
Forecasting World Crop Yields as Probability Distributions 
 
 
 
 
 
 

John N. (Jake) Ferris 
Professor Emeritus 

Department of Agricultural Economics 
Michigan State University 

 
 
 
 
 

Contributed paper prepared for presentation at the  
International Association of Agricultural Economists Conference 

Gold Coast, Australia 
August 12-18, 2006 

 
 
 
 
 
 

 
 
 
 
 
 

 
Copyright 2006 by John N. (Jake) Ferris.  All rights reserved.  Readers may make 
verbatim copies of this document for non-commercial purposes by any means, 
provided that this copyright notice appears on all such copies. 

 
 
 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7055839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

The traditional approach to forecasting crop yields in large econometric models of 

agriculture is to assume normal weather and project crop yields as linear extensions of past 

trends. Recognizing that departures of yields from trends are the major sources of risk in the year 

ahead and beyond, agricultural economists have made the case for probability forecasting for 

many years (Teigen and Bell, 1978; Nelson, 1979; Ikerd, 1979).  Ferris (1989) illustrated the 

procedure to introduce stochastic yields in an econometric model to forecast crop prices three 

years ahead and enumerated the process in his textbook (Ferris, 1998, 2005).  In recent years, 

Richardson (2000) has provided leadership in simulating risk from variations in crop yields and 

other sources as applied to farm management decisions. Ray along with Richardson (Ray, 

Richardson, et al., 1998) has undertaken an extensive effort to generate long term agricultural 

forecasts employing probability distributions of crop yields and exports. 

After this paper was submitted to IAAE, two studies were published which applied 

stochastic modeling to policy analysis, both dealing with problems of asymmetry.  Both cited the 

weakness in point forecasts, one dealing with projections under WTO restrictions (Westhoff, et 

al., 2005) and the other with regard to government payments for 2007 to 2015 under the current 

U.S. 2002 Farm Act (U.S. Department of Agriculture, 2006). 

Opportunities Have Been There 

Expanding computer capacity has increasingly enabled agricultural economists to 

generate probability distributions of variables in econometric/simulation models.  Obviously, 

crop yields are the most attractive candidates. Long term historic data on crop yields are widely 

available, so estimating the variability coefficients is not difficult.  Variability may be changing, 

which must be assessed in order to extrapolate into the future.  In this case, the analyst may want 
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to test whether departures from rising crop yield trends are more stable in percentage terms than 

absolute terms.  The analyst may also face the question of whether to eliminate “outliers” such as 

departures from trend due to extreme weather which is considered extremely unlikely in the 

future, such as a flood that happens only once in 500 years.  These problems are relatively easy 

to solve. 

Challenges   

Why only limited attention has been give to stochastic forecasting by modelers is clear 

when one considers the challenges. Beyond the enormous capacity requirements for computers 

to handle stochastics, analysts for large econometric models face the following major frontiers:  

(1) incorporating crop yield correlations among crops and (2) generating non-normal 

distributions.  This paper addresses these challenges with an empirical example employing the 

software program, EViews 5 (Quantitative Micro Software, 2004).  Quantitative Micro Software 

provided technical support in programming for this exercise. 

Selected Crops 

AGMOD, an econometric/simulation model of United States agriculture developed at 

Michigan State University, focuses on major field crops and livestock incorporating yields on 

thirteen selected crops and regions in the world.  Crop yields per acre or per hectare from a data 

base of the Foreign Agricultural Service (PSD Online) of the U.S. Department of Agriculture 

(U.S. Department of Agriculture, 2005) were divided by double exponential smoothing of the 

data to estimate departures from trends in a ratio form. The codes and definitions for these ratios 

are as follows: 

RYCN                 US corn 

RYCGOCN         US coarse grains other than corn 
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RYSB                  US soybeans 

RYWH                 US wheat 

RYCGX                Coarse grains in major exporting nations of Canada, Argentina,                   

and Australia 

RYWHX               Wheat in major exporting nations of Canada, Argentina, and Australia 

RYCGEU              Coarse grains in the 15 nations of the European Union (EU15) 

RYWHEU             Wheat in the EU15 

RYOLSEU             Oilseeds in the EU15 

RYSBAB                Soybeans in Argentina and Brazil 

RYCGOXE             Coarse grains in nations other than the US, Canada, Argentina, 

Australia and the EU15 

RYWHOXE            Wheat in nations other than the US, Canada, Argentina, Australia 

and the EU15  

RYOLSO                 Oilseeds in nations other than soybeans in the US, Argentina and 

Brazil, and oilseeds in the EU15  

Yield Correlations             

A correlation matrix was generated for these thirteen crop variables as presented in 

Table1.  Most of the yield data were for the period of 1960 to 2004 with exceptions as noted.  As 

expected, the positive correlations are strongest for the regions that are overlapping such as (1) 

the production areas for US corn, other coarse grains and soybeans, (2) coarse grains and wheat 

in Canada, Argentina, and Australia, (3) coarse grains, wheat and oilseeds in EU15, and (4) 

coarse grains and wheat in the rest of the world. 
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Also of interest is the fact that some of the correlations are negative, such as between 

RYSBAB and RYCGOXE, RYSBAB and RYOLSO and RYCN and RYCGOXE.  These 

negative correlations provide offsetting impacts of weather on world crop yields contributing to 

crop production stability. 

To correct for the strong positive correlations, Ordinary Least Squares (OLS) procedures 

were applied to forecast RYSB and RYCGOCN as functions of RYCN.  Similarly, equations 

were estimated for RYWHX as a function of RYCGX; RYWHEU and RYOLSEU as functions 

of RYCGEU; and RYWHOXE as a function of RYCGOXE. 

Normality Tests 

Standard deviations were estimated for each of the yield variables, and Jarque-Bera 

(Bera, Jarque, 1980) normality criteria were also applied to the distributions (Table 2). Under the 

Jarque-Bera test, a normal distribution has a skewness value of zero and a kurtosis value of three.  

Negative values on skewness mean longer tails to the low side than to the high side.  Values of 

kurtosis over three indicate thicker tails than for a normal distribution.  Note in Table 2 that crop 

yields tend to be skewed to the low side. 

 For RYCN, the standard deviation was .095 or 9.5 percent of trend. The distribution was 

skewed to the low side and with thick tails.  The Jarque-Bera test suggests that there is little 

likelihood that RYCN is distributed normally.  In other words, yields are lower in years of 

unfavorable weather than higher in years of favorable weather.  The Jarque-Bera criteria for 

RYSB indicated a similar characteristic but less pronounced.  By generating RYSB as a function 

of RYCN, the residual term in the equation displayed normality. While the normality criteria for 

RYCGOCN were positive, the residual from the regression on RYCN exhibited stronger 

normality features. 
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RYCGX approached normality while RYWHX did not.  By regressing RYWHX on 

RYCGX, the residual term improved on the normality criteria. 

Like RYCN, RYCGEU was skewed to the low side with thick tails.  RYWHEU was also 

not normal but tended to be skewed to the high side.  Regressing RYWHEU on RYCGEU 

generated residuals closer to normal but not to a strong position.  Regressing RYOLSEU on 

RYCGEU helped to explain oilseed yields, but the residuals did not represent an improvement in 

terms of normality as compared to that of RYOLSEU itself.  In any case, both the variability of 

RYOLSEU and the residuals from the regression on RYCGEU were acceptably normal at .92 

and .62 probability levels respectively. 

RYSBAB over the 1965 to 2004 period was normally distributed based on Jarque-Bera.  

The period of analysis was shortened for Argentina and Brazil because of the rapidly increasing 

production level for those countries.  An even shorter period was applied to RYOLSO because of 

the much higher level of production since 1987 than before.   

Because of the dispersion geographically of RYCGOXE, the variability around trend 

approached normality over the 1960 to 2004 crop years as did RYWHOXE (Table 2).  The 

residuals from the regression of RYWHOXE on RYCGOXE displayed a stronger position on 

normality than did the direct test on RYWHOXE. 

RYOLSO was such an aggregate variable that it was not highly correlated with other crop 

variables, and it exhibited reasonable normality at a .721 probability coefficient under Jarque-

Bera.  This is another example that deviations of crop yields from trends tend toward normalcy if 

broad geographic areas are involved. 

 

 



 7 

Yield Simulations for 2006 

With the above information relative to correlations and normality criteria, a model was 

constructed to simulate yield forecasts in the year 2006 as probability distributions.  For each 

yield, a single valued projection was established for 2006 based primarily on past trends.  For 

yields correlated with and regressed on other yields, the equation for the ratio to trends was a 

function of the other yields and a random number generator which returned a normal distribution 

with a mean of zero and a standard deviation connected to the residuals of the equation.  For 

crops for which yield deviations were classified as normal, the equation for deviation from trends 

was simply a function of the standard deviation times the random number generator for a normal 

distribution. 

To illustrate this sector of the model are the lines for US soybeans and wheat: 

RYSBP = .469 + .549*RYCNP+ .0557*NRND 

RYWHP = 1.000 + .0695*NRND 

Where: RYSBP = Predicted ratio of US soybean yields to trends 

  RYCNP = Predicted ratio of US corn yields to trends 

  RYWHP = Predicted ratio of US wheat yields to trends 

  NRND    =  Random number generator for a normal distribution  

The next sector of the model transformed the ratio distributions into the yield 

distributions around the projected levels.  For US corn, soybeans and wheat, the lines of the 

model are as follows: 

YCNP = RYCNP*YCN 

YSBP  = RYSBP*YSB 

YWHP = RYWHP*YWH 
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Where: YCN = Single value projection of US corn yields to 2006 

             YSB  = Single value projection of US soybean yields to 2006 

             YWH = Single value projection of US wheat yields to 2006 

However, a program is necessary to run a stochastic version of this model.  This program 

first has to generate non-normal distributions for the two problem distributions which deviate 

from normal: US corn yields and EU15 coarse grain yields.  To do this, the ratios of actual to 

trend yields for 1960 to 2004 for these crops were drawn randomly. These draws then provided 

the inputs for the model for RYCNP and RYCGEU to generate the probability forecasts for 

2006. 

The next question is how many times should you run the model?  The arbitrary decision 

in this case was 1000.  Fortunately, the power of desktop computers will allow us to explore 

even more runs.  To generate forecasts with risk components into the next 5 or 10 years, many 

more iterations will be needed.  

Results for US Corn, Soybeans and Wheat Yields  

The results for the one year of 2006 are illustrated for YCNP, YSBP AND YWHP in 

Figures 1, 2, and 3.  On YCNP, the most frequent yield forecast for 2006 was around 150 bushels 

per acre; but because of the skewed distribution, the mean is 143 bushels and the median is 145 

bushels per acre.  The probability of a short crop of 130 bushels or less is about 18 percent and 

about the same probability for a large crop exceeding 155 bushels per acre. 

Note the differences in Figures 1 to 3 on how the yield distributions were calculated.  In 

Figure 1, the random draws of deviations from trends on US corn were from actual observations 

for 1960 to 2004 because the distribution was non-normal.  While deviations from trends on 

soybeans were also skewed to the low side, the distribution could be simulated by a regression 
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on corn yield deviations in combination with random draws from a normal distribution with the 

standard deviation in the residuals as the parameter for the normal distribution.  Deviations from 

trends on wheat yields have approached normality; so to generate the forecast for 2006, the 

projected mean yield was multiplied by a random number generator for a normal distribution 

with the standard deviation of .069 calculated from RYWH for 1960 to 2004. 

The yields on corn demonstrated the lack of normality as expected with a standard 

deviation of 13.4 bushels per acre or .094 as a ratio to the mean, close to .095 as a ratio to trend 

yield.  Skewness was -1.036 in the simulation as compared to -1.048 in the 1960 to 2004 period.  

Kurtosis was 3.769 as compared to 3.842 in the actual deviations in 1960 to 2004. 

On US soybeans, the standard deviation was 3.1 bushels per acre or .075 as a ratio to the 

trend yield, close to the .076 in the data base.  Skewness was -.385, also close to -.326 in the data 

base with kurtosis at 3.394, also close to 3.456 in the data base.  On US wheat was a standard 

deviation of .069 as a ratio to trend yields (2.9 bushels per acre) compared to a standard 

deviation of .070 in the data base.  Skewness and kurtosis remained in the general bounds for a 

normal distribution. 

Implications 

The implications of this analysis for 2006 can be extended and applied in a more general 

way.  Integrated into an econometric model of US agriculture, these distributions provide the 

basis for forecasting domestic production, exports, imports, prices received by farmers, farm 

incomes, government expenditures, food prices, etc. in a dimension which allows for risk 

assessment.  This information can enter other models for decision makers with additional detail 

to fit the situation.  Single value projection sets which serve as the most likely scenario can 

thereby be substantially broadened for a much richer view of the future. 
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While the focus in this application of probability yield generation is on 2006, projecting 

with econometric models stochastically beyond one year ahead must be carefully programmed.   

Each iteration in the solution of the model must cover the entire projection period.  The reason is 

that the random draws from the crop yield distributions for the first year of the projection period 

will affect agricultural variables the next year; the results for the second year will affect the third 

year; etc.  For example, if the draw in the first year results in short crops and high prices, farmers 

will tend to increase acreages in the second year resulting in lower prices and so on.  This, of 

course, adds progressively to number of iterations required to simulate accurate distributions. 

Stochastic modeling is especially important in periods of low world stock levels on grain 

and oilseeds in planning for food security and helping to avoid spikes in food prices.  On the 

other hand, large crop carryovers weigh heavily on government expenditures on farm programs 

and increase demands for careful forecasts for budgeting purposes.  As cited by Westhoff 

(Westhoff, et al., 2005) and the USDA (U.S. Department of Agriculture, 2006), point projections 

can be misleading in assessing future costs of domestic farm programs and WTO proposals.  

Stochastically derived projections pick up the costs and other items of interest missed by 

scenarios assuming normal crop yields. 

In addition to risk assessments for policy analysis, large econometric models solved 

stochastically can provide useful inputs into type of farming models for decision making.  As in 

the past, interest will remain for “the most likely scenario” assuming normal weather.  Even so, 

computer capacity and software technology are available to make probability forecasting more 

routine in the future. 
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                        Table 1. Correlation Matrix of Ratios of Actual to Trend Yields
                   on Thirteen Selected Crops and Regions of the World, 1960 to 2004a

RYCN RYCGOCN RYSB RYWH RYCGX RYWHX RYCGEU RYWHEU RYOLSEU RYSBAB RYCGOXE RYWHOXE RYOLSO
RYCN X 0.690 0.685 0.272 0.203 0.040 0.066 0.059 0.226 -0.164 -0.230 -0.042 0.315
RYCGOCN X 0.770 0.303 0.442 0.466 0.152 0.118 0.036 0.024 -0.043 -0.108 0.245
RYSB X 0.065 0.154 0.061 0.055 -0.106 0.079 0.015 -0.148 -0.062 0.066
RYWH X 0.354 0.235 0.057 0.104 -0.022 -0.004 -0.100 0.151 0.190
RYCGX X 0.609 0.014 -0.094 0.339 0.174 -0.045 0.058 0.141
RYWHX X -0.059 -0.098 -0.156 -0.072 0.118 0.111 -0.063
RYCGEU X 0.667 0.535 0.276 0.061 -0.010 0.163
RYWHEU X 0.332 -0.005 0.243 0.074 0.356
RYOLSEU X 0.020 0.198 0.135 0.187
RYSBAB X -0.290 0.084 -0.243
RYCGOXE X 0.628 -0.129
RYWHOXE X -0.179
RYOLSO X

a 
For RYCGOCN and RYSBAB, the years are 1965 to 2004.

  For RYOLSEU and RYOLSO, the years are 1980 to 2004.  
 
 
 
 
 
 
Table 2. Variability and Normality Measurements on Ratios of Actual to Trend Yields 
            on Thirteen Selected Crops and Regions of the World, 1960 to 2004a

Standard Probability of
 Deviation (DV) Skewness Kurtosis Normality from

Crop Jarque-Bera

RYCN 0.095 -1.036 3.769 0.010
RYCGOCN 0.085 -0.044 2.531 0.827
RYSB 0.076 -0.326 3.456 0.552
RYWH 0.069 -0.180 2.765 0.841
RYCGX 0.061 -0.266 2.932 0.763
RYWHX 0.114 -0.769 3.486 0.087
RYCGEU 0.051 -0.532 3.812 0.187
RYWHEU 0.064 0.964 5.285 0.000
RYOLSEU 0.093 0.063 2.624 0.921
RYSBAB 0.092 0.101 2.710 0.901
RYCGOXE 0.035 -0.059 2.931 0.983
RYWHOXE 0.063 0.108 3.639 0.653
RYOLSO 0.076 0.178 2.136 0.721

a For RYCGOCN and RYSBAB, the years are 1965 to 2004.
   For RYOLSEU and RYOLSO, the years are 1980 to 2004.  
 



 13 

Fig.1 Histogram and Cumulative Distribution of US Corn Yields in 2006
from 1000 Random Draws from Actual Deviations in 1960 to 2004 
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Fig.2 Histogram and Cumulative Distribution of US Soybean Yields in 2006
as a Function of US Corn Yield Deviations and a Normal Distribution
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Fig.3 Histogram and Cumulative Distribution of US Wheat Yields in 2006
based on 1000 Draws from a Normal Distribution with Wheat's Historic S.D.
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