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The Wishart Autoregressive Process of Multivariate Stochastic Volatility

Abstract

The Wishart Autoregressive (WAR) process is a multivariate process of
stochastic positive definite matrices. The WAR is proposed in this paper as
a dynamic model for stochastic volatility matrices. It yields simple nonlinear
forecasts at any horizon and has factor representation, which separates white
noise directions from those that contain all information about the past. For
illustration, the WAR is applied to a sequence of intraday realized volatility-
covolatility matrices.

Keywords: Stochastic Volatility, Car Process, Factor Analysis, Reduced
Rank, Realized Volatility.
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1 Introduction

Portfolio management of multiple risky assets demands tractable multivariate
models of expected returns, volatilities, and covolatilities. While there exists
a variety of stochastic volatility models for one risky asset, relatively few pa-
pers propose specifications of stochastic volatility in a multiasset framework.
Among these, a majority is interested in a limited number of assets, such as 2,
3 or 4, except for the recent papers on conditional correlation GARCH model
by Engle and Sheppard (2001), Fiorentini, Sentana and Shephard (2003), and
the bayesian model by Chip, Nardari and Shephard (2002). Concerning empir-
ical research, the existing multivariate models are typically fitted to series of
exchange rates %, interest rates®, stock prices,® and volatility dependence be-
tween stock markets”. The reason that theoretical contributions in multivariate
volatility analysis are so scarce, is the difficulty in finding a dynamic specifi-
cation of a stochastic volatility matrix, which would satisfy all the following
requirements:

i) the symmetry and positivity properties of each variance-covariance matrix
in the process satisfied at each point in time.

ii)a reasonably low number of parameters, without compromising the flexibility
of the model (to alleviate the curse of dimensionality).

iii) the availability of forecasts at any horizon in a closed form.

iv) the possibility of varifying in a straightforward manner the time series prop-
erties of the volatility process, such as stationarity and Markov property.

v) the invariance of the model with respect to time aggregation and portfolio
allocation.

vi) the existence of a direct analogue in continuous time.

vii) the compatibility with the theoretical models of the term structure of
interest rates and derivative pricing.

In the literature, we distinguish two types of multivariate models for the
dynamic volatility-covolatility matrix:

Y = Vi (re41),

where 741 is a n-dimensional vector of returns, (Y3) is a (n,n) symmetric posi-
tive definite matrix, and V; denotes the variance-covariance matrix conditional

4Bollerslev (1987), Diebold and Nerlove (1989), Bollerslev (1990), Baillie, Bollerslev (1990),
Pelletier (2003).

5Engle, Ng and Rothschild (1990).

6Schwert, Seguin (1990).

"King and Whadwani (1990), King, Sentana, and Wadhwani (1994), Lin, Engle, and Tto
(1994), Ledoit, Santa-Clara, Wolf (2001).



on the information available at date t. These are the multivariate ARCH models
and the stochastic volatility models described below.

i) The multivariate ARCH model relies on an autoregressive specification
of the volatility matrix, written as a linear combination of lagged volatilities
and lagged squared returns. The basic multivariate ARCH model is the mul-
tivariate ARCH(1) model, in which the elements of the volatility matrix Y;
are linear affine functions of the elements of the matrix of squared returns :
vech (Y;) = Avech (ry_17}_y) + b, where vech (Y') denotes the vector obtained

by stacking the @ different elements of Y. Regarding the requirements

listed above, the multivariate ARCH(1) suffers from the curse of dimensionality

[see Bollerslev, Engle, and Wooldridge (1988)], as the full unrestricted model

n(n+1) 2 + n(n+1)
2 2

involves [ parameters. To resolve this difficulty, the multi-

variate ARCH literature came up with the following extensions: The diagonal-
vech specification is based on the assumption that matrix A is diagonal and
each series in the multivariate vector has a GARCH-like specification® [Boller-
slev, Engle, and Wooldridge (1988) and e.g. Brandt and Diebold (2002) for
an application]; the constant conditional correlation restriction was imposed in
Bollerslev (1987) to make the estimation of a large model feasible and to ensure
positive definiteness of the covariance matrix; this approach has been extended
by Pelletier (2003), who considered a regime switching model with constant
correlation in each regime. Recently, Tse, Tsui (2002), Engle (2002) introduced
models with time varying correlations. They proposed a nonlinear GARCH type
representation, which guarantees that correlations vary between -1 and 1.

An alternative stream of research focused on the spectral decomposition of
the volatility matrix, assumed to be of some specific form [Baba, Engle, Kraft,
and Kroner (1987)]. Recently, Alexander (2000) has advocated the use of factor
ARCH models, initially proposed by Engle, Ng, and Rothschild (1990), which,
in turn, were criticized by Engle and Sheppard (2001) for poor fit in empirical
research.

The existing literature hasn’t been fully successful in eliminating the multiple
drawbacks of multivariate ARCH specifications. The symmetry and positivity
constraints can only be satisfied under a set of complicated parameter restric-
tions, which are hard to interpret. Also, the models are not invariant with
respect to a change of time unit?, or with respect to change in portfolio allo-
cation [see for example the Dynamic Conditional Correlation model by Engle,
Sheppard (2001)].

ii) Stochastic volatility models in discrete time have been initially intro-
duced by Taylor (1986), and extended to multivariate processes by Harvey,
Ruiz, and Shephard (1994) [see, Chib, Nardari, Shephard (2002), Fiorentini,
Sentana, Shephard (2002), also Ghysels, Harvey, and Renault (1996) for a sur-
vey on the so-called stochastic variance models]. Typically, in this literature the

8This approach has been recently extended by Engle and Sheppard (2001) to a model with
time-varying correlation compatible with univariate GARCH.

9See Drost and Nijman (1993), Drost and Werker (1996), Meddahi and Renault (2004) for
a discussion of time aggregation of ARCH and volatility models.



volatility matrix is written as:

exp hlt 0
Y;f = A . . AI7
0 exp hnt
where A is a (n,n) matrix and hy, ¢ = 1,...,n, are independent volatility factor
processes. The factor processes can be chosen so that (hi¢, - - -, hnt) is a Gaussian

VAR process [see Harvey, Ruiz, and Shephard (1994)]. This specification ensures
that stochastic matrices (Y;) are symmetric positive definite and follow a Markov
process. The stochastic variance model is easy to estimate from return data with
zero expected value by using the Kalman filter, but quite hard to implement
if (non-zero) volatility-in-mean is considered '°. Moreover, other important
drawbacks concern 1) the number n of latent factors, which is strictly less than
the number of distinct elements of Y;, and 2) the diagonal form of volatility
matrix, which assumes stochastic weights, but constant factor loadings (given
in the columns of A)!! 12,

The existing multivariate models seem too restrictive to accommodate the
complexity of data. Therefore, some researchers agree that new solutions need
to be found [see Engle (2002a)]. The aim of the present paper is to intro-
duce a multivariate dynamic specification, which is compatible with financial
theory, satisfies the constraints on volatility matrices, has a flexible form, is
easy to predict, invariant with respect to temporal aggregation and portfolio
allocation, and easy to implement. Our approach is based on a dynamic exten-
sion of the Wishart distribution. It is known that a sample variance-covariance
matrix computed from ii.d. multivariate Gaussian observations [see Wishart
(1928a,b) for the initial papers, and Anderson (1984), Muirhead (1978, 1982),
Stuart and Ord (1994), Bilodeau and Brenner (1999) for surveys] follows the
Wishart distribution. The extension consists in introducing serial dependence
by considering multivariate serially correlated Gaussian processes, which are
contemporaneously independent of one another.

The Wishart Autoregressive (WAR) process is defined in Section 2 from the
specification of the conditional Laplace transform. The section explains how
the WAR process of order 1 is constructed from underlying Gaussian VAR pro-
cesses, when the degree of freedom parameter is an integer, and presents the first
and second order conditional moments. The definition is next extended to WAR
processes of autoregressive order higher than 1. Examples of WAR processes
are discussed in Section 3, and some continuous time analogues are presented in
Section 5. The WAR processes arise as special cases of compound autoregressive
(Car) processes introduced in Darolles, Gourieroux, and Jasiak (2005). For this
reason, nonlinear predictions at any horizon are easy to perform. The predictive

10See Kim, Shephard, Chib (1998) for an application to exchange rates.

1 The specification resembles Bollerslev’s constant correlation GARCH process, since the
correlation is zero after a transformation A~! of basic assets.

12Constant factor loadings are also assumed in the standard factor ARCH model [Diebold,
Nerlove(1989), Engle, Ng, Rotschild (1990), Alexander (2000)].



distribution at horizon h and temporal aggregation are discussed in Section 4.
Section 6 is examines models with reduced rank and their factor interpretations.
This factor representation separates white noise directions from directions that
contain all information about the past. The WAR-in-mean models are presented
in Section 7. Next, the WAR-in-mean model is used as a representation for the
dynamics of an efficient portfolio in the mean-variance framework, and struc-
tural interpretations are discussed. Statistical inference is covered in Section 8.
First, we consider observable volatility matrices and discuss the identification.
Next, we explain how to derive simple, consistent nonlinear least squares esti-
mators. The nonlinear least squares estimates can be used as initial values in
likelihood maximization, which is given as an alternative estimation method. In
Section 9, the Wishart process is fitted to a series of intraday realized volatility
matrices. In this application, the number and types of latent factors are exam-
ined. Section 10 concludes the paper. The proofs are gathered in Appendices.

2 The Wishart Autoregressive Process

This section defines the Wishart Autoregressive process and describes its dy-
namic properties. The Wishart process is a process (Y;) formed by stochastic
symmetric positive definite matrices of dimension (n x n). The dynamic of the
Wishart process is specified by its conditional Laplace transform, which defines
the conditional expectations of any exponential transform of elements of matrix
Yiy1. It is defined as follows:

U(T") = Eilexp Tr(T'Yi41)],

where E; denotes the expectation conditional on current and lagged elements of
Y, I' is a deterministic and symmetric matrix of real numbers, and T'r denotes
the trace operator. In particular, for two symmetric matrices I' and Y, we have:

n n n

Tr@Y) =3 (V) = 33 ¥ =303 v

i=1 i=1 [=1 i=11l=1

Section 2.1 defines the Wishart Autoregressive process of order 1. It is a
matrix process with Wishart conditional distribution [Wishart (1928) a,b], and
a noncentrality parameter, which is an affine function of lagged values of Y;.
Section 2.2 provides an interpretation of the Wishart process of order 1 as the
outer product of Gaussian VAR(1) processes for integer valued degree of free-
dom parameter. Using this approach, we interpret the structural parameters
of the model, and give insights on the expressions of conditional moments and
forecasts. Next, we derive the conditional first and second order moments of
WAR(1), and show that this model is invariant with respect to portfolio allo-
cation (Section 2.3). Finally, we discuss the extension of the WAR process of
order one to a WAR process of any finite order p.



2.1 The Wishart Autoregressive process of order 1

Definition 1: The Wishart Autoregressive process of order 1, denoted WAR(1)
is a matrix Markov process (Y;) with the following conditional Laplace trans-
form:

¥ (T) = ElfexpTr(I'Yiqq)]
expTr [MT (Id - 25T) "' MY,
[det (Id — 25T))/?

’

The transition density of WAR(1) depends on the following parameters: K is
the scalar degree of freedom, strictly larger than n — 1, M is the n x n matrix of
autoregressive parameters, and ¥ is a n X n symmetric, positive definite matrix.
The Laplace transform is defined for a matrix I' such that * ||2XT|| < 1.

The transition density of this process is noncentered Wishart [see Muirhead
(1982) p.442]:

1 1

R S —K/2 (K—n—1)/2
SKn/2 T, (K)2) (detX) (detYiq1)

F(¥ia )
exp{(~3TrlS " (Vers + MY M) JoFs (K /2 (1/4) MY M ¥oy1)

where T (K/2) = [, ., exp{Tr(—A)}(detA)F~""D/2dA is the multidimen-
sional gamma function, ¢F] is the hypergeometric function of matrix argument,
and the density is defined on positive definite matrices. The hypergeometric
function has a series expansion:

(1/4) MY, M'Y;11)
K/2 lp‘

oF1(K/2;(1/A) MY, M'Y;41) Z > Gl
p=0 1

where )", denotes summation over all partitions | = (p1,...,Pm),p1 > ... >

Pm > 0 of p into integers, (K/2); is the generalized hypergeometric coefficient

(K/2) =TI, (K/2 = (i — 1)/2)p, with (@), = a(a + 1)...(a + p; — 1), and

Ci((1/4)MY;M'Y;41) is the zonal polynomial associated with partition /. The

zonal polynomials have no closed form expressions, but can be easily computed
recursively (see Muirhead (1982), Chapter 7.2, and James (1968)).

The WAR(1) model alleviates the curse of dimensionality encountered in

multivariate volatility models, where the number of reduced form parameters

3
is of order [”(H—H)] . The WAR(1) process involves a much smaller number

of parameters equal to 1 + "("+1) + n2, which corresponds to the order for
the reduced-form parameters of n- dlmensmnal VAR(1) process. The number of
parameters can be reduced further by imposing some restrictions on matrices
M, or X (see Section 6).

13The norm of a symmetric matrix is equal to its maximal eigenvalue.



2.2 WAR(1) with Integer Degree of Freedom K.
Let us consider the process Y; defined by

K
Y= Tpdhy, (1)
k=1

where the processes zy, k = 1,...,K are independent Gaussian VAR(1) pro-
cesses of dimension n with the same autoregressive parameter matrix M and
innovation variance X:

Tpt = Mxps1+ ey, ene~ N(OX). (2)
The Proposition below is proved in Appendix 1.

Proposition 1: When the processes (zx:), k = 1,..., K, are independent
with the same autoregressive parameter M and innovation variance X:

. K 1o

i) The process Y; = >, Zrex}, is a Markov process.

ii) Its (conditional) Laplace transform is given by:

U,(T) = BlexpTr ([¥i1)l|ad]

K
!
exp (Z xk,t+lrxk,t+1> |$t]

k=1

= E

= E |exp ZZ'Yijyij,t-i-l Y

i=1 j=1
exp T'r [(MT (Id - 251) ! M) Yt]
[det (Id — 25T/ '

The conditional Laplace transform depends on x4,k = 1,..., K by Y; only,
which is the Markov property of matrix process (Y3).

Proposition 1 justifies the interpretation of parameters M and ¥ as a latent
autoregressive parameter, and a latent innovation variance, respectively. How-
ever, the interpretation of (¥;) from latent Gaussian VAR(1) processes is valid
for integer valued K only. In general, any economic or financial interpretation
of the latent processes (zx¢) is not necessary, except for applications such as the
quadratic term structure of interest rates'4. In this paper, the latent processes
are introduced mainly to provide an intuitive understanding of parameters and
results.

It is interesting to note that, when n = 1, the Wishart distribution becomes
a chi-square distribution, which explains the interpretation of Y; as a sum of
squared Gaussian variables. In particular, extending that Wishart distribution

14See Ahn, Dittmar and Gallant (2002) for the estimation of a basic quadratic term structure
model, and Cheng and Scaillet (2002), Gourieroux and Sufana (2003) for the discussion and
extension of such models.



to noninteger degrees of freedom, is analogous to extending the corresponding
chi-square to a gamma distribution.

Let us now comment on the condition K > n — 1. We shall see that it
ensures the almost sure invertibility of ¥;. When K = 1, the matrix ¥; = x1;2,
has rank equal to 1. In this case Y;, it is not invertible, and does not have
any continuous distribution on the set of symmetric positive definite matrices.
When K is an integer greater or equal to n, Y; is a sum of a sufficient number
of independent matrices of rank 1 and Y; is invertible.

2.3 Conditional moments

The conditional Laplace transform contains all information on the conditional
distribution '®. However, other summary statistics, such as the first and second
order conditional moments, can also be considered, even though these are less
informative. While the expression of the conditional expectation of a stochastic
matrix is easy to define, its conditional variance-covariance matrix is cumber-
some. Remember that the volatility matrix of a stochastic volatility matrix!'®
is of dimension % [@ + 1], which is very large. In order to provide
some insights on the structure of that matrix, without complicated matrix nota-
tion, we calculate the conditional variance between two inner products v'Y;y1 a,
0'Y; 118 based on Yiy1. Given the formulas established for any real vectors «,
B, v, §, we can compute all covariances of interest. For instance, the condi-
tional covariance covy (Y;’j,t+1,Ykl,t+]_) corresponds to a = ej, 7 = e;, 8 = e,
§ = ey, where e; is the i*" canonical vector with zero components except the it?
component, which is equal to 1.

The first and second order conditional moments of the WAR(1) process are
derived in Appendix 2.

Proposition 2: We have:
i) By (Yi41) = MY;M' + K¥X.
ii) For any set of four n-dimensional vectors a, 3, v, § we get:

covy (V' Yip10,0'Yi148)
= Y MY,M'6a'SB + ' MY, M'Ba’S6 + o/ MY M'5v'S3
+a' MY, M'B~'S6 + K [y'Spa'%8 + o' 2 59'%4] .

The first and second order conditional moments are affine functions of the
lagged values of the volatility process, which is a direct consequence of the
exponential affine expression of the conditional Laplace transform [see Darolles,
Gourieroux, and Jasiak (2005)]. In particular, the WAR(1) process is a weak
linear AR(1) process [see e.g. Grunwald, Hyndman, Tedesco, and Tweedie
(2000) for a survey of linear AR(1) processes]. More precisely, we get :

15This is due to the positivity of process (Y3) [see Feller (1971)].

16The volatility of the volatility is important for financial applications. Indeed, it is related
to the volatility of derivatives written on underlying returns. For this reason, a market for
derivatives on the market index volatility has opened in Chicago.



Yit1 = MY M' + KS + nyq, (3)

where 141 is a matrix of stochastic errors with conditional mean zero. Equiv-
alently, we get:

vech(Yiy1) = A(M)vech(Yy) + vech(KX) + vech(ngy1), 4)

where vech(Y) denotes the vector obtained by stacking the lower triangular
elements of Y, and A(M) is a matrix function of M. The error term 7 is a
weak white noise, since it features conditional heteroscedasticity and, even after
conditional standardization, is not identically distributed.

2.4 Invariance to linear invertible transformation

Let us consider a WAR(1) process Y; of dimension n with parameters K, M, X,
and a (n,n) invertible matrix A; the process: Y; (A) = A'Y; A is another process
of stochastic symmetric positive definite matrices. Moreover, for integer K, we
have:

K K K
! ! ! ! !
Y;(A)=A E TreXp A = E Az, A= E 2kt 2kt
k=1 k=1 k=1

where 2z = A’z are also Gaussian autoregressive processes such that: zg 41 =
A'M (AN 2kt +A'ep 1. This explains the property below for which the proof
for noninteger K follows directly from the conditional Laplace transform.

Proposition 3: If (Y;) is a WAR(1) process W, (K, M,Y) and A is a
(n,n) invertible matrix, then Y; (4) = A’Y;A is also a WAR(1) process
Wa(K, A'M (A1, A'SA).

From a financial point of view,, Proposition 3 establishes the invariance of
the family of Wishart processes with respect to portfolio allocation. Indeed,
let us consider n basic assets with returns r; and volatility Y;, and n portfolios
of various quantities of those assets. The quantities of each asset (positive or
negative) in a given portfolio allocation form a column of matrix A. The returns
on the portfolios are:

rev1 (A) = A'reya,

whereas the portfolios’ volatilities are Viri11 (4) = A’Y; A. Thus, if asset return
volatility follows a Wishart process, the portfolios’ volatility follows a Wishart
process as well 17. This invariance property is not satisfied by some constrained
multivariate ARCH models such as the so-called diagonal model, the model with
constant correlation and the Dynamic Conditional Correlation model.

Proposition 3 implies that any Wishart autoregressive process can be rewrit-
ten as a ”"standardized” WAR, with latent innovation variance equal to an iden-
tity matrix of dimension n.

17Similarly, the Wishart specification for a volatility matrix of log-exchange rates is invariant
with respect to the currency unit.

10



Corollary 1: Any WAR(1) process W, (K, M,¥) can be written as: Y; =
T2y %12 where Y;* is a ”standardized” WAR(1) process
W, (K, £=12MEY2? ) Id).

Other linear invertible transformations can also be considered. For instance,
let us assume that the autoregressive matrix M is diagonalizable!®. M can be
written as: M = QAQ !, where @ is the matrix of eigenvectors and A the diag-
onal matrix of eigenvalues of M. The transformed process Y;* = Q~'Y; (Qil)'
is a WAR(1) process W, (K, A, Q712 (Q‘l)l), with a diagonal autoregressive
matrix. Thus, all interactions between latent variables are captured by the
innovation variance.

For studies concerning porfolio allocations, we define the portfolio volatilities
o'Yia, where « is a given vector of portfolio allocations. The second order
dynamic properties of such portfolio volatilities follow from Proposition 2 (see
Appendix 3).

Corollary 2: Let «, 3, v, 6 be n-dimensional vectors. We obtain:
) Vi (VYi10) =Y MY M'y o'Sa+ 29y MY;M'a o'Sy + o' MY, M'a v'Sy
+K [(7’2(1)2 + a’Ea'y’Ey] ;
i) V; (@/Yiq1a) = 4’ MY;M'a o/ Sa + 2K (o/Sa)?;
iii) covy (@'Yip1a, BYip18) = 4/ MY, M'B o/ S8 + 2K («/8)°;
iv) covy (@'Yiy10,a'Ye18) =2/ MY, M'a 'S8 + 20/ MY M'8 o'
+2Ka'Y o' Xa.

We see that :

i) the degree of freedom parameter determines the magnitude of overdisper-
sion;

ii) the correlations between portfolio volatilities can be of any sign due to
the first term in iii). Thus, it is easy to accommodate asymmetric reactions of
volatilities and covolatilities [Ang, Chen (2002)].

2.5 WAR(p) processes

Due to nonlinear dynamics and the number n of components in Y;, a WAR(1)
process can accommodate a large spectrum of patterns of persistence in volatil-
ities and covolatilities, including possibly long memory effects. Nevertheless,
there may be cases when WAR processes with higher autoregressive order p
(called WAR(p)) need to be considered. The Wishart processes are easily ex-
tended to include more autoregressive lags. Since the formula of the conditional
Laplace transform in Definition 1 is valid for any conditioning matrix MY; M’,
this matrix can be replaced by any symmetric positive semi-definite function of
Y;‘J Y;ﬁfla' .- JY;ffp-i-l-

18 This assumption has been made for instance by Ahn, Dittmar and Gallant (2002) in the
context of quadratic term structure models.

11



Definition 2: A Wishart autoregressive process of order p, denoted WAR(p),
is a matrix process with conditional Laplace transform:

\I’t (F) = Et [exp Tr (FY;H-I)]
expTr [0 (Id - 25T) ' S0, MYy j1a M}
[det (Id — 25T)]%/?

7

where the matrices M; of dimension (n,n) represent the sequence of latent ”ma-
trix autoregressive coefficients” . The process is denoted W, (K; My, ..., M,,%).

When the autoregressive order is larger than 1, the interpretation of the
Wishart process as the sum of squares of autoregressive Gaussian processes is no
longer valid, even for integer K. For instance, let us consider a Gaussian VAR(2)
process: Tyr1 = Mixy + Moz + €141, €41 ~ IIN (0,%). The conditional
Laplace transform of Y11 = (2441}, ) given &y = (x4, 241, ..) becomes:

¥, (I)
exp [(let + Mozy_1)'T (Id — 25T) " (Myze + Mzmt_l)]
[det (Id — 25T))"/2
expTr [r (Id = 25T) " (Myay + Mowy_1) (Myzy + Moz )’]
[det (Id — 25T)]"/?
expTr [F (Id — 250) ™ (MY, M] + MyY: + Mb + Miyz,z, M} + szt,lx;M{)]

[det (Id — 25T)]*/?

We see that this is not the conditional Laplace transform of a Wishart process
because of the presence of cross products z;z; | 1°.

The expressions of first and second order conditional moments of a WAR (p)
process are similar to the expressions given in Proposition 2 and Corollary 2.
We get, for instance:

p
Ey(Yiy1) = ZMjY;f+lij]I'+KE7
J=1
p
Vi @Yipie) = 4/ MYy jMj)aa'Sa + 2K (o' Sa)?.

=1

In particular, a WAR(p) process admits a weak linear autoregressive represen-
tation of order p:

19Section 4.2 shows how such cross terms can be handled in a Wishart framework.

12



P
vech(Yiy1) = Z Aj(M;y, ..., Mp)vech(Yiy1— ;) + vech(KX) + vech(ni41), say,

j=1
()
where A;(Mj, ..., M,) is a matrix function of Mj, ..., M.

3 Examples

In this section, we give various examples of Wishart processes and describe spe-
cial cases, which are known in the literature, such as the Wishart White Noise,
the one-dimensional Wishart process, known as the Autoregressive Gamma,
(ARG) Process, and the Wishart unit root process.

3.1 The Wishart White Noise

When M = 0, the series (Y;) is a sequence of independent matrices with
identical centered Wishart distributions with parameters K and ¥. The first
and second order moments are given by: E(Y;) = KX, cov (7Y, 6'Y:8) =
K[YEBa'Yd + o'Epv'E4]. In particular, cov(a'Yia,B'Y:8) = 2K (a'SB)%.
The two stochastic quadratic forms o'Y;a and 3'Y;3 are uncorrelated, if and
only if, vectors a and 8 are orthogonal for the inner product associated with X.
Such results are useful in the analysis of Wishart processes, since, as shown in
the next section, the marginal distribution of a stationary Wishart process is a
centered Wishart.

3.2 The limiting deterministic case

Let us consider the WAR(1) process with parameters K, Sx = K %y, Mg =
M, where X1, My are constant matrices, and the limit of the WAR(1) process
when the degree of freedom K tends to infinity. By definition, we have (for
integer K):

K
!
Y, = E TktTpy,
k=1
where 2 = Mg Zgt—1 + €kt, €kt ~ N (0, k). Equivalently, we can write:
K
1 j :~ ~1
Y:f = E Trt T,
k=1

where Ty = VKzp = MiZps—1 + €k, Ert ~ N (0,%1). Since the variables
T4, k=1,...,K, are independent identically distributed®, it follows that, for

20if the processes are stationary. Otherwise, the result is still valid, if we assume identical
initial values for the different (zj;) processes.

13



large K:
Y~ E (%kt%ct) )

by the law of large numbers.

For instance, if the autoregressive coefficient M; admits eigenvalues with a
modulus strictly less than 1, if z;, = 0,Vk, Y; tends to X (c0), where X (co)
is the unconditional variance of Z;. Thus, the WAR(1) process includes as a
limiting case the constant process, formed by a sequence of constant matrices.

3.3 The univariate WAR process

In the univariate framework (n = 1), the conditional Laplace transform be-
comes:

Ui (y) = Elexp(7Yi1)|Ye] (6)

2
—K/2 m

This is the conditional Laplace transform of an autoregressive gamma pro-
cess [see e.g. Gourieroux and Jasiak (2005), Darolles, Gourieroux, and Jasiak
(2005)], up to a scale factor. The transition distribution is a path dependent
noncentered gamma distribution up to a change of scale.

3.4 Unit root

A WAR(1) process for M = Id,¥ = Id exists already in the literature [Bru
(1989), Bru (1991), O’Connel (2003)]. If K is an integer, the latent pro-
cesses (zxt),k = 1,..., K, are independent Gaussian random walks, and the
W, (K, Id, Id) process arises as time discretized counterpart of the continuous
time process defined by:

dY, = KIdndt + Y, 2dWw]v}/?, (7)
where Y;l/ ? is the symmetric positive root of ¥; and W is a (n,n) matrix,
whose components are independent Brownian motions. This matrix process is
a multivariate extension of the Bessel process used in Finance for time defor-
mation [Geman, Yor (1999)], and therefore shares the properties of the Bessel
process?!. Several theoretical results have been derived in this special case [Bru
(1991), Donati-Martin et alii (2003)] including the closed form expression of
the transition density of the process and the joint distribution of the process
of eigenvalues of matrix Y;. For n = 1, this process is equivalent to an autore-
gressive gamma, process with a unit root. This process is known to feature long
memory (see Gourieroux, Jasiak (2005)).

2lsee Karlin, Taylor (1981) p175-176 for the definition of the Bessel process, and Revuz,
Yor (1998), Chapter XI for its properties.
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3.5 The bivariate WAR process

The bivariate WAR(1) process has three components and depends on eight
parameters. Therefore, it accommodates a variety of dynamic patterns. In this
section, we show the simulated paths of

i) Yi1¢, Yoo, interpreted as volatilities,

ii) correlation Y1a:/ (YntYQQt)l/Z, and

iii) eigenvalues A1z > Ag; of the stochastic volatility matrix.

The spectral decomposition of the volatility matrix is important for finan-
cial applications. The largest eigenvalue A1 is equal to the maximum of port-
folio volatilities o'Y;a, computed for the portfolio allocations standardized by
o'a = 1. Tt provides a measure of the highest risk, while the associated eigenvec-
tor defines the most risky portfolio allocation. Similarly, the smallest eigenvalue
Ag; is equal to the minimum of portfolio volatilities computed for portfolio al-
locations standardized as before. When the smallest eigenvalue is close to zero,
the associated eigenvector is a basis for arbitragist strategies.

For illustration, let us consider three experiments involving a bivariate WAR(1)
process with 7" = 100 observations, K = 2 latent processes and latent innovation
variance ¥ = Id. The autoregressive coefficients are as follows:

09 0 . _ 03 -0.3 .

M = ( 1 0 )for experiment 1, M = ( 03 03 )for experiment 2,
05 0 .

M = ( 0 0.5) for experiment 3.

The first experiment examines a recursive system for x;, which involves a com-
ponent (z1;) with a root close to 1. The second experiment concerns an autore-
gressive matrix of rank 1, where all elements of volatility matrix are driven by a
single dynamic factor [see Section 6]. Finally, in the third experiment, the two
latent processes are independent with identical dynamics.

[Insert Figure 1: volatilities, example 1]

[Insert Figure 2: correlation, example 1]

[Insert Figure 3: canonical volatilities, example 1]

[Insert Figure 9: canonical volatilities, example 3]

As expected, the bivariate WAR(1) model is able to reproduce volatility
clustering phenomena, that is path dependent subperiods of large (resp. low)
variances Y11¢, Yass, or path dependent subperiods of large (resp. low) Arg, Aog.
We note that the clustering pattern is not necessarily identical for all portfolio
volatilities.

In particular, we can observe simultaneously a cluster of high A;, and a
cluster of low A9;. In such a situation, the market has to manage the following
two very different types of risks: 1) the common volatility risk associated with
the first eigenvector, and 2) the risk due to the leverage effect of arbitragist
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strategies associated with the second eigenvector. This situation can occur,
when some portfolio volatilities are negatively correlated.

Let us first discuss the volatility patterns. In experiment 1, we observe
directly the lag of one time unit between the peaks and throughs, which is a
consequence of the recursive form of matrix M [see Figure 1]. In experiment
2, the series are driven by the same factor, but the sensitivity coefficients with
respect to the factors are different. Moreover, the conditional heteroscedasticity
of volatility series renders the detection of the common factor difficult.

The correlations are quite specific in the case n = K = 2. Indeed, the case
K = 2 is close to the degenerate case K = 1. If K = 1, the matrix Y; is
stochastic with rank 1 and the correlation alternates, taking randomly values
+1 and -1. When K = 2, the matrix Y; has rank 2 with probability 1, but the
probability of correlation with absolute value close to one is significant. This
feature is directly observed in Figures 2, 5, 8, in which we see highly fluctuating
correlation. This effect generally diminishes when K increases, as shown in
Section 3.2.

Finally, in Figures displaying the eigenvalues, we find dates at which Ay; is
rather large while Ay is close to zero. At such times, we face the aforementioned
two types of risk, which are the common volatility risk and the arbitragist risk.

4 Predictions from WAR processes

The WAR processes belong to the family of compound autoregressive (Car)
processes [see Darolles, Gourieroux, and Jasiak (2005)], which have simple pre-
diction formulas due to the exponential affine representation of the conditional
Laplace transform. In This section also discusses temporal aggregation of WAR
processes. It will be shown that it resembles in many aspects the temporal
aggregation of Gaussian VAR processes.

4.1 Prediction formulas and stationarity condition

Nonlinear forecasting of the matrix WAR(1) process Y at horizon h consists
in computing the conditional distribution of Y;;, given Y;. The prediction
formulas are based on the conditional Laplace transform at horizon h, which
can be easily computed by recursions [see Darolles, Gourieroux, and Jasiak
(2005)]. To keep our exposition simple, let us consider an integer-valued degree
of freedom K. By definition, we have:

K

!
Yieh = ) ThithThpins
k=1

where zj, 11n = M "zpst+epin, V (Eptn) = S+ MEIM'+.. + M-S (Mh_l)' =
Y (h), say. This implies the following proposition.

Proposition 4: The transition distribution at horizon h of the WAR(1)
process is the (conditional) Wishart W,, (K, M", T (h)).
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In particular, the WAR(1) process admits linear prediction formulas at any
horizon. We have:

E[Y|Yi] = MY, (M") + K (h).

The WAR(1) process is asymptotically strictly stationary if matrix M admits
eigenvalues with a modulus strictly less than 1. The stationary (marginal)
distribution of WAR(1) is centered Wishart W [K,0, % (00)], where ¥ (00) is
the solution of the equation:

Y (00) = MY (00) M' + 3.

The prediction formulas are easily extended to WAR(p) process, which also is
a compound autoregressive process (Car).

4.2 Temporal aggregation

Sections 2 and 3 examined a volatility matrix Y; at horizon 1 based on the in-
formation set including the lagged values of Y; and returns r;. It is well-known
that standard volatility models are not invariant with respect to time aggre-
gation [see e.g. Drost and Nijman (1993), Drost and Werker (1996), Meddahi
and Renault (2004)]. Let us consider a WAR(1) specification and study the
volatilities and returns defined at a horizon of 2 time units, say. Let us first
interpret the time aggregated volatility process:

Vis1 =Yo, +Yory1,7=0,1,2,....
To do this, let us define the geometric return at horizon 2:

Tri1l = T2741 + T2r 42,

and assume a zero expected return. We also assume that Y; follows a WAR(1)
stochastic volatility model on the time grid with time unit equal to one. When
the information set at date 7 = 2t includes the lagged values of the aggregate
volatility and returns, we get:

|4 [Fr+1|?_ra g]
=V [r2T+1 + 727 42|77, g]
=V [E (T‘2T+1 + 7‘27+2|7‘2_r= &) |F_T’ &]
+FE [V (r2r+1 + T2r+2|T2_r= &) |Ea g]
= F [V (7’2T+1 + Tzr+2|7'2_ra &) |F_Ta Z}
[YzT + E Y27+1|Y2T) T+, Y, ]
= [Y2r + Yor1|Yr ]
7|

VoV
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Thus, the aggregate process ?TH =Y5; + Yo,41 is the process to be consid-
ered in the computation of volatility at horizon 2, equal to E [}ZHW}] .

Let us now consider the expression of aggregate volatility in terms of the
latent processes x (assuming an integer degree of freedom). We get:

K

! !
Yor + Yv2‘r+1 = § (:L.k,QTxk,2T + xk,2r+1mk,2‘r+1) )
k=1

which is not a WAI}(I) process, due to the presence of lags. However, the
aggregate volatility Y;41 can be obtained from the (n?,n?) matrix:

K
Tk,27 ] /
ZT = ’ i xr
2 2 1
1;—1: Tk 2741 ( k27 k27+ ) ’

!
by summing the two diagonal blocks. The stacked process (37;9,27’332,27 +1) is

a Gaussian VAR(1) process:

T2r _(0 M Thar-2 | Id 0 Ek,27

Th,274+1 0 M? Tk,27—1 M Id Ek2r+1 )
Since the process (Z,) is the sum of squares of the stacked Gaussian VAR, it
follows that:

Proposition 5: The stochastic process (Z;) is a Wishart process of dimen-
!
sion 2n: Wan (K’ ( 8 %2 ) ( %42 gﬂ-l/{MEM’

Thus, the process of aggregate volatilities is the sum of block diagonal el-
ements of a Wishart process obtained by stacking the consecutive realizations
of latent processes ;. The approach, based on stacking, reveals that the cross-
products zy 2,7} ,,,; have an affect on the distribution of block diagonal ele-

ments. We conclude that the volatility process at horizon 2, that is E [f’TH |17'T} ,

is not a Wishart process of order 1, but a different process that can be computed
from an augmented Wishart process of order 1.

5 Continuous time analogue

When the autoregressive coefficient M can be written as M = exp (A), where A
is a matrix, the Wishart autoregressive process of order 1 is a time-discretized
diffusion process. Moreover, if K is an integer the diffusion process is obtained
by summing the squares of K independent multivariate Ornstein-Uhlenbeck
processes.
Let us consider K = 1 and the multivariate Ornstein-Uhlenbeck process
defined by:
dz; = Azidt + Qdwy, (8)
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where (w;) is a n-dimensional standard Brownian motion, and A and Q are
(n,n) matrices. It is well known that the time-discretized Ornstein-Uhlenbeck
process is a Gaussian autoregressive process of order 1, where M = exp (A) and
T = [ exp (sA) Q' [exp (sA)]' ds.

The exponential function in the expression of autoregressive coefficient ma-
trix implies restrictions on the dynamics of the associated discrete-time Gaus-
sian AR(1) process. More precisely, the autoregressive matrix M cannot admit
negative or zero eigenvalues. Thus, a number of Gaussian VAR(1) processes in
discrete time, that are usually encountered in applications, cannot be consid-
ered as time discretizations of multivariate Ornstein-Uhlenbeck processes. Also,
a number of Wishart processes of order one are not time discretized continuous-
time processes. For M of dimension (2,2) we have, for example,

i) the white noise Wishart process for M = 0;
ii) the periodic model with period 2 for M = —1Id;

. . 0 0

iii) the model with recursive dependence M = | 05 0 ), where the latent
process ri¢y = €1¢, T2t = €2¢ — 0.5 T1¢—1 = €2t — 0.5 €1,6—1, is a moving
average.

For any other M = exp (A), the WAR(1) process is a time-discretized diffu-
sion process Y; = x;x}, where () is the Ornstein-Uhlenbeck process (equation
10).

Let us show the stochastic differential system satisfied by the continuous
time matrix process (Y;). It is proved in Appendix 4 that this matrix process
satisfies:

dy; = (Q9 + AY; + V3 A" dt + z; (Qdw;)' + Qdw,z) (9)
n
= (QQ' + AY; + Vi A')dt + > (2,9 + Qz}) dwys,
=1
where €, I = 1,...,n, are the columns of matrix Q. It is easy to check that

the volatility matrix of d (vecY;) depends on Y; only. Indeed, let us introduce:
veeY; = (YY,...,Y)", where Y/, j = 1,...,n, is the j'* column of ¥;. The
Brownian component of dY; is Y;', (ziwji + Qzj¢) dwye. Thus, we infer:

covy (dY;’, ay; )

= cou lz (xewa + Qi) dwyy, Z (wewji + Qxjt) dwlt]

=1 =1

[Z (wewir + Qi) (Tewje + szjt)'] dt.

=1
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This conditional covariance is a function of ¥ and Y; only:
) . Sy Sy
cou (,dY7) = (o¥e + Y7 (5) + 37 (V) + YiguZ) dt,  (10)
where ¥ = QQ'. In particular, we find for any n-dimensional vectors «, 3, 7, ¢

i) covy (dYia,dYif) = (&'E8Y; + Via'E + X8a'Y; + 'Y AY) dt,

ii) covy (v'dYza,8'dY:B) = [(&'E8) (v'Y:d) + (7' YiB) (a'E0)
+ (7'E8) (&'Y30) + (o'Y:3) (v'E6)]dt,

iii) Vi (v'dYia) = [(a'Ea) (v'Yyy) + 2 (e'Yey) (a'E) + (' Yia) (v'Ey)ldt,
iv) V; (¢/dY;a) =4 (a'Xa) (oY) dt,
v) covy (o' dYya, B'dY ) = 4 (' 5P) (o'Y3 ) dt

These covariance formulas are the local counterparts of the discrete time
formulas derived in Corollary 2. Indeed, for a small time increment dt, the
formulas of Corollary 2 hold with M = Id + o(dt) and ¥ replaced by Xdt.
In continuous time, only the terms of order dt in the volatility expression are
relevant.

By construction, we know that the solution Y; of the differential system (9-
10) is symmetric positive semidefinite. The positivity condition follows from
the the ”drift” and ”volatility” expressions. Indeed, let us consider a vector
(portfolio allocation) a such that a'Y;a = 0. The drift of o/dY;a is &/QQY adt >
0, whereas its volatility is V; (a/dY;a) = 0. Thus, there is a reflection effect,
which ensures that o'Y;a remains nonnegative. This argument is valid for any
a.

The Wishart continuous-time process is easily extended to handle any degree
of freedom K strictly greater than 0, integer or noninteger valued. To do that,
we keep the volatility function unchanged, and change the drift to KQQ' +
AY; + Y3 A', and increase the number of independent Brownian motions up to
dimension @ When K is not an integer, the interpretation in terms of
sums of squares of Ornstein-Uhlenbeck processes is no longer valid, but the
symmetry and positivity of the solutions are ensured by the reflection argument
given above.

The differential stochastic system satisfied by the Wishart process can be
written as:

dvechY, = pydt + AY/2dW, (11)

where (W) is an n(n + 1)/2 dimensional Brownian motion, y; = vech(KQQ' +
AY; + Y;A') and Ay = (1/dt)Vi(dvechY:) has a complicated expression. An
alternative representation of the continuous time process can be derived by
analogy to the equation of unit root Wishart processes (see Section 3.4). It
is easy to see that a continuous time Wishart process satisfies a system of the

type :
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ay; = (O + AY, + v, A')dt + Y,2aW,Q + Q'dW v/, (12)

where W, is a (n,n) stochastic matrix, whose components are independent Brow-
nian motions and Q, 4, Q are (n,m) matrices . This representation is useful in
computations, but can be misleading in the sense that the number of scalar
Brownian motions is strictly larger than the number of linearly independent
components of Y;. Therefore, information generated by the n(n + 1)/2 com-
ponents of Y is strictly contained in the information set generated by the n?

Brownian motions.

Example 1. The square of a univariate Ornstein-Uhlenbeck process y; = x7,
where:

dxy = axsdt + wdWy,

satisfies the stochastic differential equation:

dyr = (2ay; + w?) dt + 2w \/y dW;.

For another value K of the degree of freedom, we get:

dys = (2ay: + Kw?) dt + 2wy dW;.

This is the Cox-Ingersoll-Ross (CIR) process [Cox, Ingersoll, Ross (1985)].
This result is not surprising since the CIR process is the continuous time ana-
logue of the autoregressive gamma process. In particular, the square of an
Ornstein-Uhlenbeck process is a special case of CIR process with a restriction
on the mean reverting, volatility and equilibrium parameters [see Heston (1993)].

6 Reduced-rank (factor) models

In multivariate time series models, the number of parameters can be reduced by
finding factor representations with a small number of factors. The factor rep-
resentations can be defined a priori as in factor ARCH models, or else can be
based on a coherent general-to-specific methodology as in multivariate linear au-
toregressive models. In this section, we develop a general-to-specific approach,
which is based on the analysis of the rank, null-space and range of the autore-
gressive matrix. By considering a matrix M with reduced rank, we are able to
define portfolio allocations with the following properties: 1) serially indepen-
dent portfolio volatilities (white noise directions), 2) portfolio volatilities, which
summarize relevant information (factor directions).

For ease of exposition, we first consider an autoregressive matrix of rank one,
and next extend the results to matrices of any rank.
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6.1 Matrix M of rank 1

Let us first consider a WAR(1) process with autoregressive matrix M of rank
1. This matrix can always be written as: M = Ba/, where 8 and « are two
nonzero vectors of dimension n.

i) The conditional Laplace transform of the process Y; is equal to:

exp T'r [a,B'F (Id - 251) ™" ,Ba'yt]
[det (Id — 25T)]%/
expTr [(ﬂ'r (Id—25T) ! 5) a'Yta]
[det (Id — 25T)]</?

¥, () =

?

since we can commute under the trace operator. Thus, the conditional Laplace
transform depends on Y; by the term o'Y;a only.

Proposition 6: When M = 8d/, the conditional Laplace transform depends
on Y; by the quadratic form (portfolio volatility) o/Y;a only.

Moreover, the dynamics of o'Y;a is easily characterized. Indeed, we have:

Eyexp (ua'Yi10)
U, (uaa)

exp [(uﬁ'aa' (Id - 2u§]0¢o¢’)71 ﬂ) a’Y}a]
[det (Id — 2u§]aa’)]K/2

Il

This conditional Laplace transform represents a WAR(1) process of dimen-
sion 1, which has a noncentered chi-square transition distribution [see Appendix
5].

Proposition 7: When M = fa/, the univariate process (a'Y;) is a WAR(1)
process W1 (K, '8, o'Ea).

Thus, we get a nonlinear one-factor model, with the dynamic factor F; =
o'Y;a. More precisely, the factor process (F;) admits autonomous dynamics,
and, once the factor value is known, the conditional distribution of Y;; given
Y; is known and equal to the conditional distribution of Y341 given F;. Note
that in the standard CAPM model the asset return volatility matrix depends
on the past by market portfolio volatility only, which implies that the matrix
M is of rank one.

ii) It is also interesting to point out that there exist functions of the volatility
matrix that destroy serial dependence. Let us consider a deterministic matrix
C' with dimension (p,n). We focus on matrix process (C'Y;C), and consider
integer K for ease of exposition. We get:

K
! ! !
Y€ = C § :mk,t+1$k,t+1c

k=1

22



K
= ' Z (ﬂa':vk,t + 5k,t+1) (ﬂa'wk,t + Ek,t+1)l C.
k=1

This expression doesn’t depend on the lagged values (z ) if the columns of

C are orthogonal to vector 8. Moreover, C'Y;;1C = C' Eszl Ek,t+1€k,441C will
follow a WAR(1) process W, (K, 0, C'EC') of dimension p.

Proposition 8: Let us consider a matrix C of dimension (n,n — 1), whose
columns span the vector space orthogonal to vector §. Then, the sequence of
matrices (C'Y;C) is an i.i.d. sequence of Wishart variables W,_1 (K, 0, C'ZC)
of dimension n — 1.

Therefore, in the framework of a matrix M of rank one, we can define trans-
formations of the stochastic volatility matrix, which either contain all sufficient
information, or reveal the absence of serial dependence. Two cases can be dis-
tinguished:

1) If « is not orthogonal to 8: o' # 0, we can compute portfolio volatilities
with respect to a new basis of the vector space. More precisely, we can
consider the transformed volatility matrix:

_ | CYiuC C'Yina
Yerr (4) = 'Yy 1C o 'Y

corresponding to A = (C, a), where C is orthogonal to 8. The first diag-
onal block is a white noise, while the second diagonal block captures all
past information. The diagonal blocks are mutually independent.

2) If « and S are orthogonal: &/ = 0, we can compute the volatilities with
respect to a basis including the direction without serial dependence plus
the 8 direction. In this case: A = (C, a, 8), where C is a (n,n — 2) matrix
with columns orthogonal to 8 and linearly independent of a. We get:

C'Yt+1c C"Y}+1a CIY;s+15
Yiv1 (4) = | &'YVenC o'Yipia o'Yiaf
BYi1C  B'Yipa B'YifB

The portfolio volatility a'Y; 1« is a white noise process, which captures all
relevant information.

6.2 Transformations of WAR(1) processes

We will now consider the general framework of matrix M of any rank and of an
integer or noninteger valued degree of freedom. Let us consider a transformation
a'Yir1a of the volatility matrix, where a is a (n,p) matrix of full column rank.
The conditional Laplace transform of this process is:

T, (v) = Elexp Tr (va'Ysy10) |Yi],
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where «y is a symmetric (p,p) matrix. It can be written in terms of the basic
Laplace transform :

‘T’t ()

EexpTr (va'Yit1a) |Yi]
¥y (aya'),

Il

since we can commute under the trace operator. We get:

expTr [M’a'ya’ (Id — 2%arya')™" MK]
[det (Id — 2Eafya’)]K/2

expTr [’ya’ (Id - 2%aya’) ™! MY}M'a]
[det (Id — 2Ea’ya’)]K/2 .

U (y) =

Thus, (a'Yza) is a Markov process, if and only if, MY;M'a is function of
a'Yia (for any value Y;), or equivalently if there exists a matrix ) such that
M'a = a@)’'. Moreover, it is easy to show that in this case (a'Y;a) still defines a
Wishart process.

Proposition 9: Let us assume that (Y;) is a Wishart process of order 1
W, (K, M,¥) and consider a matrix a of dimension (n,p) and full column rank.

i) The transformed process (a'Y;a) is a Markov process if, and only if, there
exists a (p, p) matrix @ such that ' M = Qa’.

ii) Under this condition, the process (a'Y;a) is also a Wishart process
W, (K,Q,a'Ya) of dimension p.

Condition i) of Proposition 9 is easy to interpret, when K is an integer and
the Wishart process is written in terms of the latent processes x:

K K
'YVig = ! ' _ i
aYia = aQ Tptxp a4 = Zkt 2kt
k=1 k=1

where zj, = a'zpe = ' My -1 +a'e,. The process (zx:) is Gaussian autoregres-
sive iff o’ M=y, 41 is a linear function of zj¢—1, that is, iff there exists @ such
that: o’Mzgi—1 = Qa'zri—1 = Q2kt—1- Then, the parameters of the trans-
formed Wishart process are the parameters of the new Gaussian autoregressive
process (2¢).

6.3 Wishart processes with reduced rank

The results given above allow us to find the analogues of outcomes from Section
6.1 for a WAR(1) with an autoregressive matrix of any rank. Let us assume
that the rank of this matrix is I < n. Then, the autoregressive matrix can be
written as:

M = Bd/, (13)
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where o and § are matrices with dimension (n,!) and full column rank.
The following two transformed processes have direct interpretations:

i) (¢'Yia) is a process which conveys all information, called the nonlinear
dynamic factor process.

ii) (C'Y;C), where C is a matrix "orthogonal” to 8, that is satisfying C'8 = 0,
is a white noise process.

Moreover, both transformed processes satisfy condition i) of Proposition 9
since:

i) /M =d'Ba’ = Qa', with Q = o';
ii) C'M = C'Ba/ =0 =0, with Q = 0.
Proposition 9 implies the following properties.

Proposition 10: Let us assume M = Sa', where « and § are (n,l) matrices
with full column rank /.

i) The conditional distribution of Y;y; depends on the past values Y; by
a'Y;a only.

ii) (a'Yia) is a Wishart process W (K, o', a'Ya) of dimension [.

iii) If C is a (n,n — 1) matrix such that C'8 = 0, then (C'Y;C) is an i.i.d.
Wishart process W,,_; (K,0,C'SC) of dimension n — [.

7 Stochastic volatility-in-mean

By analogy to the ARCH-in-mean process, we can formulate an expected return
model with WAR-in-mean stochastic volatility [see Engle, Lilien, and Robbins
(1987)]. The definition of the WAR-in-mean process is given in Section 7.1 and
its predictive properties are described in Section 7.2.

7.1 Definition of the WAR-in-mean process

Let us consider the returns on n risky assets. The returns form a n-dimensional
process (r;). We assume that the distribution of r;,; conditional on the lagged
returns r; and lagged volatilities Y; is Gaussian with conditional variance Y; and
a conditional mean that is an affine function of Y;22.

Definition 3: The return process (r;) is a WAR~in-mean process if the con-
ditional distribution of 7441 given ry, ¥; is Gaussian with a WAR(1) conditional
variance-covariance matrix Y;, and conditional mean m; = (m;;) with compo-
nents: m;¢ = b; +Tr (D;Y:), 4 =1,...,n, where b; are scalars and D; are (n,n)
symmetric matrices of "risk premia”.

22The assumption of normality concerns the distribution conditional on lagged returns and
lagged volatilities. It is compatible with fat tails observed in the distribution conditional on
lagged returns only.
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For instance, for two asset returns the WAR-in-mean model becomes:

r1i+1 = b1 +di11 Y11, + 2d1,12Y12,0 + di 22 Yoo + €104
ro,441 = ba + d2,11Y11,¢ + 2d2,12Y12,4 + do22Y22,1 + €2,441,

where V; [(5’1’,S +1:E54 +1)'} = Y;. The model allows for dependence of the ex-

pected return on volatilities and covolatilities.

The WAR-in-mean specification is useful for practical implementations, since
the predictive distributions of returns are easy to compute by means of Laplace
transforms. This is due to the expression of the conditional Laplace transform
of the return 7411 given r¢, Y;, which is an exponential affine function of Y.
Indeed, we have:

E [exp (2'r¢41) 1, Vi)

[ 1
= exp |2'm; + §z'Ytz]

[ n
1
= exp | 2 [bi + Tr (D:iVy)] + 5z'Ytz
Li=1

" 1
(Z 2D; + Ezz'> Y;

i=1

= exp |Zb+Tr

7

Similar computations can easily be performed for more complicated specifica-
tions in which the conditional mean contains combinations of lagged returns or
higher autoregressive orders.

Finally, note that, as mentioned in Section 5, under some parameter restric-
tions, some WAR processes can be seen as time discretized continuous time
processes. The same remark holds for the WAR-in-mean process. When it ad-
mits a continuous time representation, the differential system for asset prices
Sz',t is:

dlog Siy = [bs + Tr (D;Y,)]dt + Y 2aws,

where (Y;) satisfies stochastic differential system (14) with a different multivari-
ate Brownian motion. The tractability is due to the affine specification of the
joint process (vec (logSi,t) ,vec(Y;)) that admits affine drift and volatility coef-
ficients. This continuous-time specification can be considered as a multivariate
extension?? of the model:

{ dS; = (a + Bo?) Sydt + o, dW}?,
d 2
Ot

= (Y0 + 0o0?) dt + /11 + d102dWY

introduced by Heston (1993).

23See Gourieroux, Sufana (2004)b for a use of this extended version to derive closed-form
expressions for derivative prices in a multi-asset framework. This is another new frontier for
ARCH models to be crossed, according to Engle (2002)b.
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7.2 Mean-variance efficient portfolios

For a net return r; defined as the difference between the return on asset 4
and the risk-free return, the Markowitz mean-variance efficient portfolio has an
allocation proportional to:

aj = (Y) " m,.

Let us assume a WAR-in-mean process of net returns. When the volatility
of net returns is equal to zero, the risky returns are equal to the risk-free return.
Thus, we can assume b; = 0, Vi. Moreover, it is easy to see that the ”risk
premium” T'r (D;Y;) is positive if the matrix D; is positive definite. In this
particular case, the risk premium is an increasing function of volatility Y;24, 2°
. Thus, for a WAR-in-mean model, we get:

af = (V)" "vec[Tr (D;Y3)].

The positivity constraint on matrix D has a simple structural interpretation.
The risk premium for asset ¢ is equal to Tr (D;Y;). Typically, it is a linear
combination of volatilities and covolatilities such as: dy 11Y11,t + 2d1,12Y12,¢ +
dy,20Y224 for ¢ = 1, n = 2. The risk premium involves two components: Y;
di,i1 die
dije dije
risk aversion coefficients describing the risk perceived by the market. As usual in
a multiasset framework, the risk aversion is represented by a symmetric positive
definite matrix. The combination of both effects determines the level of risk
premium and explains the positivity of the risk premium, since T'r (DY) > 0, if
D>0andY > 0.

measures the underlying joint risk, whereas D = ( ) is a matrix of

8 Statistical inference

Two types of statistical inference can be considered according to the type of
available observations:

i) When a time-series of volatility matrices is available, a WAR model can be
estimated directly from Y,...,Yr.

?4Indeed, a positive definite matrix D can be written as D = EZ=1 dkd;c- We

get: Tr(DYy) = Tr (Y n_ dpd,V;) = Sor_ Tr(dpd,Ys) = Yo Tr(dYidi) =
Y ry @, Yedg > 0, since Y; is a volatility.

Moreover, if two values of the volatility Yz and Y;* are such that: Y; > Y <= Y; -Y;* > 0,
we deduce that: Tr [D; (Vi — Y;*)] = Tr (D;¥:)—Tr (D;Y;*) > 0, which is the monotonicity
property of the risk premium.

25However, Abel (1988), Backus, Gregory (1993) and Gennotte, Marsh (1993) offer models
where a negative relation between expected return and variance is compatible with equilib-
rium. This is mainly due to the partial interpretation of this relationship, which does not
necessarily account for all state variables. It would be natural to examine this financial puzzle
in a multiasset framework to see how the matrix D and its positivity conditions depend on
the number of assets.
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ii) When asset returns are observed while the stochastic volatility is unob-
served, a WAR-in-mean model can be estimated and latent volatilities
approximated by a nonlinear filter.

In this section, we focus on the first type of statistical inference, which has
at least two interesting applications.

i) From high frequency data, it is possible to compute daily volatility matrices
of returns at a given frequency (for example sampled at 5 minute intervals)
to obtain a series of intraday volatility matrices?®. Due to different order
matching procedures at market opening and closure (auction), and within
the day (continuous trading), the dynamics of the intraday volatility ma-
trices can be different from the dynamics of volatilities of daily returns
computed from closing prices [see Gourieroux and Jasiak (2002), Chapter
14, for a description of electronic financial markets].

ii) Another application concerns the dynamics of derivative prices. In a multias-
set framework, the Black-Scholes formula can be used to compute implied
volatility matrices from derivative prices written on a set of n assets. The
WAR specifications can be applied to series of implied volatilities and
covolatilities [see e.g. Stapleton, Subrahmanyam (1984) for contingent
claims whose payoffs are written on two or more assets].

In the sequel, we first discuss identification of the parameters of interest.
Next, we introduce a first-order method of moments, which provides consistent
estimators and is easy to implement. This method can be seen as the first step
before numerical implementation of maximum likelihood based on the expression
of the transition density given in Section 2.2. Finally, we discuss estimation of
the WAR-in-mean model.

8.1 Identification

The identifiable [resp. first-order identifiable] parameters are obtained by con-
sidering the expressions of the conditional Laplace transform [resp. the con-
ditional first-order moment]. The following identification results are proved in
Appendix 6.

Proposition 11: Let us assume K > (n —1).

i) K and ¥ are identifiable while the autoregressive coefficient M is identi-
fiable up to its sign.

ii) ¥ is first-order identifiable?” up to a scale factor and M is first-order
identifiable up to its sign. The degree of freedom K is not first-order identifiable,
but is second-order identifiable?3.

26Called realized volatility in the literature [see e.g. Andersen, Bollerslev, and Diebold
(2002) for a survey].

27That is, identifiable from the first-order conditional moment.

28That is, identifiable from the first and second order conditional moments.
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At order one the number of identifiable structural parameters is n? +
(for M and ¥£* = K¥). The number of reduced form parameters in the predic-

2
tion formula E (Y;41|Y;) is ["(”;1)] + "("2“) (which are the number of slope

plus intercept coefficients, respectively, in the seemingly unrelated regression

of vech (Y;) on vech (Y;_1) plus constant). The degree of (first-order) over-

nm+1)1% _ 2 _ n’(n-1)(n+3)
p) = 1

n(n+1)
2

identification [ n , is equal to zero for n = 1 and

increases quickly with the number of assets.

Table 1. Degree of first-order over-identification.

Number of assets 1 2 3 4 5
Degree of over-identification | 0 5 27 | 84 | 200

Thus, more accurate estimators are likely obtained when the cross sectional
dimension n increases. This is due to the presence of second order cross moments
among the moment restrictions.

Finally, statistical inference concerning the rank of M, its null-space and
range can be performed (consistently) using conditional moments of order one,
since these do not depend on the sign of matrix M.

8.2 First-order method of moments

The first-order conditional moments can be used to calibrate the parameters M
and ¥, up to the sign and scale factor, respectively. The first-order method of
moments is equivalent to nonlinear least squares. The ordinary nonlinear least
squares estimators are defined as:

(M, 2*) = Arg min 5> (M,5"),

where:

5 (M, %)

[~ L)~

n n 2
*
E Yiit — E E Y, e—1migmu; — o;

i<j k=11=1

llvech (Y;) — vech (MY, M' + 5¥)|,
t

||
N

and ¥* = K3. This method can be applied by using any software that ac-
counts for conditional heteroscedasticity. It can be improved by applying quasi-
generalized nonlinear least squares, since the expression of V; [vech (Yi+1)] be-
comes known, once the degree of freedom K is estimated [see Corollary 2].

Once the parameters M and ¥* are estimated, different tests can be per-
formed on matrix M.
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i) First we can check the rank of M, that is test for a reduced rank model. For
instance, if the rank is equal to [ the matrix M can be written as M = Sa’, where
a and S have dimension (n,l) and are full column rank. Then an asymptotic
least squares estimator of M under the hypothesis REM = [ is defined by [see
Gourieroux, Monfort, Renault (1995)] :

Ml = Bl,dla

where :

(64, 1) = argmiél[vec M — vec (Ba!)]'Var(veeM) vecM — vec(Ba')],

and the minimization is performed under the identifying restrictions o'a = Id.
This optimization is similar to singular value decomposition of a well-chosen
symmetric matrix computed from M and its asymptotic-covariance matrix.

ii) Second, we can test for embeddability, that is for the possibility to write
M = exp A. This test can be based on the spectral decomposition of M.

8.3 Estimation of the degree of freedom

Finally, the degree of freedom K and the latent covariance matrix can be iden-
tified from the second-order moments. Indeed, the marginal distribution of the
process (Y;) is a centered Wishart distribution (see Section 4.1), such that :

V(d'V;a) = 2K[a'%(c0)al?

= ZA:[a'T*(0)a)?,
where : ¥*(00) = ME*(c0)M' + X*.
Consistent estimators of the degree of freedom can be derived in the following
way. X
step 1 : Compute X*(c0) as a solution of :

$*(00) = ME*(00) M’ + *.
step 2 : Choose a portfolio allocation «, say, and compute its sample volatility

T 2

N 1
V(a'Yza) = T Z

T
1

! = !

2 a'Ya TE a Yo

t=1

step 3 : A consistent estimator of K is :

K(a) = 2[a'S*(c0)a]?/V (' Y,).
step 4 : A consistent estimator of ¥ is 3(a) = 3* /K (a).

In practice, it can be useful to compare the estimators computed from dif-
ferent portfolio allocations to construct a specification test of the WAR process.
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The two-step estimation method described above is simple to implement. It
suggests associated specification tests and is suitable for a general-to-specific
approach. However, it has a shortcoming of inefficiency.

Full efficiency can be reached in a second step by applying the maximum
likelihood, that is by maximizing

M=

K K
Ly = {—Tnlog2—logl"‘n(K/2)—glogdetz

o~
I

1
K—-n-1
2

Tri= (Vi + MY, M")] + log o Fy (K/2; (1/4)MYtM'Yt+1)} .

log det(Id — —2 "MY,M'S'Yi1) + logdet Y4

mwm

Similarly, some standard methods can be applied to the WAR-in-mean model,
which is a special case of a nonlinear factor model. Such methods are Monte-
Carlo Markov Chain and optimal filtering via particle filters [see Pitt, Shephard
(1999), and Chib (2001) for an extensive review].

9 Dynamics of intraday volatility

9.1 The data

In this section, we consider a series of intraday historical volatility-covolatility
matrices. They correspond to three stocks : ABX (Barrick Gold), BCE (Bell
Canada Enterprise), NTL (Northern Telecom) traded on the Toronto Stock
Exchange (TSX). Since the TSX is an electronic market with continuous trading
throughout the day, high frequency data on quotes and trades are available. For
each stock the (trade) returns are computed at 5 minute intervals, and used to
compute the historical volatility-covolatility matrices at 5 minutes for each day
29 This leads to 72 observations per day available to compute each matrix,
since the market during the sampling period was opened between 9:30 a.m. and
4:30 p.m., and the first and last 30 minutes were deleted to remove the opening
and closure effects. For estimation, we retained a sample covering one month
of trading in October 1998, which consists of data on 21 working days intraday
volatility matrices. Although a longer series could have been considered, this
exercise allows us to check if the WAR model can be applied by rolling, as
it is done by financial practitioners. It would also show if the WAR provides
reasonable fit even when estimated from a sample of one month length. It is
important to note that the number of observed variables is much greater than
21. Indeed, the observations concern a symmetric matrix (3,3) with 6 different
elements. In particular, for a WAR model with lag one, we get : 120 = (21-1) x
6 observations, which is sufficient to estimate 16 parameters in M, X, K. Thus,

29 All returns are multiplied by 10% for standardization.
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the cross-sectional dimension permits to improve the accuracy of estimators (see
the discussion of overidentification in Section 8.1).
The evolution of intraday volatility matrices is shown in Figures 10-12.

[Insert Figure 10 : Stock Return Volatilities].

The returns volatilities are displayed in Figure 10, in which some common
market effects can be observed. For instance all volatilities increase simultane-
ously on day 10.

The evolution of return correlations is displayed in Figure 11. Here, other
factor effects can be detected. For instance, on day 8, all correlations decrease
quickly. The correlations take mostly values between 0.2 and 0.6 during the
whole month.

[Insert Figure 11 : Stock Return Correlations]

Finally, the eigenvalues of the volatility matrices are displayed in Figure 12.
On day 3, we observe a decrease of the smallest eigenvalue while the two other
ones increase [see the discussion of the Monte-Carlo study of Section 3.5]. Such
an effect contradicts the standard one-factor market model.

[Insert Figure 12 : Eigenvalues]

9.2 Unconstrained estimation

The WAR (1) model ?° is estimated by the first-order method of moments from
the same data set. The unconstrained estimators of M and ¥* are provided in
Tables 2 and 3. The estimation time on an 1997 IBM Unix server was less than
1 minute.

The latent autoregressive coefficient matrix is highly significant, which leads
to the rejection of the time deformed models with deterministic drift recently
introduced in the literature for derivation of properties of (one-dimensional) ob-
served realized volatilities [see e.g. Madan, Seneta (1990), Andersen, Bollerslev,
Diebold, Labys (2001) for time deformed Brownian motion of the underlying
return process, or Barndorff-Nielsen, Shephard (2003) for the extension to time
deformed Levy processes].

30 As already mentioned, the advantage of the WAR(1) process is that it naturally represents
a process of symmetric positive definite matrices. An analogue domain restriction has not
been taken into account by Andersen et alii (2003). In their paper, exchange rates data are
studied and assumed to follow a normal model for (yi¢,y2¢,y3t), where y1+(resp yat, y3¢) is
the logarithmic volatility for DM/$ [resp. Y/$, Y/DM]. Since the log-exchange rates satisfy
a deterministic relationship, we see that yi1+ = expoii¢,y2¢t = €xpo22¢,y3t = exp(oi1+ +
022t — 2012¢), where o012+ is the covolatility between the two first log-exchange rates. There
is a one to one relationship between yi:,y2+,y3¢+ and o11¢, 022¢,012¢- The standard Cauchy-
Schwartz inequality O'%Zt < 011+022¢ implies a complicated nonlinear constraint on the three
log-volatilities. It is not taken into account in the multivariate Gaussian model (see Andersen
et alii (2003), page 599).
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The eigenvalues of the estimated matrix M are given in Table 4. They are
all real, nonnegative and strictly less than one. This indicates that the process
can be considered as a time discretized version of a continuous time process 3!,

and satisfies the stationarity conditions.

Table 2 : Estimated Latent Autoregressive Matrix M
(t-ratios in parentheses)

0.806 | 0.066 | —0.474
(4.09) | (0.63) | (2.85)
0.377 | 0.300 | 0.168
(1.79) | (2.42) | (0.88)
1.017 | 0.120 | —0.532
(1.60) | (0.48) | (1.42)

Table 3 : Estimated Latent Covariance Matrix ¥*
(t-ratios in parentheses)

2.524 | 1.737 | —1.361
(1.28) | (1.68) | (0.34)
6.266 | 0.732

(4.48) | (0.55)

7.040

(0.86)

Table 4 : Eigenvalues of M

[0-323 ] 0.207 [ 0.042 |

Table 5 provides the eigenvalues of MM'. We can see that the smallest
eigenvalue is much smaller than all other ones. Thus, a two factor model can
likely be considered a suitable representation.

Table 5 : Eigenvalues of MM’

[2:291 [ 0.179 | 1.973¢ — 0.5 |

The degree of freedom has been estimated from the marginal second order
moment corresponding to the equiweighted portfolio allocation a = (1,1,1). Tt
isequal to: K(«) = 4.25, with a confidence interval of [3.82,5.54]. The degree of
freedom is strictly larger than 3, which ensures a nondegenerate Wishart process.

31This can be useful in further financial applications, like derivative pricing in continuous
time [see e.g. Gourieroux, Sufana (2003), (2004), Gourieroux, Monfort, Sufana (2004)].
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Moreover, other estimations of K based on different portfolio allocations have
been considered [see Table 6]. They provide estimates within the confidence
interval reported above, which favours the Wishart specification.

Table 6 : Estimated Degree of Freedom K

porfolio allocation | (1,1,0) | (0,1,1) | (1,0,1)
K(a) 3.82 4.89 4.66

9.3 Estimated reduced rank model

A two factor Wishart model has been reestimated from the same data set. The
constrained estimators are provided in Tables 7 and 8.

Table 7 : Constrained Latent Autoregressive Matrix
(t-ratios in parentheses)

0.808 | 0.063 | —0.472
(3.14) | (0.38) | (3.02)
0.377 | 0.299 | 0.167
(1.78) | (2.52) | (0.91)
1.014 | 0.121 | —0.524
(1.74) | (0.57) | (1.51)

Table 8 : Constrained Latent Covariance Matrix
(t-ratios in parentheses)

2.519 | 1.739 | —1.359
(1.21) | (1.66) | (0.34)
6.266 | 0.730

(4.48) | (0.55)

6.075

(0.89)

In the model of rank 2, the 8-space is generated by the first two columns of
the M matrix given in Table 7, whereas the a-space is generated by the rows of
M and is orthogonal to the vector (0.697,-1.439,1).

Since the components of the first two columns of M are positive, the C
vector orthogonal to these columns has some positive and negative elements. In
some sense the ”white noise” direction corresponds to a particular ”arbitrage”
portfolio.

10 Concluding remarks

The Wishart Autoregressive process provides an interesting alternative to stan-
dard multivariate GARCH and stochastic variance models. The WAR specifica-
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tion is quite flexible in the sense that it allows for the presence of autoregressive
lags higher than one and provides a staightforward factor representation. The
nonlinear prediction formulas have closed-form expressions at all horizons and
are quite easy to compute as well. It is well-known that the CIR diffusion process
can be interpreted as the limit of well-chosen ARCH processes [Nelson (1990)].
Likely, the continuous time WAR process could also be shown as the limit of
well-chosen multivariate ARCH models. However, the discrete time WAR seems
more convenient in many applications.

The WAR process can be used to model the dynamics of volatility ma-
trices in financial applications, including derivative pricing and hedging. The
WAR underlies the quadratic term structure model [Gourieroux, Sufana (2003)]
and yields closed-form expressions of derivative prices in multivariate stochastic
volatility models in which it arises as the multivariate extension of Heston’s
model [Gourieroux, Sufana (2004)]. The WAR also provides a coherent spec-
ification for the dynamics of stock prices, exchange rates and interest rates
[Gourieroux, Monfort, Sufana (2004b)].

35



APPENDICES
Appendix 1 : Proof of Proposition 1

i) Let us first establish a preliminary lemma.

Lemma:For any symmetric semi-definite matrix 2 with dimension (n,n)
and any vector u € R"™, we get:

/ (—z'Qz + p'z) d —ni/ze 1 't
exp(—zQz+pu'z x_(det )1/2 xp | K w.
Rn

Proof. Indeed, the integral on the left hand side is equal to:

1 ! 1 1
/exp [— (a: - —Q‘1u> 0 (:c - —Q‘lu)] exp (—M'Q_1M> dx
2 2 4
R’n
7.‘.n/2

— ]' 10—1
T (det) 2T (ZMQ “)’

since the Gaussian multivariate distribution with mean %Qfl 1 and covariance
matrix 20! admits unit mass. ®

ii) Let us now prove Proposition 1, for K = 1. Let us consider the stochas-
tic process (Y;) defined by V; = x2}, 41 = Mz + Y2641 and &4y ~
IIN (0,Id). The conditional Laplace transform of the process (Y3) is:

¥ (D)

= E[exp (2} Tey1) 4]

- E [exp ((Ma:t ¥ 21/2&“)' r (Ma:t + 21/2&“)) |xt]

exp (¢, M'TMz;) E [exp (zx;M'rzl/zgtH +¢& +121/2r21/2§t+1) |a:t] .

By using the pdf of standard normal,

1 1
f &) = nl2gnl2 eXP—§€£+1€t+17
and the Lemma, we get:

T, (T)
exp (2, M'T M)
2n/2 [det (L1d — £1/2T51/2)]'/?

1
exp H (2mgM'r21/2) (%Id— Etwrzi/“’) (221/21“1\433,5)]
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exp (2} M'T My + 20{M'T (£ - 2T) ' TMu, )

[det (Id — 251/2T51/2)]"/?

exp [x;MT (Id — 25T) " Mmt]

[det (Id — 251/2T'x1/2)]*/?
expT'r [MT (Id - 25T) ! MYt]
[det (Id — 25T)]*/2

This formula is valid whenever Id — 23T is a positive definite matrix.

iii) In the general case of integer K, the process can be written as: Y; =
Zle Yi:, where the matrix processes Yi; = zp¢z}, are independent with the
Laplace transform given above in ii). We find that:

K expTr [MT (Id — 25T)* Mth]
b [det (Id — 25T)]*/?
expTr [MT (Id—25T) ! MYt]

[det (Id — 25T))/?

T[T =

Appendix 2 : Conditional moments of the WAR(1) process

We provide the proofs for integer K. When K is not an integer, the results
are derived from an expansion of the conditional log-Laplace transform.
Appendix A.2.1 : Conditional mean

We have:

M) =

E(Yi1]Y:) = E( wk,t+1$§c,t+1|xt)

k=1

E (xk,t+1f’7;c,t+1|$t)

K

E (zhia|ze) B (@ ple) + DV (@hiralze)
k=1

= I~

~
Il
-

where the last equality follows from the definition of the variance-covariance
matrix. Thus, we obtain:

K K
EYilYy) = Mzmk,tm;c,tMl—i_Z(E)
k=1 k=1
= MY,M +K¥X.
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Appendix A.2.2 : Conditional variance
Let us consider K = 1. We get:

covy (7'Yer10,0'Yi415) (14)
= covy (V' (Mzt 4 e441) & (Mzy + €141),0' (Mzp + €441) B (Mzy + €441))
= covy(YMzid'erp1 + ¥ erp10 Moy + y'er410 €441,

O MziB'es1 +6'epi 18 May + 8'er18'e041)
= E[(Y'Mza'erpr + 7' er10 May) (8 My flerr1 + 8'eryr 8 May)]

+covy (Y'erp10' 41,8 €118’ €141)

where the other terms are zero, since they cannot be written as quadratic func-

tions of z;. Using the fact that E; (g441€},,) = %, the first term in the above
expression can be written as:

Ei (W' Mza'esr1 + v e M) (8 My f'epr1 + 8'ep 18 Mxy)](15)
B [(YMzid'eri1 + o/ Mzyy'epin) (ej41 By M'S + e, 6z, M B)]
Y Mza' LBz M'S + v Mzia' Sox, M' 8 + o/ Mxyy' Bz, M'S
+a' Mzyy'Séz, M' B
— A MY,M'a!SB ++' MY, M'80!S6 + o/ MY, M'6+'S8
+o! MY, M'8+'S6.

Let £;41 = BY/2¢;, 1, where &, ~ IIN (0,Id). The second term in expression
(16) becomes:

! ! ! !
covy (Y'ert1a/ept1,8'e18'er41)
! ! !
= 7y covg (€t+15t+1a=€t+1€t+15) 4

= Y'E; (ei4161 108 er16041) 6 — V' Ey (61416441 0) By (B'erq160441) 6

— 3R, [§t+1§£+1 (21/2(1/8/21/2) §t+1&+1] $1/25 _ A/Saf'Ss

= YSYPE DY Giiniber (big) Eanbiy | V26 —7'ZaB'Ss
i=1 j=1
n n
= 4'5l/? Z Z bii By (&ip41&ji41&416041) 526 — /Sap'Ss,

i=1 j=1

where B = £1/2a3'S1/2, Let e; be the canonical vector with zero components
except the i*" component which is equal to 1, and §;; be the Kronecker symbol:
(51']' = 1if i = j, and 0, otherwise. Since E; (gi,t+1£j,t+1£t+1€é+1) = (5,JId+

eie; + eje; [see e.g. Bilodeau and Brenner (1999), page 75], we have:

covy (V'er10'€441,0'e141 8 €441) (16)
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= 7’21/2 Z Z bi]‘ (6”Id + eieg- + e]-e;-) w25 — 7'2(15’2(5
i=1 j=1
= 4/SY2[Tr(B)Id + B+ B'|£Y/25 — 4/Sap'ss
7121/2T'I‘ (B) 21/26 + 7121/2321/26 + ’)/121/2_3,21/25 _ ’leaﬂlz6
F'S2 (B'8a) B1/25 + 4'Saf L6 + ' £Ba'S6 — ' Saf Td
= 'E58'Sa++'Epa'Sé.

Combining the results in (17) and (18) we obtain:
covy (7V'Yi410,0'Y3418)
= Y MY,M'6a'SB8 4+ ' MY, M'Ba'S6 + o/ MY, M'5y'S3
+o! MY, M'By'S6 + [Y'SBa'S6 + o' S37'S4] .

A similar proof can be constructed for an arbitrary positive integer K.

Appendix 3: Proof of Corollary 2

Let «, 8, 7, 6 be n-dimensional real vectors. i) Setting § = v and f = a in
Proposition 2, we get:
Vi (7'Yi110)
covg (V' Yer10,7'Yiy10)
Y MY;M'vo'Sa + 29 MY; M'ac! Sy + o MY, M'ay'Sry.

ii) The result above for v = a implies:
Vi (@Yiq10) = 40’ MY, M'ad'Sa + 2K (o/Sa)’.
iii) Using again Proposition 2 with v = @ and § = 3, we obtain:
cove (a'Yip1, B'Yi418) = 40/ MY M'Ba/ S8 + 2K (o/SB)°.
iv) Finally, Proposition 2 with v = a and § = « implies:

covy (@'Y, Yi418) = 2a'MY;M'ad'¥8 + 20’ MY, M'Ba'Sa
+2Kd'SBa' Ta.

Appendix 4: Continuous-time analogue

We have:
dYy = Yiea—Y:
= mt+dtmllt+dt — T3y
(z1 + Azedt + Qdwy) (z¢ + Azydt + Qdw)' — 242
=zl Aldt + zdw,Q + Azyxldt + Azgz, A (dt)?
+ Az, (dw,)' V'dt + Qdw;x, + Qdw,z, A'dt + Qdw, (dw,)' .
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The terms that cannot be neglected in the expression above are:

dYy#a i A'dt + 2dwi Q' + Azgaidt + Qdwal + QEF [dw, (dwy)'] Q'
# (VA + AY, + QQ) dt + z; (Qdw,)" + (Qdw,) ).

Appendix 5 : Proof of Proposition 6

Let P denote an orthogonal matrix such that PX'/2a = e;vo/Sa, where e;
denotes the canonical vector with zero components except the first component
which is equal to 1. The conditional Laplace transform of o'Y;a is:

U, (uaa)
exp [(uﬁ'aa' (Id — 2uSaa’) ™! ,8) a'Y{«,a]
[det (Id — 2uXaa’)]X/?
exp [(uﬂ’aa’El/Q (Id - 2u21/2aa’21/2)_1 2_1/2,8) a’Ka]

[det(S1/? det (Id — 2uS/2aa!$1/2) det(5—1/2)] />
exp [(uf'oa’SV2 (PP — 2P~ (PSY20) (o/S2P) P) ' £71/26) a'¥ic]

[det (P-1P — 2uP-1 (PS1/2q) (a/S1/2P-1) P)]"/?

exp [ uf'aa' V2P (Id — 2ua/Saee!) ™! PE*1/2B) a’Y}a]

[det (P~ (Id — 2ua/Eae;e)) P)]K/2
exp [ uf'ava'Sae!, (Id — 2ua'Saeel) PZ*1/2B) a’Y}a]

(
(
[det (Id — 2ua/Sae; e} )]/
b [(“Bla (1-2ua’Sa)™ a’E‘l/zP'Pﬂ) a’YJsoz]
(

(1- 2ua’2a)K/2
exp [ ufBlav/a'Sael (1 — 2ua’2a)_1P2_1/2B) a’Yta]
(1 — 2ua'Sa)K/2

' 2
= (1- 2ua'§]a)_K/2 exp l(lu(aiﬂ)) o'Via

— ua!Ta ’

which is the conditional Laplace transform of a WAR(1) process of dimension 1
(see Section 3.3) with m = o/ and 02 = o'Sa.

Appendix 6 : Proof of Proposition 11

We have just to check the second part of the Proposition. From Proposition
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2, we deduce that:

n n
EYiju1 Vel =D Yiamamu; + Koij.
k=1 1=1
Since K > (n —1), the admissible values of Y}, ; are not functionally dependent.
Thus the product mmy;, Vi, k, I, j, and the quantities Kojj, Vi, j, are first-
order identifiable. The result follows.
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Fig.1 Volatilities, Example 1
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Fig.2 Correlation, Example 1
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Fig.3 Canonical Volatilities, Example 1
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Fig.4 Volatilities, Example 2
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Fig.5 Correlation, Example 2

20

40 60

51

80

100




10

Fig.6 Canonical Volatilities, Example 2
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Fig.7 Volatilities, Example 3
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Fig.8 Correlation, Example 3
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Fig.9 Canonical Volatilities, Example 3
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Figure 10 : Volatilities
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Figure 11 : Correlations
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Figure 12 : Eigenvalues
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