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Electromagnetic response of a dipole-coupled ellipsoidal bilayer
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We derive an expression for the polarizability of an ellipsoidally shaped cell-like structure at field frequen-
cies where membrane molecular resonar(@ézational and electronjcare important. We first present ana-
Iytical results for the dielectric function of #at, dipole coupled, bilayer consisting of molecules with one
prominent resonance frequency. Due to the nature of the dipole coupling the dielectric function is different for
the field being parallel or perpendicular to the bilayer normal with two new resonance freqmﬁqﬁ and
w=wy, . We then combine this anisotropic bilayer dielectric function with the analytical solution of Gauss
equation for an ellipsoid with an anisotropic coatifige coating dielectric function being different parallel and
perpendicular to the coating normah order to find the polarizability of aellipsoidal bilayer membrane. In
particular, we find that for a thin-walle@ompared to the size of the gethembrane the resonance frequencies
of the polarizability are the same as for a flat bilayiedependent of the cell shapdiowever, our analytic
result for the geometric weights for the oscillator strengths is sensitive to the shape; the geometric weight for
thew=wg, (‘“:Z’OH) peak is largest when the external field is along the lar@esalles} axis. The geometric
weights are shown to be constrained by three sum rules.
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I. INTRODUCTION ability of cell-like structuregassuming, as we do throughout
this study, that we can ignore magnetic effects so that the
Over the past decades, there has been an increasing int@lectromagnetic response is determined by the electric field
est among physicists and chemists in biological and mesogomponent of the external figld
copic systems. Important objectives have been to extend The paper is organized as follows. In Sec. Il the dielectric
physicists’ models to meet quantum chemists’ detailed calcufunction of a flat bilayer of polarizable moleculéa cell
lations, relate shape to electronic response properties, to prflémbrangis derived. In particular, we show that the local

vide criteria for intelligent selection of large-scale expensivefi€ld effect causes the dielectric function of the bilayer to be

calculations, and to explore applicability/extension of classi-21iSotropic. In Sec. Il we recapitulate results for the polar-

cal concepts to nanoscale objects. A potentially highly fruit-ZaPility of an ellipsoidal particle with an anisotropic coating,
ful extension is to provide a fundamental understanding o here the coating dielectric function is different parallel and

mary Hloicl systems i new erretvecoupings Ondel?S e 10 1 S02g mia?) fnaly S0
such field is pgrtqrbing biological systems such as cells Wm}m analytic expression for the' polarizability of a dipole
eIectromagnetlc fields. L . . coupled ellipsoidal bilayer membrane.

In this study we are primarily interested in modeling the
electromagnetic response of cell-like structures at frequen-
cies where the molecules forming the membrane have vibra- Il. DIPOLE-COUPLED FLAT BILAYER

tional [1] or electronic[2] transitions(i.e., typically 0.1-3 In this section we derive an expression for the dielectric
eV). At these high frequencies the ions in the cytoplasmy,nction of a flat bilayer, including the induced dipole cou-
cannot follow the rapidly varying field and the cytoplasm pjing (the local field between the constituting molecules.
effectively behaves as a dielectric. The aeémbranehen  pye to the nature of the local field the electric responses
determines the response of the cell. The cell membrane copwerpendicular and parallel to the bilayer normal are different,
sists to a large extent of lipid molecules and different pro-even if the molecules in the bilayer are isotropic.

teins embedded or attached forming a bilayer molecular ag- | et us consider the interaction between a set of polariz-
gregate. It is well known that for molecular aggregates thésple molecules and an external time-varying electric field,
local field effect is importarft2—4]. Furthermore, cells are in Eo(F,t)ZEo exr:[i(lZ-F—wt)] where k is the wave vector

general of nontrivial shape, which affects their responseg - ° .
properties. It is the aim of this study to include both Iocal(|k|_27_7/)‘ whereh IS the wavelengthanda the frquency .
f the field. We consider, for the ease of presentation, a bi-

field and shape effects into a frequency dependent polariz= : i . :
P a y aep P {ayer of polarizable molecules situated on a “cubic” lattice

(see Fig. 1 with the lattice vectors described by

*Present address: NORDITA, Blegdamsvej 17, DK-2100 Copen- N R R R
hagen /Q Denmark. r(lly,l)=alx+l1y)+dl.z, (1)
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whereu,v=x,y,z, A,=d/a, A,=A,=1, andE,, is thev
component of the external field. Summations over repeated
vector indices are left implicit and we have above canceled

O O O O out the expi(k- F—wt)] dependences. Because of translational
1 invariance along the bilayer planes we haﬁ(alx,ly,lz)
O O O Q = p(I; Jly.12). We can therefore, without loss of generality,
let p(IX, 1,)=p(0,0],)=p(l,), i.e., the problem is re-
QQ O Q duced to finding the indqced dipple moments in th(_a upper

and lower layers, respectively, which in general are different.

FIG. 1. Model geometry. Top: A side view of a bilayer of mol- However, for the case of large wavelength compared to the
ecules. The distance between the “center-of-mass” positions of th@earest neighbor distance between molecligsk,a,k,d

molecules isa within each layer. The interlayer distancedsThe <1 we find that the equations for the dipole moment in the
membrane thickness is denoted By Bottom: Top view of the  ypper and lower layers are identical, and he,ﬁtézzo)

bilayer. The bilayer extends to infinity in theandy directions. - 5(| —1)= 5 For the case of electromagnetic fields in the
optical range, the wavelength is400—-800 nm, whereas the
wherea is the distance between molecules in each layer ang{pical distance between molecules<sl nm for the sys-
d is the interlayer distancé, andl, are integers, such that tems we consider. The above assumption is then well justi-
—oo<ly,l <. Forl, we haVe|z=0,1, wherel,=0 (I, fied. Furthermore, assuming that the molecular polarizability
=1) corresponds to the lowéuppe) layer in Fig. 1. Each g diagonal with componentg,=y,=v, and y,=y [the
molecule “feels” a local electric fielcE,, which is the su- subscriptL (|) denotes polarizability component perpen-
perposition of the external field and the induced dipolar fielddicular (paralle) to the molecular symmetry axis, see Fig. 1
from all the other molecules in the system. For the inducedind using the fact that sums over functions that are odd with
dipole moment of the molecule at positiofisee Eq(1)Jwe  respect td, or |, vanish we find =L or )

write p(r,t) = p(r)exdi(k-r—ot)], and similarly for the local

a

_ _ ) . ) e =4 YuuEou Z
field. In the linear regime the induced dipole momp(it) is Pu=TE0EmYun op @
proportional to the local fieItf,OC(F), ie., where the renormalized polarizability is
- o o= - ~ Yuu
p(r)=4msoen- Eiod), e T ©
1-y,.0./a
where¥ is the polarizability(a 3x 3 tensoy of the molecule, With I)=xo+x,, I, =—1)/2 andx, and x, are dimension-

g0 is the permittivity of vacuum, andge, is the dielectric  less dipole sums defined lig prime denotes that the term
function of the medium in which the molecules are situated!x=1,=0 should be excluded

Since the local field depends on the induced dipole moments .
in the system the above equation gives a self-consistency /
equation for the dipole moments in the system. Using a stan- Xo= ™ E:
dard expression for the nonretarded—«) dipolar field

[3,4] we find that Egs(1) and(2) become o

(I+—|)3/2 _9.03$...,

3AY(IZ+15+AH)~1
—= o (IZ+17+A2)%2

=
i
~<FM

Y
p,u(lx 1|y 1| Z) :477808m7/.LVE0,V+ al;V

=167, D (13419 exf —2mA(13+12)Y7).
k=0 1y=1

X X Dyyhaliuly ) 0,00) 6)
MR
x'yrz

o We have used the results in R€f5,6] in order to rewrite the
Xpylxly.l2), expression foly, into a more rapidly converging sum. Notice
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that the dipole suny, is positive and depends on the dimen- holds even if the constituting molecules in the bilayer are
sionless quantitA=A,=d/a, i.e., the ratio between the in- assumed isotropic and is then therefore solely caused by the
terlayer distance and the intralayer distance between molecal field effect. For isotropic molecules the strength of the
ecules in each layer. Also notice that the different vectoranisotropy is determined by the dimensionless dipole cou-
components of the induced dipole moments decodfde  pling parametery,/as. It is only when this parameter is
“long” wavelengths as assumed heya.e., if the external small we obtain an isotropic bilayer response. Notice that if

field is parallel or perpendicular to the molecular symmetryz,ou is redshifted themy, is blue shifted. We also notice that
axis then the induced dipole moments are also in the samg andy, have opposite sigrisee Eq(6)]. Therefore for the

direction. ~ o~ .
S . case whe > < the frequenc is
It is interesting to compare our results to the results for| '~ shifteddX()l xi (Ixol<x) quencywoy (wo.)

the nonretarded response of a monolayer of molecules above The above result for the polarization allows us to identify

a metal_ surfacé_5]. Sm_ce molecules gbove a m_etal surfacethe macroscopic relative dielectric function paralleérpen-
induce image dipoles in the metal this system is also eﬁecaiculalj ¢ (.) to the molecular symmetry axfsr equiva-

tively a dipole coupled bilayer. The expressi@or infinite : : )
metal dielectric function, i.e., an impurity-free ideal metal atlent!y paralle! (perpendlgulalrtg the b|Iayerno_rm2aﬂ. Intro
low frequenciesfor the induced dipole moments parallel to 9ucing the dipole density®=p/vo, wherevo=a“D/2 (see
the layer normap is identical to ourgsee Eq(5)], whereas Fig. Dis the_ unit cell volume per moleculéX(is the_ effec-
tive layer thicknes$7] and in generaD #d) and using the

the expression fop, differs; p, in the metallic case is same 9 ¢ ,
P DL PL continuity of the normal component of the displacement field

as given by Eq.5) but now with |, = — xo/2+ x,/2, i.e., e X
there is a plus sign in front of thg,/2 term (whereas we as well as the continuity of the tangential component of the
total electric field it is straightforward to show thiag]

have a minus sign These results are due to the fact that an
induced dipole moment parallgberpendicularto the metal ~
surface normal induces an image dipole moment that is in e —1= 4wy,
the same(opposite direction. In our casdfor long wave- * vy
length compared to intermolecular distancé induced di-
pole moments in the upper and lower layers are identical,
independent of the polarization direction of the external field.
Let us now assume that the molecular polarizability takes

the form (u=_1 or ) In the next two sections we will investigate the electric re-

1-gjt= . (10)

2
(J)Olu
Yuu="Y : , (7)
e Oﬂwgﬂ—wz—lwfﬂ
wherey,,, is the static polarizability of the moleculesg, is
a resonance frequency, aliq is a damping parameté4,5].
Inserting this expression for the polarizability into E§) we

find

2

YViu=" o
e Ouaéﬂ—wz—iwl—‘#’
~ Youl
wéﬁ=wé#(1— °’;"), (8)
a
wherel=xo+x;, |, =—1)/2 as before, ang, and x, are

given by Eq.(6). This model for the renormalized molecular
polarizability is most appropriate close to a resonance a
contributions from other frequencies can be ignored. We no-
tice that for yo, =y the two new resonance frequencies

satisfy the sum rule

~2 ~2
@ @Wor

3 9

wo| oy

sponse of a dipole coupled ellipsoidal shekll membrang

The above result for th€local) dielectric functions of the
bilayer will be used in the solution of the Gauss equation. We
want to point out that there is some arbitrariness in the
choice of the effective layer thickneBs(not to be confused
with the interlayer center-of-mass distartiesee Fig. 1 D

is taken as the distance between two “sharp” boundaries
separating the membrane from its surroundings. Since mol-
ecules do not have a well-defined size one must be careful to
choose these sharp boundaries in such a way that the macro-
scopic fields are the same as the averaged microscopic fields
as given by the induced microscopic dipole moments and the
external field[7]. We will in the subsequent sections prima-
rily be concerned with thin-walled membraneB/L<1,
whereL is the typical size of the cell. As we will seB,does

not appear explicitly in the expression for the cell polariz-
ability. We therefore need not concern ourselves with a dis-
cussion about the appropriate choice of an effective layer
gwickness. However, for systems whédélL is not necessar-

ily small one must be more careful.

The results obtained in this section will remain qualita-
tively the same whether one considers a monolayer, bilayer,
or a multilayer. The appearance of two resonances is, for
isotropic molecules, a manifestation of the dipole-dipole in-
teractions, whose net contribution is different in the normal
and parallel directions. Therefore the general conclusions
drawn in terms of the shiftefor modified resonance fre-

independent of the interaction between the molecules. Thguencies will remain the same irrespective of the number of
electric response of the system in the perpendicular directiotayers. In particular, we point out that the monolayer re-
is different from the response in the parallel direction. Thissponse is obtained from the results in this section simply by
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(1) is then that the membrane molecular symmetry axes are
oriented along the ellipsoidal cell membrane norrias is
z typically the case for real ce)lsUse of the form of dielectric
function as contained in E@l1) is expected to be rigorous if
the bilayer thicknes® is much smaller than the typical lin-
ear sizel of the cell, i.e., ifD/L<1 [11]; if this criterion is
not fulfilled one expects significant redistribution of mol-
ecules(compared to the flat bilayewhich can cause, for
instance, radial inhomogeneities. For cells typicalyL
FIG. 2. A cut through a coated ellipsoid. The principal semiaxes~0.001 and we can therefore safely apply the local dielectric
perpendicular to the paper are of length(the outer ellipsoiland ~ function from the preceding section to the present case.
a, (the inner ellipsoigl We assume that the inner and outer surfaces We now consider the response in the nonretarded limit.
are confocal:b?=a?+t and thata,>a,>a,. The shape of the For the applied potential we wri®,,= —vE,, i.e., the ex-
coated ellipsoid is completely specified by the ellipticity of the in- ternal fieldE is constant and in the direction p =x, y, or
ner surfacee’=1-aZ/aZ and the ellipticity of the outer surface z). In the nonretarded limit the potentidl satisfies Gauss
e5=1-b/b? and s=(b—bJ)/(bZ—b?). For the case of a thin equation given by
coating the ellipticities are related?=e?(1+ &) where 5=t/b? is . R
the relative coating thickness. The ellipsoidal shell has relative di- V. [&(w)-VO®]=0. (12

electric functiong| in the normal direction and, in the tangential ) . ) ) .
direction. The relative dielectric function of the inner ellipsoid ' his problem has been treated in detail and is published else-

is e, . where[12]. We here only summarize the results. We intro-
ducque?/(1+ g/ai), where¢ is the usual “radial” ellip-
settingy, =0 (together with the appropriate modification of soidal coordinat¢10]. We have thatg=—aZ [10] and hence

the unit cell volume per moleculey). 0=<q=<1. The inner(outep surface corresponds tQ= ei2
(q=e§). For the case of a thin coating, the ellipticities are
IIl. POLARIZABILITY FOR AN ELLIPSOID WITH AN related:e?=e2(1+ &), wheres=t/b? is the relative coating
ANISOTROPIC COATING thickness §~D/L<1). We will use this relation in the fol-

In this section we present the analytical expression for thd®Wing section in order to make an expansion in the relative
polarizability of an ellipsoidal particle with an anisotropic coating thickness for the ellipsoid polarizability. The solu-
coating (the coating dielectric function is different parallel tion of Gauss equation for the coating region is then (
and perpendicular to the coating normal =X, yorz)

We consider the coated ellipsoidal particle in an external
electric fieldE,, with the lengths of the principal semiaxes
of the inner and outer ellipsoids ag andb, (v=x,y,z), see (13
Fig. 2. In a standard fashid8] we assume that the inner and where the asymmetry in the dielectric function of the coating
outer surfaces are confocah;=aj+t and thata,=a, (s ande,) enters through defined as
=a,. The shape of the coated particle is completely speci-
fied [9] by the ellipticity of the inner surfacee?=1 u=u.=—3+3(1+8e, g )" (14)
—a?/aZ, the ellipticity of the outer surface?=1—b?/b?
(ef=e5=0 for a spherg and s=(bZ—bJ)/(b;—b3). We
notice thate?, 2, ands all are in the rangg0,1]. We denote
the relative dielectric functior(i.e., dielectric function in
units of ege,,,, Whereegep, is the dielectric function of the
medium in which the particle is immersedf the inner el-
lipsoid by e; . The coating has relative dielectric functiep
in the normal direction an@, in the tangential direction,
ie.,

®=B,vH,(u_,s;q)q* U2+ C uH,(u, ,5,0)qt U2

and B, and C, are constants that are determined by the
boundary conditions. The functiod,(u,s;q) satisfies He-
un’s equatiorf12—14. In general, Heun's equation does not
have compact solutions in terms of known standard func-
tions. However, it does have series solutions around the sin-
gular points[13,14]. We will here use the series expansion
aroundq=0 (valid for |g|<1) which is(leaving thev de-
pendence of coefficients impligit

Ecoar |6+ e, (nn+LD). (11) Hv<u,s:o1>=mE:0 Km(u,8)q™, (15)

The standard ellipsoidal coordinates are denotedby),  \yhere the expansion coefficients satisfy the recurrence rela-
and/ [10] and ¢ above is a unit vector perpendicular to the tion [15]

ellipsoidal surface= const. Similarlyz and{ are unit vec-

tors perpendicular to the hyperboloid surfaegs const and (m+1)(m+y)Km1

{=const, respectively. We assume tleatande, are given —{[(1+s)(m—1+y)+ 5,+se,Jm+ s\, }kn,
by the result for a flat bilayer from the preceding secfisee v v

Egs. (8) and (10)]; the implicit assumption underlying Eq. +s(m—1+a,)(M—1+B)ky,-1=0 (16)
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TABLE I. Parameters in Heun's equation in termsuef 1/2(— 1+[1+8¢, &) *]¥%), wheres (¢, ) is the
relative dielectric function in the direction paraliglerpendicularto the ellipsoid coating normal. The shape
parametes is defined in Sec. lIl.

v X y z

a, —u/2 1-u/2 1-u/2

B (1-uw)/2 (1-uw)/2 (1-u)/2

y 1/2—u 1/2—u 1/2—u

8, 1/2 1/2 3/2

€, 1/2 3/2 1/2

N, (u—1)u(s+1)/(8s) (u=1D)[2s(u—1)+u]/(8s) (u—=1)[2(u—1)+su]/(8s)

with k=1 andk_,=0. The parameters are given in terms 1 s
of uin Table I. The above series is not defined for —m n,(s;q)= 5[ fxfyf 1" H,(-25;0)
wherem is a positive integer. For the inner ellipsoid as well

as for the surroundings the dielectric functiénis taken as 1 12
constant and scalar and Gauss equation reduces to Laplace = E[fxfyfz]l’zf 5 . dt
equation in these regions, for which the solution can be 0(1-qt)™(1—-qsh«

found in textbookq8,10]. The potential in all space is ob- (20)
tained by imposing the conditions that the potential and the

normal component of the displacement field are continuousiith f,=f (s;q) and 5, and €, are given in Table I. We
at the boundaries as well as requiring that the solution have also introduced

—®q,=—vEqy (v=Xx,y,2) at infinity. We are here primarily

interested in the resulting polarizability of the coated el- e\ U HO(U YH (u,)
lipsoid. pUE<—O) — (21)
A complete knowledge of the polarizability for a coated & Hy(u)H, (u-)

ellipsoid requires the knowledge #f,(u,s;q) and a second .
functionr,(u,s;q) (v=x, y or z) defined by whereHJ(u.)=H,(u. ,s;e}) andH,(u.)=H,(u. ,s;ef).
The geometry of the particle enters through the geometric
entities nY, ri(u.), and ro(u.). These quantities can
d straightforwardly be generated on a computer using the re-
r,(u,s;q)=1-"f,(s;q) 1—U+ZQE|H[HU(U,S;Q)]]’ currence relation, Eq(16). The standard isotropic depolar-
(17) ization factor ny depends only on the shaps and eg),
whereasr) (u.) andry(u.) couple the geometry to the di-
electric asymmetry of the coating. For the case of spheroids
where f,(s;q)=1, fy(s;q)=1-sq, and f(s;q)=1-q9. (two of the principal axes are equaH,(u,s;q) and
Wlth the abOVG d_efinitio_ns t_he polarizability of an e”IpSOId rv(u,s;q) are expressib|e in terms of hypergeometric func-
with an anisotropic coating is tions[12]. For an anisotropic coatesphere(q—0) we no-
tice from Eq.(17) thatr} (u)=ro(u)=u and the expression
for the polarizability reduces to the result obtained in Ref.
Voo I(k=-1) [11]. For an isotropic coating =¢, the polarizability re-
= , (18 1= cs .
4mn° 1, (k=1/n°—1) duces to the standard result given in, for instance, F8af.

aUU

IV. POLARIZABILITY OF AN ELLIPSOIDAL
where BILAYER MEMBRANE

In this section we combine the result for an ellipsoid with
ly(r)=[ro(uy)+ Kgllil][riv(ui)—gig”il] an anisotropic coatingSec. Ill) with the results for a dipole
_ coupled flat bilayer obtained in Sec. Il in order to obtain the
—polrou)+ e ry(us) —eig) 1, (19  polarizability of anellipsoidal bilayer membranéa cel).
By combining the results from the previous two sections
it is possible to find the polarizability for a dipole coupled
and V,=4mb,byb,/3 is the outer volume of the ellipsoid. ellipsoidally shaped bilayer membrane. We igt=1 (i.e.,
We have above introduced the shorthand notatigfu.)  assume that the inside dielectric constant equals the one out-
=r,(u. ,s;eiz) andro(uL)=r,(u. ,s;eﬁ). n3=nv(s;e§) iS  side in Eq. (18) and combine this expression for the polar-
the standard depolarization factor for thedirection for the izability with the bilayer dielectric function, Eq¥8) and
outer surfacg10] where explicitly (10). We are here primarily interested i,,(w) as a func-
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tion of shape for a thin-walled membrangg1. In this limit
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ellipsoid. This expression can be further simplified by notic-

it is possible to obtain analytic results for the poIarlzab|I|ty ing that for a thin coatindisuch that5/(1 e )<1] we have

We proceed by making an expan3|b,[(;<)~l (K)+| L(k)

VoF8/2~V,—V;=V oa WhereV,qis the coating volume

. [see EQ.(19)], where 1%(x) is zeroth order in the andV 47raxayaz/3 is the volume of the inner ellipsoid and

relat|ve membrane thicknessand | * ,(k) is first order ins.

While deriving below the expansion we will use the fact thatfor ¢ ands‘

Fo=F(s; eo) We finally introduce the explicit expression
[Egs.(8) and(10)] for a flat bilayer and use

the eIIipticities of the outer and inner ellipsoidal surfaces areghe fact that the coating volume can equally well be written

related:e?=e2(1+ 5) for a thin coating(see the preceding Vcoar= Nvo, Wherevy is the unit cell volume per membrane
section. We straightforwardly obtain the zeroth order result Molecule as before arid is the number of molecules in the

[see Eq(19)]
12(k)=—&] "L(ro(uy)—

We notice(for g;=
of the polarizability, Eq.(18), is zero[1%(k=—1)=0] to

ro(u_)](k+1). (22

zeroth order ind, we must therefore approximate the nu-
merator by its first order term i. The zeroth order term for

1 as we assume hegrthat the numerator

membrane, and findv(=x, y or z)

2 2
_ YoL @ Yo0|@o
vv N o1 ~92 2

Wy, — W

@ = ,
v .
wcz)”—wz—IwFH

(27)

where we have only included the resonant part to obtain the

_lwri

denominator is nonzero and we therefore approximate thpolanzablllty Notice that the resonance frequencigs and

denominator by this term. We thus write E{.8) accord-
ingly,
Vo  IHk=-1)

,,~ . (23
4mn? 1%(k=1/n°-1)

We proceed by deriving an expression fé(x), by expand-
ing I,(k) to first order in § using the fact thatp,~1

—(6/2)[r (uy)—r2(u_)]/fS. This expansion requires that

we assumelu|s<1 or equivalently §<(I'/wo)*? near a

resonance, wher€ is the damping constant introduced in

wg| are the same as for a flat bilaylsee Eq.(8)] and that
cell polarizability «,,, is proportional to the number of mol-
eculesN in the bilayer. The geometric weights for the oscil-
lator strengths are given by

2(R%)? 1
TR T R
! (28)
9y FofS'

Eq. (7). We thus assume that the relative membrane thicknesehe result for the polarizability of a dipole coupled ellipsoi-
is smaller than the square root of the relative damping conelal bilayer membranéa cel) as contained in Eq$27) and
stant. Since we assume that we are close to a sharp resonarigg) is the main result of this studyL6]. We again point out

frequency (aH or ¢, large, i.e., small dampind,/wy<<1)

we can then proceed by approximating the functionthe damping is smalli.e.,

r,(u,s;q) by its largeu expansion given by12]

r,(u,s;9)=uR,(s;q),
F(s;q)f,(s;q)—1\%?
Rusia)=| S VRSDTHT gy
whereq#1 and
1 1 1
FEO=f s f,(50)  f(sq) @9

with f,(s;q)=1, fy(s;q)=1—-sq, and f,(s;q)=1—q as
before [notice thatr,(u,s;q) is proportional tou for large
u]. Furthermore, keeping only the highest order terms jin
and | and neglecting terms-\e, and ~ \g| [this again
requires the assumptiod< (I'/ wo) ¥4 we find

o
1300~ = L)~ | e 2R e e,
U (26)

where R°=R(s;e?) and f=f(s;e?). Equation(26) com-
bined with Eqs(22) and(23) gives the polarizability of the

that these equations are based on the following assumption:
the membrane molecules have
“sharp” resonances but not “too small” in comparison to

the membrane curvaturé~D/L<(I'/wo)?<1, whereD

is the membrane thickness ahdks a typical linear size of the
ellipsoid. The results are illustrated in Fig. 3, where we also
give the results using the full expression for the polarizability
[Eq. (18) together with the bilayer dielectric function, Egs.
(8) and (10)]. The agreement with the above approximative
result and the exact result is excellent. We notice some gen-
eral features. As already noted, the positions of the reso-
nances are practically the same as for a flat bilayer, i.e., the
peak positions are unaffected by the curvature of the bilayer

as long ass<(I'/ wg) V2. If this condition is not satisfied, the
induced dipole moments are sufficiently large to allow dipole
interactions over distances for which the membrane is not
flat. The geometric weight for the oscillator strength is a
measure of how many induced dipoles effectively contribute
to the extinction cross section-(w Im[ «,,(w)1). When the
external field is directed along the long axis there are more
(less local area elements with a normal oriented perpendicu-
lar (paralle) to the field[and hence morédess induced di-
poles in the field directioncompared to the case when the
field is along the short axis. The geometric weight for the

w=wg, (0=wg)) peak is therefore largest when the field is
along the largestsmalles} principal axis[see Eq(28)]. We
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o — ' ' - obtain the geometrical shape of the cell. These ratios can also
_5_ 9, be used to infer the orientation of the applied field.
& 9, d | We have in this study assumed that the dielectric function
7L Y ﬁ é _ of the ellipsoidal bilayer is given by the result for a dipole
: : coupled molecular aggregate where the molecules are situ-
6r g . ated on ecubic bilayerlattice. Real cell membranes are usu-
= g i ally found in a two-dimensional fluid state. One should
%5' 3 .". % therefore investigate how disorder affects the dielectric func-
54_ : | tions. This is currently under investigation. We also here
8 point out that the results from this section can straightfor-
3l _ wardly be modified in order to obtain the polarizability of an
ellipsoidally shaped monolayer or multilayer. The only effect
2r 1 of changing the number of layers is to modify the resonance
il | frequencieswy, and Z)on (see discussion at the end of Sec.
I). The expressions for the geometric weights andg,,
0 . ™ however, remain the same.
1 e 1.2 1.4

FIG. 3. The extinction cross sectior w Im[ «,,(w)], where V. CONCLUSIONS

a,,(w) is the polarizability for an ellipsoidally shaped bilayer. The | this study we have derived an electromagnetic response
dashed line corresponds to the external field being along the long,nction for a cell-like structure at field frequencies where
axis (x axis), the solid line corresponds to a situation where the nolecular resonancesibrational and electronjcare impor-
external field is along the middle axiy @xis). For the dash-dotted tant (i.e., typically at energies-0.1— 3 eV). The basis for

line the field is along the shorz(axis). The vertical lines corre- this invéstigation was that a cell membrane is. due to local
spond to the resonance frequencies for a flat dipole coupled b“ayeﬁeld effects, typically dielectrically anisotropic F’urthermore
][\'Oticeﬂthat).tre posﬁ?n of thke pea."fs are loca:]ed at th?fsamde Elacﬁ RRlls are in' general not spherical. We have.therefore cor;1—
or a flat bilayer. The peak positions are thus unaffected by the . " ;
curvature of the layer. The horizontal lines correspond to the an;i_)lned resqlts for the electromggnetlc response of a} flat dipole
coupled bilayer with the solution of Gauss equation for an
ellipsoid with an anisotropic coatinghe coating dielectric
function being different parallel and perpendicular to the

coating normal in order to obtain polarizabilityy,,(w) (v

lytic expression for the geometric weight for the oscillator
strengths, Eq.(28). The geometric weight for thev=w,, (o
:Z;o”) peak is largest when the field along the largeshallest
axis. The shape of the ellipsoid was taken todﬁerO.S, s=0.5, =x,y,2) for an ellipsoidal bilayer membraneFor a thin-

and 6§=0.002. The ratio between intermolecular distance Within_walled bilayer the result is given in EqR7) and(28). Some

each layer and distance between molecules in different layers léeneral features are: the positions of the peaks of
taken asd/a=2. The electromagnetic response of the molecules '

was characterized by the static isotropic polarizability valuelm[‘j{uv(w)] are the same as for a flat bilayes=wg and
vo/a®=0.1 and the damping parametetisw,=0.03. w=wq, [see Eq(8)]. The geometric weight for the oscilla-
tor strengths of the peaks are, however, sensitive to the

notice that in the spherical limi¢2—0 we haveg,, —2/3  shape. The geometric weight for the= wg, (0=wg) peak
andg,— 1/3. The geometric weights satisfy the general sumis largest when the field is along the largésmallest axis.
rules: The geometric weights are shown to satisfy three sum rules.
_ We hope that the results obtained in this study will be
9«9y +92 =1, S~ o
useful for cell characterization. The imaginary part of the
GoL + Qv+ 0y =2, (29) polgringility is direc@ly accessible to experiments through
XL eyl Yz extinction (or absorption measurements. The result for the
These sum rules state that the rotationally averaged extingell polarizability as given by Eq$27) and(28) can thus be
tion spectrum €~ w Im[ ayx+ ay,+ @,,]) does not depend on used to interpret the results of such measurements in terms of
the shape. One must thus align the cells if one wants informolecular polarizabilities, intermolecular distances, cell
mation about shape using extinction measurements. We als$ape, etc. Furthermore, our results could be applied, with
easily obtain the sum rule only minor modifications, to other coated anisotropic struc-
a=1 (30) tures of nontrivial s_hape that exhibit resonances. Examples
oL TGy = of such structures include fullerenes or ellipsoidal nanopar-

This sum rule states that for a field incident alongshaxis  ticles with ultrathin coatings.
of an aligned cell the extinction integrated over all frequen-
cies~ [dw o Im[«,,(w)] is independent of the shape.

We would like to emphasize that the shape of the cell can
be inferred by measuring the peak heights in the extinction This project was supported by the Swedish Natural Sci-
(or absorptionspectra for a single isolated cell. The ratios of ence Research Council. We are grateful for valuable discus-
the peak heights, as our theory shows, can then be utilized t&ions with Alf Sjdander and Tomas Carlsson.
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