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Electromagnetic response of a dipole-coupled ellipsoidal bilayer
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We derive an expression for the polarizability of an ellipsoidally shaped cell-like structure at field frequen-
cies where membrane molecular resonances~vibrational and electronic! are important. We first present ana-
lytical results for the dielectric function of aflat, dipole coupled, bilayer consisting of molecules with one
prominent resonance frequency. Due to the nature of the dipole coupling the dielectric function is different for

the field being parallel or perpendicular to the bilayer normal with two new resonance frequenciesv5ṽ0i and

v5ṽ0' . We then combine this anisotropic bilayer dielectric function with the analytical solution of Gauss
equation for an ellipsoid with an anisotropic coating~the coating dielectric function being different parallel and
perpendicular to the coating normal! in order to find the polarizability of anellipsoidal bilayer membrane. In
particular, we find that for a thin-walled~compared to the size of the cell! membrane the resonance frequencies
of the polarizability are the same as for a flat bilayer~independent of the cell shape!. However, our analytic
result for the geometric weights for the oscillator strengths is sensitive to the shape; the geometric weight for

thev5ṽ0' (v5ṽ0i) peak is largest when the external field is along the largest~smallest! axis. The geometric
weights are shown to be constrained by three sum rules.

DOI: 10.1103/PhysRevE.69.031914 PACS number~s!: 87.50.Hj, 87.64.Ni, 03.50.De
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I. INTRODUCTION

Over the past decades, there has been an increasing
est among physicists and chemists in biological and me
copic systems. Important objectives have been to ext
physicists’ models to meet quantum chemists’ detailed ca
lations, relate shape to electronic response properties, to
vide criteria for intelligent selection of large-scale expens
calculations, and to explore applicability/extension of clas
cal concepts to nanoscale objects. A potentially highly fru
ful extension is to provide a fundamental understanding
many biological systems via new interpretive couplings. O
such field is perturbing biological systems such as cells w
electromagnetic fields.

In this study we are primarily interested in modeling t
electromagnetic response of cell-like structures at frequ
cies where the molecules forming the membrane have vi
tional @1# or electronic@2# transitions~i.e., typically 0.1–3
eV!. At these high frequencies the ions in the cytopla
cannot follow the rapidly varying field and the cytoplas
effectively behaves as a dielectric. The cellmembranethen
determines the response of the cell. The cell membrane
sists to a large extent of lipid molecules and different p
teins embedded or attached forming a bilayer molecular
gregate. It is well known that for molecular aggregates
local field effect is important@2–4#. Furthermore, cells are in
general of nontrivial shape, which affects their respon
properties. It is the aim of this study to include both loc
field and shape effects into a frequency dependent pola

*Present address: NORDITA, Blegdamsvej 17, DK-2100 Cop
hagen O” , Denmark.
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ability of cell-like structures~assuming, as we do throughou
this study, that we can ignore magnetic effects so that
electromagnetic response is determined by the electric fi
component of the external field!.

The paper is organized as follows. In Sec. II the dielec
function of a flat bilayer of polarizable molecules~a cell
membrane! is derived. In particular, we show that the loc
field effect causes the dielectric function of the bilayer to
anisotropic. In Sec. III we recapitulate results for the pol
izability of an ellipsoidal particle with an anisotropic coatin
where the coating dielectric function is different parallel a
perpendicular to the coating normal@12#. Finally in Sec. IV
we combine the results of Secs. II and III in order to obta
an analytic expression for the polarizability of a dipo
coupled ellipsoidal bilayer membrane.

II. DIPOLE-COUPLED FLAT BILAYER

In this section we derive an expression for the dielec
function of a flat bilayer, including the induced dipole co
pling ~the local field! between the constituting molecule
Due to the nature of the local field the electric respon
perpendicular and parallel to the bilayer normal are differe
even if the molecules in the bilayer are isotropic.

Let us consider the interaction between a set of pola
able molecules and an external time-varying electric fie
EW 0(rW,t)5EW 0 exp@i(kW•rW2vt)# where kW is the wave vector
(ukW u52p/l wherel is the wavelength! andv the frequency
of the field. We consider, for the ease of presentation, a
layer of polarizable molecules situated on a ‘‘cubic’’ lattic
~see Fig. 1! with the lattice vectors described by

rW~ l x ,l y ,l z!5a~ l xx̂1 l yŷ!1dlzẑ, ~1!
-

©2004 The American Physical Society14-1
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wherea is the distance between molecules in each layer
d is the interlayer distance.l x and l y are integers, such tha
2`, l x ,l y,`. For l z we have l z50,1, wherel z50 (l z
51) corresponds to the lower~upper! layer in Fig. 1. Each
molecule ‘‘feels’’ a local electric fieldEW loc which is the su-
perposition of the external field and the induced dipolar fi
from all the other molecules in the system. For the induc
dipole moment of the molecule at positionrW @see Eq.~1!# we
write pW (rW,t)5pW (rW)exp@i(kW•rW2vt)#, and similarly for the local
field. In the linear regime the induced dipole momentpW (rW) is
proportional to the local fieldEW loc(rW), i.e.,

pW ~rW !54p«0«mgJ•EW loc~rW !, ~2!

wheregJ is the polarizability~a 333 tensor! of the molecule,
«0 is the permittivity of vacuum, and«0«m is the dielectric
function of the medium in which the molecules are situat
Since the local field depends on the induced dipole mom
in the system the above equation gives a self-consiste
equation for the dipole moments in the system. Using a s
dard expression for the nonretarded (c→`) dipolar field
@3,4# we find that Eqs.~1! and ~2! become

pm~ l x ,l y ,l z!54p«0«mgmnE0,n1
gmn

a3

3 (
l x8 ,l y8 ,l z8

Dng~ l x ,l x8 ,l y ,l y8 ,l z ,l z8!

3pg~ l x8 ,l y8 ,l z8!,

FIG. 1. Model geometry. Top: A side view of a bilayer of mo
ecules. The distance between the ‘‘center-of-mass’’ positions of
molecules isa within each layer. The interlayer distance isd. The
membrane thickness is denoted byD. Bottom: Top view of the
bilayer. The bilayer extends to infinity in thex andy directions.
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Dmn5H 2dmn

@~ l x2 l x8!21~ l y2 l y8!21Dz
2~ l z2 l z8!2#3/2

1
3DmDn~ l m8 2 l m!~ l n82 l n!

@~ l x2 l x8!21~ l y2 l y8!21Dz
2~ l z2 l z8!2#5/2J

3ei [kxa( l x82 l x)1kya( l y82 l y)1kzd( l z82 l z)] , ~3!

wherem,n5x,y,z, Dz5d/a, Dx5Dy51, andE0,n is then
component of the external field. Summations over repea
vector indices are left implicit and we have above cance
out the exp@i(kW•rW2vt)# dependences. Because of translatio
invariance along the bilayer planes we havepW ( l x ,l y ,l z)
5pW ( l x8 ,l y8 ,l z). We can therefore, without loss of generalit

let pW ( l x ,l y ,l z)5pW (0,0,l z)5pW ( l z), i.e., the problem is re-
duced to finding the induced dipole moments in the up
and lower layers, respectively, which in general are differe
However, for the case of large wavelength compared to
nearest neighbor distance between moleculeskxa,kya,kzd
!1 we find that the equations for the dipole moment in t
upper and lower layers are identical, and hencepW ( l z50)
5pW ( l z51)5pW . For the case of electromagnetic fields in t
optical range, the wavelength is;400–800 nm, whereas th
typical distance between molecules is,1 nm for the sys-
tems we consider. The above assumption is then well ju
fied. Furthermore, assuming that the molecular polarizab
is diagonal with componentsgx5gy5g' and gz5g i @the
subscript' (i) denotes polarizability component perpe
dicular ~parallel! to the molecular symmetry axis, see Fig.#
and using the fact that sums over functions that are odd w
respect tol x or l y vanish we find (m5' or i)

pm54p«0«mg̃mmE0m , ~4!

where the renormalized polarizability is

g̃mm5
gmm

12gmmI m /a3
~5!

with I i5x01x I , I'52I i/2 andx0 and x I are dimension-
less dipole sums defined by~a prime denotes that the term
l x5 l y50 should be excluded!

x052 ( 8
l x ,l y52`

`
1

~ l x
21 l y

2!3/2
'29.0336 . . . ,

x I5 (
l x ,l y52`

` 3D2/~ l x
21 l y

21D2!21

~ l x
21 l y

21D2!3/2

516p2 (
l x50

`

(
l y51

`

~ l x
21 l y

2!1/2 exp@22pD~ l x
21 l y

2!1/2#.

~6!

We have used the results in Refs.@5,6# in order to rewrite the
expression forx I into a more rapidly converging sum. Notic

e

4-2
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that the dipole sumx I is positive and depends on the dime
sionless quantityD[Dz5d/a, i.e., the ratio between the in
terlayer distance and the intralayer distance between m
ecules in each layer. Also notice that the different vec
components of the induced dipole moments decouple~for
‘‘long’’ wavelengths as assumed here!, i.e., if the external
field is parallel or perpendicular to the molecular symme
axis then the induced dipole moments are also in the s
direction.

It is interesting to compare our results to the results
the nonretarded response of a monolayer of molecules a
a metal surface@5#. Since molecules above a metal surfa
induce image dipoles in the metal this system is also ef
tively a dipole coupled bilayer. The expression~for infinite
metal dielectric function, i.e., an impurity-free ideal metal
low frequencies! for the induced dipole moments parallel
the layer normalpi is identical to ours@see Eq.~5!#, whereas
the expression forp' differs; p' in the metallic case is sam
as given by Eq.~5! but now with I'52x0/21x I /2, i.e.,
there is a plus sign in front of thex I /2 term ~whereas we
have a minus sign!. These results are due to the fact that
induced dipole moment parallel~perpendicular! to the metal
surface normal induces an image dipole moment that is
the same~opposite! direction. In our case~for long wave-
length compared to intermolecular distances! the induced di-
pole moments in the upper and lower layers are identi
independent of the polarization direction of the external fie

Let us now assume that the molecular polarizability ta
the form (m5' or i)

gmm5g0m

v0m
2

v0m
2 2v22 ivGm

, ~7!

whereg0m is the static polarizability of the molecules,v0m is
a resonance frequency, andGm is a damping parameter@4,5#.
Inserting this expression for the polarizability into Eq.~5! we
find

g̃mm5g0m

v0m
2

ṽ0m
2 2v22 ivGm

,

ṽ0m
2 5v0m

2 S 12
g0mI m

a3 D , ~8!

whereI i5x01x I , I'52I i/2 as before, andx0 andx I are
given by Eq.~6!. This model for the renormalized molecula
polarizability is most appropriate close to a resonance
contributions from other frequencies can be ignored. We
tice that for g0'5g0i the two new resonance frequenci
satisfy the sum rule

ṽ0i
2

v0i
2

12
ṽ0'

2

v0'
2

53 ~9!

independent of the interaction between the molecules.
electric response of the system in the perpendicular direc
is different from the response in the parallel direction. T
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holds even if the constituting molecules in the bilayer a
assumed isotropic and is then therefore solely caused by
local field effect. For isotropic molecules the strength of t
anisotropy is determined by the dimensionless dipole c
pling parameterg0 /a3. It is only when this parameter is
small we obtain an isotropic bilayer response. Notice tha
ṽ0i is redshifted thenṽ0' is blue shifted. We also notice tha
x0 andx I have opposite signs@see Eq.~6!#. Therefore for the
case whenux0u.x I (ux0u,x I) the frequencyṽ0i (ṽ0') is
blue shifted.

The above result for the polarization allows us to ident
the macroscopic relative dielectric function parallel~perpen-
dicular! « i («') to the molecular symmetry axis@or equiva-
lently parallel~perpendicular! to the bilayernormal#. Intro-
ducing the dipole densityPW 5pW /v0, wherev05a2D/2 ~see
Fig. 1! is the unit cell volume per molecule (D is the effec-
tive layer thickness@7# and in generalDÞd) and using the
continuity of the normal component of the displacement fi
as well as the continuity of the tangential component of
total electric field it is straightforward to show that@5#

«'215
4pg̃'

v0
,

12« i
215

4pg̃ i

v0
. ~10!

In the next two sections we will investigate the electric r
sponse of a dipole coupled ellipsoidal shell~cell membrane!.
The above result for the~local! dielectric functions of the
bilayer will be used in the solution of the Gauss equation.
want to point out that there is some arbitrariness in
choice of the effective layer thicknessD ~not to be confused
with the interlayer center-of-mass distanced, see Fig. 1!. D
is taken as the distance between two ‘‘sharp’’ boundar
separating the membrane from its surroundings. Since m
ecules do not have a well-defined size one must be caref
choose these sharp boundaries in such a way that the m
scopic fields are the same as the averaged microscopic fi
as given by the induced microscopic dipole moments and
external field@7#. We will in the subsequent sections prim
rily be concerned with thin-walled membranes,D/L!1,
whereL is the typical size of the cell. As we will see,D does
not appear explicitly in the expression for the cell polar
ability. We therefore need not concern ourselves with a d
cussion about the appropriate choice of an effective la
thickness. However, for systems whereD/L is not necessar-
ily small one must be more careful.

The results obtained in this section will remain qualit
tively the same whether one considers a monolayer, bila
or a multilayer. The appearance of two resonances is,
isotropic molecules, a manifestation of the dipole-dipole
teractions, whose net contribution is different in the norm
and parallel directions. Therefore the general conclusi
drawn in terms of the shifted~or modified! resonance fre-
quencies will remain the same irrespective of the numbe
layers. In particular, we point out that the monolayer
sponse is obtained from the results in this section simply
4-3



of

th
ic
el

na
s

d

c

,

e

.

are

f
-

l-

tric

it.

lse-
o-

re

ive

(

ing

he

ot
nc-
sin-
n

ela-

e

ce

in-
e

d

id
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settingx I50 ~together with the appropriate modification
the unit cell volume per moleculev0).

III. POLARIZABILITY FOR AN ELLIPSOID WITH AN
ANISOTROPIC COATING

In this section we present the analytical expression for
polarizability of an ellipsoidal particle with an anisotrop
coating ~the coating dielectric function is different parall
and perpendicular to the coating normal!.

We consider the coated ellipsoidal particle in an exter
electric fieldEW 0, with the lengths of the principal semiaxe
of the inner and outer ellipsoids asav andbv (v5x,y,z), see
Fig. 2. In a standard fashion@8# we assume that the inner an
outer surfaces are confocal:bv

25av
21t and that ax>ay

>az . The shape of the coated particle is completely spe
fied @9# by the ellipticity of the inner surfaceei

2[1
2az

2/ax
2 , the ellipticity of the outer surfaceeo

2[12bz
2/bx

2

(ei
25eo

250 for a sphere!, and s[(bx
22by

2)/(bx
22bz

2). We
notice thatei

2 , eo
2 , ands all are in the range@0,1#. We denote

the relative dielectric function~i.e., dielectric function in
units of «0«m , where«0«m is the dielectric function of the
medium in which the particle is immersed! of the inner el-
lipsoid by « i . The coating has relative dielectric function« i
in the normal direction and«' in the tangential direction
i.e.,

«Jcoat5« iĵ ĵ1«'~ ĥĥ1 ẑ ẑ !. ~11!

The standard ellipsoidal coordinates are denoted byj, h,
andz @10# and ĵ above is a unit vector perpendicular to th
ellipsoidal surfacej5const. Similarlyĥ and ẑ are unit vec-
tors perpendicular to the hyperboloid surfacesh5const and
z5const, respectively. We assume that« i and«' are given
by the result for a flat bilayer from the preceding section@see
Eqs. ~8! and ~10!#; the implicit assumption underlying Eq

FIG. 2. A cut through a coated ellipsoid. The principal semiax
perpendicular to the paper are of lengthby ~the outer ellipsoid! and
ay ~the inner ellipsoid!. We assume that the inner and outer surfa
are confocal:bv

25av
21t and thatax>ay>az . The shape of the

coated ellipsoid is completely specified by the ellipticity of the
ner surfaceei

2[12ax
2/az

2 and the ellipticity of the outer surfac

eo
2[12bx

2/bz
2 and s[(bx

22by
2)/(bx

22bz
2). For the case of a thin

coating the ellipticities are related:ei
25eo

2(11 d̄) whered̄[t/bx
2 is

the relative coating thickness. The ellipsoidal shell has relative
electric function« i in the normal direction and«' in the tangential
direction. The relative dielectric function of the inner ellipso
is « i .
03191
e
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~11! is then that the membrane molecular symmetry axes
oriented along the ellipsoidal cell membrane normal~as is
typically the case for real cells!. Use of the form of dielectric
function as contained in Eq.~11! is expected to be rigorous i
the bilayer thicknessD is much smaller than the typical lin
ear sizeL of the cell, i.e., ifD/L!1 @11#; if this criterion is
not fulfilled one expects significant redistribution of mo
ecules~compared to the flat bilayer! which can cause, for
instance, radial inhomogeneities. For cells typicallyD/L
;0.001 and we can therefore safely apply the local dielec
function from the preceding section to the present case.

We now consider the response in the nonretarded lim
For the applied potential we writeF0v52vE0, i.e., the ex-
ternal fieldE0 is constant and in thev direction (v5x, y, or
z). In the nonretarded limit the potentialF satisfies Gauss
equation given by

¹W •@ «J~v!•¹W F#50. ~12!

This problem has been treated in detail and is published e
where @12#. We here only summarize the results. We intr
duceq[ei

2/(11j/ax
2), wherej is the usual ‘‘radial’’ ellip-

soidal coordinate@10#. We have thatj>2az
2 @10# and hence

0<q<1. The inner~outer! surface corresponds toq5ei
2

(q5eo
2). For the case of a thin coating, the ellipticities a

related:ei
25eo

2(11 d̄), whered̄[t/bx
2 is the relative coating

thickness (d̄;D/L!1). We will use this relation in the fol-
lowing section in order to make an expansion in the relat
coating thicknessd̄ for the ellipsoid polarizability. The solu-
tion of Gauss equation for the coating region is thenv
5x, y or z)

F5BvvHv~u2 ,s;q!q(12u2)/21CvvHv~u1 ,s;q!q(12u1)/2,

~13!

where the asymmetry in the dielectric function of the coat
(« i and«') enters throughu defined as

u5u652 1
2 6 1

2 ~118«'« i
21!1/2, ~14!

and Bv and Cv are constants that are determined by t
boundary conditions. The functionHv(u,s;q) satisfies He-
un’s equation@12–14#. In general, Heun’s equation does n
have compact solutions in terms of known standard fu
tions. However, it does have series solutions around the
gular points@13,14#. We will here use the series expansio
aroundq50 ~valid for uqu,1) which is ~leaving thev de-
pendence of coefficients implicit!

Hv~u,s;q!5 (
m50

`

km~u,s!qm, ~15!

where the expansion coefficients satisfy the recurrence r
tion @15#

~m11!~m1g!km11

2$@~11s!~m211g!1dv1sev#m1slv%km

1s~m211av!~m211b!km2150 ~16!

s

s

i-
4-4
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TABLE I. Parameters in Heun’s equation in terms ofu51/2(216@118«'« i
21#1/2), where« i («') is the

relative dielectric function in the direction parallel~perpendicular! to the ellipsoid coating normal. The shap
parameters is defined in Sec. III.

v x y z

av 2u/2 12u/2 12u/2
b (12u)/2 (12u)/2 (12u)/2
g 1/22u 1/22u 1/22u
dv 1/2 1/2 3/2
ev 1/2 3/2 1/2
lv (u21)u(s11)/(8s) (u21)@2s(u21)1u#/(8s) (u21)@2(u21)1su#/(8s)
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with k051 andk2150. The parameters are given in term
of u in Table I. The above series is not defined forg52m
wherem is a positive integer. For the inner ellipsoid as w
as for the surroundings the dielectric function«J is taken as
constant and scalar and Gauss equation reduces to La
equation in these regions, for which the solution can
found in textbooks@8,10#. The potential in all space is ob
tained by imposing the conditions that the potential and
normal component of the displacement field are continu
at the boundaries as well as requiring that the solutionF
→F0v52vE0 (v5x,y,z) at infinity. We are here primarily
interested in the resulting polarizabilityaJ of the coated el-
lipsoid.

A complete knowledge of the polarizability for a coate
ellipsoid requires the knowledge ofHv(u,s;q) and a second
function r v(u,s;q) (v5x, y or z) defined by

r v~u,s;q!512 f v~s;q!H 12u12q
]

]q
ln@Hv~u,s;q!#J ,

~17!

where f x(s;q)51, f y(s;q)512sq, and f z(s;q)512q.
With the above definitions the polarizability of an ellipso
with an anisotropic coating is

avv5
Vo

4pnv
o

I v~k521!

I v~k51/nv
o21!

, ~18!

where

I v~k!5@r v
o~u1!1k« i

21#@r v
i ~u2!2« i« i

21#

2rv@r v
o~u2!1k« i

21#@r v
i ~u1!2« i« i

21#, ~19!

and Vo54pbxbybz/3 is the outer volume of the ellipsoid
We have above introduced the shorthand notationr v

i (u6)
[r v(u6 ,s;ei

2) and r v
o(u6)[r v(u6 ,s;eo

2). nv
o5nv(s;eo

2) is
the standard depolarization factor for thev direction for the
outer surface@10# where explicitly
03191
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nv~s;q!5
1

2
@ f x f yf z#

1/2Hv~22,s;q!

5
1

2
@ f x f yf z#

1/2E
0

1 t1/2

~12qt!dv~12qst!ev
dt

~20!

with f v[ f v(s;q) and dv and ev are given in Table I. We
have also introduced

rv[S eo

ei
D (u12u2) Hv

o~u2!Hv
i ~u1!

Hv
o~u1!Hv

i ~u2!
, ~21!

whereHv
o(u6)[Hv(u6 ,s;eo

2) andHv
i (u6)[Hv(u6 ,s;ei

2).
The geometry of the particle enters through the geome
entities nv

o , r v
i (u6), and r v

o(u6). These quantities can
straightforwardly be generated on a computer using the
currence relation, Eq.~16!. The standard isotropic depola
ization factor nv

o depends only on the shape (s and eo
2),

whereasr v
i (u6) and r v

o(u6) couple the geometry to the di
electric asymmetry of the coating. For the case of sphero
~two of the principal axes are equal! Hv(u,s;q) and
r v(u,s;q) are expressible in terms of hypergeometric fun
tions @12#. For an anisotropic coatedsphere(q→0) we no-
tice from Eq.~17! that r v

i (u)5r v
o(u)5u and the expression

for the polarizability reduces to the result obtained in R
@11#. For an isotropic coating« i5«' the polarizability re-
duces to the standard result given in, for instance, Ref.@8#.

IV. POLARIZABILITY OF AN ELLIPSOIDAL
BILAYER MEMBRANE

In this section we combine the result for an ellipsoid w
an anisotropic coating~Sec. III! with the results for a dipole
coupled flat bilayer obtained in Sec. II in order to obtain t
polarizability of anellipsoidal bilayer membrane~a cell!.

By combining the results from the previous two sectio
it is possible to find the polarizability for a dipole couple
ellipsoidally shaped bilayer membrane. We let« i51 ~i.e.,
assume that the inside dielectric constant equals the one
side! in Eq. ~18! and combine this expression for the pola
izability with the bilayer dielectric function, Eqs.~8! and
~10!. We are here primarily interested inavv(v) as a func-
4-5
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tion of shape for a thin-walled membrane,d̄!1. In this limit
it is possible to obtain analytic results for the polarizabili
We proceed by making an expansionI v(k)'I v

0(k)1I v
1(k)

1••• @see Eq.~19!#, where I v
0(k) is zeroth order in the

relative membrane thicknessd̄ and I v
1(k) is first order ind̄.

While deriving below the expansion we will use the fact th
the ellipticities of the outer and inner ellipsoidal surfaces
related:ei

25eo
2(11 d̄) for a thin coating~see the preceding

section!. We straightforwardly obtain the zeroth order res
@see Eq.~19!#

I v
0~k!52« i

21@~r v
o~u1!2r v

o~u2!#~k11!. ~22!

We notice~for « i51 as we assume here! that the numerator
of the polarizability, Eq.~18!, is zero @ I v

0(k521)50# to

zeroth order ind̄, we must therefore approximate the n
merator by its first order term ind̄. The zeroth order term fo
denominator is nonzero and we therefore approximate
denominator by this term. We thus write Eq.~18! accord-
ingly,

avv'
Vo

4pnv
o

I v
1~k521!

I v
0~k51/nv

o21!
. ~23!

We proceed by deriving an expression forI v
1(k), by expand-

ing I v(k) to first order in d̄ using the fact thatrv'1
2( d̄/2)@r v

o(u1)2r v
o(u2)#/ f v

o . This expansion requires tha

we assumeuuud̄!1 or equivalently d̄!(G/v0)1/2 near a
resonance, whereG is the damping constant introduced
Eq. ~7!. We thus assume that the relative membrane thickn
is smaller than the square root of the relative damping c
stant. Since we assume that we are close to a sharp reson
frequency (« i

21 or «' large, i.e., small damping,G/v0!1)
we can then proceed by approximating the funct
r v(u,s;q) by its largeu expansion given by@12#

r v~u,s;q!5uRv~s;q!,

Rv~s;q!5S F~s;q! f v~s;q!21

2 D 1/2

, ~24!

whereqÞ1 and

F~s;q![
1

f x~s;q!
1

1

f y~s;q!
1

1

f z~s;q!
~25!

with f x(s;q)51, f y(s;q)512sq, and f z(s;q)512q as
before @notice thatr v(u,s;q) is proportional tou for large
u]. Furthermore, keeping only the highest order terms in«'

and « i and neglecting terms;A«' and ;A« i @this again
requires the assumptiond̄!(G/v0)1/2] we find

I v
1~k!'2« i

21[ ~r v
o~u1!2r v

o~u2!#
d̄

2 f v
o

@«'2~Rv
o!21« i

21k#,

~26!

where Rv
o[R(s;eo

2) and f v
o[ f (s;eo

2). Equation ~26! com-
bined with Eqs.~22! and ~23! gives the polarizability of the
03191
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ellipsoid. This expression can be further simplified by not
ing that for a thin coating@such thatd̄/(12eo

2)!1] we have

VoFod̄/2'Vo2Vi5Vcoat, whereVcoat is the coating volume
andVi54paxayaz/3 is the volume of the inner ellipsoid an
Fo[F(s;eo

2). We finally introduce the explicit expressio
for «' and« i

21 @Eqs.~8! and~10!# for a flat bilayer and use
the fact that the coating volume can equally well be writt
Vcoat5Nv0, wherev0 is the unit cell volume per membran
molecule as before andN is the number of molecules in th
membrane, and find (v5x, y or z)

avv5NFgv'

g0'v0
2

ṽ0'
2 2v22 ivG'

1gvi
g0iv0

2

ṽ0i
2 2v22 ivG i

G ,

~27!

where we have only included the resonant part to obtain
polarizability. Notice that the resonance frequenciesṽ0' and
ṽ0i are the same as for a flat bilayer@see Eq.~8!# and that
cell polarizabilityavv is proportional to the number of mol
eculesN in the bilayer. The geometric weights for the osc
lator strengths are given by

gv'5
2~Rv

o!2

Fof v
o

512
1

Fof v
o

,

gvi5
1

Fof v
o

. ~28!

The result for the polarizability of a dipole coupled ellipso
dal bilayer membrane~a cell! as contained in Eqs.~27! and
~28! is the main result of this study@16#. We again point out
that these equations are based on the following assump
the damping is small~i.e., the membrane molecules hav
‘‘sharp’’ resonances!, but not ‘‘too small’’ in comparison to
the membrane curvature,d̄;D/L!(G/v0)1/2!1, whereD
is the membrane thickness andL is a typical linear size of the
ellipsoid. The results are illustrated in Fig. 3, where we a
give the results using the full expression for the polarizabi
@Eq. ~18! together with the bilayer dielectric function, Eq
~8! and ~10!#. The agreement with the above approximati
result and the exact result is excellent. We notice some g
eral features. As already noted, the positions of the re
nances are practically the same as for a flat bilayer, i.e.,
peak positions are unaffected by the curvature of the bila
as long asd̄!(G/v0)1/2. If this condition is not satisfied, the
induced dipole moments are sufficiently large to allow dipo
interactions over distances for which the membrane is
flat. The geometric weight for the oscillator strength is
measure of how many induced dipoles effectively contrib
to the extinction cross section (;v Im@avv(v)#). When the
external field is directed along the long axis there are m
~less! local area elements with a normal oriented perpendi
lar ~parallel! to the field@and hence more~less! induced di-
poles in the field direction# compared to the case when th
field is along the short axis. The geometric weight for t
v5ṽ0' (v5ṽ0i) peak is therefore largest when the field
along the largest~smallest! principal axis@see Eq.~28!#. We
4-6
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notice that in the spherical limiteo
2→0 we havegv'→2/3

andgvi→1/3. The geometric weights satisfy the general s
rules:

gxi1gyi1gzi51,

gx'1gy'1gz'52. ~29!

These sum rules state that the rotationally averaged ex
tion spectrum (;v Im@axx1ayy1azz#) does not depend on
the shape. One must thus align the cells if one wants in
mation about shape using extinction measurements. We
easily obtain the sum rule

gv'1gvi51. ~30!

This sum rule states that for a field incident along thev axis
of an aligned cell the extinction integrated over all freque
cies;*dv v Im@avv(v)# is independent of the shape.

We would like to emphasize that the shape of the cell
be inferred by measuring the peak heights in the extinc
~or absorption! spectra for a single isolated cell. The ratios
the peak heights, as our theory shows, can then be utilize

FIG. 3. The extinction cross section;v Im@avv(v)#, where
avv(v) is the polarizability for an ellipsoidally shaped bilayer. Th
dashed line corresponds to the external field being along the
axis (x axis!, the solid line corresponds to a situation where t
external field is along the middle axis (y axis!. For the dash-dotted
line the field is along the short (z axis!. The vertical lines corre-
spond to the resonance frequencies for a flat dipole coupled bila
Notice that the position of the peaks are located at the same pla
for a flat bilayer. The peak positions are thus unaffected by
curvature of the layer. The horizontal lines correspond to the a
lytic expression for the geometric weight for the oscillat

strengths, Eq.~28!. The geometric weight for thev5ṽ0' (v

5ṽ0i) peak is largest when the field along the largest~smallest!
axis. The shape of the ellipsoid was taken to beeo

250.5, s50.5,

and d̄50.002. The ratio between intermolecular distance wit
each layer and distance between molecules in different laye
taken asd/a52. The electromagnetic response of the molecu
was characterized by the static isotropic polarizability va
g0 /a350.1 and the damping parameter isG/v050.03.
03191
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obtain the geometrical shape of the cell. These ratios can
be used to infer the orientation of the applied field.

We have in this study assumed that the dielectric funct
of the ellipsoidal bilayer is given by the result for a dipo
coupled molecular aggregate where the molecules are
ated on acubic bilayerlattice. Real cell membranes are us
ally found in a two-dimensional fluid state. One shou
therefore investigate how disorder affects the dielectric fu
tions. This is currently under investigation. We also he
point out that the results from this section can straightf
wardly be modified in order to obtain the polarizability of a
ellipsoidally shaped monolayer or multilayer. The only effe
of changing the number of layers is to modify the resona
frequenciesṽ0' and ṽ0i ~see discussion at the end of Se
II !. The expressions for the geometric weightsgv' andgvi ,
however, remain the same.

V. CONCLUSIONS

In this study we have derived an electromagnetic respo
function for a cell-like structure at field frequencies whe
molecular resonances~vibrational and electronic! are impor-
tant ~i.e., typically at energies;0.123 eV). The basis for
this investigation was that a cell membrane is, due to lo
field effects, typically dielectrically anisotropic. Furthermor
cells are in general not spherical. We have therefore co
bined results for the electromagnetic response of a flat dip
coupled bilayer with the solution of Gauss equation for
ellipsoid with an anisotropic coating~the coating dielectric
function being different parallel and perpendicular to t
coating normal! in order to obtain polarizabilityavv(v) (v
5x,y,z) for an ellipsoidal bilayer membrane. For a thin-
walled bilayer the result is given in Eqs.~27! and~28!. Some
general features are: the positions of the peaks
Im@avv(v)# are the same as for a flat bilayer,v5ṽ0i and
v5ṽ0' @see Eq.~8!#. The geometric weight for the oscilla
tor strengths of the peaks are, however, sensitive to
shape. The geometric weight for thev5ṽ0' (v5ṽ0i) peak
is largest when the field is along the largest~smallest! axis.
The geometric weights are shown to satisfy three sum ru

We hope that the results obtained in this study will
useful for cell characterization. The imaginary part of t
polarizability is directly accessible to experiments throu
extinction ~or absorption! measurements. The result for th
cell polarizability as given by Eqs.~27! and~28! can thus be
used to interpret the results of such measurements in term
molecular polarizabilities, intermolecular distances, c
shape, etc. Furthermore, our results could be applied, w
only minor modifications, to other coated anisotropic stru
tures of nontrivial shape that exhibit resonances. Examp
of such structures include fullerenes or ellipsoidal nanop
ticles with ultrathin coatings.
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