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Abstract

Motivated by the economic theory of cost functions, bivariate Bern-
stein polynomials are considered for approximating shape-restricted func-
tions that are continuous, non-negative, monotone non-decreasing, concave,
and homogeneous of degree one. We show the explicit rates of convergence
of our approximating polynomials for general functions. We prove some
interesting properties of bivariate Bernstein polynomials, including bimono-
tonicity for concave functions. Moreover, using the classical results, global
approximations for shape-restricted functions can be achieved. We also note
that concavity violation by the bivariate Bernstein polynomials occurs when
the underlying true function is homogeneous of degree one. However, this
violation diminishes as indices get large.
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1 Introduction

In this paper, we examine the approximation problem for shape-restricted func-
tions that are continuous, non-negative, monotone non-decreasing, concave, and
homogeneous of degree one, the so-called regularity conditions, conditions which
are imposed by the economic theory of cost functions. Our approach to this ap-
proximation problem incorporates a probability result which can be found in Feller
(1968). The probability result is a one-dimensional one: for each bounded con-
tinuous function f and any distribution function G, 4, n=1,2,..., whose variance
goes to zero uniformly as n goes to infinity, we can construct a functional form
which approximates f uniformly in every finite interval. We extend this result to
two variables and call it the bivariate functional form generator. One functional
form that comes out of this generator is the sequence of two-variable Bernstein

polynomials, which first appeared in Kingsley (1951).

We choose Bernstein polynomials to study the approximation problem. Bern-
stein polynomials have many interesting properties in approximation. The prop-
erties which are important here include the following. If the true function f is
concave, then f majorizes the approximating sequence of polynomials in both
univariate and bivariate cases. The Bernstein sequence inherits concavity and
monotonicity from the function it is approximating in the univariate case, but
does not necessarily preserve concavity in the bivariate case. In general, a Bern-
stein sequence converges asymptotically. Exceptions occur when the function is
either affine or biaffine, in which case, the Bernstein polynomials will be identical
with f. The most important property of Bernstein polynomials for our purpose

is the following: for any bounded true function f on a closed unit square domain



with derivatives of order m, there is a sequence of Bernstein polynomials (unique
by definition) such that this sequence and the associated sequences of its deriva-
tives converge uniformly to f and its derivatives. This property guarantees global

flexibility,! a desirable property in shape-preserving approximation.

Our motivation for this study comes from approximation problems that arise
in econometrics. In this context, one frequently wants to estimate a function of
one or more variables which is known a priori to be continuous, non-negative,
monotone non-decreasing and concave. Examples are production functions or cost
functions. Typically we have data that gives us estimates of the values of the
function at some discrete set of points, and we wish to find the best approximat-
ing function within some class. Unfortunately, many natural classes of functions
such as Fourier functions yield approximations that are not necessarily monotone
non-decreasing and concave. This motivated Chak (2001) to study the class of
non-negative, monotone non-decreasing and concave Bernstein polynomials [see
also Chak, Madras, and Smith (2001)]. These properties are relatively easy to
enforce by means of restrictions on the Bernstein coefficients. Moreover, under
some mild assumptions, they show that the corresponding sequence of constrained
least squares estimators and its first and second derivatives converge to the true
function and its associated derivatives (as the amount of data increases). These
results require knowledge of approximation properties of Bernstein polynomials,

and this led to the present work.

The rest of the paper is organized as follows. In section 2 we describe an

L A sequence of approximating functions is globally flexible or Sobolev-flexible if the sequences
of functions and all relevant derivative functions converge to those of the true function in Sobolev
norm. This definition of global flexibility appears to have been suggested by Gallant in 1981.



approach to generating approximating functional forms and extend the concept to
the bivariate case. The functional forms that we consider for our approximation
problem are the univariate and the bivariate Bernstein functional forms. In section
3 we look at the rates of convergence of the bivariate Bernstein polynomials. The
approximation properties of the bivariate Bernstein polynomials are presented in
section 4. In section 5 we examine what regularity conditions are satisfied by
the univariate and bivariate Bernstein polynomials. In section 6, functions with
Hessians having zero determinants and their Bernstein polynomials are discussed.

Some graphic and numerical analysis are presented in section 7.

2 Generating Flexible Functional Forms

In this section, we consider an approach to the problem of approximation using
probabilistic and statistical ideas. The approach is based on a lemma mentioned in
Feller (p.218, 1968) which gives a variety of choices for one-dimensional functional

forms. We extend the concept to the bivariate case to obtain the following result.

Theorem 1: Forn; = 1,2,... and no = 1,2,..., let Gy, ny 0,0, be any joint
distribution function with expectations 0, 0y and variances 021(01), 0,%2(02), where
01 and 0 are parameters belonging to a finite or infinite interval, and 072” (6;) is

the variance of the marginal distribution of X;, 1 =1,2. If

+oo+o00
En1,’n.2,91,02 I:f(XlaXQ)] = / / f(mlaxZ) G’n1,n2,01,92 (dx]_, d‘/LIZ)

is the expectation of f(X1,X3), then we have the following:

(a) Let f be any bivariate bounded continuous function. For each 61 and 6, if



o2, (61) =0, 02,(62) = 0 as ny — 00, ny — 00, then

lim En1,n2,01,02 [f(X17 XQ)] = f(ela 92) .

n1—00,N2—>00
(b) If f is uniformly continuous, then the convergence is uniform in every bounded

set in which o2 (61) — 0 and o2, (62) — 0 uniformly.

Proof: We first prove part (b) and note that the proof of part (a) is similar.

‘Enl,n2,01702 [f(XlaXQ)] - f(ﬁl, 02)
+oo-+00

/ / ‘f(xl’xQ) B f(91’02) ‘Gnlyn2,01,02 (dxl,dﬂfz)-

—00—00

If f is uniformly continuous on its domain, it follows that for e > 0 there exists a
d not depending on x1, x9, #; and 6, such that for |z; — 6, < § and |zy — 02| < 6,
we have |f(x1,22) — f(61,62)| < €. This implies that

/ / .Tl,.’EQ —_ f(01702)‘Gn1,n2,01,02 (d%l,dﬂﬁz) < €.

|$1 91|<(5 |$2 92|<(5

Now consider the region outside the square. Since f(z;,x2) is bounded, there

exists a constant M such that |f(z1,x9) — f(01,62)] < M. Hence

| f(@1,82) = F(01,05) | Gy s 0.0, (dr, )

|.’E1 -0 ‘>(5 or |CE2792‘>5

< M / / Gnlan2;01,92 (dzl, d.’EQ)

|1 —01|>0 OT |z2—02]>4

2

< M[ZPT(|X,-—HZ-|>5) , V6, and 6,
i=1
o2 (0 o2 (6

< M[ "15(21)+ "26(22) , V0, and s,

where the last expression is obtained by using Chebyshev’s inequality. Thus it

comes to

2 (01) o2,(62)
5z T g

Envnou0: | J(X1,X5) | = f(61,65)

<6+M[



Note that if o2 (6,) = 0and o2 ,(62) — 0 uniformly in #; and 65, then there exists

an N not depending on #; and 6 such that for ny, no > N, we get

M ”16(01) <e and M "26(02) <e€

So for sufficiently large n; and ny

‘Em’m’ghgz [f(Xl,XQ)] — f(61,09)] < e+ e+€=3e.

Therefore

hm Enl,n2,01,02 I:f(XlaXZ)] = f(gla 02) . d

n1—>00, N2 —>00
We name the expression E,, ,9,.0,[f(X1, X2)] the bivariate functional form
generator. 'This result can easily be generalized to the d-variable case and the

d-dimensional functional form generator can be expressed as follows
Enly )ndyely 7 I:f(Xl""’Xd)]

400
/ / f ‘/'Clﬁ < ’ nl,...,nd,el,...,ﬁd (1"17 LRI ,xd) dil?1 .« .. dl‘d .

We get one example of Theorem 1 by taking X, X5 to be independent Binomial
random variables, i.e., X; ~ Bin(n;, z;), z; €[0,1]. Then the resulting functional
form is the sequence of two-variable Bernstein polynomials [see Kingsley (1951)]
and it has the following form:

iy - S5 (2 2) (2 (2)

v1=0v2=0 ny N
"' 112(1 —7r )m—vl(l _ $2)n2—v2

= ZZ (Ul UZ) Py oy (1) Poy ny (22)

v1=0v2=0

where

P, n(z) = (Z) z’(1—z)"7",

5



(z1,22) €10,1] x [0,1], and ny, ny € IN .

Corollary: limy, e0,ny—00 BY, 1, (1, 22) = fla1,22) . If f is continuous on the

closed unit square, then the convergence is uniform.

Using the d-dimensional functional form generator, the d-variable Bernstein

polynomials can be expressed as follows:

le,...,nd(xla---axd) = i nzd f(:;_i’...,@) (Zi) (nd)

v1=0 vg=0 Na Va
P’Ul,nl ($1) o Pvdand(wd) )

(%1, .yq) € [0,1] x---x[0,1], and ng,...,ng € IN.

In the rest of this paper we shall mainly concentrate on the bivariate Bernstein

polynomials.

3 Rates of Convergence of Bernstein Polynomi-
als

In this section, we consider the rate of convergence of the Bernstein sequence
{BI ,,} to its determining function f. The degree of approximation of a function
f(z1,22), 1,29 € [a,b] X [a,b], by polynomials may be expressed in terms of its

modulus of continuity, denoted as w(d) = w/(6).

Lemma 1:  Let f(x1,22) be a continuous function on the closed unit square

S:0<x2<1,0<29< 1. Let

w(d) = sup{| f(@l) — f(Q2)| : Q1,Qs € S such that p(@l,Q2) < 6} ,

and let § > 0, Q1 and Q2 be two arbitrary points inside S. Suppose that \ =



AMQ1,Q2; 0) = [7’)(%’@2) | is the integer part of 7”(6216’622). Then

[F(@Q1) = f(Q2)] < (A + 1)w(9).

Proof: If p(Q,Q2) < 6, then A = LMJ = 0. It follows immediately that

|f(@1) — F(Q2)] < w(d). Suppose that p(Q1,Q2) > 6. Then A > 1. Now let

_ ] .
Qj:Ql+)\—H(Q2_Q1)7 ]:Oalaa/\+1

Note that Qo = @1 and Qx11 = Q2, and p(Q;,Qj+1) < J, which implies that
1f(Q)) — f(Qj+1)| < w(d), 7 =0,1,..., \. Therefore

N

f(@) = f(@)] < ZO £(Q5) = F(Qj11)]
(A +1w(3),

IN

as required. O

Theorem 2: If f is continuous in S and w(d) is the modulus of continuity of

f(z1,x2), then for ny=ny=n we have

‘f(ﬂh,xz) - Bﬁ:l,m(fﬂlaxz)‘ <

- (2"

[See Lorentz (1953) for the one-variable version.]

w(9),

where

Proof:

‘f(ﬂfla@) — Bl ., (@1,3,) ‘

< w(é){ i % ll - /\<(3€1,332), (U—la E>; 5>]Pv1,n1(x1)Pvg,n2(x2)}

v1=0v3=0 ny nNg

7



< w(é){l—i-1 > p((iﬂl,@), (E,2))13@1@1(551)13@2,@(%2)}

v1,v2: A>1 Ny N2
1 oo 2 V1 V2

< WO+ 52 37 (1,0, (2 2)) P (21) Pry (2
6 v1=0v2=0 ny m2

1 Ny + No
< — .
- w(&){l—i— 4(52< 1Mo )}

Now choose

Then we have

‘f(ﬂflyfﬁz) - B{:l,nz(xl,xz)r <

If f is a non-negative, monotone non-decreasing function in S, then w(d) will

be the variation of the function in the first §-radius from the origin.

Remark: Let f; and fy be the first derivatives of f with respect to x; and z,,

and suppose that they are continuous over S. Let
w1 (0) = SUP{‘ fl(Ql) - f1(Q2)‘ : Qla@? € S such that P(Q15Q2) < 5} )
wy(0) = SUP{‘ f2(@1) - f2(@2)‘ : Q1,Q2 € S such that p(@la@2) < 5} )

and let § > 0, @1, Q2 be two arbitrary points in S. Then we get results similar to

the result in Lemma 1:
|[1(Q1) — f1(Q2)] < (A + Dwi(9) ,
| fo(Q1) — f2(Q2)] < (A + D)w2(d) ,

where A = \(Q1, Qs; 0) = | 49022 |,

Now suppose that the first derivatives of f with respect to x; and z, are
both defined and continuous on S. Do we get any improvement on the rate of

convergence? This question will be answered by the next theorem.

8



Theorem 3: Let f be a continuous function with continuous first partial deriva-
tives f1 and fo on S. Let 0 > 0. If w1(6) and wy(6) are the moduli of continuity

of f1 and fs respectively, then for ny=nys=n we have

e

| f(@1,32) = B, (21,32)| < ===5(0),

2

9

where

§ =

S\

a((s)—max{ 1(8) , wa() }-

[The one-variable result can be found in Lorentz (1953).]

Proof: Note that

‘f (@1, 22) = B}, 1, (21, 22) '
B R () (22

P’Ul,nl (ml)Pw,m (1‘2) :

By mean value theorem, the last expression is equal to

Z Z {(331 - _>f1(331a$2) + (331 - _> [fl(f Tg) — f1($1,332)]

v1=0v2=0

o ()2 ¢ (2 () - ()

Pv1,n1 (xl)Pvz,m(xZ) )

where ¢ is between z; and %, and 7 is between x5 and Z—i Note that the last

expression does not exceed

Z Z (»’51 - —>f1($1,$2) v1 nl(ﬂﬁl)Pvz,nz(ﬂ?z)

v1=0v2=0




Z Z (mz - —2>f2 (Z—ll, 962) Py i (21) Pogns (22)
+ {HZI % l <($1,x2), (Z—llxg) 5) + 1]

v1=0v2=0

T —
Pv1,n1 (xl)Pvz,nz (3:2)}

b @3 5"

v1=0v2=0

(G Gp)

Py (21) Prnins (xz)} ,

where

(). (22):0) = V((Z—i’w)éa (3.2)) I

Using the fact [Lorentz (1953), p.14] that

n1

Toa(x1) = Y (1 —mz1) Py, (1) = 0,

v1=0

2

Tn2,1($2) = Z (Uz - n2332)Pu2,n2(332) =0,

v9=0

we obtain that

‘f(fﬂlaxz) B, m(xlaﬂb) ‘

O] 35|
+ >

v1,v2: A1>1
b @35
v1=0v2=0

+ X

v1,v2: A2>1

IN

T — Ul,nl (xl)Pvz,nz (‘Z‘?)

e /\1 ((xla 332), (%: x?); 5) Pv1,n1 (xl)Pvg,ng(:EZ)}

ry — —
n 1

Ul,nl (xl)P’Uz,m (xQ)

A2(<v_1,x2), (2,22, 5) Poy (xl)pm(@)} |
m nE nNo

10

To —

V2
Tog — —
no




Since

) 1 )
Al ((331,332), (n—11,372>; 5) > 5 T — n_ll )
1
AZ((ﬂazL‘Z)a(U_laE)aé) S _~T2_k )
ny ny Nag 0 N2

we have

‘f($1,$2) — B, n,(w1,72) ‘

s () 1 (1 2
< _ Az _ 4
- wl(é){mz—o l A 5<$1 ”1) ] Pvl’nl(xl)}
OIS x—2+1(x—”—2)2 Py, (22)
2 = 2 s 5 2 s v2,m2 \ L2

IA
£
S
—N—
[\
—
3
=~
5| -
(%)
——
_|_
S
N
S
—N—
[\
—
=
[\
._I_
.
Sl-
(%)
——

Now choose

Hence we have

[fanm) = Blaenr) | < 5ma).

Note that for large ny, no , when f has continuous first partial derivatives on

[0,1] x [0, 1], we get an improvement on the rate of convergence over that given in

Theorem 2.

If our true functions f have continuous second partial derivatives on S, then

we have the following way of expressing the rate of convergence of the Bernstein

sequence of f at each point in the domain.

11



Theorem 4: Let f be bounded and be twice continuously differentiable on S.

Then

lim {n[Bf;n(xl,xg) - f(331,332)]} = %[151(1 —21) fu1 + 22(1 - $2)f22] ;

n—oo

and the convergence is uniform on S.
[See Lorentz (1953) for the univariate result.]

Proof: Since all the partial derivatives of f exist and they are continuous, using

a Taylor series expansion we have

f(z1 + h,xe + k)
1
= f(z1,22) + hfi(z1,22) + kfol21,22) + B [h2f11($1 + arh, zo + agk)

+ 2hkfia(1 + anh, 72 + a2k) + K fn(@1 + 0nh, 22 + 02k) |

where

Let

h:(ﬂ—m) and k:(k—m).
5| No

Then multiply the expression f(z1 + h,xs + k) by

n n v v ny1—v n2—v
P @) Prasa(a) = (1) (02) 2172 (1 = )™ (1 = ),

U1 V2

and sum up over v; and vo, S0 we have

Bf (.’131,£L'Q)

ni,n2
ny N2

= 3 () Py (00) Praa(2)

v1=0v2=0 ny Ng

= S+ Y S [+ k] Py (21) P (22)

v1=0v2=0

12



+
+
+
Let
Then
_|_
+

ni n2

1
—{ Z Z [h2f11($1 + alh, To + O./Qk) =+ 2hkf12(:v1 + O!lh,, XTo + CYQ]C)

2 v1=0v2=0

k2f22(331 +onh,zo + Q’Qk)] Pvl,m(xl)Pvz,nz (332)}

niy n2

f(.Tl,l'Q) + %{ Z Z [h2f11($1 + O!lh, i) -+ O!gk)

v1=0v2=0

2hk fia(x1 + anh, 9 + k) + k2f22($1 +onh,ze + OéQk)]

Povon (51) Poas (xz)} .

1 1
771(h, k) = §f11(l‘1 + arh, o + Oézk) — §f11 )
no(h, k) = fio(z1 + b, zo + agk) — fia,

1 1
ns(h, k) = §f22($1 + arh, xe + aok) — §f22 .

Bf (.’L‘l,IQ)

ni,n2

Flenan) + 30 5 (W (k) + 3] + RE[m(h, )+ i

v1=0v2=0

k? [7’}3(h, k) + %fQQ] }Pvl,nl (xl)Pvz,nz ("L.Q)

.’El(l — .’L'l)fll n iL'Q(l — 1'2)

277,1 2712 f22

f(xla '/'EZ) +

Z Z {h2771 (ha k) + hk772(h7 k) + k2773(h7 k)}Pvl,m (xl)Pvz,nz ($2) :

v1=0v2=0

Note that n;(h, k)’s are bounded, that is, |n;(h, k)| < H, i =1,2,3. Given € > 0

there exists a § > 0 such that whenever |h| < 4, |k| < §, we have |n;(h, k)| < €,

1=1,2,3. It follows that

n1 no

> 3 {1t (b ) 4+ Bk ) + K20 (0 ) Po oy (21) Poy 22

v1=0v2=0

13



IN

IPIEDIPIESIPIES 3P 3

{ k<6 |h|<6 k[>6 |h>GIKI<6  |h|>6 k>
< ey Z{h2+|h||k|+k2} Poy (51) Ponins (22)

h|<6 k<6

TRPOD 3RS 35 RS v) o)

h|<6 |k|>6  |A|>0|k|<6  |h|>6 |k|>6

{h? B[k + k} vy (20) Pasons (@)

h2 [ (hs k)| + |B] K]l (b, k)| + K203 (R, k)\}Pm,m(xl)Pw,m(h)

Observe that |h| <1 and |k| < 1. So the last expression does not exceed

€y 2{2h2+2k2} 1.1 (T1) Poy s (T2)

h|<6 |k|<6

+ 3H{Z Y+ Y+ 3 Z} w1 (1) Poy s (22)

|h|<6|k|>6  |h|>0|k|<6  |h|>6 |k|>6

6{ 271 (1 — 1) N 275(1 — 332)}

n n2

+ 3H{Z S+ Y >+ > Z} o1, (1) Pog ny (T2) -

|h|<6 |k|>6  |h|>6 |k|<6  |h]> |k|>6
Note that z1(1 — 1) <1 and z9(1 — x2) < 1. Use the result in 1.5(7) (with s = 2)
of Lorentz (1953), the last expression is no larger than
26(l - i) +3H(C1 - 2—02) :
ny o N ny  n?
where C; and Cy are positive constants depending on §. Now take ny = ny = n

and C = 3H(C; + 2C,). We obtain

1 C
‘H[Bf:,n(ﬂhaﬂh) — f($1,332)] 3 [151(1 — x1) fi1 + 22(1 — 332)f22] < e+ o
Hence Ve > 0
. 1
hni)sup n[B};n(xl,xQ) — f(xl,:rg)] ~3 [xl(l — 1) f11 + z2(1 — xg)fQQ] < 4e.

14



So

linm_>S£p n[Bg,n(afl,xz) - f(l'1,$2)] - %[551(1 — 1) fi1 + 22(1 — $2)f22] =0.
Therefore
. 1
lim {n[Bﬂ;n(xl,a:g) - f($1,332)]} = §[$1(1 — 1) fi1 + w2(1 — $2)f22] .

4 Flexibility and Other Properties of Bernstein
Polynomials

We look at some properties of Bernstein polynomials in this section. One elegant
property, which is based on a theorem in Butzer (1953), is described in the next

theorem.

Theorem 5: [Butzer (1953)] If f is continuous on the closed unit square with
continuous m™ partial derivatives on the open unit square: 0 < x; <1, 0 < 29 <

1, then we have the following result:

m R f m
ni—o0,n2 00 gy’ 4 0xiozy 7

(xbx?)a mzoala"'a
provided that, for any two finite positive numbers r and t,

n1+1
Ny

O0<r<

<t<oo.

If the partial derivatives of f are continuous on the closed unit square, then the

convergence is uniform without restriction on n, and ne.?

2This result is based on a theorem in Butzer (1953). Butzer’s theorem is more general than
this, allowing f to be merely bounded on [0, 1] x [0,1], and asserting convergence at any point
(1, z2) for which the total differential of f exists.

15



Proof: See Butzer (1953) and Kingsley (1951).

The above results show that, given the restriction on the growth of n;, the
sequences of derivative functions of the bivariate Bernstein polynomials converge
at least pointwise to those of their respective true functions as ni, no — oo. This
means that two-dimensional Bernstein polynomials are shape-preserving functions
for large n; and ny, and hence global flexibility is guaranteed. If the true func-
tion has continuous derivatives, then we have uniform convergence and uniform

flexibility.
Corollary: Let H(f) denote the Hessian of f. Then

det[H(Bf (xl,xg))] = det[H(f($1,$2))] as ny,ng — 00,

n1,Mn2
wherever all second partial derivatives are defined.

Remark: If f(z1,22) € C% and if det[H(f(x1,22))] > 0,V (x1,22) € [0,1] %0, 1],
as in the case when f is strictly concave, then there exists an N such that for

ny, np > N, we have det[H(B] . (x1,22))] > 0, V 1, z5.

The consequence of this remark will be exploited in sections 5 and 6 when we

discuss concavity violation of Bernstein polynomials in the case of two variables.

Next we show that two-variable Bernstein polynomials BJ . m, for biaffine func-

tions agree with their defining functions. This is the content of Theorem 6.

Theorem 6: Bj ., =g, Vni,ny iff g is of the form g(x1,12) = a + bry + cxo +

dx1xo, where a, b, ¢, d are arbitrary constants, that is, g is biaffine (g is affine in

each individual variable).

16



Proof: If g(x1,x2) = a + bzy + cxe + dz124, then

By ., (T1,29) = E[g(X1, Xo)]
= a-+ bE[Xl] + CE[XQ] + dE[XlXQ]

= a+ bz + cry + dr172 .

On the other hand, if f agrees with all its Bernstein polynomials, that is,
f(z1,25) = Bf . (%1,29), V n1,ny, then f is a polynomial of degree < 2 [since

ni,n2

degree B!  (x1,75) < ny+mny]. Soif ny +ny = 2, then n; = ny = 1. This implies

n1,n2

that f is biaffine. O

Remark: In general, in the multivariate case, the only functions that agree with

their Bernstein polynomials V nq,...,n, are just the multiaffine functions.

In the case that f is concave, we have a strong result. This result depends on
an important property of the Bernstein polynomials that tells us that when f is
concave, in either the one-variable or two-variable case, the Bernstein polynomials
approach the limit f in a very orderly way. We call this result the Stacking
Theorem. The one-variable case [where f(z) is a convex function] is due to Bonnie
Averbach and can be found in Schoenberg (1959). Here we state and prove the

two-variable case.

Theorem 7: (Stacking Theorem) Suppose f is a bivariate concave function. Then

By, n, are bimonotone in n, and ny, that is

B7]:1+1,n2 (,’131, $2) > B}

n1,m2

(x1,22) and B/ ($1,$2)ZB£1,n2($1,$2)

ni,n2+1
V (z1,29) € [0,1] X [0,1] and V nqy,ns.
Strict inequalities hold if f is a strictly concave function.
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Proof:

B7J:1+1,n2(x1: .732) - Bglﬂm(-fl; 31‘2)

n9 ni+1
U1 Vo ny + 1) v 41—
E z 1— 1 1
{ f(’fl1+17’fl2> ( U1 71 ( xl)

v2=0 \v1=0
n1 v v n B

— Z f(n_lla n_22) (Ull) qujl(l — :L'l)nl v1 }Pvz,n2($2) .
v1=0

Now the expression above is divided by (1 — z1)™*! with z; # 1, and we obtain

B£1+1 no (xl’ 1'2) - B%l,’ﬂ? (331’ $2)
(1 — xl)nl-i-l

- G )

v9=0 \v1=0
ni
U1 V2 ny € v ]

_ 1 Y2 P ‘

vlzzof(m’nz) (711) (1—:1:1) 1—:1;1} vy (22)

Let
7 ="
1 — I

Then we have the following

B£1+1,n2 (xl’ x2) - le,m (xla 352)

(1 — zq)m+
n2 (ni+l
- V;O{mz:o](nl -1|- 1) (n1 N 1) VAR
— (Z+1) Zf( Z’”}Pv?
v1=0
nz2 (ni+l
RS B )
) vlzof ) () Z’“}Pvz(m)
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- BEEGED () - ()
- () ()] 7 fpaten.
Note that

B£1+1,n2($1,$2) —_ Bf (.7)1,332) 2 0

ni,m2

) () =705 () =G () = o
Let
et =7(555) (") = 7(5) () =76 G

Observe that

if

v — 1 U1 (%]
< —.
nq ny + 1 n

Since f is concave (a plane section of a concave surface is concave), we have the

following ] ) ~ ~
f(nfil) - f(”ln—:l) § f(z_ll) _ f(%)
v1  _ v—1 2 T )
matl ™ ni ni

This comes to

m [(nl " Df(mvjr 1) B Ulf<vln_1 1>

W—Y

Hence




Thus

Similarly, we can obtain
Bn1 n2+1($lax2) Z Bf , (331,.’11'2) . (**)

By continuity, equations () and (+) also hold for z; = 1. Thus, B] , (z1,,) is

bimonotone in ny and no, V (z1,z2) € [0, 1] x [0, 1]. O

Theorem 8: Let f be a concave function on [0,1] x [0,1]. Assume that there
exists a point (z1,22) € (0,1) x (0,1) and a pair of integers ni, ny > 1 such that

f(z1,20) = B,J:hm(zl,zb). Then f is an affine function.

Proof: By concavity, there exists a “tangent plane” t(x1,z3) = a + bxy + czs

such that f(z1,29) = t(21,292) and ¢t > f. Then

ferz) = 5 (22 P (2 P2

v1=0v2=0 ny n
N V1 V2

< XY () P (1) P2
v1=0v2=0

= 1(21,22) (Theorem 6)

= f(zla Z?) -

So the above inequality is an equality. Since f < ¢ and P, ,,(z;) > 0 for every
v; = 0,1,---,n;, 7 = 1,2, we deduce that f(n ,nz) = t(z—ll, n—) for every v; and
ve. Thus f —t is a non-positive concave function that equals 0 at the points (0, 0),

(0,1), (1,0), and (1,1). Hence f — ¢ is identically 0 on [0, 1] x [0, 1]. Therefore f

is identically equal to the tangent plane ¢, and this proves the desired result. O
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5 Regularity of Bernstein Polynomials

In this section, we examine the regularity conditions, namely continuity, non-
negativity, monotonicity, concavity and homogeneity of degree one of Bernstein
polynomials. Clearly, Bernstein polynomials preserve continuity, non-negativity,
but not homogeneity of their determining functions. As for monotonicity and
concavity conditions, they are inherited by the unvariate Bernstein polynomials
[see Lorentz (1953)], but only monotonity and concavity in each individual variable
are preserved by the bivariate Bernstein polynomial [see Chak (2001)]. Concavity
of the function is, however, not necessarily preserved because, for arbitrary n; and
no the determinant of the Hessian of Bj s (Z1,T2) can be positive, negative or

zero, where the determinant of the Hessian of Bf . (x1,2) is given by:

2n
1 2 2
ning(ny — 1)( ng—l{ZZ[(vri- ’%>

v1=0v2=0 nq Mo
U1 + 1 (%) V1 Vg
B 2f< n2> * f(n_l’ no, nz)]P“’”l_?(xl)Pvz(xz)}

{imz2l ('Ul 1)2+2) Qf(vl v2+1>

v1=0v2=0 T2 nm L

+ f(v—l, ﬂ)] Pul,nl(xl)PU2,n2—2($2)}

ny N9
ni1—1lno—1
’U1+1 U2+1
- eafEEp e
v1=0v2=0 N2

- f(““@)—f(ﬂ’”“)”(ﬂ’”—?)]
n1 Ny n No niy nNg

2
Pvl,n1—1(x1)P’U2,n2—1(x2)} :
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For functions f(z1,7,) which are additively separable,® the cross-partial deriva-

tives of the B} , (z1,22) will vanish;* the determinants of the Hessians of these

Bernstein polynomials are always non-negative, and thus B;:l o (z1, z2) is concave,

V' n1,ny. On the other hand, for functions f(x1, z5) which are not additively separa-

ble, the determinants of the Hessians of B, > (Z1, T2) are not guaranteed to be non-

negative, and hence concavity may be violated. Fortunately, this violation shrinks
as ny, ny get large. In fact, as we remarked in section 4, if f(z1,z2) € C? and if the
determinant of the Hessian of f(z1, z2) is greater than zero, V(z1, z2) € [0,1]x]0, 1],
then there exists an N such that for n;,n, > N, the determinant of the Hessian
of B,{lm (21, z2) will be non-negative, V x1, 2, and so the concavity violation of

B/ 1.ns (T1, T2) disappears after a finite number of indices. In this case, B/ 1mp (T1,T2)

is concave, VY ni,ny > N. However, if the determinant of the Hessian of f(x1,z5)
is zero, for example, a concave Cobb-Douglas function [f(z1,22) = acl% acé | which
is homogeneous of degree one, our result is that, for large ni, ny, the concavity
violation of BS _ (x1,x,) will be small; that is, as ni,n, — oo, the determinant

n1,n2

of the Hessian of BJ . (z1,%2) will go to zero, which implies that Bf . (x1,2)
is “asymptotically” concave. This problem will be discussed in more detail in the

next section.

6 Functions Whose Hessians Have Zero Deter-
minants and Their Bernstein Polynomials

In this section, we are going to investigate the properties of functions with their

Hessians having zero determinants in order to understand better the concavity

3A function is additively separable if its cross-partial derivatives are zero.
4See the proof of Lemma 2 in Butzer (1953).
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violation of the Bernstein polynomials. It is an easy consequence of Euler’s theorem
that all the functions which are homogeneous of degree one have the determinants

of their Hessians equal zero.

Theorem 9: If f(x1,x2) is a homogeneous-of-degree-one function, then

deit () = a1 3] =0

V x1, x9 wherever the second partial derivatives are defined.
Proof: See Chak (2001). O

The implication of this theorem is that if f(zq,z9) is a homogeneous function
of degree one, then the graph of f(x1,x2) is a ruled surface (since det[H(f)]=0),
in fact, a “cone” with apex at the origin (we assume that f(0,0) = 0), that is,
a surface generated by a line fixed at one point at the origin and moving along
a curve. We can illustrate this with the Cobb-Douglas function: f(z1,z,) =
875 % 0< a<1and 0 < 21,20 < 1. Consider the surface S: 7= f(zy,29) =
22x5® (this surface is contained in a unit cubic box). Intersecting S with a plane

II) : xo = Ax1, A € [0,00), we have a curve which can be described as follows:
Chf=S NI = {(acl,:L'Q,Z) : Z =\, 29 = Ax1, A €0, oo)} .

This intersection is in fact a straight line through the origin. Thus S = USZo Ot
and (0,0,0) € C) ;; that is, the surface is the union of a family of straight lines
which intersect at the origin. This fact helps us understand how B/ _ (z,5)

ni,n2

can violate the concavity property. With B/ , (0,0) = f(0,0) and Bf , (1,1) =
f(1,1), if f is a homogeneous-of-degree-one function, then for any finite ni, no
we must have some points (z,,x2) along the line segment joining (0,0) and (1,1)

where the Hessians of B} . (z1,2) have negative determinants (except when f is
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a plane), as all the Bernstein surfaces have to lie below or are equal to f (because of
the Stacking Theorem). However, due to the uniform convergence of the sequences
of Bernstein polynomials and their derivatives to a determining function and its
derivatives, the concavity violation of the Bernstein polynomials must diminish as

ni, ne get large.

7 Graphic and Numerical Results

In this section, we consider some examples of graphs and tables of Bernstein poly-
nomials as well as their first and second derivatives to view the quality of the

Bernstein approximation.

For the one-variable case, we choose two strictly concave functions: f(z) = T3
and f(z) = z — %:L‘Q, that is, a one-variable Cobb-Douglas function and a one-
variable quadratic function. The graphs of these two functions as well as of
their Bernstein polynomials are shown in Figures 1 and 4. To show the rates
of convergence of these Bernstein polynomials to their true functions, we choose
n=2,5,10,20. From these two figures, we can see that the Bernstein polynomials
are shape-preserving functions and approximate their true functions quite well.
When n = 20, the Bernstein polynomials for the univariate Cobb-Douglas and
the univariate quadratic functions are very close to their the true functions. By
examining Figures 1 and 4 closely, we find that the sequence of Bernstein polyno-
mials for the univariate quadratic function converges to its true function at a faster
rate than the one for the univariate Cobb-Douglas function. Since both functions
are concave, for a given § > 0, the maximum variations of the univariate Cobb-

Douglas and the univariate quadratic functions, w®(d) and w?(d), can be found in

24



the d-interval from the origin. Also note that for the points within the d-interval
from the origin, the univariate Cobb-Douglas function has much steeper slopes
than those of the univariate quadratic function. In fact, none of the derivatives
of the univariate Cobb-Douglas function beyond the 0% is defined at the origin.
When we choose § = z, w(8) = 62 > wi(6) = & — 262,V 6 € (0,1]. Thus by

Theorem 1.6.1 of Lorentz (1953)° the sequence of Bernstein polynomials for the

univariate Cobb-Douglas function has a slower rate of convergence.

Figures 2,3,5 and 6 show how well the first and second derivatives of the
univariate Cobb-Douglas and the univariate quadratic functions are approximated
by the derivatives of their Bernstein polynomials. Due to the fact that the first
and second derivatives of the univariate Cobb-Douglas function are not defined
at x = 0, we choose the interval [0.01, 1] for z; while the interval of z for the
derivatives of the univariate quadratic function remains [0,1]. As expected, in
these two cases, when n gets larger, the first and second derivatives of the Bernstein

polynomials approach to those of their true functions.

For the two-variable case, we also examine the two functions: f(z1,2) =

(21 22)? (a regular function) and f(z1,zs) = 221 — 22 + 29 — 7% (a non-negative,
strictly monotone increasing and strictly concave function), that is, a two-variable
Cobb-Douglas function and a two-variable quadratic function. Figures 8,9, 10 and
11 show the Bernstein polynomials for the bivariate Cobb-Douglas function with
n1=ny=20, 10, 5, 2 respectively. Note that all these graphs illustrate the concavity
violation around the origin, but the region of violation shrinks towards the origin

as ni, ng get large. On the other hand, all the graphs of the Bernstein polynomials

5Theorem 1.6.1 is the one-variable version of our Theorem 2.
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for the bivariate quadratic function shown in Figures 13, 14,15 and 16 exhibit no
concavity violation. It is due to the fact that the bivariate quadratic function is
an additively separable function. All the graphic results for two variables are in
agreement with the theory that we develop in sections 5 and 6: concavity violation
does not occur in the Bernstein polynomials for concave, additively separable func-
tions, but occurs in the Bernstein polynomials for concave, non-separable functions
whose Hessians have zero determinants, where the region of violation diminishes

as ni, ng become large.

Regarding the rates of convergence for the two-variable case, our graphs in
Figures 17 and 18, once again, show that the sequence of Bernstein polynomials
of the bivariate quadratic function converges to its true function faster than the
sequence of Bernstein polynomials of the bivariate Cobb-Douglas function to its
true function. This is due to the same reason as in the one-variable case. Because of
the difficulty of three-dimensional visualization, we use tables instead of graphs to
compare the rates of convergence of the first and second derivatives of the Bernstein
polynomials for these two functions. We choose three points: (0.1,0.2), (0.3,0.5)
and (0.7,0.9). In Tables 1,2 and 3, where the true function is the bivariate Cobb-
Douglas function, we can see that the concavity violation (det[H (B}, . (z1,22))] <
0) occurs at the point (0.1,0.2) when n;=ny=2,5,10, and the point (0.3,0.5) when
n1=ne=2,5, but that there is no concavity violation at the point (0.7,0.9). As
ni1=ns=20, all the derivatives are quite close to those of the true function, except
the second derivative with respect to x; at the point (0.1,0.2). This happens

because (0.1,0.2) is quite close to the origin where concavity violation still takes

place when n;=n,=20.
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On the other hand, in Tables 4,5 and 6, where the true functions is the bi-
variate quadratic function, there are no concavity violations and the results are
exceptionally good: all the derivatives of the Bernstein polynomials at the three
points are very close to those of the true function for ny, ny > 10, especially the

cross-partial derivatives.
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L _ 2 1.2
True Function: f(z1,72) = 221 — 7 + 3 — 573
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True Function: f(xy1,xs) = (331372)%

Figure 17
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True Function:

f(z1,22) = (2122)2

1

Table 1:  Point (0.1, 0.2)
2 9 o2 92

function | 5~ 90: | mom | o2 a%zg det[H]
I 0.141 | 0.707 | 0.354 | 1.768 | -3.536 | -0.884 | 0.000
Bliy | 0124 ]0.811]0.343 | 2.236 | -5.097 | -1.057 | 0.388
Bly | 0102 [0.799 | 0.332 | 2.603 | -3.470 | -1.070 | -3.063
BL; | 0072 |0.636|0.283 | 2.520 | -1.448 | -0.610 | -5.467
BJ, | 0037 ]0.355]0.171 | 1.662 | -0.221 [ -0.114 | -2.737

Table 2:  Point (0.3,0.5)

function 8%1 8%2 8.1?;:152 a%z% 6%23 det[H]
f 0.387 | 0.645 | 0.387 | 0.645 | -1.076 | -0.387 | 0.000
Bloy | 0379 ]0.664 | 0.388 | 0.682 | -1.213 [ -0.402 | 0.023
Blyio | 0.366 |0.710 [ 0.389 | 0.756 | -1.582 | -0.442 | 0.128
Bl; | 0331 |0.787]0.399 | 0.948 | -1.544 | -0.575 | -0.011
BJ, | 0224 ]0.704]0.386 | 1.166 | -0.500 | -0.321 | -1.199

Table 3:  Point (0.7,0.9)

function 0%1 3%2 ﬁgm 8%% (%Zg det[H]
I 0.794 | 0.567 | 0.441 | 0.315 | -0.405 | -0.245 | 0.000
Blyy | 0791 |0.576 | 0.446 | 0.324 [ -0.420 | -0.251 | 0.001
Blow | 0788 |0.585 | 0.451 | 0.335 | -0.441 | -0.259 | 0.002
Bl; | 0781 |0.614]0.462 | 0.363 | -0.566 | -0.285 | 0.030
Bf, | 0.738 |0.782]0.526 | 0.558 | -0.776 | -0.652 | 0.195

34




1

True Function:  f(z1, ) = 271 — 2% + 73 — 5T
Table 4:  Point (0.1, 0.2)
function 8%1 6%2 8:0?;.%2 g—;% 6‘97% det[H]
7 0.370 | 1.800 | 0.800 | 0.000 | -2.000 | -1.000 | 2.000
Blosy | 0.362 | 1.760 | 0.785 | 0.000 | -1.900 | -0.950 | 1.805
Bl | 0.353 | 1.720 | 0.770 | 0.000 | -1.800 | -0.900 | 1.620
BI, | 0336 |1.640 | 0.740 | 0.000 | -1.600 | -0.800 | 1.280
BJ, | 0.285 |1.400 | 0.650 | 0.000 | -1.000 | -0.5000 | 0.500
Table 5:  Point (0.3,0.5)
: [l ad 92 92 92
fuIlCthH 8_£81 8_352 921073 B_xf @ det [H]
I; 0.885 | 1.400 | 0.500 | 0.000 | -2.000 | -1.000 | 2.000
Bloao | 0.869 | 1.380 | 0.500 | 0.000 | -1.900 | -0.950 | 1.805
Blyi | 0.852 |1.360 | 0.500 | 0.000 | -1.800 | -0.900 | 1.620
BI. | 0818 |[1.320]0.500 | 0.000 | -1.600 | -0.800 | 1.280
BJ, | 0.718 | 1.200 | 0.500 | 0.000 | -1.000 | -0.500 | 0.500
Table 6:  Point (0.7,0.9)
function 8%1 3%2 —Bzc?gam g—;% % det[H]
7 1.405 | 0.600 | 0.100 | 0.000 | -2.000 | -1.000 | 2.000
Blyae | 1392 [ 0.620]0.120 | 0.000 | -1.900 | -0.950 | 1.805
Bl | 1380 | 0.640 | 0.140 | 0.000 | -1.800 | -0.900 | 1.620
BI, | 1.354 |0.680 | 0.180 | 0.000 | -1.600 | -0.800 | 1.280
BI, | 1.278 |0.800 | 0.300 | 0.000 | -1.000 | -0.500 | 0.500
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