 | 0.035 | 0.055 | 0.101 | 0.022
0.7 10.154 | 0.074 | 0.086 | 0.024 | 0.009 | 0.015 | 0.010 | 0.062 | -0.003
0.8 | 0.097 | 0.000 | -0.002 | -0.066 | -0.014 | 0.001 | -0.044 | 0.007 | -0.073
0.9 | 0.037 | -0.089 | -0.052 | -0.067 | -0.037 | -0.012 | -0.045 | -0.065 | -0.028

Higher order auto- and cross-correlations of hit variables were all found
nonsignificant. At this point, it is interesting to mention that the series of
estimated conditional deciles have large and significant first-order autocor-
relations. In particular, for Q;(u), v = 1,...,9, their values are: 0.47, 0.35,
0.27, 0.25, 0.19, 0.19, 0.18, 0.20, 0.29, respectively. As expected, the model
reveals a U-shape pattern of first-order autocorrelations of dynamic deciles
plotted as a function of risk level a.

Let us now proceed to correcting the slight misspecification of the model
suggested by Figure 4 and Table 3. By estimating the model on various
subsamples, we find that the specification error is due to the variation of
parameters in time. This finding indicates that the fit can be improved by
using a rolling estimator °. The rolling estimation procedure is as follows.
The dynamic quantile model is estimated on a window of 60 observations,
equivalent to a 3-month period, and applied to the following set of 20 observa-
tions, equivalent to one month. The estimates obtained from the consecutive

subsamples are reported in Table 4.

Owhich, in particular, is compatible with the suggestion of the Basle Committee.
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Table 4: Estimated DAQ model,by rolling

period parameter x 102 my my 00,0 00,1 01,0 o1,1
20-80 -12.02 | 21.85 | -0.56 | 26.04 | 27.86 | -12.87

40-100 -4.24 | -5.61 | 6.79 | -7.69 |22.21 | -3.81

60-120 12.27 | -1.56 | 0.00 | 0.00 | 41.03 | -24.95

80-140 -3.94 | 11.73 | 0.00 | 0.32 | 35.80 | -17.31

100-160 0.62 | 11.28 | 40.80 | -13.09 | 17.72 | -8.42
120-180 9.52 | 11.43 | 33.69 | -15.05 | 18.45 | -8.37
140-200 13.08 | 13.45 | 28.45 | -23.56 | 16.82 | 1.43

160 -220 15.00 | 14.32 | 22.95 | -20.89 | 23.41 | -2.91
180-240 15.50 | -7.60 | 18.37 | 29.33 | 16.24 | -19.72

As before, the nonnegativity condition for oo + 0o1|y—1 — |, and o1 +

01,1

found satisfied is given in Tabl

e d.

Table 5: Nonnegativity Condition in %

period | Gaussian | Cauchy
20-80 90 100
40-100 90 100
60-120 100 100
80-140 100 98.5
100-160 100 98.5
120-180 100 100
140-200 98.5 100
160-220 95 100
180-240 100 97.5

Yt 1 — p| has to be checked. The proportion of dates for which it was

Finally, it is interesting to investigate the effect of time varying param-

eters on the Value-at-Risk estimator. The rolling VaR’s are displayed in

Figure 5 (daily returns x 100)

[Insert Figure 5: 10% and 90% VaR for TSX Returns, by Rolling]

The specification tests performed on the rolling hit variables do not reject

the rolling DAQ models.
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5.2 Dynamic Analysis of Cross-Sectional Return Dis-
tribution

5.2.1 Factor Pricing Models

Multifactor pricing models in Finance are based on either the Arbitrage Pric-
ing Theory developed by Ross (1976), or the Intertemporal Capital Asset
Pricing Model developed by Merton (1973). These are usually written under
a linear factor representation in which the return of asset i for period (¢,t+1)

1S :

yi,t:Tf,t+ﬁz{Zt+€i,t7i: 1:"'ant: (51)

where 7, denotes the riskfree rate and the idiosyncratic errors (e;;) are
assumed iid, with mean zero and variance o2.

Let us assume that the number of assets is large (n; — oo0) and that
the idiosyncratic error and the heterogenous sensitivity coefficients 5; have a
joint Gaussian distribution. The cross-sectional distribution at time ¢ is such
that :

PBilyiy — 75y > 7]
= Pt[ﬁz,Zt + & > :v]
= Q[0+ Z1Qs2,) " P (s 2y — 7)),

where @ ug = E(f;),Qs = V(5;). We deduce :

Qt(U) = ,U;IﬂZt — Tf’t — (0'2 + ZéQ/th)l/Zq)_l(U) (52)

Thus, the dependence between the cross-sectional conditional quantile func-
tion and the factor is nonlinear, due to the effect of risk and the assumption of

normality. This remark leads to a model of the type Q;(u) = Z,+21,:97*(u),
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in which the factor components Z,;, Z; ; satisfy a nonlinear deterministic re-
lationship. This model is a benchmark for the following application, involving
the stock returns on TSX.

5.2.2 The return data

On each trading day ¢, we consider the set of 40 largest stocks traded on the
TSX. Their daily returns are ordered to construct the series of cross-sectional
deciles. The dynamics of the cross-sectional deciles are displayed in Figure
6.

[Insert Figure 6 : Deciles for the 40 Largest TSX Companies]

The nine decile series are constrained by the monotonicity property that
affects their distributional properties. As expected, the extreme deciles are
much more volatile than the intermediate deciles. Moreover, the large deciles
[resp. small deciles] have right skewed [resp. left skewed] stationary dis-
tributions. As an illustration, the medians and quartiles of the marginal

distributions for the decile series are displayed in Table 5.

Table 5: Median and Quartiles of the Decile Series

decile 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10
1Q —0.0041 | —0.0041 | —0.0038 | —0.0035 | —0.0030 | —0.0027 | —0.0028 | —0.0030 | —0.0032
median —0.0002 | —0.0003 | —0.0005 | —0.0001 | —0.0000 | —0.0002 0.0002 0.0003 0.0007
3Q 0.0036 0.0033 0.0036 0.0031 0.0030 0.0025 0.0029 0.0034 0.0035
interquartile

value 0.0077 0.0074 0.0074 0.0066 0.0060 0.0052 0.0057 0.0064 0.0067

We observe that the medians of the decile series are close to zero.

5.3 Estimation of the QFM factor model

Prior to estimation, a factor analysis is performed to determine how many
factors K have to be introduced in addition to the factor that represents the
cross-sectional intercept. The eigenvalues ranked in a descending order are :
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0.601,0.013, 0.004, 0.003, 0.0011, 0.001, 0.000, . . .

The large gap between the first eigenvalue and the following ones suggests
that K = 1. Thus, we proceed to estimation of a model of the type :

Qi(u) ~ Qu)Zy1y + Zoy.

This model is estimated by an approximated Kalman filter under the as-
sumption that factors Z;, Z;; have an autoregressive representation. The
estimated baseline quantile function is given in Table 6.

Table 6: Estimated Baseline Quantile Function

Q(1/10) | Q(2/10) | Q(3/10) | Q(4/10) | Q(5/10) | Q(6/10) | Q(7/10) | Q(8/10) | Q(9/10)

-0.7085 | -0.4057 | -0.2310 | -0.0971 0.0004 0.1031 0.2317 0.4015

The Q-Q plot is given in Figure 7 below. The distribution is almost symmet-
ric, and quite close to a Gaussian distribution, although with fatter tails.

[Insert Figure 7: Comparison with the Gaussian Distribution].

The underlying factors feature weakly dependent dynamics. The first
factor Zy; is interpreted as a conditional centrality parameter and follows an
AR(2) model:

ZO,t: const + 0.17 ZO,t—l + 0.16 Z(),t_g + Vo,¢-
(0.06) (0.06)

The second factor Z;, is interpreted as a conditional dispersion parame-
ter. As expected, this factor features long memory (the so-called dispersion
clustering). It follows an ARIMA model:

AZl,t: const — 0.11 Alet,1 + V1 + 0.74 V1,6—1-
(0.08) (0.05)

The filtered values of factors are plotted in Figure 8.

[Insert Figure 8 a,b: Filtered Factor Values|
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Finally, Figure 9 is a plot of th against Z;;. As expected, we observe a
parabolic form of relationship between Z? and Z;, which is compatible with
the factor pricing model (5.1), (5.2).

[Insert Figure 9 : Relation Between Factors]

6 Concluding Remarks

For empirical applications, the standard specification based on the condi-
tional transition density is inconvenient for dynamic modelling of the Value-
at-Risk. Following the approach of Engle, Manganelli (2001), (2004), this
paper introduces the Dynamic Additive Quantile (DAQ) model, which en-
sures the monotonicity of conditional quantile functions. This paper shows
that asymptotically efficient estimators of a DAQ model can be derived by
using an information based estimation approach, and discusses the specifica-
tion tests of the DAQ. A quantile factor model (QFM) for panel data is also
proposed. It can be used for the analysis of the behaviour of cross-sectional
distributions over time. The flexibility of both DAQ and QFM specifications
is illustrated by applications to returns of stocks traded on the Toronto Stock
Exchange.
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Appendix 1
Proof of Proposition 1

The asymptotic properties of the KLIC estimators are based on standard
results on empirical processes of stationary mixing sequences [see e.g. Ar-
cones, Yu (1994), VanderVaart, Wellner (1996)]. A detailed description of
the set of regularity conditions is beyond the scope of this paper. We provide
the asymptotic expansions to justify the asymptotic normality and efficiency
of the estimators.

The estimator is solution of the optimization problem :

T
Or = argmingz{/f(y|xt;9)logf(y|xt;0)dy
t=1
- [ #toleo)tog forwlandy |

T
— argming}) { / Fu(y; 0) 108 fi(y; 0)dy — f Fi(y: 0) log fOt(y)dy},
t=1
say.
i) First-order conditions

They are given by :

T
Z{ 00ty r) Yog fuly; Or)y + 8?(1/,% )dy — /60 (y; 07) log fou(y )dy}

t=1

=0,

or :

T R of, - R
Z (v; 9T) log fi(y; br)dy — —t(y; Or) log fo:(y)dy ¢ = 0,
89 00

t=1

. 0 5
since : /8—?(% Or)dy = 0.
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ii) Expansion of the first-order conditions

Let us consider the expansion when 7 is in a neighbourhood of 6,. We
get :

S 2o 20 06— 00 st + 20— o

t=1

_/ [aajg( 160) + aa;af;’ (y; 00)((§T — 90)} log [ft(y; ) + fOt(y) — ft(y;eo)]dy} ~

;
or :

T
S [ Sy 30 90 5y 00l 00
=1

_Z/aft Y3 6o) )[fot( y) — fi(y; 00)]dy ~ 0.

We deduce that :

\/T(éT - 00 ~

-1
dlog ft y; 6o) 0log fi(y; 0o)
ZEt [ 30" H

fZ [ 2B ) w500 a

- (E [GIOg Ji(y; 0) 9log f(y; 90)} ) )
N a0 5

Zfalogft Y3 bo) [for(y) = fi(y; 60))dy

The result follows from the asymptotic properties of the kernel estimator
of the conditional density. Indeed, we get :
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1/\/_2/ alogft ;%) fOt(ZU) - ft(?J;eo)] dy

dlog fi(y; 00) 0log fi(y; bo)
”N(O’E[ 00 00! D
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Figure 1. Daily Market Returns
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Figure 2: 10% and 90% VaR for TSX Returns
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Figure 3: Dynamic Decile Estimation

1.0

0.5

0.0

-0.5

-1.0

VAN R ! ~ VA
A A f il / //l\ i /\|/\ \ \\ ’\\ /\,\/llnll,r,“f/\ /\ AR
\ ’!I”\\"l; ”\ﬂn/ \\ I\HWIHHUI l\’ H’ \\H“b/' \r‘/‘\ iy "”' \”(\/ i \;”‘ ’\\/\HI’””H' i) ’\\’\’“ I \\'\ v \y
| u“’ ‘”\vu‘\"l y” oy ey !
! I | N I
' I \ I
| I
| I
| |

e —————— e P~

|
|

|

[ .
[

|

[

o
i
%rwxww/v/v\xﬁkA/\AAJM¢~\M/¢”¢N\/|\AMAAw\,mwfm\/VmevMJ\,-W\/wwwh\ﬂ\/x

i
/ |
I

) i . , it
1 Vo A /\‘rylll '
nhoat Non oy [ ' / vk ~ ! \
\r/\,\!\ \\ \/\I‘I\ | /\ nh Vo I\\/ ,y\\/\,u h \/\ /\/ \ ' . I
\/'*l N AN RN A VAV IRV VAN AN 1N |

\ \ NV R VAT R AURKANGY Jv

"

I\ \ AP
/ \//‘ y l \, ‘/\,\A JATAAAN v VL
‘ o

0 50 100 150 200

41




-0.05 0.0 0.05 0.10

-0.10

Figure 4. Mean of the Hit Variables
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Figure 5: 10% and 90% VaR for TSX Returns, by Rolling
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Figure 6: Deciles for the 40 Largest TSX Companies
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Figure 7. Comparison with Gaussian Distribution
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Figure 8a: Filtered Factor Values Z 0
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Figure 9: Relation Between Factors
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